at v5.5 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <stdarg.h> 9 10#include <linux/atomic.h> 11#include <linux/refcount.h> 12#include <linux/compat.h> 13#include <linux/skbuff.h> 14#include <linux/linkage.h> 15#include <linux/printk.h> 16#include <linux/workqueue.h> 17#include <linux/sched.h> 18#include <linux/capability.h> 19#include <linux/cryptohash.h> 20#include <linux/set_memory.h> 21#include <linux/kallsyms.h> 22#include <linux/if_vlan.h> 23#include <linux/vmalloc.h> 24 25#include <net/sch_generic.h> 26 27#include <asm/byteorder.h> 28#include <uapi/linux/filter.h> 29#include <uapi/linux/bpf.h> 30 31struct sk_buff; 32struct sock; 33struct seccomp_data; 34struct bpf_prog_aux; 35struct xdp_rxq_info; 36struct xdp_buff; 37struct sock_reuseport; 38struct ctl_table; 39struct ctl_table_header; 40 41/* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45#define BPF_REG_ARG1 BPF_REG_1 46#define BPF_REG_ARG2 BPF_REG_2 47#define BPF_REG_ARG3 BPF_REG_3 48#define BPF_REG_ARG4 BPF_REG_4 49#define BPF_REG_ARG5 BPF_REG_5 50#define BPF_REG_CTX BPF_REG_6 51#define BPF_REG_FP BPF_REG_10 52 53/* Additional register mappings for converted user programs. */ 54#define BPF_REG_A BPF_REG_0 55#define BPF_REG_X BPF_REG_7 56#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60/* Kernel hidden auxiliary/helper register. */ 61#define BPF_REG_AX MAX_BPF_REG 62#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65/* unused opcode to mark special call to bpf_tail_call() helper */ 66#define BPF_TAIL_CALL 0xf0 67 68/* unused opcode to mark special load instruction. Same as BPF_ABS */ 69#define BPF_PROBE_MEM 0x20 70 71/* unused opcode to mark call to interpreter with arguments */ 72#define BPF_CALL_ARGS 0xe0 73 74/* As per nm, we expose JITed images as text (code) section for 75 * kallsyms. That way, tools like perf can find it to match 76 * addresses. 77 */ 78#define BPF_SYM_ELF_TYPE 't' 79 80/* BPF program can access up to 512 bytes of stack space. */ 81#define MAX_BPF_STACK 512 82 83/* Helper macros for filter block array initializers. */ 84 85/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 86 87#define BPF_ALU64_REG(OP, DST, SRC) \ 88 ((struct bpf_insn) { \ 89 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 90 .dst_reg = DST, \ 91 .src_reg = SRC, \ 92 .off = 0, \ 93 .imm = 0 }) 94 95#define BPF_ALU32_REG(OP, DST, SRC) \ 96 ((struct bpf_insn) { \ 97 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 98 .dst_reg = DST, \ 99 .src_reg = SRC, \ 100 .off = 0, \ 101 .imm = 0 }) 102 103/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 104 105#define BPF_ALU64_IMM(OP, DST, IMM) \ 106 ((struct bpf_insn) { \ 107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 108 .dst_reg = DST, \ 109 .src_reg = 0, \ 110 .off = 0, \ 111 .imm = IMM }) 112 113#define BPF_ALU32_IMM(OP, DST, IMM) \ 114 ((struct bpf_insn) { \ 115 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 116 .dst_reg = DST, \ 117 .src_reg = 0, \ 118 .off = 0, \ 119 .imm = IMM }) 120 121/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 122 123#define BPF_ENDIAN(TYPE, DST, LEN) \ 124 ((struct bpf_insn) { \ 125 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 126 .dst_reg = DST, \ 127 .src_reg = 0, \ 128 .off = 0, \ 129 .imm = LEN }) 130 131/* Short form of mov, dst_reg = src_reg */ 132 133#define BPF_MOV64_REG(DST, SRC) \ 134 ((struct bpf_insn) { \ 135 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 136 .dst_reg = DST, \ 137 .src_reg = SRC, \ 138 .off = 0, \ 139 .imm = 0 }) 140 141#define BPF_MOV32_REG(DST, SRC) \ 142 ((struct bpf_insn) { \ 143 .code = BPF_ALU | BPF_MOV | BPF_X, \ 144 .dst_reg = DST, \ 145 .src_reg = SRC, \ 146 .off = 0, \ 147 .imm = 0 }) 148 149/* Short form of mov, dst_reg = imm32 */ 150 151#define BPF_MOV64_IMM(DST, IMM) \ 152 ((struct bpf_insn) { \ 153 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 154 .dst_reg = DST, \ 155 .src_reg = 0, \ 156 .off = 0, \ 157 .imm = IMM }) 158 159#define BPF_MOV32_IMM(DST, IMM) \ 160 ((struct bpf_insn) { \ 161 .code = BPF_ALU | BPF_MOV | BPF_K, \ 162 .dst_reg = DST, \ 163 .src_reg = 0, \ 164 .off = 0, \ 165 .imm = IMM }) 166 167/* Special form of mov32, used for doing explicit zero extension on dst. */ 168#define BPF_ZEXT_REG(DST) \ 169 ((struct bpf_insn) { \ 170 .code = BPF_ALU | BPF_MOV | BPF_X, \ 171 .dst_reg = DST, \ 172 .src_reg = DST, \ 173 .off = 0, \ 174 .imm = 1 }) 175 176static inline bool insn_is_zext(const struct