Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12#ifndef _HYPERV_H
13#define _HYPERV_H
14
15#include <uapi/linux/hyperv.h>
16
17#include <linux/types.h>
18#include <linux/scatterlist.h>
19#include <linux/list.h>
20#include <linux/timer.h>
21#include <linux/completion.h>
22#include <linux/device.h>
23#include <linux/mod_devicetable.h>
24#include <linux/interrupt.h>
25#include <linux/reciprocal_div.h>
26
27#define MAX_PAGE_BUFFER_COUNT 32
28#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
29
30#pragma pack(push, 1)
31
32/* Single-page buffer */
33struct hv_page_buffer {
34 u32 len;
35 u32 offset;
36 u64 pfn;
37};
38
39/* Multiple-page buffer */
40struct hv_multipage_buffer {
41 /* Length and Offset determines the # of pfns in the array */
42 u32 len;
43 u32 offset;
44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
45};
46
47/*
48 * Multiple-page buffer array; the pfn array is variable size:
49 * The number of entries in the PFN array is determined by
50 * "len" and "offset".
51 */
52struct hv_mpb_array {
53 /* Length and Offset determines the # of pfns in the array */
54 u32 len;
55 u32 offset;
56 u64 pfn_array[];
57};
58
59/* 0x18 includes the proprietary packet header */
60#define MAX_PAGE_BUFFER_PACKET (0x18 + \
61 (sizeof(struct hv_page_buffer) * \
62 MAX_PAGE_BUFFER_COUNT))
63#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
64 sizeof(struct hv_multipage_buffer))
65
66
67#pragma pack(pop)
68
69struct hv_ring_buffer {
70 /* Offset in bytes from the start of ring data below */
71 u32 write_index;
72
73 /* Offset in bytes from the start of ring data below */
74 u32 read_index;
75
76 u32 interrupt_mask;
77
78 /*
79 * WS2012/Win8 and later versions of Hyper-V implement interrupt
80 * driven flow management. The feature bit feat_pending_send_sz
81 * is set by the host on the host->guest ring buffer, and by the
82 * guest on the guest->host ring buffer.
83 *
84 * The meaning of the feature bit is a bit complex in that it has
85 * semantics that apply to both ring buffers. If the guest sets
86 * the feature bit in the guest->host ring buffer, the guest is
87 * telling the host that:
88 * 1) It will set the pending_send_sz field in the guest->host ring
89 * buffer when it is waiting for space to become available, and
90 * 2) It will read the pending_send_sz field in the host->guest
91 * ring buffer and interrupt the host when it frees enough space
92 *
93 * Similarly, if the host sets the feature bit in the host->guest
94 * ring buffer, the host is telling the guest that:
95 * 1) It will set the pending_send_sz field in the host->guest ring
96 * buffer when it is waiting for space to become available, and
97 * 2) It will read the pending_send_sz field in the guest->host
98 * ring buffer and interrupt the guest when it frees enough space
99 *
100 * If either the guest or host does not set the feature bit that it
101 * owns, that guest or host must do polling if it encounters a full
102 * ring buffer, and not signal the other end with an interrupt.
103 */
104 u32 pending_send_sz;
105 u32 reserved1[12];
106 union {
107 struct {
108 u32 feat_pending_send_sz:1;
109 };
110 u32 value;
111 } feature_bits;
112
113 /* Pad it to PAGE_SIZE so that data starts on page boundary */
114 u8 reserved2[4028];
115
116 /*
117 * Ring data starts here + RingDataStartOffset
118 * !!! DO NOT place any fields below this !!!
119 */
120 u8 buffer[0];
121} __packed;
122
123struct hv_ring_buffer_info {
124 struct hv_ring_buffer *ring_buffer;
125 u32 ring_size; /* Include the shared header */
126 struct reciprocal_value ring_size_div10_reciprocal;
127 spinlock_t ring_lock;
128
129 u32 ring_datasize; /* < ring_size */
130 u32 priv_read_index;
131 /*
132 * The ring buffer mutex lock. This lock prevents the ring buffer from
133 * being freed while the ring buffer is being accessed.
134 */
135 struct mutex ring_buffer_mutex;
136};
137
138
139static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
140{
141 u32 read_loc, write_loc, dsize, read;
142
143 dsize = rbi->ring_datasize;
144 read_loc = rbi->ring_buffer->read_index;
145 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
146
147 read = write_loc >= read_loc ? (write_loc - read_loc) :
148 (dsize - read_loc) + write_loc;
149
150 return read;
151}
152
153static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
154{
155 u32 read_loc, write_loc, dsize, write;
156
157 dsize = rbi->ring_datasize;
158 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
159 write_loc = rbi->ring_buffer->write_index;
160
161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162 read_loc - write_loc;
163 return write;
164}
165
166static inline u32 hv_get_avail_to_write_percent(
167 const struct hv_ring_buffer_info *rbi)
168{
169 u32 avail_write = hv_get_bytes_to_write(rbi);
170
171 return reciprocal_divide(
172 (avail_write << 3) + (avail_write << 1),
173 rbi->ring_size_div10_reciprocal);
174}
175
176/*
177 * VMBUS version is 32 bit entity broken up into
178 * two 16 bit quantities: major_number. minor_number.
179 *
180 * 0 . 13 (Windows Server 2008)
181 * 1 . 1 (Windows 7)
182 * 2 . 4 (Windows 8)
183 * 3 . 0 (Windows 8 R2)
184 * 4 . 0 (Windows 10)
185 * 4 . 1 (Windows 10 RS3)
186 * 5 . 0 (Newer Windows 10)
187 * 5 . 1 (Windows 10 RS4)
188 * 5 . 2 (Windows Server 2019, RS5)
189 */
190
191#define VERSION_WS2008 ((0 << 16) | (13))
192#define VERSION_WIN7 ((1 << 16) | (1))
193#define VERSION_WIN8 ((2 << 16) | (4))
194#define VERSION_WIN8_1 ((3 << 16) | (0))
195#define VERSION_WIN10 ((4 << 16) | (0))
196#define VERSION_WIN10_V4_1 ((4 << 16) | (1))
197#define VERSION_WIN10_V5 ((5 << 16) | (0))
198#define VERSION_WIN10_V5_1 ((5 << 16) | (1))
199#define VERSION_WIN10_V5_2 ((5 << 16) | (2))
200
201/* Make maximum size of pipe payload of 16K */
202#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
203
204/* Define PipeMode values. */
205#define VMBUS_PIPE_TYPE_BYTE 0x00000000
206#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
207
208/* The size of the user defined data buffer for non-pipe offers. */
209#define MAX_USER_DEFINED_BYTES 120
210
211/* The size of the user defined data buffer for pipe offers. */
212#define MAX_PIPE_USER_DEFINED_BYTES 116
213
214/*
215 * At the center of the Channel Management library is the Channel Offer. This
216 * struct contains the fundamental information about an offer.
