at v5.5 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * fscrypt.h: declarations for per-file encryption 4 * 5 * Filesystems that implement per-file encryption must include this header 6 * file. 7 * 8 * Copyright (C) 2015, Google, Inc. 9 * 10 * Written by Michael Halcrow, 2015. 11 * Modified by Jaegeuk Kim, 2015. 12 */ 13#ifndef _LINUX_FSCRYPT_H 14#define _LINUX_FSCRYPT_H 15 16#include <linux/fs.h> 17#include <linux/mm.h> 18#include <linux/slab.h> 19#include <uapi/linux/fscrypt.h> 20 21#define FS_CRYPTO_BLOCK_SIZE 16 22 23struct fscrypt_info; 24 25struct fscrypt_str { 26 unsigned char *name; 27 u32 len; 28}; 29 30struct fscrypt_name { 31 const struct qstr *usr_fname; 32 struct fscrypt_str disk_name; 33 u32 hash; 34 u32 minor_hash; 35 struct fscrypt_str crypto_buf; 36 bool is_ciphertext_name; 37}; 38 39#define FSTR_INIT(n, l) { .name = n, .len = l } 40#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 41#define fname_name(p) ((p)->disk_name.name) 42#define fname_len(p) ((p)->disk_name.len) 43 44/* Maximum value for the third parameter of fscrypt_operations.set_context(). */ 45#define FSCRYPT_SET_CONTEXT_MAX_SIZE 40 46 47#ifdef CONFIG_FS_ENCRYPTION 48/* 49 * fscrypt superblock flags 50 */ 51#define FS_CFLG_OWN_PAGES (1U << 1) 52 53/* 54 * crypto operations for filesystems 55 */ 56struct fscrypt_operations { 57 unsigned int flags; 58 const char *key_prefix; 59 int (*get_context)(struct inode *, void *, size_t); 60 int (*set_context)(struct inode *, const void *, size_t, void *); 61 bool (*dummy_context)(struct inode *); 62 bool (*empty_dir)(struct inode *); 63 unsigned int max_namelen; 64 bool (*has_stable_inodes)(struct super_block *sb); 65 void (*get_ino_and_lblk_bits)(struct super_block *sb, 66 int *ino_bits_ret, int *lblk_bits_ret); 67}; 68 69static inline bool fscrypt_has_encryption_key(const struct inode *inode) 70{ 71 /* pairs with cmpxchg_release() in fscrypt_get_encryption_info() */ 72 return READ_ONCE(inode->i_crypt_info) != NULL; 73} 74 75static inline bool fscrypt_dummy_context_enabled(struct inode *inode) 76{ 77 return inode->i_sb->s_cop->dummy_context && 78 inode->i_sb->s_cop->dummy_context(inode); 79} 80 81/* 82 * When d_splice_alias() moves a directory's encrypted alias to its decrypted 83 * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME 84 * must be cleared. Note that we don't have to support arbitrary moves of this 85 * flag because fscrypt doesn't allow encrypted aliases to be the source or 86 * target of a rename(). 87 */ 88static inline void fscrypt_handle_d_move(struct dentry *dentry) 89{ 90 dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME; 91} 92 93/* crypto.c */ 94extern void fscrypt_enqueue_decrypt_work(struct work_struct *); 95 96extern struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 97 unsigned int len, 98 unsigned int offs, 99 gfp_t gfp_flags); 100extern int fscrypt_encrypt_block_inplace(const struct inode *inode, 101 struct page *page, unsigned int len, 102 unsigned int offs, u64 lblk_num, 103 gfp_t gfp_flags); 104 105extern int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, 106 unsigned int offs); 107extern int fscrypt_decrypt_block_inplace(const struct inode *inode, 108 struct page *page, unsigned int len, 109 unsigned int offs, u64 lblk_num); 110 111static inline bool fscrypt_is_bounce_page(struct page *page) 112{ 113 return page->mapping == NULL; 114} 115 116static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 117{ 118 return (struct page *)page_private(bounce_page); 119} 120 121extern void fscrypt_free_bounce_page(struct page *bounce_page); 122 123/* policy.c */ 124extern int fscrypt_ioctl_set_policy(struct file *, const void __user *); 125extern int fscrypt_ioctl_get_policy(struct file *, void __user *); 126extern int fscrypt_ioctl_get_policy_ex(struct file *, void __user *); 127extern int fscrypt_has_permitted_context(struct inode *, struct inode *); 128extern int fscrypt_inherit_context(struct inode *, struct inode *, 129 void *, bool); 130/* keyring.c */ 131extern void fscrypt_sb_free(struct super_block *sb); 132extern int fscrypt_ioctl_add_key(struct file *filp, void __user *arg); 133extern