at v5.5 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 10 * and Nettle, by Niels Möller. 11 */ 12#ifndef _LINUX_CRYPTO_H 13#define _LINUX_CRYPTO_H 14 15#include <linux/atomic.h> 16#include <linux/kernel.h> 17#include <linux/list.h> 18#include <linux/bug.h> 19#include <linux/slab.h> 20#include <linux/string.h> 21#include <linux/uaccess.h> 22#include <linux/completion.h> 23 24/* 25 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 26 * arbitrary modules to be loaded. Loading from userspace may still need the 27 * unprefixed names, so retains those aliases as well. 28 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 29 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 30 * expands twice on the same line. Instead, use a separate base name for the 31 * alias. 32 */ 33#define MODULE_ALIAS_CRYPTO(name) \ 34 __MODULE_INFO(alias, alias_userspace, name); \ 35 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 36 37/* 38 * Algorithm masks and types. 39 */ 40#define CRYPTO_ALG_TYPE_MASK 0x0000000f 41#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 42#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 43#define CRYPTO_ALG_TYPE_AEAD 0x00000003 44#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 45#define CRYPTO_ALG_TYPE_KPP 0x00000008 46#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 47#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 48#define CRYPTO_ALG_TYPE_RNG 0x0000000c 49#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 50#define CRYPTO_ALG_TYPE_HASH 0x0000000e 51#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 52#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 53 54#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 55#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 56#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 57 58#define CRYPTO_ALG_LARVAL 0x00000010 59#define CRYPTO_ALG_DEAD 0x00000020 60#define CRYPTO_ALG_DYING 0x00000040 61#define CRYPTO_ALG_ASYNC 0x00000080 62 63/* 64 * Set this bit if and only if the algorithm requires another algorithm of 65 * the same type to handle corner cases. 66 */ 67#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 68 69/* 70 * Set if the algorithm has passed automated run-time testing. Note that 71 * if there is no run-time testing for a given algorithm it is considered 72 * to have passed. 73 */ 74 75#define CRYPTO_ALG_TESTED 0x00000400 76 77/* 78 * Set if the algorithm is an instance that is built from templates. 79 */ 80#define CRYPTO_ALG_INSTANCE 0x00000800 81 82/* Set this bit if the algorithm provided is hardware accelerated but 83 * not available to userspace via instruction set or so. 84 */ 85#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 86 87/* 88 * Mark a cipher as a service implementation only usable by another 89 * cipher and never by a normal user of the kernel crypto API 90 */ 91#define CRYPTO_ALG_INTERNAL 0x00002000 92 93/* 94 * Set if the algorithm has a ->setkey() method but can be used without 95 * calling it first, i.e. there is a default key. 96 */ 97#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 98 99/* 100 * Don't trigger module loading 101 */ 102#define CRYPTO_NOLOAD 0x00008000 103 104/* 105 * Transform masks and values (for crt_flags). 106 */ 107#define CRYPTO_TFM_NEED_KEY 0x00000001 108 109#define CRYPTO_TFM_REQ_MASK 0x000fff00 110#define CRYPTO_TFM_RES_MASK 0xfff00000 111 112#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 113#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 114#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 115#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 116#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 117#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 118#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 119#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 120 121/* 122 * Miscellaneous stuff. 123 */ 124#define CRYPTO_MAX_ALG_NAME 128 125 126/* 127 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 128 * declaration) is used to ensure that the crypto_tfm context structure is 129 * aligned correctly for the given architecture so that there are no alignment 130 * faults for C data types. In particular, this is required on platforms such 131 * as arm where pointers are 32-bit aligned but there are data types such as 132 * u64 which require 64-bit alignment. 133 */ 134#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 135 136#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 137 138struct scatterlist; 139struct crypto_async_request; 140struct crypto_tfm; 141struct crypto_type; 142 143typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 144 145/** 146 * DOC: Block Cipher Context Data Structures 147 * 148 * These data structures define the operating context for each block cipher 149 * type. 150 */ 151 152struct crypto_async_request { 153 struct list_head list; 154 crypto_completion_t complete; 155 void *data; 156 struct crypto_tfm *tfm; 157 158 u32 flags; 159}; 160 161/** 162 * DOC: Block Cipher Algorithm Definitions 163 * 164 * These data structures define modular crypto algorithm implementations, 165 * managed via crypto_register_alg() and crypto_unregister_alg(). 