bpf_insn *insn) 177{ 178 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 179} 180 181/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 182#define BPF_LD_IMM64(DST, IMM) \ 183 BPF_LD_IMM64_RAW(DST, 0, IMM) 184 185#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 186 ((struct bpf_insn) { \ 187 .code = BPF_LD | BPF_DW | BPF_IMM, \ 188 .dst_reg = DST, \ 189 .src_reg = SRC, \ 190 .off = 0, \ 191 .imm = (__u32) (IMM) }), \ 192 ((struct bpf_insn) { \ 193 .code = 0, /* zero is reserved opcode */ \ 194 .dst_reg = 0, \ 195 .src_reg = 0, \ 196 .off = 0, \ 197 .imm = ((__u64) (IMM)) >> 32 }) 198 199/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 200#define BPF_LD_MAP_FD(DST, MAP_FD) \ 201 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 202 203/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 204 205#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 206 ((struct bpf_insn) { \ 207 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 208 .dst_reg = DST, \ 209 .src_reg = SRC, \ 210 .off = 0, \ 211 .imm = IMM }) 212 213#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 214 ((struct bpf_insn) { \ 215 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 216 .dst_reg = DST, \ 217 .src_reg = SRC, \ 218 .off = 0, \ 219 .imm = IMM }) 220 221/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 222 223#define BPF_LD_ABS(SIZE, IMM) \ 224 ((struct bpf_insn) { \ 225 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 226 .dst_reg = 0, \ 227 .src_reg = 0, \ 228 .off = 0, \ 229 .imm = IMM }) 230 231/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 232 233#define BPF_LD_IND(SIZE, SRC, IMM) \ 234 ((struct bpf_insn) { \ 235 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 236 .dst_reg = 0, \ 237 .src_reg = SRC, \ 238 .off = 0, \ 239 .imm = IMM }) 240 241/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 242 243#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 244 ((struct bpf_insn) { \ 245 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 246 .dst_reg = DST, \ 247 .src_reg = SRC, \ 248 .off = OFF, \ 249 .imm = 0 }) 250 251/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 252 253#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 254 ((struct bpf_insn) { \ 255 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 256 .dst_reg = DST, \ 257 .src_reg = SRC, \ 258 .off = OFF, \ 259 .imm = 0 }) 260 261/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 262 263#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 264 ((struct bpf_insn) { \ 265 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 266 .dst_reg = DST, \ 267 .src_reg = SRC, \ 268 .off = OFF, \ 269 .imm = 0 }) 270 271/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 272 273#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 274 ((struct bpf_insn) { \ 275 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 276 .dst_reg = DST, \ 277 .src_reg = 0, \ 278 .off = OFF, \ 279 .imm = IMM }) 280 281/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 282 283#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 284 ((struct bpf_insn) { \ 285 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 286 .dst_reg = DST, \ 287 .src_reg = SRC, \ 288 .off = OFF, \ 289 .imm = 0 }) 290 291/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 292 293#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 294 ((struct bpf_insn) { \ 295 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 296 .dst_reg = DST, \ 297 .src_reg = 0, \ 298 .off = OFF, \ 299 .imm = IMM }) 300 301/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 302 303#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 304 ((struct bpf_insn) { \ 305 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 306 .dst_reg = DST, \ 307 .src_reg = SRC, \ 308 .off = OFF, \ 309 .imm = 0 }) 310 311/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 312 313#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 314 ((struct bpf_insn) { \ 315 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 316 .dst_reg = DST, \ 317 .src_reg = 0, \ 318 .off = OFF, \ 319 .imm = IMM }) 320 321/* Unconditional jumps, goto pc + off16 */ 322 323#define BPF_JMP_A(OFF) \ 324 ((struct bpf_insn) { \ 325 .code = BPF_JMP | BPF_JA, \ 326 .dst_reg = 0, \ 327 .src_reg = 0, \ 328 .off = OFF, \ 329 .imm = 0 }) 330 331/* Relative call */ 332 333#define BPF_CALL_REL(TGT) \ 334 ((struct bpf_insn) { \ 335 .code = BPF_JMP | BPF_CALL, \ 336 .dst_reg = 0, \ 337 .src_reg = BPF_PSEUDO_CALL, \ 338 .off = 0, \ 339 .imm = TGT }) 340 341/* Function call */ 342 343#define BPF_CAST_CALL(x) \ 344 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 345 346#define BPF_EMIT_CALL(FUNC) \ 347 ((struct bpf_insn) { \ 348 .code = BPF_JMP | BPF_CALL, \ 349 .dst_reg = 0, \ 350 .src_reg = 0, \ 351 .off = 0, \ 352 .imm = ((FUNC) - __bpf_call_base) }) 353 354/* Raw code statement block */ 355 356#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 357 ((struct bpf_insn) { \ 358 .code = CODE, \ 359 .dst_reg = DST, \ 360 .src_reg = SRC, \ 361 .off = OFF, \ 362 .imm = IMM }) 363 364/* Program exit */ 365 366#define BPF_EXIT_INSN() \ 367 ((struct bpf_insn) { \ 368 .code = BPF_JMP | BPF_EXIT, \ 369 .dst_reg = 0, \ 370 .src_reg = 0, \ 371 .off = 0, \ 372 .imm = 0 }) 373 374/* Internal classic blocks for direct assignment */ 375 376#define __BPF_STMT(CODE, K) \ 377 ((struct sock_filter) BPF_STMT(CODE, K)) 378 379#define __BPF_JUMP(CODE, K, JT, JF) \ 380 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 381 382#define bytes_to_bpf_size(bytes) \ 383({ \ 384 int bpf_size = -EINVAL; \ 385 \ 386 if (bytes == sizeof(u8)) \ 387 bpf_size = BPF_B; \ 388 else if (bytes == sizeof(u16)) \ 389 bpf_size = BPF_H; \ 390 else if (bytes == sizeof(u32)) \ 391 bpf_size = BPF_W; \ 392 else if (bytes == sizeof(u64)) \ 393 bpf_size = BPF_DW; \ 394 \ 395 bpf_size; \ 396}) 397 398#define bpf_size_to_bytes(bpf_size) \ 399({ \ 400 int bytes = -EINVAL; \ 401 \ 402 if (bpf_size == BPF_B) \ 403 bytes = sizeof(u8); \ 404 else if (bpf_size == BPF_H) \ 405 bytes = sizeof(u16); \ 406 else if (bpf_size == BPF_W) \ 407 bytes = sizeof(u32); \ 408 else if (bpf_size == BPF_DW) \ 409 bytes = sizeof(u64); \ 410 \ 411 bytes; \ 412}) 413 414#define BPF_SIZEOF(type) \ 415 ({ \ 416 const int __size = bytes_to_bpf_size(sizeof(type)); \ 417 BUILD_BUG_ON(__size < 0); \ 418 __size; \ 419 }) 420 421#define BPF_FIELD_SIZEOF(type, field) \ 422 ({ \ 423 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 424 BUILD_BUG_ON(__size < 0); \ 425 __size; \ 426 }) 427 428#define BPF_LDST_BYTES(insn) \ 429 ({ \ 430 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 431 WARN_ON(__size < 0); \ 432 __size; \ 433 }) 434 435#define __BPF_MAP_0(m, v, ...) v 436#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 437#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 438#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 439#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 440#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 441 442#define __BPF_REG_0(...) __BPF_PAD(5) 443#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 444#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 445#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 446#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 447#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 448 449#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 450#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 451 452#define __BPF_CAST(t, a) \ 453 (__force t) \ 454 (__force \ 455 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 456 (unsigned long)0, (t)0))) a 457#define __BPF_V void 458#define __BPF_N 459 460#define __BPF_DECL_ARGS(t, a) t a 461#define __BPF_DECL_REGS(t, a) u64 a 462 463#define __BPF_PAD(n) \ 464 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 465 u64, __ur_3, u64, __ur_4, u64, __ur_5) 466 467#define BPF_CALL_x(x, name, ...) \ 468 static __always_inline \ 469 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 470 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 471 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 472 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 473 { \ 474 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 475 } \ 476 static __always_inline \ 477 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 478 479#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 480#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 481#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 482#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 483#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 484#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 485 486#define bpf_ctx_range(TYPE, MEMBER) \ 487 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 488#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 489 