int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg); 134extern int fscrypt_ioctl_remove_key_all_users(struct file *filp, 135 void __user *arg); 136extern int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg); 137 138/* keysetup.c */ 139extern int fscrypt_get_encryption_info(struct inode *); 140extern void fscrypt_put_encryption_info(struct inode *); 141extern void fscrypt_free_inode(struct inode *); 142extern int fscrypt_drop_inode(struct inode *inode); 143 144/* fname.c */ 145extern int fscrypt_setup_filename(struct inode *, const struct qstr *, 146 int lookup, struct fscrypt_name *); 147 148static inline void fscrypt_free_filename(struct fscrypt_name *fname) 149{ 150 kfree(fname->crypto_buf.name); 151} 152 153extern int fscrypt_fname_alloc_buffer(const struct inode *, u32, 154 struct fscrypt_str *); 155extern void fscrypt_fname_free_buffer(struct fscrypt_str *); 156extern int fscrypt_fname_disk_to_usr(struct inode *, u32, u32, 157 const struct fscrypt_str *, struct fscrypt_str *); 158 159#define FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 32 160 161/* Extracts the second-to-last ciphertext block; see explanation below */ 162#define FSCRYPT_FNAME_DIGEST(name, len) \ 163 ((name) + round_down((len) - FS_CRYPTO_BLOCK_SIZE - 1, \ 164 FS_CRYPTO_BLOCK_SIZE)) 165 166#define FSCRYPT_FNAME_DIGEST_SIZE FS_CRYPTO_BLOCK_SIZE 167 168/** 169 * fscrypt_digested_name - alternate identifier for an on-disk filename 170 * 171 * When userspace lists an encrypted directory without access to the key, 172 * filenames whose ciphertext is longer than FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 173 * bytes are shown in this abbreviated form (base64-encoded) rather than as the 174 * full ciphertext (base64-encoded). This is necessary to allow supporting 175 * filenames up to NAME_MAX bytes, since base64 encoding expands the length. 176 * 177 * To make it possible for filesystems to still find the correct directory entry 178 * despite not knowing the full on-disk name, we encode any filesystem-specific 179 * 'hash' and/or 'minor_hash' which the filesystem may need for its lookups, 180 * followed by the second-to-last ciphertext block of the filename. Due to the 181 * use of the CBC-CTS encryption mode, the second-to-last ciphertext block 182 * depends on the full plaintext. (Note that ciphertext stealing causes the 183 * last two blocks to appear "flipped".) This makes accidental collisions very 184 * unlikely: just a 1 in 2^128 chance for two filenames to collide even if they 185 * share the same filesystem-specific hashes. 186 * 187 * However, this scheme isn't immune to intentional collisions, which can be 188 * created by anyone able to create arbitrary plaintext filenames and view them 189 * without the key. Making the "digest" be a real cryptographic hash like 190 * SHA-256 over the full ciphertext would prevent this, although it would be 191 * less efficient and harder to implement, especially since the filesystem would 192 * need to calculate it for each directory entry examined during a search. 193 */ 194struct fscrypt_digested_name { 195 u32 hash; 196 u32 minor_hash; 197 u8 digest[FSCRYPT_FNAME_DIGEST_SIZE]; 198}; 199 200/** 201 * fscrypt_match_name() - test whether the given name matches a directory entry 202 * @fname: the name being searched for 203 * @de_name: the name from the directory entry 204 * @de_name_len: the length of @de_name in bytes 205 * 206 * Normally @fname->disk_name will be set, and in that case we simply compare 207 * that to the name stored in the directory entry. The only exception is that 208 * if we don't have the key for an encrypted directory and a filename in it is 209 * very long, then we won't have the full disk_name and we'll instead need to 210 * match against the fscrypt_digested_name. 211 * 212 * Return: %true if the name matches, otherwise %false. 