Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <stdarg.h>
9
10#include <linux/atomic.h>
11#include <linux/refcount.h>
12#include <linux/compat.h>
13#include <linux/skbuff.h>
14#include <linux/linkage.h>
15#include <linux/printk.h>
16#include <linux/workqueue.h>
17#include <linux/sched.h>
18#include <linux/capability.h>
19#include <linux/cryptohash.h>
20#include <linux/set_memory.h>
21#include <linux/kallsyms.h>
22#include <linux/if_vlan.h>
23#include <linux/vmalloc.h>
24
25#include <net/sch_generic.h>
26
27#include <asm/byteorder.h>
28#include <uapi/linux/filter.h>
29#include <uapi/linux/bpf.h>
30
31struct sk_buff;
32struct sock;
33struct seccomp_data;
34struct bpf_prog_aux;
35struct xdp_rxq_info;
36struct xdp_buff;
37struct sock_reuseport;
38struct ctl_table;
39struct ctl_table_header;
40
41/* ArgX, context and stack frame pointer register positions. Note,
42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43 * calls in BPF_CALL instruction.
44 */
45#define BPF_REG_ARG1 BPF_REG_1
46#define BPF_REG_ARG2 BPF_REG_2
47#define BPF_REG_ARG3 BPF_REG_3
48#define BPF_REG_ARG4 BPF_REG_4
49#define BPF_REG_ARG5 BPF_REG_5
50#define BPF_REG_CTX BPF_REG_6
51#define BPF_REG_FP BPF_REG_10
52
53/* Additional register mappings for converted user programs. */
54#define BPF_REG_A BPF_REG_0
55#define BPF_REG_X BPF_REG_7
56#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
57#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
58#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
59
60/* Kernel hidden auxiliary/helper register. */
61#define BPF_REG_AX MAX_BPF_REG
62#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
63#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
64
65/* unused opcode to mark special call to bpf_tail_call() helper */
66#define BPF_TAIL_CALL 0xf0
67
68/* unused opcode to mark special load instruction. Same as BPF_ABS */
69#define BPF_PROBE_MEM 0x20
70
71/* unused opcode to mark call to interpreter with arguments */
72#define BPF_CALL_ARGS 0xe0
73
74/* As per nm, we expose JITed images as text (code) section for
75 * kallsyms. That way, tools like perf can find it to match
76 * addresses.
77 */
78#define BPF_SYM_ELF_TYPE 't'
79
80/* BPF program can access up to 512 bytes of stack space. */
81#define MAX_BPF_STACK 512
82
83/* Helper macros for filter block array initializers. */
84
85/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
86
87#define BPF_ALU64_REG(OP, DST, SRC) \
88 ((struct bpf_insn) { \
89 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
90 .dst_reg = DST, \
91 .src_reg = SRC, \
92 .off = 0, \
93 .imm = 0 })
94
95#define BPF_ALU32_REG(OP, DST, SRC) \
96 ((struct bpf_insn) { \
97 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
98 .dst_reg = DST, \
99 .src_reg = SRC, \
100 .off = 0, \
101 .imm = 0 })
102
103/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
104
105#define BPF_ALU64_IMM(OP, DST, IMM) \
106 ((struct bpf_insn) { \
107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
108 .dst_reg = DST, \
109 .src_reg = 0, \
110 .off = 0, \
111 .imm = IMM })
112
113#define BPF_ALU32_IMM(OP, DST, IMM) \
114 ((struct bpf_insn) { \
115 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
116 .dst_reg = DST, \
117 .src_reg = 0, \
118 .off = 0, \
119 .imm = IMM })
120
121/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
122
123#define BPF_ENDIAN(TYPE, DST, LEN) \
124 ((struct bpf_insn) { \
125 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
126 .dst_reg = DST, \
127 .src_reg = 0, \
128 .off = 0, \
129 .imm = LEN })
130
131/* Short form of mov, dst_reg = src_reg */
132
133#define BPF_MOV64_REG(DST, SRC) \
134 ((struct bpf_insn) { \
135 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
136 .dst_reg = DST, \
137 .src_reg = SRC, \
138 .off = 0, \
139 .imm = 0 })
140
141#define BPF_MOV32_REG(DST, SRC) \
142 ((struct bpf_insn) { \
143 .code = BPF_ALU | BPF_MOV | BPF_X, \
144 .dst_reg = DST, \
145 .src_reg = SRC, \
146 .off = 0, \
147 .imm = 0 })
148
149/* Short form of mov, dst_reg = imm32 */
150
151#define BPF_MOV64_IMM(DST, IMM) \
152 ((struct bpf_insn) { \
153 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
154 .dst_reg = DST, \
155 .src_reg = 0, \
156 .off = 0, \
157 .imm = IMM })
158
159#define BPF_MOV32_IMM(DST, IMM) \
160 ((struct bpf_insn) { \
161 .code = BPF_ALU | BPF_MOV | BPF_K, \