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 490#if BITS_PER_LONG == 64 491# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 492 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 493#else 494# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 495 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 496#endif /* BITS_PER_LONG == 64 */ 497 498#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 499 ({ \ 500 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 501 *(PTR_SIZE) = (SIZE); \ 502 offsetof(TYPE, MEMBER); \ 503 }) 504 505#ifdef CONFIG_COMPAT 506/* A struct sock_filter is architecture independent. */ 507struct compat_sock_fprog { 508 u16 len; 509 compat_uptr_t filter; /* struct sock_filter * */ 510}; 511#endif 512 513struct sock_fprog_kern { 514 u16 len; 515 struct sock_filter *filter; 516}; 517 518/* Some arches need doubleword alignment for their instructions and/or data */ 519#define BPF_IMAGE_ALIGNMENT 8 520 521struct bpf_binary_header { 522 u32 pages; 523 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 524}; 525 526struct bpf_prog { 527 u16 pages; /* Number of allocated pages */ 528 u16 jited:1, /* Is our filter JIT'ed? */ 529 jit_requested:1,/* archs need to JIT the prog */ 530 gpl_compatible:1, /* Is filter GPL compatible? */ 531 cb_access:1, /* Is control block accessed? */ 532 dst_needed:1, /* Do we need dst entry? */ 533 blinded:1, /* Was blinded */ 534 is_func:1, /* program is a bpf function */ 535 kprobe_override:1, /* Do we override a kprobe? */ 536 has_callchain_buf:1, /* callchain buffer allocated? */ 537 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */ 538 enum bpf_prog_type type; /* Type of BPF program */ 539 enum bpf_attach_type expected_attach_type; /* For some prog types */ 540 u32 len; /* Number of filter blocks */ 541 u32 jited_len; /* Size of jited insns in bytes */ 542 u8 tag[BPF_TAG_SIZE]; 543 struct bpf_prog_aux *aux; /* Auxiliary fields */ 544 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 545 unsigned int (*bpf_func)(const void *ctx, 546 const struct bpf_insn *insn); 547 /* Instructions for interpreter */ 548 union { 549 struct sock_filter insns[0]; 550 struct bpf_insn insnsi[0]; 551 }; 552}; 553 554struct sk_filter { 555 refcount_t refcnt; 556 struct rcu_head rcu; 557 struct bpf_prog *prog; 558}; 559 560DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 561 562#define BPF_PROG_RUN(prog, ctx) ({ \ 563 u32 ret; \ 564 cant_sleep(); \ 565 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 566 struct bpf_prog_stats *stats; \ 567 u64 start = sched_clock(); \ 568 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 569 stats = this_cpu_ptr(prog->aux->stats); \ 570 u64_stats_update_begin(&stats->syncp); \ 571 stats->cnt++; \ 572 stats->nsecs += sched_clock() - start; \ 573 u64_stats_update_end(&stats->syncp); \ 574 } else { \ 575 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \ 576 } \ 577 ret; }) 578 579#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 580 581struct bpf_skb_data_end { 582 struct qdisc_skb_cb qdisc_cb; 583 void *data_meta; 584 void *data_end; 585}; 586 587struct bpf_redirect_info { 588 u32 flags; 589 u32 tgt_index; 590 void *tgt_value; 591 struct bpf_map *map; 592 struct bpf_map *map_to_flush; 593 u32 kern_flags; 594}; 595 596DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 597 598/* flags for bpf_redirect_info kern_flags */ 599#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 600 601/* Compute the linear packet data range [data, data_end) which 602 * will be accessed by various program types (cls_bpf, act_bpf, 603 * lwt, ...). Subsystems allowing direct data access must (!) 604 * ensure that cb[] area can be written to when BPF program is 605 * invoked (otherwise cb[] save/restore is necessary). 606 */ 607static inline void bpf_compute_data_pointers(struct sk_buff *skb) 608{ 609 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 610 611 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 612 cb->data_meta = skb->data - skb_metadata_len(skb); 613 cb->data_end = skb->data + skb_headlen(skb); 614} 615 616/* Similar to bpf_compute_data_pointers(), except that save orginal 617 * data in cb->data and cb->meta_data for restore. 