217 */
218struct vmbus_channel_offer {
219 guid_t if_type;
220 guid_t if_instance;
221
222 /*
223 * These two fields are not currently used.
224 */
225 u64 reserved1;
226 u64 reserved2;
227
228 u16 chn_flags;
229 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
230
231 union {
232 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
233 struct {
234 unsigned char user_def[MAX_USER_DEFINED_BYTES];
235 } std;
236
237 /*
238 * Pipes:
239 * The following sructure is an integrated pipe protocol, which
240 * is implemented on top of standard user-defined data. Pipe
241 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
242 * use.
243 */
244 struct {
245 u32 pipe_mode;
246 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
247 } pipe;
248 } u;
249 /*
250 * The sub_channel_index is defined in Win8: a value of zero means a
251 * primary channel and a value of non-zero means a sub-channel.
252 *
253 * Before Win8, the field is reserved, meaning it's always zero.
254 */
255 u16 sub_channel_index;
256 u16 reserved3;
257} __packed;
258
259/* Server Flags */
260#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
261#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
262#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
263#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
264#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
265#define VMBUS_CHANNEL_PARENT_OFFER 0x200
266#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
267#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
268
269struct vmpacket_descriptor {
270 u16 type;
271 u16 offset8;
272 u16 len8;
273 u16 flags;
274 u64 trans_id;
275} __packed;
276
277struct vmpacket_header {
278 u32 prev_pkt_start_offset;
279 struct vmpacket_descriptor descriptor;
280} __packed;
281
282struct vmtransfer_page_range {
283 u32 byte_count;
284 u32 byte_offset;
285} __packed;
286
287struct vmtransfer_page_packet_header {
288 struct vmpacket_descriptor d;
289 u16 xfer_pageset_id;
290 u8 sender_owns_set;
291 u8 reserved;
292 u32 range_cnt;
293 struct vmtransfer_page_range ranges[1];
294} __packed;
295
296struct vmgpadl_packet_header {
297 struct vmpacket_descriptor d;
298 u32 gpadl;
299 u32 reserved;
300} __packed;
301
302struct vmadd_remove_transfer_page_set {
303 struct vmpacket_descriptor d;
304 u32 gpadl;
305 u16 xfer_pageset_id;
306 u16 reserved;
307} __packed;
308
309/*
310 * This structure defines a range in guest physical space that can be made to
311 * look virtually contiguous.
312 */
313struct gpa_range {
314 u32 byte_count;
315 u32 byte_offset;
316 u64 pfn_array[0];
317};
318
319/*
320 * This is the format for an Establish Gpadl packet, which contains a handle by
321 * which this GPADL will be known and a set of GPA ranges associated with it.
322 * This can be converted to a MDL by the guest OS. If there are multiple GPA
323 * ranges, then the resulting MDL will be "chained," representing multiple VA
324 * ranges.
325 */
326struct vmestablish_gpadl {
327 struct vmpacket_descriptor d;
328 u32 gpadl;
329 u32 range_cnt;
330 struct gpa_range range[1];
331} __packed;
332
333/*
334 * This is the format for a Teardown Gpadl packet, which indicates that the
335 * GPADL handle in the Establish Gpadl packet will never be referenced again.
336 */
337struct vmteardown_gpadl {
338 struct vmpacket_descriptor d;
339 u32 gpadl;
340 u32 reserved; /* for alignment to a 8-byte boundary */
341} __packed;
342
343/*
344 * This is the format for a GPA-Direct packet, which contains a set of GPA
345 * ranges, in addition to commands and/or data.
346 */
347struct vmdata_gpa_direct {
348 struct vmpacket_descriptor d;
349 u32 reserved;
350 u32 range_cnt;
351 struct gpa_range range[1];
352} __packed;
353
354/* This is the format for a Additional Data Packet. */
355struct vmadditional_data {
356 struct vmpacket_descriptor d;
357 u64 total_bytes;
358 u32 offset;
359 u32 byte_cnt;
360 unsigned char data[1];
361} __packed;
362
363union vmpacket_largest_possible_header {
364 struct vmpacket_descriptor simple_hdr;
365 struct vmtransfer_page_packet_header xfer_page_hdr;
366 struct vmgpadl_packet_header gpadl_hdr;
367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 struct vmestablish_gpadl establish_gpadl_hdr;
369 struct vmteardown_gpadl teardown_gpadl_hdr;
370 struct vmdata_gpa_direct data_gpa_direct_hdr;
371};
372
373#define VMPACKET_DATA_START_ADDRESS(__packet) \
374 (void *)(((unsigned char *)__packet) + \
375 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376
377#define VMPACKET_DATA_LENGTH(__packet) \
378 ((((struct vmpacket_descriptor)__packet)->len8 - \
379 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380
381#define VMPACKET_TRANSFER_MODE(__packet) \
382 (((struct IMPACT)__packet)->type)
383
384enum vmbus_packet_type {
385 VM_PKT_INVALID = 0x0,
386 VM_PKT_SYNCH = 0x1,
387 VM_PKT_ADD_XFER_PAGESET = 0x2,
388 VM_PKT_RM_XFER_PAGESET = 0x3,
389 VM_PKT_ESTABLISH_GPADL = 0x4,
390 VM_PKT_TEARDOWN_GPADL = 0x5,
391 VM_PKT_DATA_INBAND = 0x6,
392 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
393 VM_PKT_DATA_USING_GPADL = 0x8,