162 .dst_reg = DST, \
163 .src_reg = 0, \
164 .off = 0, \
165 .imm = IMM })
166
167/* Special form of mov32, used for doing explicit zero extension on dst. */
168#define BPF_ZEXT_REG(DST) \
169 ((struct bpf_insn) { \
170 .code = BPF_ALU | BPF_MOV | BPF_X, \
171 .dst_reg = DST, \
172 .src_reg = DST, \
173 .off = 0, \
174 .imm = 1 })
175
176static inline bool insn_is_zext(const struct bpf_insn *insn)
177{
178 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
179}
180
181/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
182#define BPF_LD_IMM64(DST, IMM) \
183 BPF_LD_IMM64_RAW(DST, 0, IMM)
184
185#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
186 ((struct bpf_insn) { \
187 .code = BPF_LD | BPF_DW | BPF_IMM, \
188 .dst_reg = DST, \
189 .src_reg = SRC, \
190 .off = 0, \
191 .imm = (__u32) (IMM) }), \
192 ((struct bpf_insn) { \
193 .code = 0, /* zero is reserved opcode */ \
194 .dst_reg = 0, \
195 .src_reg = 0, \
196 .off = 0, \
197 .imm = ((__u64) (IMM)) >> 32 })
198
199/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
200#define BPF_LD_MAP_FD(DST, MAP_FD) \
201 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
202
203/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
204
205#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
206 ((struct bpf_insn) { \
207 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
208 .dst_reg = DST, \
209 .src_reg = SRC, \
210 .off = 0, \
211 .imm = IMM })
212
213#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
214 ((struct bpf_insn) { \
215 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
216 .dst_reg = DST, \
217 .src_reg = SRC, \
218 .off = 0, \
219 .imm = IMM })
220
221/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
222
223#define BPF_LD_ABS(SIZE, IMM) \
224 ((struct bpf_insn) { \
225 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
226 .dst_reg = 0, \
227 .src_reg = 0, \
228 .off = 0, \
229 .imm = IMM })
230
231/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
232
233#define BPF_LD_IND(SIZE, SRC, IMM) \
234 ((struct bpf_insn) { \
235 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
236 .dst_reg = 0, \
237 .src_reg = SRC, \
238 .off = 0, \
239 .imm = IMM })
240
241/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
242
243#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
244 ((struct bpf_insn) { \
245 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
246 .dst_reg = DST, \
247 .src_reg = SRC, \
248 .off = OFF, \
249 .imm = 0 })
250
251/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
252
253#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
254 ((struct bpf_insn) { \
255 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
256 .dst_reg = DST, \
257 .src_reg = SRC, \
258 .off = OFF, \
259 .imm = 0 })
260
261/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
262
263#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
264 ((struct bpf_insn) { \
265 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
266 .dst_reg = DST, \
267 .src_reg = SRC, \
268 .off = OFF, \
269 .imm = 0 })
270
271/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
272
273#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
274 ((struct bpf_insn) { \
275 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
276 .dst_reg = DST, \
277 .src_reg = 0, \
278 .off = OFF, \
279 .imm = IMM })
280
281/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
282
283#define BPF_JMP_REG(OP, DST, SRC, OFF) \
284 ((struct bpf_insn) { \
285 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
286 .dst_reg = DST, \
287 .src_reg = SRC, \
288 .off = OFF, \
289 .imm = 0 })
290
291/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
292
293#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
294 ((struct bpf_insn) { \
295 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
296 .dst_reg = DST, \
297 .src_reg = 0, \
298 .off = OFF, \
299 .imm = IMM })
300
301/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
302
303#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
304 ((struct bpf_insn) { \
305 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
306 .dst_reg = DST, \
307 .src_reg = SRC, \
308 .off = OFF, \
309 .imm = 0 })
310
311/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
312
313#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