166 */ 167 168/** 169 * struct cipher_alg - single-block symmetric ciphers definition 170 * @cia_min_keysize: Minimum key size supported by the transformation. This is 171 * the smallest key length supported by this transformation 172 * algorithm. This must be set to one of the pre-defined 173 * values as this is not hardware specific. Possible values 174 * for this field can be found via git grep "_MIN_KEY_SIZE" 175 * include/crypto/ 176 * @cia_max_keysize: Maximum key size supported by the transformation. This is 177 * the largest key length supported by this transformation 178 * algorithm. This must be set to one of the pre-defined values 179 * as this is not hardware specific. Possible values for this 180 * field can be found via git grep "_MAX_KEY_SIZE" 181 * include/crypto/ 182 * @cia_setkey: Set key for the transformation. This function is used to either 183 * program a supplied key into the hardware or store the key in the 184 * transformation context for programming it later. Note that this 185 * function does modify the transformation context. This function 186 * can be called multiple times during the existence of the 187 * transformation object, so one must make sure the key is properly 188 * reprogrammed into the hardware. This function is also 189 * responsible for checking the key length for validity. 190 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 191 * single block of data, which must be @cra_blocksize big. This 192 * always operates on a full @cra_blocksize and it is not possible 193 * to encrypt a block of smaller size. The supplied buffers must 194 * therefore also be at least of @cra_blocksize size. Both the 195 * input and output buffers are always aligned to @cra_alignmask. 196 * In case either of the input or output buffer supplied by user 197 * of the crypto API is not aligned to @cra_alignmask, the crypto 198 * API will re-align the buffers. The re-alignment means that a 199 * new buffer will be allocated, the data will be copied into the 200 * new buffer, then the processing will happen on the new buffer, 201 * then the data will be copied back into the original buffer and 202 * finally the new buffer will be freed. In case a software 203 * fallback was put in place in the @cra_init call, this function 204 * might need to use the fallback if the algorithm doesn't support 205 * all of the key sizes. In case the key was stored in 206 * transformation context, the key might need to be re-programmed 207 * into the hardware in this function. This function shall not 208 * modify the transformation context, as this function may be 209 * called in parallel with the same transformation object. 210 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 211 * @cia_encrypt, and the conditions are exactly the same. 212 * 213 * All fields are mandatory and must be filled. 214 */ 215struct cipher_alg { 216 unsigned int cia_min_keysize; 217 unsigned int cia_max_keysize; 218 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 219 unsigned int keylen); 220 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 221 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 222}; 223 224/** 225 * struct compress_alg - compression/decompression algorithm 226 * @coa_compress: Compress a buffer of specified length, storing the resulting 227 * data in the specified buffer. Return the length of the 228 * compressed data in dlen. 229 * @coa_decompress: Decompress the source buffer, storing the uncompressed 230 * data in the specified buffer. The length of the data is 231 * returned in dlen. 232 * 233 * All fields are mandatory. 234 */ 235struct compress_alg { 236 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 237 unsigned int slen, u8 *dst, unsigned int *dlen); 238 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 239 unsigned int slen, u8 *dst, unsigned int *dlen); 240}; 241 242#ifdef CONFIG_CRYPTO_STATS 243/* 244 * struct crypto_istat_aead - statistics for AEAD algorithm 245 * @encrypt_cnt: number of encrypt requests 246 * @encrypt_tlen: total data size handled by encrypt requests 247 * @decrypt_cnt: number of decrypt requests 248 * @decrypt_tlen: total data size handled by decrypt requests 249 * @err_cnt: number of error for AEAD requests 250 */ 251struct crypto_istat_aead { 252 atomic64_t encrypt_cnt; 253 atomic64_t encrypt_tlen; 254 atomic64_t decrypt_cnt; 255 atomic64_t decrypt_tlen; 256 atomic64_t err_cnt; 257}; 258 259/* 260 * struct crypto_istat_akcipher - statistics for