394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
395 VM_PKT_CANCEL_REQUEST = 0xa,
396 VM_PKT_COMP = 0xb,
397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
398 VM_PKT_ADDITIONAL_DATA = 0xd
399};
400
401#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
402
403
404/* Version 1 messages */
405enum vmbus_channel_message_type {
406 CHANNELMSG_INVALID = 0,
407 CHANNELMSG_OFFERCHANNEL = 1,
408 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
409 CHANNELMSG_REQUESTOFFERS = 3,
410 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
411 CHANNELMSG_OPENCHANNEL = 5,
412 CHANNELMSG_OPENCHANNEL_RESULT = 6,
413 CHANNELMSG_CLOSECHANNEL = 7,
414 CHANNELMSG_GPADL_HEADER = 8,
415 CHANNELMSG_GPADL_BODY = 9,
416 CHANNELMSG_GPADL_CREATED = 10,
417 CHANNELMSG_GPADL_TEARDOWN = 11,
418 CHANNELMSG_GPADL_TORNDOWN = 12,
419 CHANNELMSG_RELID_RELEASED = 13,
420 CHANNELMSG_INITIATE_CONTACT = 14,
421 CHANNELMSG_VERSION_RESPONSE = 15,
422 CHANNELMSG_UNLOAD = 16,
423 CHANNELMSG_UNLOAD_RESPONSE = 17,
424 CHANNELMSG_18 = 18,
425 CHANNELMSG_19 = 19,
426 CHANNELMSG_20 = 20,
427 CHANNELMSG_TL_CONNECT_REQUEST = 21,
428 CHANNELMSG_COUNT
429};
430
431/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
432#define INVALID_RELID U32_MAX
433
434struct vmbus_channel_message_header {
435 enum vmbus_channel_message_type msgtype;
436 u32 padding;
437} __packed;
438
439/* Query VMBus Version parameters */
440struct vmbus_channel_query_vmbus_version {
441 struct vmbus_channel_message_header header;
442 u32 version;
443} __packed;
444
445/* VMBus Version Supported parameters */
446struct vmbus_channel_version_supported {
447 struct vmbus_channel_message_header header;
448 u8 version_supported;
449} __packed;
450
451/* Offer Channel parameters */
452struct vmbus_channel_offer_channel {
453 struct vmbus_channel_message_header header;
454 struct vmbus_channel_offer offer;
455 u32 child_relid;
456 u8 monitorid;
457 /*
458 * win7 and beyond splits this field into a bit field.
459 */
460 u8 monitor_allocated:1;
461 u8 reserved:7;
462 /*
463 * These are new fields added in win7 and later.
464 * Do not access these fields without checking the
465 * negotiated protocol.
466 *
467 * If "is_dedicated_interrupt" is set, we must not set the
468 * associated bit in the channel bitmap while sending the
469 * interrupt to the host.
470 *
471 * connection_id is to be used in signaling the host.
472 */
473 u16 is_dedicated_interrupt:1;
474 u16 reserved1:15;
475 u32 connection_id;
476} __packed;
477
478/* Rescind Offer parameters */
479struct vmbus_channel_rescind_offer {
480 struct vmbus_channel_message_header header;
481 u32 child_relid;
482} __packed;
483
484static inline u32
485hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
486{
487 return rbi->ring_buffer->pending_send_sz;
488}
489
490/*
491 * Request Offer -- no parameters, SynIC message contains the partition ID
492 * Set Snoop -- no parameters, SynIC message contains the partition ID
493 * Clear Snoop -- no parameters, SynIC message contains the partition ID
494 * All Offers Delivered -- no parameters, SynIC message contains the partition
495 * ID
496 * Flush Client -- no parameters, SynIC message contains the partition ID
497 */
498
499/* Open Channel parameters */
500struct vmbus_channel_open_channel {
501 struct vmbus_channel_message_header header;
502
503 /* Identifies the specific VMBus channel that is being opened. */
504 u32 child_relid;
505
506 /* ID making a particular open request at a channel offer unique. */
507 u32 openid;
508
509 /* GPADL for the channel's ring buffer. */
510 u32 ringbuffer_gpadlhandle;
511
512 /*
513 * Starting with win8, this field will be used to specify
514 * the target virtual processor on which to deliver the interrupt for
515 * the host to guest communication.
516 * Prior to win8, incoming channel interrupts would only
517 * be delivered on cpu 0. Setting this value to 0 would
518 * preserve the earlier behavior.
519 */
520 u32 target_vp;
521
522 /*
523 * The upstream ring buffer begins at offset zero in the memory
524 * described by RingBufferGpadlHandle. The downstream ring buffer
525 * follows it at this offset (in pages).
526 */
527 u32 downstream_ringbuffer_pageoffset;
528
529 /* User-specific data to be passed along to the server endpoint. */
530 unsigned char userdata[MAX_USER_DEFINED_BYTES];
531} __packed;
532
533/* Open Channel Result parameters */
534struct vmbus_channel_open_result {
535 struct vmbus_channel_message_header header;
536 u32 child_relid;
537 u32 openid;
538 u32 status;
539} __packed;
540
541/* Close channel parameters; */
542struct vmbus_channel_close_channel {
543 struct vmbus_channel_message_header header;
544 u32 child_relid;
545} __packed;
546
547/* Channel Message GPADL */
548#define GPADL_TYPE_RING_BUFFER 1
549#define GPADL_TYPE_SERVER_SAVE_AREA 2
550#define GPADL_TYPE_TRANSACTION 8
551
552/*
553 * The number of PFNs in a GPADL message is defined by the number of
554 * pages that would be spanned by ByteCount and ByteOffset. If the
555 * implied number of PFNs won't fit in this packet, there will be a
556 * follow-up packet that contains more.