314 ((struct bpf_insn) { \
315 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
316 .dst_reg = DST, \
317 .src_reg = 0, \
318 .off = OFF, \
319 .imm = IMM })
320
321/* Unconditional jumps, goto pc + off16 */
322
323#define BPF_JMP_A(OFF) \
324 ((struct bpf_insn) { \
325 .code = BPF_JMP | BPF_JA, \
326 .dst_reg = 0, \
327 .src_reg = 0, \
328 .off = OFF, \
329 .imm = 0 })
330
331/* Relative call */
332
333#define BPF_CALL_REL(TGT) \
334 ((struct bpf_insn) { \
335 .code = BPF_JMP | BPF_CALL, \
336 .dst_reg = 0, \
337 .src_reg = BPF_PSEUDO_CALL, \
338 .off = 0, \
339 .imm = TGT })
340
341/* Function call */
342
343#define BPF_CAST_CALL(x) \
344 ((u64 (*)(u64, u64, u64, u64, u64))(x))
345
346#define BPF_EMIT_CALL(FUNC) \
347 ((struct bpf_insn) { \
348 .code = BPF_JMP | BPF_CALL, \
349 .dst_reg = 0, \
350 .src_reg = 0, \
351 .off = 0, \
352 .imm = ((FUNC) - __bpf_call_base) })
353
354/* Raw code statement block */
355
356#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
357 ((struct bpf_insn) { \
358 .code = CODE, \
359 .dst_reg = DST, \
360 .src_reg = SRC, \
361 .off = OFF, \
362 .imm = IMM })
363
364/* Program exit */
365
366#define BPF_EXIT_INSN() \
367 ((struct bpf_insn) { \
368 .code = BPF_JMP | BPF_EXIT, \
369 .dst_reg = 0, \
370 .src_reg = 0, \
371 .off = 0, \
372 .imm = 0 })
373
374/* Internal classic blocks for direct assignment */
375
376#define __BPF_STMT(CODE, K) \
377 ((struct sock_filter) BPF_STMT(CODE, K))
378
379#define __BPF_JUMP(CODE, K, JT, JF) \
380 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
381
382#define bytes_to_bpf_size(bytes) \
383({ \
384 int bpf_size = -EINVAL; \
385 \
386 if (bytes == sizeof(u8)) \
387 bpf_size = BPF_B; \
388 else if (bytes == sizeof(u16)) \
389 bpf_size = BPF_H; \
390 else if (bytes == sizeof(u32)) \
391 bpf_size = BPF_W; \
392 else if (bytes == sizeof(u64)) \
393 bpf_size = BPF_DW; \
394 \
395 bpf_size; \
396})
397
398#define bpf_size_to_bytes(bpf_size) \
399({ \
400 int bytes = -EINVAL; \
401 \
402 if (bpf_size == BPF_B) \
403 bytes = sizeof(u8); \
404 else if (bpf_size == BPF_H) \
405 bytes = sizeof(u16); \
406 else if (bpf_size == BPF_W) \
407 bytes = sizeof(u32); \
408 else if (bpf_size == BPF_DW) \
409 bytes = sizeof(u64); \
410 \
411 bytes; \
412})
413
414#define BPF_SIZEOF(type) \
415 ({ \
416 const int __size = bytes_to_bpf_size(sizeof(type)); \
417 BUILD_BUG_ON(__size < 0); \
418 __size; \
419 })
420
421#define BPF_FIELD_SIZEOF(type, field) \
422 ({ \
423 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
424 BUILD_BUG_ON(__size < 0); \
425 __size; \
426 })
427
428#define BPF_LDST_BYTES(insn) \
429 ({ \
430 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
431 WARN_ON(__size < 0); \
432 __size; \
433 })
434
435#define __BPF_MAP_0(m, v, ...) v
436#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
437#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
438#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
439#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
440#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
441
442#define __BPF_REG_0(...) __BPF_PAD(5)
443#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
444#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
445#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
446#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
447#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
448
449#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
450#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
451
452#define __BPF_CAST(t, a) \
453 (__force t) \
454 (__force \
455 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
456 (unsigned long)0, (t)0))) a
457#define __BPF_V void
458#define __BPF_N
459
460#define __BPF_DECL_ARGS(t, a) t a
461#define __BPF_DECL_REGS(t, a) u64 a
462
463#define __BPF_PAD(n) \
464 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
465 u64, __ur_3, u64, __ur_4, u64, __ur_5)
466
467#define BPF_CALL_x(x, name, ...) \
468 static __always_inline \
469 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
470 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
471 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
472 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
473 { \
474 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
475 } \
476 static __always_inline \
