Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/swait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37
38#ifndef KVM_MAX_VCPU_ID
39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40#endif
41
42/*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47#define KVM_MEMSLOT_INVALID (1UL << 16)
48
49/*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70/* Two fragments for cross MMIO pages. */
71#define KVM_MAX_MMIO_FRAGMENTS 2
72
73#ifndef KVM_ADDRESS_SPACE_NUM
74#define KVM_ADDRESS_SPACE_NUM 1
75#endif
76
77/*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84#define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90/*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94static inline bool is_error_pfn(kvm_pfn_t pfn)
95{
96 return !!(pfn & KVM_PFN_ERR_MASK);
97}
98
99/*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107}
108
109/* noslot pfn indicates that the gfn is not in slot. */
110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111{
112 return pfn == KVM_PFN_NOSLOT;
113}
114
115/*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119#ifndef KVM_HVA_ERR_BAD
120
121#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124static inline bool kvm_is_error_hva(unsigned long addr)
125{
126 return addr >= PAGE_OFFSET;
127}
128
129#endif
130
131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133static inline bool is_error_page(struct page *page)
134{
135 return IS_ERR(page);
136}
137
138#define KVM_REQUEST_MASK GENMASK(7,0)
139#define KVM_REQUEST_NO_WAKEUP BIT(8)
140#define KVM_REQUEST_WAIT BIT(9)
141/*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_PENDING_TIMER 2
148#define KVM_REQ_UNHALT 3
149#define KVM_REQUEST_ARCH_BASE 8
150
151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154})
155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157#define KVM_USERSPACE_IRQ_SOURCE_ID 0
158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160extern struct kmem_cache *kvm_vcpu_cache;
161
162extern struct mutex kvm_lock;
163extern struct list_head vm_list;
164
165struct kvm_io_range {
166 gpa_t addr;
167 int len;
168 struct kvm_io_device *dev;
169};
170
171#define NR_IOBUS_DEVS 1000
172
173struct kvm_io_bus {
174 int dev_count;
175 int ioeventfd_count;
176 struct kvm_io_range range[];
177};
178
179enum kvm_bus {
180 KVM_MMIO_BUS,
181 KVM_PIO_BUS,
182 KVM_VIRTIO_CCW_NOTIFY_BUS,
183 KVM_FAST_MMIO_BUS,
184 KVM_NR_BUSES
185};
186
187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 int len, const void *val);
189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 gpa_t addr, int len, const void *val, long cookie);
191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 int len, void *val);
193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 int len, struct kvm_io_device *dev);
195void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 struct kvm_io_device *dev);
197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 gpa_t addr);
199
200#ifdef CONFIG_KVM_ASYNC_PF
201struct kvm_async_pf {
202 struct work_struct work;
203 struct list_head link;
204 struct list_head queue;
205 struct kvm_vcpu *vcpu;
206 struct mm_struct *mm;
207 gva_t gva;
208 unsigned long addr;
209 struct kvm_arch_async_pf arch;
210 bool wakeup_all;
211};
212
213void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
216 struct kvm_arch_async_pf *arch);
217int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218#endif
219
220enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225};
226
227#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242};
243
244/*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
248static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249{
250 return !!map->hva;
251}
252
253/*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261};
262
263struct kvm_vcpu {
264 struct kvm *kvm;
265#ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267#endif
268 int cpu;
269 int vcpu_id; /* id given by userspace at creation */
270 int vcpu_idx; /* index in kvm->vcpus array */
271 int srcu_idx;
272 int mode;
273 u64 requests;
274 unsigned long guest_debug;
275
276 int pre_pcpu;
277 struct list_head blocked_vcpu_list;
278
279 struct mutex mutex;
280 struct kvm_run *run;
281
282 struct swait_queue_head wq;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290#ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297#endif
298
299#ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306#endif
307
308#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319#endif
320 bool preempted;
321 bool ready;
322 struct kvm_vcpu_arch arch;
323 struct dentry *debugfs_dentry;
324};
325
326static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
327{
328 /*
329 * The memory barrier ensures a previous write to vcpu->requests cannot
330 * be reordered with the read of vcpu->mode. It pairs with the general
331 * memory barrier following the write of vcpu->mode in VCPU RUN.