557 */
558struct vmbus_channel_gpadl_header {
559 struct vmbus_channel_message_header header;
560 u32 child_relid;
561 u32 gpadl;
562 u16 range_buflen;
563 u16 rangecount;
564 struct gpa_range range[0];
565} __packed;
566
567/* This is the followup packet that contains more PFNs. */
568struct vmbus_channel_gpadl_body {
569 struct vmbus_channel_message_header header;
570 u32 msgnumber;
571 u32 gpadl;
572 u64 pfn[0];
573} __packed;
574
575struct vmbus_channel_gpadl_created {
576 struct vmbus_channel_message_header header;
577 u32 child_relid;
578 u32 gpadl;
579 u32 creation_status;
580} __packed;
581
582struct vmbus_channel_gpadl_teardown {
583 struct vmbus_channel_message_header header;
584 u32 child_relid;
585 u32 gpadl;
586} __packed;
587
588struct vmbus_channel_gpadl_torndown {
589 struct vmbus_channel_message_header header;
590 u32 gpadl;
591} __packed;
592
593struct vmbus_channel_relid_released {
594 struct vmbus_channel_message_header header;
595 u32 child_relid;
596} __packed;
597
598struct vmbus_channel_initiate_contact {
599 struct vmbus_channel_message_header header;
600 u32 vmbus_version_requested;
601 u32 target_vcpu; /* The VCPU the host should respond to */
602 union {
603 u64 interrupt_page;
604 struct {
605 u8 msg_sint;
606 u8 padding1[3];
607 u32 padding2;
608 };
609 };
610 u64 monitor_page1;
611 u64 monitor_page2;
612} __packed;
613
614/* Hyper-V socket: guest's connect()-ing to host */
615struct vmbus_channel_tl_connect_request {
616 struct vmbus_channel_message_header header;
617 guid_t guest_endpoint_id;
618 guid_t host_service_id;
619} __packed;
620
621struct vmbus_channel_version_response {
622 struct vmbus_channel_message_header header;
623 u8 version_supported;
624
625 u8 connection_state;
626 u16 padding;
627
628 /*
629 * On new hosts that support VMBus protocol 5.0, we must use
630 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
631 * and for subsequent messages, we must use the Message Connection ID
632 * field in the host-returned Version Response Message.
633 *
634 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
635 */
636 u32 msg_conn_id;
637} __packed;
638
639enum vmbus_channel_state {
640 CHANNEL_OFFER_STATE,
641 CHANNEL_OPENING_STATE,
642 CHANNEL_OPEN_STATE,
643 CHANNEL_OPENED_STATE,
644};
645
646/*
647 * Represents each channel msg on the vmbus connection This is a
648 * variable-size data structure depending on the msg type itself
649 */
650struct vmbus_channel_msginfo {
651 /* Bookkeeping stuff */
652 struct list_head msglistentry;
653
654 /* So far, this is only used to handle gpadl body message */
655 struct list_head submsglist;
656
657 /* Synchronize the request/response if needed */
658 struct completion waitevent;
659 struct vmbus_channel *waiting_channel;
660 union {
661 struct vmbus_channel_version_supported version_supported;
662 struct vmbus_channel_open_result open_result;
663 struct vmbus_channel_gpadl_torndown gpadl_torndown;
664 struct vmbus_channel_gpadl_created gpadl_created;
665 struct vmbus_channel_version_response version_response;
666 } response;
667
668 u32 msgsize;
669 /*
670 * The channel message that goes out on the "wire".
671 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
672 */
673 unsigned char msg[0];
674};
675
676struct vmbus_close_msg {
677 struct vmbus_channel_msginfo info;
678 struct vmbus_channel_close_channel msg;
679};
680
681/* Define connection identifier type. */
682union hv_connection_id {
683 u32 asu32;
684 struct {
685 u32 id:24;
686 u32 reserved:8;
687 } u;
688};
689
690enum hv_numa_policy {
691 HV_BALANCED = 0,
692 HV_LOCALIZED,
693};
694
695enum vmbus_device_type {
696 HV_IDE = 0,
697 HV_SCSI,
698 HV_FC,
699 HV_NIC,
700 HV_ND,
701 HV_PCIE,
702 HV_FB,
703 HV_KBD,
704 HV_MOUSE,
705 HV_KVP,
706 HV_TS,
707 HV_HB,
708 HV_SHUTDOWN,
709 HV_FCOPY,
710 HV_BACKUP,
711 HV_DM,
712 HV_UNKNOWN,
713};
714
715struct vmbus_device {
716 u16 dev_type;
717 guid_t guid;
718 bool perf_device;
719};
720
721struct vmbus_channel {
722 struct list_head listentry;
723
724 struct hv_device *device_obj;
725
726 enum vmbus_channel_state state;
727
728 struct vmbus_channel_offer_channel offermsg;
729 /*
730 * These are based on the OfferMsg.MonitorId.
731 * Save it here for easy access.
732 */
733 u8 monitor_grp;
734 u8 monitor_bit;
735
736 bool rescind; /* got rescind msg */
737 struct completion rescind_event;
738
739 u32 ringbuffer_gpadlhandle;
740
741 /* Allocated memory for ring buffer */
742 struct page *ringbuffer_page;
743 u32 ringbuffer_pagecount;
744 u32 ringbuffer_send_offset;
745 struct hv_ring_buffer_info outbound; /* send to parent */
746 struct hv_ring_buffer_info inbound; /* receive from parent */
747
748 struct vmbus_close_msg close_msg;
749
750 /* Statistics */
751 u64 interrupts; /* Host to Guest interrupts */
752 u64 sig_events; /* Guest to Host events */
753
754 /*
755 * Guest to host interrupts caused by the outbound ring buffer changing
756 * from empty to not empty.
757 */
758 u64 intr_out_empty;
759
760 /*
761 * Indicates that a full outbound ring buffer was encountered. The flag
762 * is set to true when a full outbound ring buffer is encountered and
763 * set to false when a write to the outbound ring buffer is completed.
764 */
765 bool out_full_flag;
766
767 /* Channel callback's invoked in softirq context */
768 struct tasklet_struct callback_event;
769 void (*onchannel_callback)(void *context);
770 void *channel_callback_context;
771
772 /*
773 * A channel can be marked for one of three modes of reading:
774 * BATCHED - callback called from taslket and should read
775 * channel until empty. Interrupts from the host
776 * are masked while read is in process (default).
777 * DIRECT - callback called from tasklet (softirq).
778 * ISR - callback called in interrupt context and must
779 * invoke its own deferred processing.