477 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
478
479#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
480#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
481#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
482#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
483#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
484#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
485
486#define bpf_ctx_range(TYPE, MEMBER) \
487 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
488#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
489 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
490#if BITS_PER_LONG == 64
491# define bpf_ctx_range_ptr(TYPE, MEMBER) \
492 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
493#else
494# define bpf_ctx_range_ptr(TYPE, MEMBER) \
495 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
496#endif /* BITS_PER_LONG == 64 */
497
498#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
499 ({ \
500 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
501 *(PTR_SIZE) = (SIZE); \
502 offsetof(TYPE, MEMBER); \
503 })
504
505#ifdef CONFIG_COMPAT
506/* A struct sock_filter is architecture independent. */
507struct compat_sock_fprog {
508 u16 len;
509 compat_uptr_t filter; /* struct sock_filter * */
510};
511#endif
512
513struct sock_fprog_kern {
514 u16 len;
515 struct sock_filter *filter;
516};
517
518/* Some arches need doubleword alignment for their instructions and/or data */
519#define BPF_IMAGE_ALIGNMENT 8
520
521struct bpf_binary_header {
522 u32 pages;
523 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
524};
525
526struct bpf_prog {
527 u16 pages; /* Number of allocated pages */
528 u16 jited:1, /* Is our filter JIT'ed? */
529 jit_requested:1,/* archs need to JIT the prog */
530 gpl_compatible:1, /* Is filter GPL compatible? */
531 cb_access:1, /* Is control block accessed? */
532 dst_needed:1, /* Do we need dst entry? */
533 blinded:1, /* Was blinded */
534 is_func:1, /* program is a bpf function */
535 kprobe_override:1, /* Do we override a kprobe? */
536 has_callchain_buf:1, /* callchain buffer allocated? */
537 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */
538 enum bpf_prog_type type; /* Type of BPF program */
539 enum bpf_attach_type expected_attach_type; /* For some prog types */
540 u32 len; /* Number of filter blocks */
541 u32 jited_len; /* Size of jited insns in bytes */
542 u8 tag[BPF_TAG_SIZE];
543 struct bpf_prog_aux *aux; /* Auxiliary fields */
544 struct sock_fprog_kern *orig_prog; /* Original BPF program */
545 unsigned int (*bpf_func)(const void *ctx,
546 const struct bpf_insn *insn);
547 /* Instructions for interpreter */
548 union {
549 struct sock_filter insns[0];
550 struct bpf_insn insnsi[0];
551 };
552};
553
554struct sk_filter {
555 refcount_t refcnt;
556 struct rcu_head rcu;
557 struct bpf_prog *prog;
558};
559
560DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
561
562#define BPF_PROG_RUN(prog, ctx) ({ \
563 u32 ret; \
564 cant_sleep(); \
565 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
566 struct bpf_prog_stats *stats; \
567 u64 start = sched_clock(); \
568 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
569 stats = this_cpu_ptr(prog->aux->stats); \
570 u64_stats_update_begin(&stats->syncp); \
571 stats->cnt++; \
572 stats->nsecs += sched_clock() - start; \
573 u64_stats_update_end(&stats->syncp); \
574 } else { \
575 ret = (*(prog)->bpf_func)(ctx, (prog)->insnsi); \
576 } \
577 ret; })
578
579#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
580
581struct bpf_skb_data_end {
582 struct qdisc_skb_cb qdisc_cb;
583 void *data_meta;
584 void *data_end;
585};
586
587struct bpf_redirect_info {
588 u32 flags;
589 u32 tgt_index;
590 void *tgt_value;
591 struct bpf_map *map;
592 struct bpf_map *map_to_flush;
593 u32 kern_flags;
594};
595
596DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
597
598/* flags for bpf_redirect_info kern_flags */
599#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
600
601/* Compute the linear packet data range [data, data_end) which
602 * will be accessed by various program types (cls_bpf, act_bpf,
603 * lwt, ...). Subsystems allowing direct data access must (!)
604 * ensure that cb[] area can be written to when BPF program is
605 * invoked (otherwise cb[] save/restore is necessary).