akcipher algorithm 261 * @encrypt_cnt: number of encrypt requests 262 * @encrypt_tlen: total data size handled by encrypt requests 263 * @decrypt_cnt: number of decrypt requests 264 * @decrypt_tlen: total data size handled by decrypt requests 265 * @verify_cnt: number of verify operation 266 * @sign_cnt: number of sign requests 267 * @err_cnt: number of error for akcipher requests 268 */ 269struct crypto_istat_akcipher { 270 atomic64_t encrypt_cnt; 271 atomic64_t encrypt_tlen; 272 atomic64_t decrypt_cnt; 273 atomic64_t decrypt_tlen; 274 atomic64_t verify_cnt; 275 atomic64_t sign_cnt; 276 atomic64_t err_cnt; 277}; 278 279/* 280 * struct crypto_istat_cipher - statistics for cipher algorithm 281 * @encrypt_cnt: number of encrypt requests 282 * @encrypt_tlen: total data size handled by encrypt requests 283 * @decrypt_cnt: number of decrypt requests 284 * @decrypt_tlen: total data size handled by decrypt requests 285 * @err_cnt: number of error for cipher requests 286 */ 287struct crypto_istat_cipher { 288 atomic64_t encrypt_cnt; 289 atomic64_t encrypt_tlen; 290 atomic64_t decrypt_cnt; 291 atomic64_t decrypt_tlen; 292 atomic64_t err_cnt; 293}; 294 295/* 296 * struct crypto_istat_compress - statistics for compress algorithm 297 * @compress_cnt: number of compress requests 298 * @compress_tlen: total data size handled by compress requests 299 * @decompress_cnt: number of decompress requests 300 * @decompress_tlen: total data size handled by decompress requests 301 * @err_cnt: number of error for compress requests 302 */ 303struct crypto_istat_compress { 304 atomic64_t compress_cnt; 305 atomic64_t compress_tlen; 306 atomic64_t decompress_cnt; 307 atomic64_t decompress_tlen; 308 atomic64_t err_cnt; 309}; 310 311/* 312 * struct crypto_istat_hash - statistics for has algorithm 313 * @hash_cnt: number of hash requests 314 * @hash_tlen: total data size hashed 315 * @err_cnt: number of error for hash requests 316 */ 317struct crypto_istat_hash { 318 atomic64_t hash_cnt; 319 atomic64_t hash_tlen; 320 atomic64_t err_cnt; 321}; 322 323/* 324 * struct crypto_istat_kpp - statistics for KPP algorithm 325 * @setsecret_cnt: number of setsecrey operation 326 * @generate_public_key_cnt: number of generate_public_key operation 327 * @compute_shared_secret_cnt: number of compute_shared_secret operation 328 * @err_cnt: number of error for KPP requests 329 */ 330struct crypto_istat_kpp { 331 atomic64_t setsecret_cnt; 332 atomic64_t generate_public_key_cnt; 333 atomic64_t compute_shared_secret_cnt; 334 atomic64_t err_cnt; 335}; 336 337/* 338 * struct crypto_istat_rng: statistics for RNG algorithm 339 * @generate_cnt: number of RNG generate requests 340 * @generate_tlen: total data size of generated data by the RNG 341 * @seed_cnt: number of times the RNG was seeded 342 * @err_cnt: number of error for RNG requests 343 */ 344struct crypto_istat_rng { 345 atomic64_t generate_cnt; 346 atomic64_t generate_tlen; 347 atomic64_t seed_cnt; 348 atomic64_t err_cnt; 349}; 350#endif /* CONFIG_CRYPTO_STATS */ 351 352#define cra_cipher cra_u.cipher 353#define cra_compress cra_u.compress 354 355/** 356 * struct crypto_alg - definition of a cryptograpic cipher algorithm 357 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 358 * CRYPTO_ALG_* flags for the flags which go in here. Those are 359 * used for fine-tuning the description of the transformation 360 * algorithm. 361 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 362 * of the smallest possible unit which can be transformed with 363 * this algorithm. The users must respect this value. 364 * In case of HASH transformation, it is possible for a smaller 365 * block than @cra_blocksize to be passed to the crypto API for 366 * transformation, in case of any other transformation type, an 367 * error will be returned upon any attempt to transform smaller 368 * than @cra_blocksize chunks. 369 * @cra_ctxsize: Size of the operational context of the transformation. This 370 * value informs the kernel crypto API about the memory size 371 * needed to be allocated for the transformation context. 372 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 373 * buffer containing the input data for the algorithm must be 374 * aligned to this alignment mask. The data buffer for the 375 * output data must be aligned to this alignment mask. Note that 376 * the Crypto API will do the re-alignment in software, but 377 * only under special conditions and there is a performance hit. 378 * The re-alignment happens at these occasions for different 379 * @cra_u types: cipher -- For both input data and output data 380 * buffer; ahash -- For output hash destination buf; shash -- 381 * For output hash destination buf. 382 * This is needed on hardware which is flawed by design and 383 * cannot pick data from arbitrary addresses. 