780 * Host interrupts are disabled and must be re-enabled
781 * when ring is empty.
782 */
783 enum hv_callback_mode {
784 HV_CALL_BATCHED,
785 HV_CALL_DIRECT,
786 HV_CALL_ISR
787 } callback_mode;
788
789 bool is_dedicated_interrupt;
790 u64 sig_event;
791
792 /*
793 * Starting with win8, this field will be used to specify
794 * the target virtual processor on which to deliver the interrupt for
795 * the host to guest communication.
796 * Prior to win8, incoming channel interrupts would only
797 * be delivered on cpu 0. Setting this value to 0 would
798 * preserve the earlier behavior.
799 */
800 u32 target_vp;
801 /* The corresponding CPUID in the guest */
802 u32 target_cpu;
803 /*
804 * State to manage the CPU affiliation of channels.
805 */
806 struct cpumask alloced_cpus_in_node;
807 int numa_node;
808 /*
809 * Support for sub-channels. For high performance devices,
810 * it will be useful to have multiple sub-channels to support
811 * a scalable communication infrastructure with the host.
812 * The support for sub-channels is implemented as an extention
813 * to the current infrastructure.
814 * The initial offer is considered the primary channel and this
815 * offer message will indicate if the host supports sub-channels.
816 * The guest is free to ask for sub-channels to be offerred and can
817 * open these sub-channels as a normal "primary" channel. However,
818 * all sub-channels will have the same type and instance guids as the
819 * primary channel. Requests sent on a given channel will result in a
820 * response on the same channel.
821 */
822
823 /*
824 * Sub-channel creation callback. This callback will be called in
825 * process context when a sub-channel offer is received from the host.
826 * The guest can open the sub-channel in the context of this callback.
827 */
828 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
829
830 /*
831 * Channel rescind callback. Some channels (the hvsock ones), need to
832 * register a callback which is invoked in vmbus_onoffer_rescind().
833 */
834 void (*chn_rescind_callback)(struct vmbus_channel *channel);
835
836 /*
837 * The spinlock to protect the structure. It is being used to protect
838 * test-and-set access to various attributes of the structure as well
839 * as all sc_list operations.
840 */
841 spinlock_t lock;
842 /*
843 * All Sub-channels of a primary channel are linked here.
844 */
845 struct list_head sc_list;
846 /*
847 * The primary channel this sub-channel belongs to.
848 * This will be NULL for the primary channel.
849 */
850 struct vmbus_channel *primary_channel;
851 /*
852 * Support per-channel state for use by vmbus drivers.
853 */
854 void *per_channel_state;
855 /*
856 * To support per-cpu lookup mapping of relid to channel,
857 * link up channels based on their CPU affinity.
858 */
859 struct list_head percpu_list;
860
861 /*
862 * Defer freeing channel until after all cpu's have
863 * gone through grace period.
864 */
865 struct rcu_head rcu;
866
867 /*
868 * For sysfs per-channel properties.
869 */
870 struct kobject kobj;
871
872 /*
873 * For performance critical channels (storage, networking
874 * etc,), Hyper-V has a mechanism to enhance the throughput
875 * at the expense of latency:
876 * When the host is to be signaled, we just set a bit in a shared page
877 * and this bit will be inspected by the hypervisor within a certain
878 * window and if the bit is set, the host will be signaled. The window
879 * of time is the monitor latency - currently around 100 usecs. This
880 * mechanism improves throughput by:
881 *
882 * A) Making the host more efficient - each time it wakes up,
883 * potentially it will process morev number of packets. The
884 * monitor latency allows a batch to build up.
885 * B) By deferring the hypercall to signal, we will also minimize
886 * the interrupts.
887 *
888 * Clearly, these optimizations improve throughput at the expense of
889 * latency. Furthermore, since the channel is shared for both
890 * control and data messages, control messages currently suffer
891 * unnecessary latency adversley impacting performance and boot
892 * time. To fix this issue, permit tagging the channel as being
893 * in "low latency" mode. In this mode, we will bypass the monitor
894 * mechanism.
895 */
896 bool low_latency;
897
898 /*
899 * NUMA distribution policy:
900 * We support two policies:
901 * 1) Balanced: Here all performance critical channels are
902 * distributed evenly amongst all the NUMA nodes.
903 * This policy will be the default policy.
904 * 2) Localized: All channels of a given instance of a
905 * performance critical service will be assigned CPUs
906 * within a selected NUMA node.
907 */
908 enum hv_numa_policy affinity_policy;
909
910 bool probe_done;
911
912 /*
913 * We must offload the handling of the primary/sub channels
914 * from the single-threaded vmbus_connection.work_queue to
915 * two different workqueue, otherwise we can block
916 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
917 */
918 struct work_struct add_channel_work;
919
920 /*
921 * Guest to host interrupts caused by the inbound ring buffer changing
922 * from full to not full while a packet is waiting.
923 */
924 u64 intr_in_full;
925
926 /*
927 * The total number of write operations that encountered a full
928 * outbound ring buffer.
929 */
930 u64 out_full_total;
931
932 /*
933 * The number of write operations that were the first to encounter a
934 * full outbound ring buffer.
935 */
936 u64 out_full_first;
937
938 /* enabling/disabling fuzz testing on the channel (default is false)*/
939 bool fuzz_testing_state;
940
941 /*
942 * Interrupt delay will delay the guest from emptying the ring buffer
943 * for a specific amount of time. The delay is in microseconds and will
944 * be between 1 to a maximum of 1000, its default is 0 (no delay).
945 * The Message delay will delay guest reading on a per message basis
946 * in microseconds between 1 to 1000 with the default being 0
947 * (no delay).