606 */
607static inline void bpf_compute_data_pointers(struct sk_buff *skb)
608{
609 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
610
611 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
612 cb->data_meta = skb->data - skb_metadata_len(skb);
613 cb->data_end = skb->data + skb_headlen(skb);
614}
615
616/* Similar to bpf_compute_data_pointers(), except that save orginal
617 * data in cb->data and cb->meta_data for restore.
618 */
619static inline void bpf_compute_and_save_data_end(
620 struct sk_buff *skb, void **saved_data_end)
621{
622 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
623
624 *saved_data_end = cb->data_end;
625 cb->data_end = skb->data + skb_headlen(skb);
626}
627
628/* Restore data saved by bpf_compute_data_pointers(). */
629static inline void bpf_restore_data_end(
630 struct sk_buff *skb, void *saved_data_end)
631{
632 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
633
634 cb->data_end = saved_data_end;
635}
636
637static inline u8 *bpf_skb_cb(struct sk_buff *skb)
638{
639 /* eBPF programs may read/write skb->cb[] area to transfer meta
640 * data between tail calls. Since this also needs to work with
641 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
642 *
643 * In some socket filter cases, the cb unfortunately needs to be
644 * saved/restored so that protocol specific skb->cb[] data won't
645 * be lost. In any case, due to unpriviledged eBPF programs
646 * attached to sockets, we need to clear the bpf_skb_cb() area
647 * to not leak previous contents to user space.
648 */
649 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
650 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
651 sizeof_field(struct qdisc_skb_cb, data));
652
653 return qdisc_skb_cb(skb)->data;
654}
655
656static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
657 struct sk_buff *skb)
658{
659 u8 *cb_data = bpf_skb_cb(skb);
660 u8 cb_saved[BPF_SKB_CB_LEN];
661 u32 res;
662
663 if (unlikely(prog->cb_access)) {
664 memcpy(cb_saved, cb_data, sizeof(cb_saved));
665 memset(cb_data, 0, sizeof(cb_saved));
666 }
667
668 res = BPF_PROG_RUN(prog, skb);
669
670 if (unlikely(prog->cb_access))
671 memcpy(cb_data, cb_saved, sizeof(cb_saved));
672
673 return res;
674}
675
676static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
677 struct sk_buff *skb)
678{
679 u32 res;
680
681 preempt_disable();
682 res = __bpf_prog_run_save_cb(prog, skb);
683 preempt_enable();
684 return res;
685}
686
687static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
688 struct sk_buff *skb)
689{
690 u8 *cb_data = bpf_skb_cb(skb);
691 u32 res;
692
693 if (unlikely(prog->cb_access))
694 memset(cb_data, 0, BPF_SKB_CB_LEN);
695
696 preempt_disable();
697 res = BPF_PROG_RUN(prog, skb);
698 preempt_enable();
699 return res;
700}
701
702static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
703 struct xdp_buff *xdp)
704{
705 /* Caller needs to hold rcu_read_lock() (!), otherwise program
706 * can be released while still running, or map elements could be
707 * freed early while still having concurrent users. XDP fastpath
708 * already takes rcu_read_lock() when fetching the program, so
709 * it's not necessary here anymore.
710 */
711 return BPF_PROG_RUN(prog, xdp);
712}
713
714static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
715{
716 return prog->len * sizeof(struct bpf_insn);
717}
718
719static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
720{
721 return round_up(bpf_prog_insn_size(prog) +
722 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
723}
724
725static inline unsigned int bpf_prog_size(unsigned int proglen)
726{
727 return max(sizeof(struct bpf_prog),
728 offsetof(struct bpf_prog, insns[proglen]));
729}
730
731static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
732{
733 /* When classic BPF programs have been loaded and the arch
734 * does not have a classic BPF JIT (anymore), they have been
735 * converted via bpf_migrate_filter() to eBPF and thus always
736 * have an unspec program type.