213 */ 214static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 215 const u8 *de_name, u32 de_name_len) 216{ 217 if (unlikely(!fname->disk_name.name)) { 218 const struct fscrypt_digested_name *n = 219 (const void *)fname->crypto_buf.name; 220 if (WARN_ON_ONCE(fname->usr_fname->name[0] != '_')) 221 return false; 222 if (de_name_len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) 223 return false; 224 return !memcmp(FSCRYPT_FNAME_DIGEST(de_name, de_name_len), 225 n->digest, FSCRYPT_FNAME_DIGEST_SIZE); 226 } 227 228 if (de_name_len != fname->disk_name.len) 229 return false; 230 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 231} 232 233/* bio.c */ 234extern void fscrypt_decrypt_bio(struct bio *); 235extern int fscrypt_zeroout_range(const struct inode *, pgoff_t, sector_t, 236 unsigned int); 237 238/* hooks.c */ 239extern int fscrypt_file_open(struct inode *inode, struct file *filp); 240extern int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 241 struct dentry *dentry); 242extern int __fscrypt_prepare_rename(struct inode *old_dir, 243 struct dentry *old_dentry, 244 struct inode *new_dir, 245 struct dentry *new_dentry, 246 unsigned int flags); 247extern int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry, 248 struct fscrypt_name *fname); 249extern int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len, 250 unsigned int max_len, 251 struct fscrypt_str *disk_link); 252extern int __fscrypt_encrypt_symlink(struct inode *inode, const char *target, 253 unsigned int len, 254 struct fscrypt_str *disk_link); 255extern const char *fscrypt_get_symlink(struct inode *inode, const void *caddr, 256 unsigned int max_size, 257 struct delayed_call *done); 258static inline void fscrypt_set_ops(struct super_block *sb, 259 const struct fscrypt_operations *s_cop) 260{ 261 sb->s_cop = s_cop; 262} 263#else /* !CONFIG_FS_ENCRYPTION */ 264 265static inline bool fscrypt_has_encryption_key(const struct inode *inode) 266{ 267 return false; 268} 269 270static inline bool fscrypt_dummy_context_enabled(struct inode *inode) 271{ 272 return false; 273} 274 275static inline void fscrypt_handle_d_move(struct dentry *dentry) 276{ 277} 278 279/* crypto.c */ 280static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work) 281{ 282} 283 284static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, 285 unsigned int len, 286 unsigned int offs, 287 gfp_t gfp_flags) 288{ 289 return ERR_PTR(-EOPNOTSUPP); 290} 291 292static inline int fscrypt_encrypt_block_inplace(const struct inode *inode, 293 struct page *page, 294 unsigned int len, 295 unsigned int offs, u64 lblk_num, 296 gfp_t gfp_flags) 297{ 298 return -EOPNOTSUPP; 299} 300 301static inline int fscrypt_decrypt_pagecache_blocks(struct page *page, 302 unsigned int len, 303 unsigned int offs) 304{ 305 return -EOPNOTSUPP; 306} 307 308static inline int fscrypt_decrypt_block_inplace(const struct inode *inode, 309 struct page *page, 310 unsigned int len, 311 unsigned int offs, u64 lblk_num) 312{ 313 return -EOPNOTSUPP; 314} 315 316static inline bool fscrypt_is_bounce_page(struct page *page) 317{ 318 return false; 319} 320 321static inline struct page *fscrypt_pagecache_page(struct page *bounce_page) 322{ 323 WARN_ON_ONCE(1); 324 return ERR_PTR(-EINVAL); 325} 326 327static inline void fscrypt_free_bounce_page(struct page *bounce_page) 328{ 329} 330 331/* policy.c */ 332static inline int fscrypt_ioctl_set_policy(struct file *filp, 333 const void __user *arg) 334{ 335 return -EOPNOTSUPP; 336} 337 338static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg) 339{ 340 return -EOPNOTSUPP; 341} 342 343static inline int fscrypt_ioctl_get_policy_ex(struct file *filp, 344 void __user *arg) 345{ 346 return -EOPNOTSUPP; 347} 348 349static inline int fscrypt_has_permitted_context(struct inode *parent, 350 struct inode *child) 351{ 352 return 0; 353} 354 355static inline int fscrypt_inherit_context(struct inode *parent, 356 struct inode *child, 357 void *fs_data, bool preload) 358{ 359 return -EOPNOTSUPP; 360} 361 362/* keyring.c */ 363static inline void fscrypt_sb_free(struct super_block *sb) 364{ 365} 366 367static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg) 368{ 369 return -EOPNOTSUPP; 370} 371 372static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg) 373{ 374 return -EOPNOTSUPP; 375} 376 377static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp, 378 void __user *arg) 379{ 380 return -EOPNOTSUPP; 381} 382 383static inline int