332 */
333 smp_mb__before_atomic();
334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
335}
336
337/*
338 * Some of the bitops functions do not support too long bitmaps.
339 * This number must be determined not to exceed such limits.
340 */
341#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
342
343struct kvm_memory_slot {
344 gfn_t base_gfn;
345 unsigned long npages;
346 unsigned long *dirty_bitmap;
347 struct kvm_arch_memory_slot arch;
348 unsigned long userspace_addr;
349 u32 flags;
350 short id;
351};
352
353static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
354{
355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
356}
357
358static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
359{
360 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
361
362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
363}
364
365struct kvm_s390_adapter_int {
366 u64 ind_addr;
367 u64 summary_addr;
368 u64 ind_offset;
369 u32 summary_offset;
370 u32 adapter_id;
371};
372
373struct kvm_hv_sint {
374 u32 vcpu;
375 u32 sint;
376};
377
378struct kvm_kernel_irq_routing_entry {
379 u32 gsi;
380 u32 type;
381 int (*set)(struct kvm_kernel_irq_routing_entry *e,
382 struct kvm *kvm, int irq_source_id, int level,
383 bool line_status);
384 union {
385 struct {
386 unsigned irqchip;
387 unsigned pin;
388 } irqchip;
389 struct {
390 u32 address_lo;
391 u32 address_hi;
392 u32 data;
393 u32 flags;
394 u32 devid;
395 } msi;
396 struct kvm_s390_adapter_int adapter;
397 struct kvm_hv_sint hv_sint;
398 };
399 struct hlist_node link;
400};
401
402#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
403struct kvm_irq_routing_table {
404 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
405 u32 nr_rt_entries;
406 /*
407 * Array indexed by gsi. Each entry contains list of irq chips
408 * the gsi is connected to.
409 */
410 struct hlist_head map[0];
411};
412#endif
413
414#ifndef KVM_PRIVATE_MEM_SLOTS
415#define KVM_PRIVATE_MEM_SLOTS 0
416#endif
417
418#ifndef KVM_MEM_SLOTS_NUM
419#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
420#endif
421
422#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
423static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
424{
425 return 0;
426}
427#endif
428
429/*
430 * Note:
431 * memslots are not sorted by id anymore, please use id_to_memslot()
432 * to get the memslot by its id.
433 */
434struct kvm_memslots {
435 u64 generation;
436 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
437 /* The mapping table from slot id to the index in memslots[]. */
438 short id_to_index[KVM_MEM_SLOTS_NUM];
439 atomic_t lru_slot;
440 int used_slots;
441};
442
443struct kvm {
444 spinlock_t mmu_lock;
445 struct mutex slots_lock;
446 struct mm_struct *mm; /* userspace tied to this vm */
447 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
448 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
449
450 /*
451 * created_vcpus is protected by kvm->lock, and is incremented
452 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
453 * incremented after storing the kvm_vcpu pointer in vcpus,
454 * and is accessed atomically.
455 */
456 atomic_t online_vcpus;
457 int created_vcpus;
458 int last_boosted_vcpu;
459 struct list_head vm_list;
460 struct mutex lock;
461 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
462#ifdef CONFIG_HAVE_KVM_EVENTFD
463 struct {
464 spinlock_t lock;
465 struct list_head items;
466 struct list_head resampler_list;
467 struct mutex resampler_lock;
468 } irqfds;
469 struct list_head ioeventfds;
470#endif
471 struct kvm_vm_stat stat;
472 struct kvm_arch arch;
473 refcount_t users_count;
474#ifdef CONFIG_KVM_MMIO
475 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
476 spinlock_t ring_lock;
477 struct list_head coalesced_zones;
478#endif
479
480 struct mutex irq_lock;
481#ifdef CONFIG_HAVE_KVM_IRQCHIP
482 /*
483 * Update side is protected by irq_lock.