737 */
738 return prog->type == BPF_PROG_TYPE_UNSPEC;
739}
740
741static inline u32 bpf_ctx_off_adjust_machine(u32 size)
742{
743 const u32 size_machine = sizeof(unsigned long);
744
745 if (size > size_machine && size % size_machine == 0)
746 size = size_machine;
747
748 return size;
749}
750
751static inline bool
752bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
753{
754 return size <= size_default && (size & (size - 1)) == 0;
755}
756
757static inline u8
758bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
759{
760 u8 access_off = off & (size_default - 1);
761
762#ifdef __LITTLE_ENDIAN
763 return access_off;
764#else
765 return size_default - (access_off + size);
766#endif
767}
768
769#define bpf_ctx_wide_access_ok(off, size, type, field) \
770 (size == sizeof(__u64) && \
771 off >= offsetof(type, field) && \
772 off + sizeof(__u64) <= offsetofend(type, field) && \
773 off % sizeof(__u64) == 0)
774
775#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
776
777static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
778{
779#ifndef CONFIG_BPF_JIT_ALWAYS_ON
780 if (!fp->jited) {
781 set_vm_flush_reset_perms(fp);
782 set_memory_ro((unsigned long)fp, fp->pages);
783 }
784#endif
785}
786
787static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
788{
789 set_vm_flush_reset_perms(hdr);
790 set_memory_ro((unsigned long)hdr, hdr->pages);
791 set_memory_x((unsigned long)hdr, hdr->pages);
792}
793
794static inline struct bpf_binary_header *
795bpf_jit_binary_hdr(const struct bpf_prog *fp)
796{
797 unsigned long real_start = (unsigned long)fp->bpf_func;
798 unsigned long addr = real_start & PAGE_MASK;
799
800 return (void *)addr;
801}
802
803int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
804static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
805{
806 return sk_filter_trim_cap(sk, skb, 1);
807}
808
809struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
810void bpf_prog_free(struct bpf_prog *fp);
811
812bool bpf_opcode_in_insntable(u8 code);
813
814void bpf_prog_free_linfo(struct bpf_prog *prog);
815void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
816 const u32 *insn_to_jit_off);
817int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
818void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
819void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
820
821struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
822struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
823struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
824 gfp_t gfp_extra_flags);
825void __bpf_prog_free(struct bpf_prog *fp);
826
827static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
828{
829 __bpf_prog_free(fp);
830}
831
832typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
833 unsigned int flen);
834
835int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
836int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
837 bpf_aux_classic_check_t trans, bool save_orig);
838void bpf_prog_destroy(struct bpf_prog *fp);
839
840int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
841int sk_attach_bpf(u32 ufd, struct sock *sk);
842int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
843int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
844void sk_reuseport_prog_free(struct bpf_prog *prog);
845int sk_detach_filter(struct sock *sk);
846int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
847 unsigned int len);
848
849bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
850void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
851
852u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
853#define __bpf_call_base_args \
854 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
855 __bpf_call_base)
856
857struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
858void bpf_jit_compile(struct bpf_prog *prog);
859bool bpf_jit_needs_zext(void);
860bool bpf_helper_changes_pkt_data(void *func);
861
862static inline bool bpf_dump_raw_ok(void)
863{
864 /* Reconstruction of call-sites is dependent on kallsyms,
865 * thus make dump the same restriction.
866 */
867 return kallsyms_show_value() == 1;
868}
869
870struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
871 const struct bpf_insn *patch, u32 len);
872int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
873
874void bpf_clear_redirect_map(struct bpf_map *map);
875
876static inline bool xdp_return_frame_no_direct(void)
877{
878 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
879
880 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
881}
882
883static inline void xdp_set_return_frame_no_direct(void)
884{
885 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
886
887 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
888}
889
890static inline void xdp_clear_return_frame_no_direct(void)
891{
892 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
893
894 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
895}
896
897static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
898 unsigned int pktlen)
899{
900 unsigned int len;
901
902 if (unlikely(!(fwd->flags & IFF_UP)))
903 return -ENETDOWN;
904
905 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
906 if (pktlen > len)
907 return -EMSGSIZE;
908
909 return 0;
910}
911
912/* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the
913 * same cpu context. Further for best results no more than a single map
914 * for the do_redirect/do_flush pair should be used. This limitation is
915 * because we only track one map and force a flush when the map changes.
916 * This does not appear to be a real limitation for existing software.