fscrypt_ioctl_get_key_status(struct file *filp, 384 void __user *arg) 385{ 386 return -EOPNOTSUPP; 387} 388 389/* keysetup.c */ 390static inline int fscrypt_get_encryption_info(struct inode *inode) 391{ 392 return -EOPNOTSUPP; 393} 394 395static inline void fscrypt_put_encryption_info(struct inode *inode) 396{ 397 return; 398} 399 400static inline void fscrypt_free_inode(struct inode *inode) 401{ 402} 403 404static inline int fscrypt_drop_inode(struct inode *inode) 405{ 406 return 0; 407} 408 409 /* fname.c */ 410static inline int fscrypt_setup_filename(struct inode *dir, 411 const struct qstr *iname, 412 int lookup, struct fscrypt_name *fname) 413{ 414 if (IS_ENCRYPTED(dir)) 415 return -EOPNOTSUPP; 416 417 memset(fname, 0, sizeof(*fname)); 418 fname->usr_fname = iname; 419 fname->disk_name.name = (unsigned char *)iname->name; 420 fname->disk_name.len = iname->len; 421 return 0; 422} 423 424static inline void fscrypt_free_filename(struct fscrypt_name *fname) 425{ 426 return; 427} 428 429static inline int fscrypt_fname_alloc_buffer(const struct inode *inode, 430 u32 max_encrypted_len, 431 struct fscrypt_str *crypto_str) 432{ 433 return -EOPNOTSUPP; 434} 435 436static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str) 437{ 438 return; 439} 440 441static inline int fscrypt_fname_disk_to_usr(struct inode *inode, 442 u32 hash, u32 minor_hash, 443 const struct fscrypt_str *iname, 444 struct fscrypt_str *oname) 445{ 446 return -EOPNOTSUPP; 447} 448 449static inline bool fscrypt_match_name(const struct fscrypt_name *fname, 450 const u8 *de_name, u32 de_name_len) 451{ 452 /* Encryption support disabled; use standard comparison */ 453 if (de_name_len != fname->disk_name.len) 454 return false; 455 return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len); 456} 457 458/* bio.c */ 459static inline void fscrypt_decrypt_bio(struct bio *bio) 460{ 461} 462 463static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk, 464 sector_t pblk, unsigned int len) 465{ 466 return -EOPNOTSUPP; 467} 468 469/* hooks.c */ 470 471static inline int fscrypt_file_open(struct inode *inode, struct file *filp) 472{ 473 if (IS_ENCRYPTED(inode)) 474 return -EOPNOTSUPP; 475 return 0; 476} 477 478static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir, 479 struct dentry *dentry) 480{ 481 return -EOPNOTSUPP; 482} 483 484static inline int __fscrypt_prepare_rename(struct inode *old_dir, 485 struct dentry *old_dentry, 486 struct inode *new_dir, 487 struct dentry *new_dentry, 488 unsigned int flags) 489{ 490 return -EOPNOTSUPP; 491} 492 493static inline int __fscrypt_prepare_lookup(struct inode *dir, 494 struct dentry *dentry, 495 struct fscrypt_name *fname) 496{ 497 return -EOPNOTSUPP; 498} 499 500static inline int __fscrypt_prepare_symlink(struct inode *dir, 501 unsigned int len, 502 unsigned int max_len, 503 struct fscrypt_str *disk_link) 504{ 505 return -EOPNOTSUPP; 506} 507 508 509static inline int __fscrypt_encrypt_symlink(struct inode *inode, 510 const char *target, 511 unsigned int len, 512 struct fscrypt_str *disk_link) 513{ 514 return -EOPNOTSUPP; 515} 516 517static inline const char *fscrypt_get_symlink(struct inode *inode, 518 const void *caddr, 519 unsigned int max_size, 520 struct delayed_call *done) 521{ 522 return ERR_PTR(-EOPNOTSUPP); 523} 524 525static inline void fscrypt_set_ops(struct super_block *sb, 526 const struct fscrypt_operations *s_cop) 527{ 528} 529 530#endif /* !CONFIG_FS_ENCRYPTION */ 531 532/** 533 * fscrypt_require_key - require an inode's encryption key 534 * @inode: the inode we need the key for 535 * 536 * If the inode is encrypted, set up its encryption key if not already done. 537 * Then require that the key be present and return -ENOKEY otherwise. 