484 */
485 struct kvm_irq_routing_table __rcu *irq_routing;
486#endif
487#ifdef CONFIG_HAVE_KVM_IRQFD
488 struct hlist_head irq_ack_notifier_list;
489#endif
490
491#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
492 struct mmu_notifier mmu_notifier;
493 unsigned long mmu_notifier_seq;
494 long mmu_notifier_count;
495#endif
496 long tlbs_dirty;
497 struct list_head devices;
498 bool manual_dirty_log_protect;
499 struct dentry *debugfs_dentry;
500 struct kvm_stat_data **debugfs_stat_data;
501 struct srcu_struct srcu;
502 struct srcu_struct irq_srcu;
503 pid_t userspace_pid;
504};
505
506#define kvm_err(fmt, ...) \
507 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
508#define kvm_info(fmt, ...) \
509 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510#define kvm_debug(fmt, ...) \
511 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512#define kvm_debug_ratelimited(fmt, ...) \
513 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
514 ## __VA_ARGS__)
515#define kvm_pr_unimpl(fmt, ...) \
516 pr_err_ratelimited("kvm [%i]: " fmt, \
517 task_tgid_nr(current), ## __VA_ARGS__)
518
519/* The guest did something we don't support. */
520#define vcpu_unimpl(vcpu, fmt, ...) \
521 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
522 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
523
524#define vcpu_debug(vcpu, fmt, ...) \
525 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
526#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
527 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
528 ## __VA_ARGS__)
529#define vcpu_err(vcpu, fmt, ...) \
530 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
531
532static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
533{
534 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
535 lockdep_is_held(&kvm->slots_lock) ||
536 !refcount_read(&kvm->users_count));
537}
538
539static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
540{
541 int num_vcpus = atomic_read(&kvm->online_vcpus);
542 i = array_index_nospec(i, num_vcpus);
543
544 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
545 smp_rmb();
546 return kvm->vcpus[i];
547}
548
549#define kvm_for_each_vcpu(idx, vcpup, kvm) \
550 for (idx = 0; \
551 idx < atomic_read(&kvm->online_vcpus) && \
552 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
553 idx++)
554
555static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
556{
557 struct kvm_vcpu *vcpu = NULL;
558 int i;
559
560 if (id < 0)
561 return NULL;
562 if (id < KVM_MAX_VCPUS)
563 vcpu = kvm_get_vcpu(kvm, id);
564 if (vcpu && vcpu->vcpu_id == id)
565 return vcpu;
566 kvm_for_each_vcpu(i, vcpu, kvm)
567 if (vcpu->vcpu_id == id)
568 return vcpu;
569 return NULL;
570}
571
572static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
573{
574 return vcpu->vcpu_idx;
575}
576
577#define kvm_for_each_memslot(memslot, slots) \
578 for (memslot = &slots->memslots[0]; \
579 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
580 memslot++)
581
582int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
583void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
584
585void vcpu_load(struct kvm_vcpu *vcpu);
586void vcpu_put(struct kvm_vcpu *vcpu);
587
588#ifdef __KVM_HAVE_IOAPIC
589void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
590void kvm_arch_post_irq_routing_update(struct kvm *kvm);
591#else
592static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
593{
594}
595static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
596{
597}
598#endif
599
600#ifdef CONFIG_HAVE_KVM_IRQFD
601int kvm_irqfd_init(void);
602void kvm_irqfd_exit(void);
603#else
604static inline int kvm_irqfd_init(void)
605{
606 return 0;
607}
608
609static inline void kvm_irqfd_exit(void)
610{
611}
612#endif
613int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
614 struct module *module);
615void kvm_exit(void);
616
617void kvm_get_kvm(struct kvm *kvm);
618void kvm_put_kvm(struct kvm *kvm);
619void kvm_put_kvm_no_destroy(struct kvm *kvm);
620
621static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
622{
623 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
624 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
625 lockdep_is_held(&kvm->slots_lock) ||
626 !refcount_read(&kvm->users_count));
627}
628
629static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
630{
631 return __kvm_memslots(kvm, 0);
632}
633
634static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
635{
636 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
637
638 return __kvm_memslots(vcpu->kvm, as_id);
639}
640
641static inline struct kvm_memory_slot *
642id_to_memslot(struct kvm_memslots *slots, int id)
643{
644 int index = slots->id_to_index[id];
645 struct kvm_memory_slot *slot;
646
647 slot = &slots->memslots[index];
648
649 WARN_ON(slot->id != id);
650 return slot;
651}
652
653/*
654 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
655 * - create a new memory slot
656 * - delete an existing memory slot