948 */
949 u32 fuzz_testing_interrupt_delay;
950 u32 fuzz_testing_message_delay;
951
952};
953
954static inline bool is_hvsock_channel(const struct vmbus_channel *c)
955{
956 return !!(c->offermsg.offer.chn_flags &
957 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
958}
959
960static inline bool is_sub_channel(const struct vmbus_channel *c)
961{
962 return c->offermsg.offer.sub_channel_index != 0;
963}
964
965static inline void set_channel_affinity_state(struct vmbus_channel *c,
966 enum hv_numa_policy policy)
967{
968 c->affinity_policy = policy;
969}
970
971static inline void set_channel_read_mode(struct vmbus_channel *c,
972 enum hv_callback_mode mode)
973{
974 c->callback_mode = mode;
975}
976
977static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
978{
979 c->per_channel_state = s;
980}
981
982static inline void *get_per_channel_state(struct vmbus_channel *c)
983{
984 return c->per_channel_state;
985}
986
987static inline void set_channel_pending_send_size(struct vmbus_channel *c,
988 u32 size)
989{
990 unsigned long flags;
991
992 if (size) {
993 spin_lock_irqsave(&c->outbound.ring_lock, flags);
994 ++c->out_full_total;
995
996 if (!c->out_full_flag) {
997 ++c->out_full_first;
998 c->out_full_flag = true;
999 }
1000 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1001 } else {
1002 c->out_full_flag = false;
1003 }
1004
1005 c->outbound.ring_buffer->pending_send_sz = size;
1006}
1007
1008static inline void set_low_latency_mode(struct vmbus_channel *c)
1009{
1010 c->low_latency = true;
1011}
1012
1013static inline void clear_low_latency_mode(struct vmbus_channel *c)
1014{
1015 c->low_latency = false;
1016}
1017
1018void vmbus_onmessage(void *context);
1019
1020int vmbus_request_offers(void);
1021
1022/*
1023 * APIs for managing sub-channels.
1024 */
1025
1026void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1027 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1028
1029void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1030 void (*chn_rescind_cb)(struct vmbus_channel *));
1031
1032/*
1033 * Check if sub-channels have already been offerred. This API will be useful
1034 * when the driver is unloaded after establishing sub-channels. In this case,
1035 * when the driver is re-loaded, the driver would have to check if the
1036 * subchannels have already been established before attempting to request
1037 * the creation of sub-channels.
1038 * This function returns TRUE to indicate that subchannels have already been
1039 * created.
1040 * This function should be invoked after setting the callback function for
1041 * sub-channel creation.
1042 */
1043bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1044
1045/* The format must be the same as struct vmdata_gpa_direct */
1046struct vmbus_channel_packet_page_buffer {
1047 u16 type;
1048 u16 dataoffset8;
1049 u16 length8;
1050 u16 flags;
1051 u64 transactionid;
1052 u32 reserved;
1053 u32 rangecount;
1054 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1055} __packed;
1056
1057/* The format must be the same as struct vmdata_gpa_direct */
1058struct vmbus_channel_packet_multipage_buffer {
1059 u16 type;
1060 u16 dataoffset8;
1061 u16 length8;
1062 u16 flags;
1063 u64 transactionid;
1064 u32 reserved;
1065 u32 rangecount; /* Always 1 in this case */
1066 struct hv_multipage_buffer range;
1067} __packed;
1068
1069/* The format must be the same as struct vmdata_gpa_direct */
1070struct vmbus_packet_mpb_array {
1071 u16 type;
1072 u16 dataoffset8;
1073 u16 length8;
1074 u16 flags;
1075 u64 transactionid;
1076 u32 reserved;
1077 u32 rangecount; /* Always 1 in this case */
1078 struct hv_mpb_array range;
1079} __packed;
1080
1081int vmbus_alloc_ring(struct vmbus_channel *channel,
1082 u32 send_size, u32 recv_size);
1083void vmbus_free_ring(struct vmbus_channel *channel);
1084
1085int vmbus_connect_ring(struct vmbus_channel *channel,
1086 void (*onchannel_callback)(void *context),
1087 void *context);
1088int vmbus_disconnect_ring(struct vmbus_channel *channel);
1089
1090extern int vmbus_open(struct vmbus_channel *channel,
1091 u32 send_ringbuffersize,
1092 u32 recv_ringbuffersize,
1093 void *userdata,
1094 u32 userdatalen,
1095 void (*onchannel_callback)(void *context),
1096 void *context);
1097
1098extern void vmbus_close(struct vmbus_channel *channel);
1099
1100extern int vmbus_sendpacket(struct vmbus_channel *channel,
1101 void *buffer,
1102 u32 bufferLen,
1103 u64 requestid,
1104 enum vmbus_packet_type type,
1105 u32 flags);
1106
1107extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1108 struct hv_page_buffer pagebuffers[],
1109 u32 pagecount,
1110 void *buffer,
1111 u32 bufferlen,
1112 u64 requestid);
1113
1114extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1115 struct vmbus_packet_mpb_array *mpb,
1116 u32 desc_size,
1117 void *buffer,
1118 u32 bufferlen,
1119 u64 requestid);
1120
1121extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1122 void *kbuffer,
1123 u32 size,
1124 u32 *gpadl_handle);
1125
1126extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1127 u32 gpadl_handle);
1128
1129void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1130
1131extern int vmbus_recvpacket(struct vmbus_channel *channel,
1132 void *buffer,
1133 u32 bufferlen,
1134 u32 *buffer_actual_len,
1135 u64 *requestid);
1136
1137extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1138 void *buffer,
1139 u32 bufferlen,
1140 u32 *buffer_actual_len,
1141 u64 *requestid);
1142
1143
1144extern void vmbus_ontimer(unsigned long data);
1145
1146/* Base driver object */
1147struct hv_driver {
1148 const char *name;
1149
1150 /*
1151 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1152 * channel flag, actually doesn't mean a synthetic device because the
1153 * offer's if_type/if_instance can change for every new hvsock
1154 * connection.
1155 *
1156 * However, to facilitate the notification of new-offer/rescind-offer
1157 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1158 * a special vmbus device, and hence we need the below flag to
1159 * indicate if the driver is the hvsock driver or not: we need to
1160 * specially treat the hvosck offer & driver in vmbus_match().