384 * @cra_priority: Priority of this transformation implementation. In case 385 * multiple transformations with same @cra_name are available to 386 * the Crypto API, the kernel will use the one with highest 387 * @cra_priority. 388 * @cra_name: Generic name (usable by multiple implementations) of the 389 * transformation algorithm. This is the name of the transformation 390 * itself. This field is used by the kernel when looking up the 391 * providers of particular transformation. 392 * @cra_driver_name: Unique name of the transformation provider. This is the 393 * name of the provider of the transformation. This can be any 394 * arbitrary value, but in the usual case, this contains the 395 * name of the chip or provider and the name of the 396 * transformation algorithm. 397 * @cra_type: Type of the cryptographic transformation. This is a pointer to 398 * struct crypto_type, which implements callbacks common for all 399 * transformation types. There are multiple options, such as 400 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 401 * This field might be empty. In that case, there are no common 402 * callbacks. This is the case for: cipher, compress, shash. 403 * @cra_u: Callbacks implementing the transformation. This is a union of 404 * multiple structures. Depending on the type of transformation selected 405 * by @cra_type and @cra_flags above, the associated structure must be 406 * filled with callbacks. This field might be empty. This is the case 407 * for ahash, shash. 408 * @cra_init: Initialize the cryptographic transformation object. This function 409 * is used to initialize the cryptographic transformation object. 410 * This function is called only once at the instantiation time, right 411 * after the transformation context was allocated. In case the 412 * cryptographic hardware has some special requirements which need to 413 * be handled by software, this function shall check for the precise 414 * requirement of the transformation and put any software fallbacks 415 * in place. 416 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 417 * counterpart to @cra_init, used to remove various changes set in 418 * @cra_init. 419 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 420 * definition. See @struct @cipher_alg. 421 * @cra_u.compress: Union member which contains a (de)compression algorithm. 422 * See @struct @compress_alg. 423 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 424 * @cra_list: internally used 425 * @cra_users: internally used 426 * @cra_refcnt: internally used 427 * @cra_destroy: internally used 428 * 429 * @stats: union of all possible crypto_istat_xxx structures 430 * @stats.aead: statistics for AEAD algorithm 431 * @stats.akcipher: statistics for akcipher algorithm 432 * @stats.cipher: statistics for cipher algorithm 433 * @stats.compress: statistics for compress algorithm 434 * @stats.hash: statistics for hash algorithm 435 * @stats.rng: statistics for rng algorithm 436 * @stats.kpp: statistics for KPP algorithm 437 * 438 * The struct crypto_alg describes a generic Crypto API algorithm and is common 439 * for all of the transformations. Any variable not documented here shall not 440 * be used by a cipher implementation as it is internal to the Crypto API. 441 */ 442struct crypto_alg { 443 struct list_head cra_list; 444 struct list_head cra_users; 445 446 u32 cra_flags; 447 unsigned int cra_blocksize; 448 unsigned int cra_ctxsize; 449 unsigned int cra_alignmask; 450 451 int cra_priority; 452 refcount_t cra_refcnt; 453 454 char cra_name[CRYPTO_MAX_ALG_NAME]; 455 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 456 457 const struct crypto_type *cra_type; 458 459 union { 460 struct cipher_alg cipher; 461 struct compress_alg compress; 462 } cra_u; 463 464 int (*cra_init)(struct crypto_tfm *tfm); 465 void (*cra_exit)(struct crypto_tfm *tfm); 466 void (*cra_destroy)(struct crypto_alg *alg); 467 468 struct module *cra_module; 469 470#ifdef CONFIG_CRYPTO_STATS 471 union { 472 struct crypto_istat_aead aead; 473 struct crypto_istat_akcipher akcipher; 474 struct crypto_istat_cipher cipher; 475 struct crypto_istat_compress compress; 476 struct crypto_istat_hash hash; 477 struct crypto_istat_rng rng; 478 struct crypto_istat_kpp kpp; 479 } stats; 480#endif /* CONFIG_CRYPTO_STATS */ 481 482} CRYPTO_MINALIGN_ATTR; 483 484#ifdef CONFIG_CRYPTO_STATS 485void crypto_stats_init(struct crypto_alg *alg); 486void crypto_stats_get(struct crypto_alg *alg); 487void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 488void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 489void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 490void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 491void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 492void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 493void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 