917 */
918int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
919 struct xdp_buff *xdp, struct bpf_prog *prog);
920int xdp_do_redirect(struct net_device *dev,
921 struct xdp_buff *xdp,
922 struct bpf_prog *prog);
923void xdp_do_flush_map(void);
924
925void bpf_warn_invalid_xdp_action(u32 act);
926
927#ifdef CONFIG_INET
928struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
929 struct bpf_prog *prog, struct sk_buff *skb,
930 u32 hash);
931#else
932static inline struct sock *
933bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
934 struct bpf_prog *prog, struct sk_buff *skb,
935 u32 hash)
936{
937 return NULL;
938}
939#endif
940
941#ifdef CONFIG_BPF_JIT
942extern int bpf_jit_enable;
943extern int bpf_jit_harden;
944extern int bpf_jit_kallsyms;
945extern long bpf_jit_limit;
946
947typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
948
949struct bpf_binary_header *
950bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
951 unsigned int alignment,
952 bpf_jit_fill_hole_t bpf_fill_ill_insns);
953void bpf_jit_binary_free(struct bpf_binary_header *hdr);
954u64 bpf_jit_alloc_exec_limit(void);
955void *bpf_jit_alloc_exec(unsigned long size);
956void bpf_jit_free_exec(void *addr);
957void bpf_jit_free(struct bpf_prog *fp);
958
959int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
960 struct bpf_jit_poke_descriptor *poke);
961
962int bpf_jit_get_func_addr(const struct bpf_prog *prog,
963 const struct bpf_insn *insn, bool extra_pass,
964 u64 *func_addr, bool *func_addr_fixed);
965
966struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
967void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
968
969static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
970 u32 pass, void *image)
971{
972 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
973 proglen, pass, image, current->comm, task_pid_nr(current));
974
975 if (image)
976 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
977 16, 1, image, proglen, false);
978}
979
980static inline bool bpf_jit_is_ebpf(void)
981{
982# ifdef CONFIG_HAVE_EBPF_JIT
983 return true;
984# else
985 return false;
986# endif
987}
988
989static inline bool ebpf_jit_enabled(void)
990{
991 return bpf_jit_enable && bpf_jit_is_ebpf();
992}
993
994static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
995{
996 return fp->jited && bpf_jit_is_ebpf();
997}
998
999static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1000{
1001 /* These are the prerequisites, should someone ever have the
1002 * idea to call blinding outside of them, we make sure to
1003 * bail out.
1004 */
1005 if (!bpf_jit_is_ebpf())
1006 return false;
1007 if (!prog->jit_requested)
1008 return false;
1009 if (!bpf_jit_harden)
1010 return false;
1011 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1012 return false;
1013
1014 return true;
1015}
1016
1017static inline bool bpf_jit_kallsyms_enabled(void)
1018{
1019 /* There are a couple of corner cases where kallsyms should
1020 * not be enabled f.e. on hardening.
1021 */
1022 if (bpf_jit_harden)
1023 return false;
1024 if (!bpf_jit_kallsyms)
1025 return false;
1026 if (bpf_jit_kallsyms == 1)
1027 return true;
1028
1029 return false;
1030}
1031
1032const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1033 unsigned long *off, char *sym);
1034bool is_bpf_text_address(unsigned long addr);
1035int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1036 char *sym);
1037
1038static inline const char *
1039bpf_address_lookup(unsigned long addr, unsigned long *size,
1040 unsigned long *off, char **modname, char *sym)
1041{
1042 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1043
1044 if (ret && modname)
1045 *modname = NULL;
1046 return ret;
1047}
1048
1049void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1050void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1051void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
1052
1053#else /* CONFIG_BPF_JIT */
1054
1055static inline bool ebpf_jit_enabled(void)
1056{
1057 return false;
1058}
1059
1060static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1061{
1062 return false;
1063}
1064
1065static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1066{
1067 return false;
1068}
1069
1070static inline int
1071bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1072 struct bpf_jit_poke_descriptor *poke)
1073{
1074 return -ENOTSUPP;
1075}
1076