618 */ 619static inline void bpf_compute_and_save_data_end( 620 struct sk_buff *skb, void **saved_data_end) 621{ 622 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 623 624 *saved_data_end = cb->data_end; 625 cb->data_end = skb->data + skb_headlen(skb); 626} 627 628/* Restore data saved by bpf_compute_data_pointers(). */ 629static inline void bpf_restore_data_end( 630 struct sk_buff *skb, void *saved_data_end) 631{ 632 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 633 634 cb->data_end = saved_data_end; 635} 636 637static inline u8 *bpf_skb_cb(struct sk_buff *skb) 638{ 639 /* eBPF programs may read/write skb->cb[] area to transfer meta 640 * data between tail calls. Since this also needs to work with 641 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 642 * 643 * In some socket filter cases, the cb unfortunately needs to be 644 * saved/restored so that protocol specific skb->cb[] data won't 645 * be lost. In any case, due to unpriviledged eBPF programs 646 * attached to sockets, we need to clear the bpf_skb_cb() area 647 * to not leak previous contents to user space. 648 */ 649 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 650 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 651 sizeof_field(struct qdisc_skb_cb, data)); 652 653 return qdisc_skb_cb(skb)->data; 654} 655 656static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 657 struct sk_buff *skb) 658{ 659 u8 *cb_data = bpf_skb_cb(skb); 660 u8 cb_saved[BPF_SKB_CB_LEN]; 661 u32 res; 662 663 if (unlikely(prog->cb_access)) { 664 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 665 memset(cb_data, 0, sizeof(cb_saved)); 666 } 667 668 res = BPF_PROG_RUN(prog, skb); 669 670 if (unlikely(prog->cb_access)) 671 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 672 673 return res; 674} 675 676static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 677 struct sk_buff *skb) 678{ 679 u32 res; 680 681 preempt_disable(); 682 res = __bpf_prog_run_save_cb(prog, skb); 683 preempt_enable(); 684 return res; 685} 686 687static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 688 struct sk_buff *skb) 689{ 690 u8 *cb_data = bpf_skb_cb(skb); 691 u32 res; 692 693 if (unlikely(prog->cb_access)) 694 memset(cb_data, 0, BPF_SKB_CB_LEN); 695 696 preempt_disable(); 697 res = BPF_PROG_RUN(prog, skb); 698 preempt_enable(); 699 return res; 700} 701 702static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 703 struct xdp_buff *xdp) 704{ 705 /* Caller needs to hold rcu_read_lock() (!), otherwise program 706 * can be released while still running, or map elements could be 707 * freed early while still having concurrent users. XDP fastpath 708 * already takes rcu_read_lock() when fetching the program, so 709 * it's not necessary here anymore. 710 */ 711 return BPF_PROG_RUN(prog, xdp); 712} 713 714static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 715{ 716 return prog->len * sizeof(struct bpf_insn); 717} 718 719static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 720{ 721 return round_up(bpf_prog_insn_size(prog) + 722 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 723} 724 725static inline unsigned int bpf_prog_size(unsigned int proglen) 726{ 727 return max(sizeof(struct bpf_prog), 728 offsetof(struct bpf_prog, insns[proglen])); 729} 730 731static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 732{ 733 /* When classic BPF programs have been loaded and the arch 734 * does not have a classic BPF JIT (anymore), they have been 735 * converted via bpf_migrate_filter() to eBPF and thus always 736 * have an unspec program type. 737 */ 738 return prog->type == BPF_PROG_TYPE_UNSPEC; 739} 740 741static inline u32 bpf_ctx_off_adjust_machine(u32 size) 742{ 743 const u32 size_machine = sizeof(unsigned long); 744 745 if (size > size_machine && size % size_machine == 0) 746 size = size_machine; 747 748 return size; 749} 750 751static inline bool 752bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 753{ 754 return size <= size_default && (size & (size - 1)) == 0; 755} 756 757static inline u8 758bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 759{ 760 u8 access_off = off & (size_default - 1); 761 762#ifdef __LITTLE_ENDIAN 763 return access_off; 764#else 765 return size_default - (access_off + size); 766#endif 767} 768 769#define bpf_ctx_wide_access_ok(off, size, type, field) \ 770 (size == sizeof(__u64) && \ 771 off >= offsetof(type, field) && \ 772 off + sizeof(__u64) <= offsetofend(type, field) && \ 773 off % sizeof(__u64) == 0) 774 775#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 776 777static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 778{ 779#ifndef CONFIG_BPF_JIT_ALWAYS_ON 780 if (!fp->jited) { 781 set_vm_flush_reset_perms(fp); 782 set_memory_ro((unsigned long)fp, fp->pages); 783 } 784#endif 785} 786 787static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 788{ 789 set_vm_flush_reset_perms(hdr); 790 set_memory_ro((unsigned long)hdr, hdr->pages); 791 set_memory_x((unsigned long)hdr, hdr->pages); 792} 793 794static inline struct bpf_binary_header * 795bpf_jit_binary_hdr(const struct bpf_prog *fp) 796{ 797 unsigned long real_start = (unsigned long)fp->bpf_func; 798 unsigned long addr = real_start & PAGE_MASK; 799 800 return (void *)addr; 801} 802 803int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 804static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 805{ 806 return sk_filter_trim_cap(sk, skb, 1); 807} 808 809struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 810void bpf_prog_free(struct bpf_prog *fp); 811 812bool bpf_opcode_in_insntable(u8 code); 813 814void bpf_prog_free_linfo(struct bpf_prog *prog); 815void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 816 const u32 *insn_to_jit_off); 817int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 818void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 819void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 820 821struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 822struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 823struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 824 gfp_t gfp_extra_flags); 825void __bpf_prog_free(struct bpf_prog *fp); 826 827static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 828{ 829 __bpf_prog_free(fp); 830} 831 832typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 833 unsigned int flen); 834 835int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 836int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 837 bpf_aux_classic_check_t trans, bool save_orig); 838void bpf_prog_destroy(struct bpf_prog *fp); 839 840int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 841int sk_attach_bpf(u32 ufd, struct sock *sk); 842int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 843int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 844void sk_reuseport_prog_free(struct bpf_prog *prog); 845int sk_detach_filter(struct sock *sk); 846int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 847 unsigned int len); 848 849bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 850void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 851 852u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 853#define __bpf_call_base_args \ 854 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 855 __bpf_call_base) 856 857struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 858void bpf_jit_compile(struct bpf_prog *prog); 859bool bpf_jit_needs_zext(void); 860bool bpf_helper_changes_pkt_data(void *func); 861 862static inline bool bpf_dump_raw_ok(void) 863{ 864 /* Reconstruction of call-sites is dependent on kallsyms, 865 * thus make dump the same restriction. 866 */ 867 return kallsyms_show_value() == 1; 868} 869 870struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 871 const struct bpf_insn *patch, u32 len); 872int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 873 874void bpf_clear_redirect_map(struct bpf_map *map); 875 876static inline bool xdp_return_frame_no_direct(void) 877{ 878 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 879 880 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 881} 882 883static inline void xdp_set_return_frame_no_direct(void) 884{ 885 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 886 887 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 888} 889 890static inline void xdp_clear_return_frame_no_direct(void) 891{ 892 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 893 894 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 895} 896 897static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 898 unsigned int pktlen) 899{ 900 unsigned int len; 901 902 if (unlikely(!(fwd->flags & IFF_UP))) 903 return -ENETDOWN; 904 905 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 906 if (pktlen > len) 907 return -EMSGSIZE; 908 909 return 0; 910} 911 912/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 913 * same cpu context. Further for best results no more than a single map 914 * for the do_redirect/do_flush pair should be used. This limitation is 915 * because we only track one map and force a flush when the map changes. 