657 * - modify an existing memory slot
658 * -- move it in the guest physical memory space
659 * -- just change its flags
660 *
661 * Since flags can be changed by some of these operations, the following
662 * differentiation is the best we can do for __kvm_set_memory_region():
663 */
664enum kvm_mr_change {
665 KVM_MR_CREATE,
666 KVM_MR_DELETE,
667 KVM_MR_MOVE,
668 KVM_MR_FLAGS_ONLY,
669};
670
671int kvm_set_memory_region(struct kvm *kvm,
672 const struct kvm_userspace_memory_region *mem);
673int __kvm_set_memory_region(struct kvm *kvm,
674 const struct kvm_userspace_memory_region *mem);
675void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
676 struct kvm_memory_slot *dont);
677int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
678 unsigned long npages);
679void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
680int kvm_arch_prepare_memory_region(struct kvm *kvm,
681 struct kvm_memory_slot *memslot,
682 const struct kvm_userspace_memory_region *mem,
683 enum kvm_mr_change change);
684void kvm_arch_commit_memory_region(struct kvm *kvm,
685 const struct kvm_userspace_memory_region *mem,
686 const struct kvm_memory_slot *old,
687 const struct kvm_memory_slot *new,
688 enum kvm_mr_change change);
689bool kvm_largepages_enabled(void);
690void kvm_disable_largepages(void);
691/* flush all memory translations */
692void kvm_arch_flush_shadow_all(struct kvm *kvm);
693/* flush memory translations pointing to 'slot' */
694void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
695 struct kvm_memory_slot *slot);
696
697int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
698 struct page **pages, int nr_pages);
699
700struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
701unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
702unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
703unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
704unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
705 bool *writable);
706void kvm_release_page_clean(struct page *page);
707void kvm_release_page_dirty(struct page *page);
708void kvm_set_page_accessed(struct page *page);
709
710kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
711kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
712kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
713 bool *writable);
714kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
715kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
716kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
717 bool atomic, bool *async, bool write_fault,
718 bool *writable);
719
720void kvm_release_pfn_clean(kvm_pfn_t pfn);
721void kvm_release_pfn_dirty(kvm_pfn_t pfn);
722void kvm_set_pfn_dirty(kvm_pfn_t pfn);
723void kvm_set_pfn_accessed(kvm_pfn_t pfn);
724void kvm_get_pfn(kvm_pfn_t pfn);
725
726int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
727 int len);
728int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
729 unsigned long len);
730int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
731int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
732 void *data, unsigned long len);
733int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
734 int offset, int len);
735int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
736 unsigned long len);
737int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
738 void *data, unsigned long len);
739int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
740 void *data, unsigned int offset,
741 unsigned long len);
742int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
743 gpa_t gpa, unsigned long len);
744
745#define __kvm_put_guest(kvm, gfn, offset, value, type) \
746({ \
747 unsigned long __addr = gfn_to_hva(kvm, gfn); \
748 type __user *__uaddr = (type __user *)(__addr + offset); \
749 int __ret = -EFAULT; \
750 \
751 if (!kvm_is_error_hva(__addr)) \
752 __ret = put_user(value, __uaddr); \
753 if (!__ret) \
754 mark_page_dirty(kvm, gfn); \
755 __ret; \
756})
757
758#define kvm_put_guest(kvm, gpa, value, type) \
759({ \
760 gpa_t __gpa = gpa; \
761 struct kvm *__kvm = kvm; \
762 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
763 offset_in_page(__gpa), (value), type); \
764})
765
766int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
767int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
768struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
769bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
770unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
771void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
772
773struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
774struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
775kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
776kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
777int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
778struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
779void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
780unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
781unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
782int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
783 int len);
784int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
785 unsigned long len);
786int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
787 unsigned long len);
788int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
789 int offset, int len);
790int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
791 unsigned long len);
792void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
793
794void kvm_sigset_activate(struct kvm_vcpu *vcpu);
795void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
796
797void kvm_vcpu_block(struct kvm_vcpu *vcpu);
798void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
799void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
800bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
801void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
802int kvm_vcpu_yield_to(struct kvm_vcpu *target);
803void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
804
805void kvm_flush_remote_tlbs(struct kvm *kvm);
806void kvm_reload_remote_mmus(struct kvm *kvm);
807
808bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
809 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
810bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
811bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
812 unsigned long *vcpu_bitmap);
813
814long kvm_arch_dev_ioctl(struct file *filp,
815 unsigned int ioctl, unsigned long arg);
816long kvm_arch_vcpu_ioctl(struct file *filp,
817 unsigned int ioctl, unsigned long arg);
818vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
819
820int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
821
822int kvm_get_dirty_log(struct kvm *kvm,
823 struct kvm_dirty_log *log, int *is_dirty);
824
825int kvm_get_dirty_log_protect(struct kvm *kvm,
826 struct kvm_dirty_log *log, bool *flush);
827int kvm_clear_dirty_log_protect(struct kvm *kvm,
828 struct kvm_clear_dirty_log *log, bool *flush);
829
830void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
831 struct kvm_memory_slot *slot,
832 gfn_t gfn_offset,
833 unsigned long mask);
834
835int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
836 struct kvm_dirty_log *log);
837int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
838 struct kvm_clear_dirty_log *log);
839
840int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
841 bool line_status);
842int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
843 struct kvm_enable_cap *cap);
844long kvm_arch_vm_ioctl(struct file *filp,
845 unsigned int ioctl, unsigned long arg);
846
847int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
848int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
849
850int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
851 struct kvm_translation *tr);
852
853int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
854int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
855int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
856 struct kvm_sregs *sregs);
857int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
858 struct kvm_sregs *sregs);
859int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
860 struct kvm_mp_state *mp_state);
861int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
862 struct kvm_mp_state *mp_state);
863int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
864 struct kvm_guest_debug *dbg);
865int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
866
867int kvm_arch_init(void *opaque);
868void kvm_arch_exit(void);
869
870int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
871void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
872
873void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
874
875void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
876void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
877void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
878struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
879int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
880void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
881void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
882
883#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
884void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
885#endif
886
887int kvm_arch_hardware_enable(void);
888void kvm_arch_hardware_disable(void);
889int kvm_arch_hardware_setup(void);
890void kvm_arch_hardware_unsetup(void);
891int kvm_arch_check_processor_compat(void);
892int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
893bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
894int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
895bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
896
897#ifndef __KVM_HAVE_ARCH_VM_ALLOC
898/*
899 * All architectures that want to use vzalloc currently also
900 * need their own kvm_arch_alloc_vm implementation.