1161 */
1162 bool hvsock;
1163
1164 /* the device type supported by this driver */
1165 guid_t dev_type;
1166 const struct hv_vmbus_device_id *id_table;
1167
1168 struct device_driver driver;
1169
1170 /* dynamic device GUID's */
1171 struct {
1172 spinlock_t lock;
1173 struct list_head list;
1174 } dynids;
1175
1176 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1177 int (*remove)(struct hv_device *);
1178 void (*shutdown)(struct hv_device *);
1179
1180 int (*suspend)(struct hv_device *);
1181 int (*resume)(struct hv_device *);
1182
1183};
1184
1185/* Base device object */
1186struct hv_device {
1187 /* the device type id of this device */
1188 guid_t dev_type;
1189
1190 /* the device instance id of this device */
1191 guid_t dev_instance;
1192 u16 vendor_id;
1193 u16 device_id;
1194
1195 struct device device;
1196 char *driver_override; /* Driver name to force a match */
1197
1198 struct vmbus_channel *channel;
1199 struct kset *channels_kset;
1200
1201 /* place holder to keep track of the dir for hv device in debugfs */
1202 struct dentry *debug_dir;
1203
1204};
1205
1206
1207static inline struct hv_device *device_to_hv_device(struct device *d)
1208{
1209 return container_of(d, struct hv_device, device);
1210}
1211
1212static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1213{
1214 return container_of(d, struct hv_driver, driver);
1215}
1216
1217static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1218{
1219 dev_set_drvdata(&dev->device, data);
1220}
1221
1222static inline void *hv_get_drvdata(struct hv_device *dev)
1223{
1224 return dev_get_drvdata(&dev->device);
1225}
1226
1227struct hv_ring_buffer_debug_info {
1228 u32 current_interrupt_mask;
1229 u32 current_read_index;
1230 u32 current_write_index;
1231 u32 bytes_avail_toread;
1232 u32 bytes_avail_towrite;
1233};
1234
1235
1236int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1237 struct hv_ring_buffer_debug_info *debug_info);
1238
1239/* Vmbus interface */
1240#define vmbus_driver_register(driver) \
1241 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1242int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1243 struct module *owner,
1244 const char *mod_name);
1245void vmbus_driver_unregister(struct hv_driver *hv_driver);
1246
1247void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1248
1249int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1250 resource_size_t min, resource_size_t max,
1251 resource_size_t size, resource_size_t align,
1252 bool fb_overlap_ok);
1253void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1254
1255/*
1256 * GUID definitions of various offer types - services offered to the guest.
1257 */
1258
1259/*
1260 * Network GUID
1261 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1262 */
1263#define HV_NIC_GUID \
1264 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1265 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1266
1267/*
1268 * IDE GUID
1269 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1270 */
1271#define HV_IDE_GUID \
1272 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1273 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1274
1275/*
1276 * SCSI GUID
1277 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1278 */
1279#define HV_SCSI_GUID \
1280 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1281 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1282
1283/*
1284 * Shutdown GUID
1285 * {0e0b6031-5213-4934-818b-38d90ced39db}
1286 */
1287#define HV_SHUTDOWN_GUID \
1288 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1289 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1290
1291/*
1292 * Time Synch GUID
1293 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1294 */
1295#define HV_TS_GUID \
1296 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1297 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1298
1299/*
1300 * Heartbeat GUID
1301 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1302 */
1303#define HV_HEART_BEAT_GUID \
1304 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1305 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1306
1307/*
1308 * KVP GUID
1309 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1310 */
1311#define HV_KVP_GUID \
1312 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1313 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1314
1315/*
1316 * Dynamic memory GUID
1317 * {525074dc-8985-46e2-8057-a307dc18a502}
1318 */
1319#define HV_DM_GUID \
1320 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1321 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1322
1323/*
1324 * Mouse GUID
1325 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1326 */
1327#define HV_MOUSE_GUID \
1328 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1329 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1330
1331/*
1332 * Keyboard GUID
1333 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1334 */
1335#define HV_KBD_GUID \
1336 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1337 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1338
1339/*
1340 * VSS (Backup/Restore) GUID
1341 */
1342#define HV_VSS_GUID \
1343 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1344 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1345/*
1346 * Synthetic Video GUID
1347 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1348 */
1349#define HV_SYNTHVID_GUID \
1350 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1351 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1352
1353/*
1354 * Synthetic FC GUID
1355 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1356 */
1357#define HV_SYNTHFC_GUID \
1358 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1359 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1360
1361/*
1362 * Guest File Copy Service
1363 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1364 */
1365
1366#define HV_FCOPY_GUID \
1367 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1368 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1369
1370/*
1371 * NetworkDirect. This is the guest RDMA service.
1372 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1373 */
1374#define HV_ND_GUID \
1375 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1376 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1377
1378/*
1379 * PCI Express Pass Through
1380 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1381 */
1382
1383#define HV_PCIE_GUID \
1384 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1385 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1386
1387/*
1388 * Linux doesn't support the 3 devices: the first two are for
1389 * Automatic Virtual Machine Activation, and the third is for
1390 * Remote Desktop Virtualization.
1391 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1392 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1393 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1394 */
1395
1396#define HV_AVMA1_GUID \
1397 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1398 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1399
1400#define HV_AVMA2_GUID \
1401 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1402 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1403
1404#define HV_RDV_GUID \
1405 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1406 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1407
1408/*
1409 * Common header for Hyper-V ICs
1410 */
1411
1412#define ICMSGTYPE_NEGOTIATE 0
1413#define ICMSGTYPE_HEARTBEAT 1
1414#define ICMSGTYPE_KVPEXCHANGE 2
1415#define ICMSGTYPE_SHUTDOWN 3
1416#define ICMSGTYPE_TIMESYNC 4
1417#define ICMSGTYPE_VSS 5
1418
1419#define ICMSGHDRFLAG_TRANSACTION 1
1420#define ICMSGHDRFLAG_REQUEST 2
1421#define ICMSGHDRFLAG_RESPONSE 4
1422
1423
1424/*
1425 * While we want to handle util services as regular devices,
1426 * there is only one instance of each of these services; so
1427 * we statically allocate the service specific state.