1077static inline void bpf_jit_free(struct bpf_prog *fp)
1078{
1079 bpf_prog_unlock_free(fp);
1080}
1081
1082static inline bool bpf_jit_kallsyms_enabled(void)
1083{
1084 return false;
1085}
1086
1087static inline const char *
1088__bpf_address_lookup(unsigned long addr, unsigned long *size,
1089 unsigned long *off, char *sym)
1090{
1091 return NULL;
1092}
1093
1094static inline bool is_bpf_text_address(unsigned long addr)
1095{
1096 return false;
1097}
1098
1099static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1100 char *type, char *sym)
1101{
1102 return -ERANGE;
1103}
1104
1105static inline const char *
1106bpf_address_lookup(unsigned long addr, unsigned long *size,
1107 unsigned long *off, char **modname, char *sym)
1108{
1109 return NULL;
1110}
1111
1112static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1113{
1114}
1115
1116static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1117{
1118}
1119
1120static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
1121{
1122 sym[0] = '\0';
1123}
1124
1125#endif /* CONFIG_BPF_JIT */
1126
1127void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1128
1129#define BPF_ANC BIT(15)
1130
1131static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1132{
1133 switch (first->code) {
1134 case BPF_RET | BPF_K:
1135 case BPF_LD | BPF_W | BPF_LEN:
1136 return false;
1137
1138 case BPF_LD | BPF_W | BPF_ABS:
1139 case BPF_LD | BPF_H | BPF_ABS:
1140 case BPF_LD | BPF_B | BPF_ABS:
1141 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1142 return true;
1143 return false;
1144
1145 default:
1146 return true;
1147 }
1148}
1149
1150static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1151{
1152 BUG_ON(ftest->code & BPF_ANC);
1153
1154 switch (ftest->code) {
1155 case BPF_LD | BPF_W | BPF_ABS:
1156 case BPF_LD | BPF_H | BPF_ABS:
1157 case BPF_LD | BPF_B | BPF_ABS:
1158#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1159 return BPF_ANC | SKF_AD_##CODE
1160 switch (ftest->k) {
1161 BPF_ANCILLARY(PROTOCOL);
1162 BPF_ANCILLARY(PKTTYPE);
1163 BPF_ANCILLARY(IFINDEX);
1164 BPF_ANCILLARY(NLATTR);
1165 BPF_ANCILLARY(NLATTR_NEST);
1166 BPF_ANCILLARY(MARK);
1167 BPF_ANCILLARY(QUEUE);
1168 BPF_ANCILLARY(HATYPE);
1169 BPF_ANCILLARY(RXHASH);
1170 BPF_ANCILLARY(CPU);
1171 BPF_ANCILLARY(ALU_XOR_X);
1172 BPF_ANCILLARY(VLAN_TAG);
1173 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1174 BPF_ANCILLARY(PAY_OFFSET);
1175 BPF_ANCILLARY(RANDOM);
1176 BPF_ANCILLARY(VLAN_TPID);
1177 }
1178 /* Fallthrough. */
1179 default:
1180 return ftest->code;
1181 }
1182}
1183
1184void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1185 int k, unsigned int size);
1186
1187static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1188 unsigned int size, void *buffer)
1189{
1190 if (k >= 0)
1191 return skb_header_pointer(skb, k, size, buffer);
1192
1193 return bpf_internal_load_pointer_neg_helper(skb, k, size);
1194}
1195
1196static inline int bpf_tell_extensions(void)
1197{
1198 return SKF_AD_MAX;
1199}
1200
1201struct bpf_sock_addr_kern {
1202 struct sock *sk;
1203 struct sockaddr *uaddr;
1204 /* Temporary "register" to make indirect stores to nested structures
1205 * defined above. We need three registers to make such a store, but
1206 * only two (src and dst) are available at convert_ctx_access time
1207 */
1208 u64 tmp_reg;
1209 void *t_ctx; /* Attach type specific context. */
1210};
1211
1212struct bpf_sock_ops_kern {
1213 struct sock *sk;
1214 u32 op;
1215 union {
1216 u32 args[4];
1217 u32 reply;
1218 u32 replylong[4];
1219 };
1220 u32 is_fullsock;
1221 u64 temp; /* temp and everything after is not
1222 * initialized to 0 before calling
1223 * the BPF program. New fields that
1224 * should be initialized to 0 should
1225 * be inserted before temp.
1226 * temp is scratch storage used by
1227 * sock_ops_convert_ctx_access
1228 * as temporary storage of a register.
1229 */
1230};
1231
1232struct bpf_sysctl_kern {
1233 struct ctl_table_header *head;
1234 struct ctl_table *table;
1235 void *cur_val;
1236 size_t cur_len;
1237 void *new_val;
1238 size_t new_len;
1239 int new_updated;
1240 int write;
1241 loff_t *ppos;
1242 /* Temporary "register" for indirect stores to ppos. */
1243 u64 tmp_reg;
1244};
1245
1246struct bpf_sockopt_kern {
1247 struct sock *sk;
1248 u8 *optval;
1249 u8 *optval_end;
1250 s32 level;
1251 s32 optname;
1252 s32 optlen;
1253 s32 retval;
1254};
1255
1256#endif /* __LINUX_FILTER_H__ */