538 * 539 * No locks are needed, and the key will live as long as the struct inode --- so 540 * it won't go away from under you. 541 * 542 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 543 * if a problem occurred while setting up the encryption key. 544 */ 545static inline int fscrypt_require_key(struct inode *inode) 546{ 547 if (IS_ENCRYPTED(inode)) { 548 int err = fscrypt_get_encryption_info(inode); 549 550 if (err) 551 return err; 552 if (!fscrypt_has_encryption_key(inode)) 553 return -ENOKEY; 554 } 555 return 0; 556} 557 558/** 559 * fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory 560 * @old_dentry: an existing dentry for the inode being linked 561 * @dir: the target directory 562 * @dentry: negative dentry for the target filename 563 * 564 * A new link can only be added to an encrypted directory if the directory's 565 * encryption key is available --- since otherwise we'd have no way to encrypt 566 * the filename. Therefore, we first set up the directory's encryption key (if 567 * not already done) and return an error if it's unavailable. 568 * 569 * We also verify that the link will not violate the constraint that all files 570 * in an encrypted directory tree use the same encryption policy. 571 * 572 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing, 573 * -EXDEV if the link would result in an inconsistent encryption policy, or 574 * another -errno code. 575 */ 576static inline int fscrypt_prepare_link(struct dentry *old_dentry, 577 struct inode *dir, 578 struct dentry *dentry) 579{ 580 if (IS_ENCRYPTED(dir)) 581 return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry); 582 return 0; 583} 584 585/** 586 * fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories 587 * @old_dir: source directory 588 * @old_dentry: dentry for source file 589 * @new_dir: target directory 590 * @new_dentry: dentry for target location (may be negative unless exchanging) 591 * @flags: rename flags (we care at least about %RENAME_EXCHANGE) 592 * 593 * Prepare for ->rename() where the source and/or target directories may be 594 * encrypted. A new link can only be added to an encrypted directory if the 595 * directory's encryption key is available --- since otherwise we'd have no way 596 * to encrypt the filename. A rename to an existing name, on the other hand, 597 * *is* cryptographically possible without the key. However, we take the more 598 * conservative approach and just forbid all no-key renames. 599 * 600 * We also verify that the rename will not violate the constraint that all files 601 * in an encrypted directory tree use the same encryption policy. 602 * 603 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the 604 * rename would cause inconsistent encryption policies, or another -errno code. 605 */ 606static inline int fscrypt_prepare_rename(struct inode *old_dir, 607 struct dentry *old_dentry, 608 struct inode *new_dir, 609 struct dentry *new_dentry, 610 unsigned int flags) 611{ 612 if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir)) 613 return __fscrypt_prepare_rename(old_dir, old_dentry, 614 new_dir, new_dentry, flags); 615 return 0; 616} 617 618/** 619 * fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory 620 * @dir: directory being searched 621 * @dentry: filename being looked up 622 * @fname: (output) the name to use to search the on-disk directory 623 * 624 * Prepare for ->lookup() in a directory which may be encrypted by determining 625 * the name that will actually be used to search the directory on-disk. Lookups 626 * can be done with or without the directory's encryption key; without the key, 627 * filenames are presented in encrypted form. Therefore, we'll try to set up 628 * the directory's encryption key, but even without it the lookup can continue. 629 * 630 * This also installs a custom ->d_revalidate() method which will invalidate the 631 * dentry if it was created without the key and the key is later added. 632 * 633 * Return: 0 on success; -ENOENT if key is unavailable but the filename isn't a 634 * correctly formed encoded ciphertext name, so a negative dentry should be 635 * created; or another -errno code. 636 */ 637static inline int fscrypt_prepare_lookup(struct inode *dir, 638 struct dentry *dentry, 639 struct fscrypt_name *fname) 640{ 641 if (IS_ENCRYPTED(dir)) 642 return __fscrypt_prepare_lookup(dir, dentry, fname); 643 644 memset(fname, 0, sizeof(*fname)); 645 fname->usr_fname = &dentry->d_name; 646 fname->disk_name.name = (unsigned char *)dentry->d_name.name; 647 fname->disk_name.len = dentry->d_name.len; 648 return 0; 649} 650 651/** 652 * fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes 653 * @dentry: dentry through which the inode is being changed 654 * @attr: attributes to change 655 * 656 * Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file, 657 * most attribute changes are allowed even without the encryption key. However, 658 * without the encryption key we do have to forbid truncates. This is needed 659 * because the size being truncated to may not be a multiple of the filesystem 660 * block size, and in that case we'd have to decrypt the final block, zero the 661 * portion past i_size, and re-encrypt it. (We *could* allow truncating to a 662 * filesystem block boundary, but it's simpler to just forbid all truncates --- 663 * and we already forbid all other contents modifications without the key.) 664 * 665 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code 666 * if a problem occurred while setting up the encryption key. 667 */ 668static inline int fscrypt_prepare_setattr(struct dentry *dentry, 669 struct iattr *attr) 670{ 671 if (attr->ia_valid & ATTR_SIZE) 672 return fscrypt_require_key(d_inode(dentry)); 673 return 0; 674} 675 676/** 677 * fscrypt_prepare_symlink - prepare to create a possibly-encrypted symlink 678 * @dir: directory in which the symlink is being created 679 * @target: plaintext symlink target 680 * @len: length of @target excluding null terminator 681 * @max_len: space the filesystem has available to store the symlink target 682 * @disk_link: (out) the on-disk symlink target being prepared 683 * 684 * This function computes the size the symlink target will require on-disk, 685 * stores it in @disk_link->len, and validates it against @max_len. An 686 * encrypted symlink may be longer than the original. 687 * 688 * Additionally, @disk_link->name is set to @target if the symlink will be 689 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted 690 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the 691 * on-disk target later. (The reason for the two-step process is that some 692 * filesystems need to know the size of the symlink target before creating the 693 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.) 694 * 695 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long, 696 * -ENOKEY if the encryption key is missing, or another -errno code if a problem 697 * occurred while setting up the encryption key. 698 */ 699static inline int fscrypt_prepare_symlink(struct inode *dir, 700 const char *target, 701 unsigned int len, 702 unsigned int max_len, 703 struct fscrypt_str *disk_link) 704{ 705 if (IS_ENCRYPTED(dir) || fscrypt_dummy_context_enabled(dir)) 706 return __fscrypt_prepare_symlink(dir, len, max_len, disk_link); 707 708 disk_link->name = (unsigned char *)target; 709 disk_link->len = len + 1; 710 if (disk_link->len > max_len) 711 return -ENAMETOOLONG; 712 return 0; 713} 714 715/** 716 * fscrypt_encrypt_symlink - encrypt the symlink target if needed 717 * @inode: symlink inode 718 * @target: plaintext symlink target 719 * @len: length of @target excluding null terminator 720 * @disk_link: (in/out) the on-disk symlink target being prepared 721 * 722 * If the symlink target needs to be encrypted, then this function encrypts it 723 * into @disk_link->name. fscrypt_prepare_symlink() must have been called 724 * previously to compute @disk_link->len. If the filesystem did not allocate a 725 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one 726 * will be kmalloc()'ed and the filesystem will be responsible for freeing it. 727 * 728 * Return: 0 on success, -errno on failure 729 */ 730static inline int fscrypt_encrypt_symlink(struct inode *inode, 731 const char *target, 732 unsigned int len, 733 struct fscrypt_str *disk_link) 734{ 735 if (IS_ENCRYPTED(inode)) 736 return __fscrypt_encrypt_symlink(inode, target, len, disk_link); 737 return 0; 738} 739 740/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */ 741static inline void fscrypt_finalize_bounce_page(struct page **pagep) 742{ 743 struct page *page = *pagep; 744 745 if (fscrypt_is_bounce_page(page)) { 746 *pagep = fscrypt_pagecache_page(page); 747 fscrypt_free_bounce_page(page); 748 } 749} 750 751#endif /* _LINUX_FSCRYPT_H */