494void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 495void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 496void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 497void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 498void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 499void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 500void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 501void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 502void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 503void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 504#else 505static inline void crypto_stats_init(struct crypto_alg *alg) 506{} 507static inline void crypto_stats_get(struct crypto_alg *alg) 508{} 509static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 510{} 511static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 512{} 513static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 514{} 515static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 516{} 517static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 518{} 519static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 520{} 521static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 522{} 523static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 524{} 525static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 526{} 527static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 528{} 529static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 530{} 531static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 532{} 533static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 534{} 535static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 536{} 537static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 538{} 539static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 540{} 541static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 542{} 543#endif 544/* 545 * A helper struct for waiting for completion of async crypto ops 546 */ 547struct crypto_wait { 548 struct completion completion; 549 int err; 550}; 551 552/* 553 * Macro for declaring a crypto op async wait object on stack 554 */ 555#define DECLARE_CRYPTO_WAIT(_wait) \ 556 struct crypto_wait _wait = { \ 557 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 558 559/* 560 * Async ops completion helper functioons 561 */ 562void crypto_req_done(struct crypto_async_request *req, int err); 563 564static inline int crypto_wait_req(int err, struct crypto_wait *wait) 565{ 566 switch (err) { 567 case -EINPROGRESS: 568 case -EBUSY: 569 wait_for_completion(&wait->completion); 570 reinit_completion(&wait->completion); 571 err = wait->err; 572 break; 573 }; 574 575 return err; 576} 577 578static inline void crypto_init_wait(struct crypto_wait *wait) 579{ 580 init_completion(&wait->completion); 581} 582 583/* 584 * Algorithm registration interface. 585 */ 586int crypto_register_alg(struct crypto_alg *alg); 587int crypto_unregister_alg(struct crypto_alg *alg); 588int crypto_register_algs(struct crypto_alg *algs, int count); 589int crypto_unregister_algs(struct crypto_alg *algs, int count); 590 591/* 592 * Algorithm query interface. 593 */ 594int crypto_has_alg(const char *name, u32 type, u32 mask); 595 596/* 597 * Transforms: user-instantiated objects which encapsulate algorithms 598 * and core processing logic. Managed via crypto_alloc_*() and 599 * crypto_free_*(), as well as the various helpers below. 600 */ 601 602struct cipher_tfm { 603 int (*cit_setkey)(struct crypto_tfm *tfm, 604 const u8 *key, unsigned int keylen); 605 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 606 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 607}; 608 609struct compress_tfm { 610 int (*cot_compress)(struct crypto_tfm *tfm, 611 const u8 *src, unsigned int slen, 612 u8 *dst, unsigned int *dlen); 613 int (*cot_decompress)(struct crypto_tfm *tfm, 614 const u8 *src, unsigned int slen, 615 u8 *dst, unsigned int *dlen); 616}; 617 618#define crt_cipher crt_u.cipher 619#define crt_compress crt_u.compress 620 621struct crypto_tfm { 622 623 u32 crt_flags; 624 625 union { 626 struct cipher_tfm cipher; 627 struct compress_tfm compress; 628 } crt_u; 629 630 void (*exit)(struct crypto_tfm *tfm); 631 632 struct crypto_alg *__crt_alg; 633 634 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 635}; 636 637struct crypto_cipher { 638 struct crypto_tfm base; 639}; 640 641struct crypto_comp { 642 struct crypto_tfm base; 643}; 644 645enum { 646 CRYPTOA_UNSPEC, 647 CRYPTOA_ALG, 648 CRYPTOA_TYPE, 649 CRYPTOA_U32, 650 __CRYPTOA_MAX, 651}; 652 653#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 654 655/* Maximum number of (rtattr) parameters for each template. */ 656#define CRYPTO_MAX_ATTRS 32 657 658struct crypto_attr_alg { 659 char name[CRYPTO_MAX_ALG_NAME]; 660}; 661 662struct crypto_attr_type { 663 u32 type; 664 u32 mask; 665}; 666 667struct crypto_attr_u32 { 668 u32 num; 669}; 670 671/* 672 * Transform user interface. 