1428 */
1429
1430struct hv_util_service {
1431 u8 *recv_buffer;
1432 void *channel;
1433 void (*util_cb)(void *);
1434 int (*util_init)(struct hv_util_service *);
1435 void (*util_deinit)(void);
1436};
1437
1438struct vmbuspipe_hdr {
1439 u32 flags;
1440 u32 msgsize;
1441} __packed;
1442
1443struct ic_version {
1444 u16 major;
1445 u16 minor;
1446} __packed;
1447
1448struct icmsg_hdr {
1449 struct ic_version icverframe;
1450 u16 icmsgtype;
1451 struct ic_version icvermsg;
1452 u16 icmsgsize;
1453 u32 status;
1454 u8 ictransaction_id;
1455 u8 icflags;
1456 u8 reserved[2];
1457} __packed;
1458
1459struct icmsg_negotiate {
1460 u16 icframe_vercnt;
1461 u16 icmsg_vercnt;
1462 u32 reserved;
1463 struct ic_version icversion_data[1]; /* any size array */
1464} __packed;
1465
1466struct shutdown_msg_data {
1467 u32 reason_code;
1468 u32 timeout_seconds;
1469 u32 flags;
1470 u8 display_message[2048];
1471} __packed;
1472
1473struct heartbeat_msg_data {
1474 u64 seq_num;
1475 u32 reserved[8];
1476} __packed;
1477
1478/* Time Sync IC defs */
1479#define ICTIMESYNCFLAG_PROBE 0
1480#define ICTIMESYNCFLAG_SYNC 1
1481#define ICTIMESYNCFLAG_SAMPLE 2
1482
1483#ifdef __x86_64__
1484#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1485#else
1486#define WLTIMEDELTA 116444736000000000LL
1487#endif
1488
1489struct ictimesync_data {
1490 u64 parenttime;
1491 u64 childtime;
1492 u64 roundtriptime;
1493 u8 flags;
1494} __packed;
1495
1496struct ictimesync_ref_data {
1497 u64 parenttime;
1498 u64 vmreferencetime;
1499 u8 flags;
1500 char leapflags;
1501 char stratum;
1502 u8 reserved[3];
1503} __packed;
1504
1505struct hyperv_service_callback {
1506 u8 msg_type;
1507 char *log_msg;
1508 guid_t data;
1509 struct vmbus_channel *channel;
1510 void (*callback)(void *context);
1511};
1512
1513#define MAX_SRV_VER 0x7ffffff
1514extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1515 const int *fw_version, int fw_vercnt,
1516 const int *srv_version, int srv_vercnt,
1517 int *nego_fw_version, int *nego_srv_version);
1518
1519void hv_process_channel_removal(struct vmbus_channel *channel);
1520
1521void vmbus_setevent(struct vmbus_channel *channel);
1522/*
1523 * Negotiated version with the Host.
1524 */
1525
1526extern __u32 vmbus_proto_version;
1527
1528int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1529 const guid_t *shv_host_servie_id);
1530void vmbus_set_event(struct vmbus_channel *channel);
1531
1532/* Get the start of the ring buffer. */
1533static inline void *
1534hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1535{
1536 return ring_info->ring_buffer->buffer;
1537}
1538
1539/*
1540 * Mask off host interrupt callback notifications
1541 */
1542static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1543{
1544 rbi->ring_buffer->interrupt_mask = 1;
1545
1546 /* make sure mask update is not reordered */
1547 virt_mb();
1548}
1549
1550/*
1551 * Re-enable host callback and return number of outstanding bytes
1552 */
1553static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1554{
1555
1556 rbi->ring_buffer->interrupt_mask = 0;
1557
1558 /* make sure mask update is not reordered */
1559 virt_mb();
1560
1561 /*
1562 * Now check to see if the ring buffer is still empty.
1563 * If it is not, we raced and we need to process new
1564 * incoming messages.
1565 */
1566 return hv_get_bytes_to_read(rbi);
1567}
1568
1569/*
1570 * An API to support in-place processing of incoming VMBUS packets.
1571 */
1572
1573/* Get data payload associated with descriptor */
1574static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1575{
1576 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1577}
1578
1579/* Get data size associated with descriptor */
1580static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1581{
1582 return (desc->len8 << 3) - (desc->offset8 << 3);
1583}
1584
1585
1586struct vmpacket_descriptor *
1587hv_pkt_iter_first(struct vmbus_channel *channel);
1588
1589struct vmpacket_descriptor *
1590__hv_pkt_iter_next(struct vmbus_channel *channel,
1591 const struct vmpacket_descriptor *pkt);
1592
1593void hv_pkt_iter_close(struct vmbus_channel *channel);
1594
1595/*
1596 * Get next packet descriptor from iterator
1597 * If at end of list, return NULL and update host.
1598 */
1599static inline struct vmpacket_descriptor *
1600hv_pkt_iter_next(struct vmbus_channel *channel,
1601 const struct vmpacket_descriptor *pkt)
1602{
1603 struct vmpacket_descriptor *nxt;
1604
1605 nxt = __hv_pkt_iter_next(channel, pkt);
1606 if (!nxt)
1607 hv_pkt_iter_close(channel);
1608
1609 return nxt;
1610}
1611
1612#define foreach_vmbus_pkt(pkt, channel) \
1613 for (pkt = hv_pkt_iter_first(channel); pkt; \
1614 pkt = hv_pkt_iter_next(channel, pkt))
1615
1616/*
1617 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1618 * sends requests to read and write blocks. Each block must be 128 bytes or
1619 * smaller. Optionally, the VF driver can register a callback function which
1620 * will be invoked when the host says that one or more of the first 64 block
1621 * IDs is "invalid" which means that the VF driver should reread them.
1622 */
1623#define HV_CONFIG_BLOCK_SIZE_MAX 128
1624
1625int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1626 unsigned int block_id, unsigned int *bytes_returned);
1627int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1628 unsigned int block_id);
1629int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1630 void (*block_invalidate)(void *context,
1631 u64 block_mask));
1632
1633struct hyperv_pci_block_ops {
1634 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1635 unsigned int block_id, unsigned int *bytes_returned);
1636 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1637 unsigned int block_id);
1638 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1639 void (*block_invalidate)(void *context,
1640 u64 block_mask));
1641};
1642
1643extern struct hyperv_pci_block_ops hvpci_block_ops;
1644
1645#endif /* _HYPERV_H */