916 * This does not appear to be a real limitation for existing software. 917 */ 918int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 919 struct xdp_buff *xdp, struct bpf_prog *prog); 920int xdp_do_redirect(struct net_device *dev, 921 struct xdp_buff *xdp, 922 struct bpf_prog *prog); 923void xdp_do_flush_map(void); 924 925void bpf_warn_invalid_xdp_action(u32 act); 926 927#ifdef CONFIG_INET 928struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 929 struct bpf_prog *prog, struct sk_buff *skb, 930 u32 hash); 931#else 932static inline struct sock * 933bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 934 struct bpf_prog *prog, struct sk_buff *skb, 935 u32 hash) 936{ 937 return NULL; 938} 939#endif 940 941#ifdef CONFIG_BPF_JIT 942extern int bpf_jit_enable; 943extern int bpf_jit_harden; 944extern int bpf_jit_kallsyms; 945extern long bpf_jit_limit; 946 947typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 948 949struct bpf_binary_header * 950bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 951 unsigned int alignment, 952 bpf_jit_fill_hole_t bpf_fill_ill_insns); 953void bpf_jit_binary_free(struct bpf_binary_header *hdr); 954u64 bpf_jit_alloc_exec_limit(void); 955void *bpf_jit_alloc_exec(unsigned long size); 956void bpf_jit_free_exec(void *addr); 957void bpf_jit_free(struct bpf_prog *fp); 958 959int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 960 struct bpf_jit_poke_descriptor *poke); 961 962int bpf_jit_get_func_addr(const struct bpf_prog *prog, 963 const struct bpf_insn *insn, bool extra_pass, 964 u64 *func_addr, bool *func_addr_fixed); 965 966struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 967void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 968 969static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 970 u32 pass, void *image) 971{ 972 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 973 proglen, pass, image, current->comm, task_pid_nr(current)); 974 975 if (image) 976 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 977 16, 1, image, proglen, false); 978} 979 980static inline bool bpf_jit_is_ebpf(void) 981{ 982# ifdef CONFIG_HAVE_EBPF_JIT 983 return true; 984# else 985 return false; 986# endif 987} 988 989static inline bool ebpf_jit_enabled(void) 990{ 991 return bpf_jit_enable && bpf_jit_is_ebpf(); 992} 993 994static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 995{ 996 return fp->jited && bpf_jit_is_ebpf(); 997} 998 999static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1000{ 1001 /* These are the prerequisites, should someone ever have the 1002 * idea to call blinding outside of them, we make sure to 1003 * bail out. 1004 */ 1005 if (!bpf_jit_is_ebpf()) 1006 return false; 1007 if (!prog->jit_requested) 1008 return false; 1009 if (!bpf_jit_harden) 1010 return false; 1011 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1012 return false; 1013 1014 return true; 1015} 1016 1017static inline bool bpf_jit_kallsyms_enabled(void) 1018{ 1019 /* There are a couple of corner cases where kallsyms should 1020 * not be enabled f.e. on hardening. 1021 */ 1022 if (bpf_jit_harden) 1023 return false; 1024 if (!bpf_jit_kallsyms) 1025 return false; 1026 if (bpf_jit_kallsyms == 1) 1027 return true; 1028 1029 return false; 1030} 1031 1032const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1033 unsigned long *off, char *sym); 1034bool is_bpf_text_address(unsigned long addr); 1035int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1036 char *sym); 1037 1038static inline const char * 1039bpf_address_lookup(unsigned long addr, unsigned long *size, 1040 unsigned long *off, char **modname, char *sym) 1041{ 1042 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1043 1044 if (ret && modname) 1045 *modname = NULL; 1046 return ret; 1047} 1048 1049void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1050void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1051void bpf_get_prog_name(const struct bpf_prog *prog, char *sym); 1052 1053#else /* CONFIG_BPF_JIT */ 1054 1055static inline bool ebpf_jit_enabled(void) 1056{ 1057 return false; 1058} 1059 1060static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1061{ 1062 return false; 1063} 1064 1065static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1066{ 1067 return false; 1068} 1069 1070static inline int 1071bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1072 struct bpf_jit_poke_descriptor *poke) 1073{ 1074 return -ENOTSUPP; 