901 */
902static inline struct kvm *kvm_arch_alloc_vm(void)
903{
904 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
905}
906
907static inline void kvm_arch_free_vm(struct kvm *kvm)
908{
909 kfree(kvm);
910}
911#endif
912
913#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
914static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
915{
916 return -ENOTSUPP;
917}
918#endif
919
920#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
921void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
922void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
923bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
924#else
925static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
926{
927}
928
929static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
930{
931}
932
933static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
934{
935 return false;
936}
937#endif
938#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
939void kvm_arch_start_assignment(struct kvm *kvm);
940void kvm_arch_end_assignment(struct kvm *kvm);
941bool kvm_arch_has_assigned_device(struct kvm *kvm);
942#else
943static inline void kvm_arch_start_assignment(struct kvm *kvm)
944{
945}
946
947static inline void kvm_arch_end_assignment(struct kvm *kvm)
948{
949}
950
951static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
952{
953 return false;
954}
955#endif
956
957static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
958{
959#ifdef __KVM_HAVE_ARCH_WQP
960 return vcpu->arch.wqp;
961#else
962 return &vcpu->wq;
963#endif
964}
965
966#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
967/*
968 * returns true if the virtual interrupt controller is initialized and
969 * ready to accept virtual IRQ. On some architectures the virtual interrupt
970 * controller is dynamically instantiated and this is not always true.
971 */
972bool kvm_arch_intc_initialized(struct kvm *kvm);
973#else
974static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
975{
976 return true;
977}
978#endif
979
980int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
981void kvm_arch_destroy_vm(struct kvm *kvm);
982void kvm_arch_sync_events(struct kvm *kvm);
983
984int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
985void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
986
987bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
988bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
989
990struct kvm_irq_ack_notifier {
991 struct hlist_node link;
992 unsigned gsi;
993 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
994};
995
996int kvm_irq_map_gsi(struct kvm *kvm,
997 struct kvm_kernel_irq_routing_entry *entries, int gsi);
998int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
999
1000int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1001 bool line_status);
1002int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1003 int irq_source_id, int level, bool line_status);
1004int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1005 struct kvm *kvm, int irq_source_id,
1006 int level, bool line_status);
1007bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1008void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1009void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1010void kvm_register_irq_ack_notifier(struct kvm *kvm,
1011 struct kvm_irq_ack_notifier *kian);
1012void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1013 struct kvm_irq_ack_notifier *kian);
1014int kvm_request_irq_source_id(struct kvm *kvm);
1015void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1016bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1017
1018/*
1019 * search_memslots() and __gfn_to_memslot() are here because they are
1020 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1021 * gfn_to_memslot() itself isn't here as an inline because that would
1022 * bloat other code too much.
1023 */
1024static inline struct kvm_memory_slot *
1025search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1026{
1027 int start = 0, end = slots->used_slots;
1028 int slot = atomic_read(&slots->lru_slot);
1029 struct kvm_memory_slot *memslots = slots->memslots;
1030
1031 if (gfn >= memslots[slot].base_gfn &&
1032 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1033 return &memslots[slot];
1034
1035 while (start < end) {
1036 slot = start + (end - start) / 2;
1037
1038 if (gfn >= memslots[slot].base_gfn)
1039 end = slot;
1040 else
1041 start = slot + 1;
1042 }
1043
1044 if (gfn >= memslots[start].base_gfn &&
1045 gfn < memslots[start].base_gfn + memslots[start].npages) {
1046 atomic_set(&slots->lru_slot, start);
1047 return &memslots[start];
1048 }
1049
1050 return NULL;
1051}
1052
1053static inline struct kvm_memory_slot *
1054__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1055{
1056 return search_memslots(slots, gfn);
1057}
1058
1059static inline unsigned long
1060__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1061{
1062 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1063}
1064
1065static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1066{
1067 return gfn_to_memslot(kvm, gfn)->id;
1068}
1069
1070static inline gfn_t
1071hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1072{
1073 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1074
1075 return slot->base_gfn + gfn_offset;
1076}
1077
1078static inline gpa_t gfn_to_gpa(gfn_t gfn)
1079{
1080 return (gpa_t)gfn << PAGE_SHIFT;
1081}
1082
1083static inline gfn_t gpa_to_gfn(gpa_t gpa)
1084{
1085 return (gfn_t)(gpa >> PAGE_SHIFT);
1086}
1087
1088static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1089{
1090 return (hpa_t)pfn << PAGE_SHIFT;
1091}
1092
1093static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1094 gpa_t gpa)
1095{
1096 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1097}
1098
1099static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1100{
1101 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1102
1103 return kvm_is_error_hva(hva);
1104}
1105
1106enum kvm_stat_kind {
1107 KVM_STAT_VM,
1108 KVM_STAT_VCPU,
1109};
1110
1111struct kvm_stat_data {
1112 int offset;
1113 int mode;
1114 struct kvm *kvm;
1115};
1116
1117struct kvm_stats_debugfs_item {
1118 const char *name;
1119 int offset;
1120 enum kvm_stat_kind kind;
1121 int mode;
1122};
1123extern struct kvm_stats_debugfs_item debugfs_entries[];
1124extern struct dentry *kvm_debugfs_dir;
1125
1126#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1127static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1128{
1129 if (unlikely(kvm->mmu_notifier_count))
1130 return 1;
1131 /*
1132 * Ensure the read of mmu_notifier_count happens before the read
1133 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1134 * mmu_notifier_invalidate_range_end to make sure that the caller
1135 * either sees the old (non-zero) value of mmu_notifier_count or
1136 * the new (incremented) value of mmu_notifier_seq.