673 */ 674 675struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 676void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 677 678static inline void crypto_free_tfm(struct crypto_tfm *tfm) 679{ 680 return crypto_destroy_tfm(tfm, tfm); 681} 682 683int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 684 685/* 686 * Transform helpers which query the underlying algorithm. 687 */ 688static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 689{ 690 return tfm->__crt_alg->cra_name; 691} 692 693static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 694{ 695 return tfm->__crt_alg->cra_driver_name; 696} 697 698static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 699{ 700 return tfm->__crt_alg->cra_priority; 701} 702 703static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 704{ 705 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 706} 707 708static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 709{ 710 return tfm->__crt_alg->cra_blocksize; 711} 712 713static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 714{ 715 return tfm->__crt_alg->cra_alignmask; 716} 717 718static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 719{ 720 return tfm->crt_flags; 721} 722 723static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 724{ 725 tfm->crt_flags |= flags; 726} 727 728static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 729{ 730 tfm->crt_flags &= ~flags; 731} 732 733static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 734{ 735 return tfm->__crt_ctx; 736} 737 738static inline unsigned int crypto_tfm_ctx_alignment(void) 739{ 740 struct crypto_tfm *tfm; 741 return __alignof__(tfm->__crt_ctx); 742} 743 744/** 745 * DOC: Single Block Cipher API 746 * 747 * The single block cipher API is used with the ciphers of type 748 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 749 * 750 * Using the single block cipher API calls, operations with the basic cipher 751 * primitive can be implemented. These cipher primitives exclude any block 752 * chaining operations including IV handling. 753 * 754 * The purpose of this single block cipher API is to support the implementation 755 * of templates or other concepts that only need to perform the cipher operation 756 * on one block at a time. Templates invoke the underlying cipher primitive 757 * block-wise and process either the input or the output data of these cipher 758 * operations. 759 */ 760 761static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 762{ 763 return (struct crypto_cipher *)tfm; 764} 765 766static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 767{ 768 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 769 return __crypto_cipher_cast(tfm); 770} 771 772/** 773 * crypto_alloc_cipher() - allocate single block cipher handle 774 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 775 * single block cipher 776 * @type: specifies the type of the cipher 777 * @mask: specifies the mask for the cipher 778 * 779 * Allocate a cipher handle for a single block cipher. The returned struct 780 * crypto_cipher is the cipher handle that is required for any subsequent API 781 * invocation for that single block cipher. 782 * 783 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 784 * of an error, PTR_ERR() returns the error code. 785 */ 786static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 787 u32 type, u32 mask) 788{ 789 type &= ~CRYPTO_ALG_TYPE_MASK; 790 type |= CRYPTO_ALG_TYPE_CIPHER; 791 mask |= CRYPTO_ALG_TYPE_MASK; 792 793 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 794} 795 796static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 797{ 798 return &tfm->base; 799} 800 801/** 802 * crypto_free_cipher() - zeroize and free the single block cipher handle 803 * @tfm: cipher handle to be freed 804 */ 805static inline void crypto_free_cipher(struct crypto_cipher *tfm) 806{ 807 crypto_free_tfm(crypto_cipher_tfm(tfm)); 808} 809 810/** 811 * crypto_has_cipher() - Search for the availability of a single block cipher 812 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 813 * single block cipher 814 * @type: specifies the type of the cipher 815 * @mask: specifies the mask for the cipher 816 * 817 * Return: true when the single block cipher is known to the kernel crypto API; 818 * false otherwise 819 */ 820static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 821{ 822 type &= ~CRYPTO_ALG_TYPE_MASK; 823 type |= CRYPTO_ALG_TYPE_CIPHER; 824 mask |= CRYPTO_ALG_TYPE_MASK; 825 826 return crypto_has_alg(alg_name, type, mask); 827} 828 829static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 830{ 831 return &crypto_cipher_tfm(tfm)->crt_cipher; 832} 