1075} 1076 1077static inline void bpf_jit_free(struct bpf_prog *fp) 1078{ 1079 bpf_prog_unlock_free(fp); 1080} 1081 1082static inline bool bpf_jit_kallsyms_enabled(void) 1083{ 1084 return false; 1085} 1086 1087static inline const char * 1088__bpf_address_lookup(unsigned long addr, unsigned long *size, 1089 unsigned long *off, char *sym) 1090{ 1091 return NULL; 1092} 1093 1094static inline bool is_bpf_text_address(unsigned long addr) 1095{ 1096 return false; 1097} 1098 1099static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1100 char *type, char *sym) 1101{ 1102 return -ERANGE; 1103} 1104 1105static inline const char * 1106bpf_address_lookup(unsigned long addr, unsigned long *size, 1107 unsigned long *off, char **modname, char *sym) 1108{ 1109 return NULL; 1110} 1111 1112static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1113{ 1114} 1115 1116static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1117{ 1118} 1119 1120static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 1121{ 1122 sym[0] = '\0'; 1123} 1124 1125#endif /* CONFIG_BPF_JIT */ 1126 1127void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1128 1129#define BPF_ANC BIT(15) 1130 1131static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1132{ 1133 switch (first->code) { 1134 case BPF_RET | BPF_K: 1135 case BPF_LD | BPF_W | BPF_LEN: 1136 return false; 1137 1138 case BPF_LD | BPF_W | BPF_ABS: 1139 case BPF_LD | BPF_H | BPF_ABS: 1140 case BPF_LD | BPF_B | BPF_ABS: 1141 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1142 return true; 1143 return false; 1144 1145 default: 1146 return true; 1147 } 1148} 1149 1150static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1151{ 1152 BUG_ON(ftest->code & BPF_ANC); 1153 1154 switch (ftest->code) { 1155 case BPF_LD | BPF_W | BPF_ABS: 1156 case BPF_LD | BPF_H | BPF_ABS: 1157 case BPF_LD | BPF_B | BPF_ABS: 1158#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1159 return BPF_ANC | SKF_AD_##CODE 1160 switch (ftest->k) { 1161 BPF_ANCILLARY(PROTOCOL); 1162 BPF_ANCILLARY(PKTTYPE); 1163 BPF_ANCILLARY(IFINDEX); 1164 BPF_ANCILLARY(NLATTR); 1165 BPF_ANCILLARY(NLATTR_NEST); 1166 BPF_ANCILLARY(MARK); 1167 BPF_ANCILLARY(QUEUE); 1168 BPF_ANCILLARY(HATYPE); 1169 BPF_ANCILLARY(RXHASH); 1170 BPF_ANCILLARY(CPU); 1171 BPF_ANCILLARY(ALU_XOR_X); 1172 BPF_ANCILLARY(VLAN_TAG); 1173 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1174 BPF_ANCILLARY(PAY_OFFSET); 1175 BPF_ANCILLARY(RANDOM); 1176 BPF_ANCILLARY(VLAN_TPID); 1177 } 1178 /* Fallthrough. */ 1179 default: 1180 return ftest->code; 1181 } 1182} 1183 1184void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1185 int k, unsigned int size); 1186 1187static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1188 unsigned int size, void *buffer) 1189{ 1190 if (k >= 0) 1191 return skb_header_pointer(skb, k, size, buffer); 1192 1193 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1194} 1195 1196static inline int bpf_tell_extensions(void) 1197{ 1198 return SKF_AD_MAX; 1199} 1200 1201struct bpf_sock_addr_kern { 1202 struct sock *sk; 1203 struct sockaddr *uaddr; 1204 /* Temporary "register" to make indirect stores to nested structures 1205 * defined above. We need three registers to make such a store, but 1206 * only two (src and dst) are available at convert_ctx_access time 1207 */ 1208 u64 tmp_reg; 1209 void *t_ctx; /* Attach type specific context. */ 1210}; 1211 1212struct bpf_sock_ops_kern { 1213 struct sock *sk; 1214 u32 op; 1215 union { 1216 u32 args[4]; 1217 u32 reply; 1218 u32 replylong[4]; 1219 }; 1220 u32 is_fullsock; 1221 u64 temp; /* temp and everything after is not 1222 * initialized to 0 before calling 1223 * the BPF program. New fields that 1224 * should be initialized to 0 should 1225 * be inserted before temp. 1226 * temp is scratch storage used by 1227 * sock_ops_convert_ctx_access 1228 * as temporary storage of a register. 1229 */ 1230}; 1231 1232struct bpf_sysctl_kern { 1233 struct ctl_table_header *head; 1234 struct ctl_table *table; 1235 void *cur_val; 1236 size_t cur_len; 1237 void *new_val; 1238 size_t new_len; 1239 int new_updated; 1240 int write; 1241 loff_t *ppos; 1242 /* Temporary "register" for indirect stores to ppos. */ 1243 u64 tmp_reg; 1244}; 1245 1246struct bpf_sockopt_kern { 1247 struct sock *sk; 1248 u8 *optval; 1249 u8 *optval_end; 1250 s32 level; 1251 s32 optname; 1252 s32 optlen; 1253 s32 retval; 1254}; 1255 1256#endif /* __LINUX_FILTER_H__ */