1137 * PowerPC Book3s HV KVM calls this under a per-page lock
1138 * rather than under kvm->mmu_lock, for scalability, so
1139 * can't rely on kvm->mmu_lock to keep things ordered.
1140 */
1141 smp_rmb();
1142 if (kvm->mmu_notifier_seq != mmu_seq)
1143 return 1;
1144 return 0;
1145}
1146#endif
1147
1148#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1149
1150#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1151
1152bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1153int kvm_set_irq_routing(struct kvm *kvm,
1154 const struct kvm_irq_routing_entry *entries,
1155 unsigned nr,
1156 unsigned flags);
1157int kvm_set_routing_entry(struct kvm *kvm,
1158 struct kvm_kernel_irq_routing_entry *e,
1159 const struct kvm_irq_routing_entry *ue);
1160void kvm_free_irq_routing(struct kvm *kvm);
1161
1162#else
1163
1164static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1165
1166#endif
1167
1168int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1169
1170#ifdef CONFIG_HAVE_KVM_EVENTFD
1171
1172void kvm_eventfd_init(struct kvm *kvm);
1173int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1174
1175#ifdef CONFIG_HAVE_KVM_IRQFD
1176int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1177void kvm_irqfd_release(struct kvm *kvm);
1178void kvm_irq_routing_update(struct kvm *);
1179#else
1180static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1181{
1182 return -EINVAL;
1183}
1184
1185static inline void kvm_irqfd_release(struct kvm *kvm) {}
1186#endif
1187
1188#else
1189
1190static inline void kvm_eventfd_init(struct kvm *kvm) {}
1191
1192static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1193{
1194 return -EINVAL;
1195}
1196
1197static inline void kvm_irqfd_release(struct kvm *kvm) {}
1198
1199#ifdef CONFIG_HAVE_KVM_IRQCHIP
1200static inline void kvm_irq_routing_update(struct kvm *kvm)
1201{
1202}
1203#endif
1204
1205static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1206{
1207 return -ENOSYS;
1208}
1209
1210#endif /* CONFIG_HAVE_KVM_EVENTFD */
1211
1212void kvm_arch_irq_routing_update(struct kvm *kvm);
1213
1214static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1215{
1216 /*
1217 * Ensure the rest of the request is published to kvm_check_request's
1218 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1219 */
1220 smp_wmb();
1221 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1222}
1223
1224static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1225{
1226 return READ_ONCE(vcpu->requests);
1227}
1228
1229static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1230{
1231 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1232}
1233
1234static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1235{
1236 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1237}
1238
1239static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1240{
1241 if (kvm_test_request(req, vcpu)) {
1242 kvm_clear_request(req, vcpu);
1243
1244 /*
1245 * Ensure the rest of the request is visible to kvm_check_request's
1246 * caller. Paired with the smp_wmb in kvm_make_request.