833 834/** 835 * crypto_cipher_blocksize() - obtain block size for cipher 836 * @tfm: cipher handle 837 * 838 * The block size for the single block cipher referenced with the cipher handle 839 * tfm is returned. The caller may use that information to allocate appropriate 840 * memory for the data returned by the encryption or decryption operation 841 * 842 * Return: block size of cipher 843 */ 844static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 845{ 846 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 847} 848 849static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 850{ 851 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 852} 853 854static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 855{ 856 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 857} 858 859static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 860 u32 flags) 861{ 862 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 863} 864 865static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 866 u32 flags) 867{ 868 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 869} 870 871/** 872 * crypto_cipher_setkey() - set key for cipher 873 * @tfm: cipher handle 874 * @key: buffer holding the key 875 * @keylen: length of the key in bytes 876 * 877 * The caller provided key is set for the single block cipher referenced by the 878 * cipher handle. 879 * 880 * Note, the key length determines the cipher type. Many block ciphers implement 881 * different cipher modes depending on the key size, such as AES-128 vs AES-192 882 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 883 * is performed. 884 * 885 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 886 */ 887static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 888 const u8 *key, unsigned int keylen) 889{ 890 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 891 key, keylen); 892} 893 894/** 895 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 896 * @tfm: cipher handle 897 * @dst: points to the buffer that will be filled with the ciphertext 898 * @src: buffer holding the plaintext to be encrypted 899 * 900 * Invoke the encryption operation of one block. The caller must ensure that 901 * the plaintext and ciphertext buffers are at least one block in size. 902 */ 903static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 904 u8 *dst, const u8 *src) 905{ 906 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 907 dst, src); 908} 909 910/** 911 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 912 * @tfm: cipher handle 913 * @dst: points to the buffer that will be filled with the plaintext 914 * @src: buffer holding the ciphertext to be decrypted 915 * 916 * Invoke the decryption operation of one block. The caller must ensure that 917 * the plaintext and ciphertext buffers are at least one block in size. 918 */ 919static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 920 u8 *dst, const u8 *src) 921{ 922 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 923 dst, src); 924} 925 926static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 927{ 928 return (struct crypto_comp *)tfm; 929} 930 931static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 932{ 933 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 934 CRYPTO_ALG_TYPE_MASK); 935 return __crypto_comp_cast(tfm); 936} 937 938static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 939 u32 type, u32 mask) 940{ 941 type &= ~CRYPTO_ALG_TYPE_MASK; 942 type |= CRYPTO_ALG_TYPE_COMPRESS; 943 mask |= CRYPTO_ALG_TYPE_MASK; 944 945 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 946} 947 948static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 949{ 950 return &tfm->base; 951} 952 953static inline void crypto_free_comp(struct crypto_comp *tfm) 954{ 955 crypto_free_tfm(crypto_comp_tfm(tfm)); 956} 957 958static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 959{ 960 type &= ~CRYPTO_ALG_TYPE_MASK; 961 type |= CRYPTO_ALG_TYPE_COMPRESS; 962 mask |= CRYPTO_ALG_TYPE_MASK; 963 964 return crypto_has_alg(alg_name, type, mask); 965} 966 967static inline const char *crypto_comp_name(struct crypto_comp *tfm) 968{ 969 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 970} 971 972static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 973{ 974 return &crypto_comp_tfm(tfm)->crt_compress; 975} 976 977static inline int crypto_comp_compress(struct crypto_comp *tfm, 978 const u8 *src, unsigned int slen, 979 u8 *dst, unsigned int *dlen) 980{ 981 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 982 src, slen, dst, dlen); 983} 984 985static inline int crypto_comp_decompress(struct crypto_comp *tfm, 986 const u8 *src, unsigned int slen, 987 u8 *dst, unsigned int *dlen) 988{ 989 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 990 src, slen, dst, dlen); 991} 992 993#endif /* _LINUX_CRYPTO_H */ 994