1247 */
1248 smp_mb__after_atomic();
1249 return true;
1250 } else {
1251 return false;
1252 }
1253}
1254
1255extern bool kvm_rebooting;
1256
1257extern unsigned int halt_poll_ns;
1258extern unsigned int halt_poll_ns_grow;
1259extern unsigned int halt_poll_ns_grow_start;
1260extern unsigned int halt_poll_ns_shrink;
1261
1262struct kvm_device {
1263 const struct kvm_device_ops *ops;
1264 struct kvm *kvm;
1265 void *private;
1266 struct list_head vm_node;
1267};
1268
1269/* create, destroy, and name are mandatory */
1270struct kvm_device_ops {
1271 const char *name;
1272
1273 /*
1274 * create is called holding kvm->lock and any operations not suitable
1275 * to do while holding the lock should be deferred to init (see
1276 * below).
1277 */
1278 int (*create)(struct kvm_device *dev, u32 type);
1279
1280 /*
1281 * init is called after create if create is successful and is called
1282 * outside of holding kvm->lock.
1283 */
1284 void (*init)(struct kvm_device *dev);
1285
1286 /*
1287 * Destroy is responsible for freeing dev.
1288 *
1289 * Destroy may be called before or after destructors are called
1290 * on emulated I/O regions, depending on whether a reference is
1291 * held by a vcpu or other kvm component that gets destroyed
1292 * after the emulated I/O.
1293 */
1294 void (*destroy)(struct kvm_device *dev);
1295
1296 /*
1297 * Release is an alternative method to free the device. It is
1298 * called when the device file descriptor is closed. Once
1299 * release is called, the destroy method will not be called
1300 * anymore as the device is removed from the device list of
1301 * the VM. kvm->lock is held.
1302 */
1303 void (*release)(struct kvm_device *dev);
1304
1305 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1306 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1307 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1308 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1309 unsigned long arg);
1310 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1311};
1312
1313void kvm_device_get(struct kvm_device *dev);
1314void kvm_device_put(struct kvm_device *dev);
1315struct kvm_device *kvm_device_from_filp(struct file *filp);
1316int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1317void kvm_unregister_device_ops(u32 type);
1318
1319extern struct kvm_device_ops kvm_mpic_ops;
1320extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1321extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1322
1323#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1324
1325static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1326{
1327 vcpu->spin_loop.in_spin_loop = val;
1328}
1329static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1330{
1331 vcpu->spin_loop.dy_eligible = val;
1332}
1333
1334#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1335
1336static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1337{
1338}
1339
1340static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1341{
1342}
1343#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1344
1345#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1346bool kvm_arch_has_irq_bypass(void);
1347int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1348 struct irq_bypass_producer *);
1349void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1350 struct irq_bypass_producer *);
1351void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1352void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1353int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1354 uint32_t guest_irq, bool set);
1355#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1356
1357#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1358/* If we wakeup during the poll time, was it a sucessful poll? */
1359static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1360{
1361 return vcpu->valid_wakeup;
1362}
1363
1364#else
1365static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1366{
1367 return true;
1368}
1369#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1370
1371#ifdef CONFIG_HAVE_KVM_NO_POLL
1372/* Callback that tells if we must not poll */
1373bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1374#else
1375static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1376{
1377 return false;
1378}
1379#endif /* CONFIG_HAVE_KVM_NO_POLL */
1380
1381#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1382long kvm_arch_vcpu_async_ioctl(struct file *filp,
1383 unsigned int ioctl, unsigned long arg);
1384#else
1385static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1386 unsigned int ioctl,
1387 unsigned long arg)
1388{
1389 return -ENOIOCTLCMD;
1390}
1391#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1392
1393int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1394 unsigned long start, unsigned long end, bool blockable);
1395
1396#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1397int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1398#else
1399static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1400{
1401 return 0;
1402}
1403#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1404
1405typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1406
1407int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1408 uintptr_t data, const char *name,
1409 struct task_struct **thread_ptr);
1410
1411#endif