Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/page.h>
20#include <asm/pgtable_types.h>
21#include <asm/percpu.h>
22#include <asm/msr.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28
29#include <linux/personality.h>
30#include <linux/cache.h>
31#include <linux/threads.h>
32#include <linux/math64.h>
33#include <linux/err.h>
34#include <linux/irqflags.h>
35#include <linux/mem_encrypt.h>
36
37/*
38 * We handle most unaligned accesses in hardware. On the other hand
39 * unaligned DMA can be quite expensive on some Nehalem processors.
40 *
41 * Based on this we disable the IP header alignment in network drivers.
42 */
43#define NET_IP_ALIGN 0
44
45#define HBP_NUM 4
46
47/*
48 * These alignment constraints are for performance in the vSMP case,
49 * but in the task_struct case we must also meet hardware imposed
50 * alignment requirements of the FPU state:
51 */
52#ifdef CONFIG_X86_VSMP
53# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
54# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
55#else
56# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
57# define ARCH_MIN_MMSTRUCT_ALIGN 0
58#endif
59
60enum tlb_infos {
61 ENTRIES,
62 NR_INFO
63};
64
65extern u16 __read_mostly tlb_lli_4k[NR_INFO];
66extern u16 __read_mostly tlb_lli_2m[NR_INFO];
67extern u16 __read_mostly tlb_lli_4m[NR_INFO];
68extern u16 __read_mostly tlb_lld_4k[NR_INFO];
69extern u16 __read_mostly tlb_lld_2m[NR_INFO];
70extern u16 __read_mostly tlb_lld_4m[NR_INFO];
71extern u16 __read_mostly tlb_lld_1g[NR_INFO];
72
73/*
74 * CPU type and hardware bug flags. Kept separately for each CPU.
75 * Members of this structure are referenced in head_32.S, so think twice
76 * before touching them. [mj]
77 */
78
79struct cpuinfo_x86 {
80 __u8 x86; /* CPU family */
81 __u8 x86_vendor; /* CPU vendor */
82 __u8 x86_model;
83 __u8 x86_stepping;
84#ifdef CONFIG_X86_64
85 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
86 int x86_tlbsize;
87#endif
88 __u8 x86_virt_bits;
89 __u8 x86_phys_bits;
90 /* CPUID returned core id bits: */
91 __u8 x86_coreid_bits;
92 __u8 cu_id;
93 /* Max extended CPUID function supported: */
94 __u32 extended_cpuid_level;
95 /* Maximum supported CPUID level, -1=no CPUID: */
96 int cpuid_level;
97 /*
98 * Align to size of unsigned long because the x86_capability array
99 * is passed to bitops which require the alignment. Use unnamed
100 * union to enforce the array is aligned to size of unsigned long.
101 */
102 union {
103 __u32 x86_capability[NCAPINTS + NBUGINTS];
104 unsigned long x86_capability_alignment;
105 };
106 char x86_vendor_id[16];
107 char x86_model_id[64];
108 /* in KB - valid for CPUS which support this call: */
109 unsigned int x86_cache_size;
110 int x86_cache_alignment; /* In bytes */
111 /* Cache QoS architectural values: */
112 int x86_cache_max_rmid; /* max index */
113 int x86_cache_occ_scale; /* scale to bytes */
114 int x86_power;
115 unsigned long loops_per_jiffy;
116 /* cpuid returned max cores value: */
117 u16 x86_max_cores;
118 u16 apicid;
119 u16 initial_apicid;
120 u16 x86_clflush_size;
121 /* number of cores as seen by the OS: */
122 u16 booted_cores;
123 /* Physical processor id: */
124 u16 phys_proc_id;
125 /* Logical processor id: */
126 u16 logical_proc_id;
127 /* Core id: */
128 u16 cpu_core_id;
129 u16 cpu_die_id;
130 u16 logical_die_id;
131 /* Index into per_cpu list: */
132 u16 cpu_index;
133 u32 microcode;
134 /* Address space bits used by the cache internally */
135 u8 x86_cache_bits;
136 unsigned initialized : 1;
137} __randomize_layout;
138
139struct cpuid_regs {
140 u32 eax, ebx, ecx, edx;
141};
142
143enum cpuid_regs_idx {
144 CPUID_EAX = 0,
145 CPUID_EBX,
146 CPUID_ECX,
147 CPUID_EDX,
148};
149
150#define X86_VENDOR_INTEL 0
151#define X86_VENDOR_CYRIX 1
152#define X86_VENDOR_AMD 2
153#define X86_VENDOR_UMC 3
154#define X86_VENDOR_CENTAUR 5
155#define X86_VENDOR_TRANSMETA 7
156#define X86_VENDOR_NSC 8
157#define X86_VENDOR_HYGON 9
158#define X86_VENDOR_ZHAOXIN 10
159#define X86_VENDOR_NUM 11
160
161#define X86_VENDOR_UNKNOWN 0xff
162
163/*
164 * capabilities of CPUs
165 */
166extern struct cpuinfo_x86 boot_cpu_data;
167extern struct cpuinfo_x86 new_cpu_data;
168
169extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
170extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
171
172#ifdef CONFIG_SMP
173DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
174#define cpu_data(cpu) per_cpu(cpu_info, cpu)
175#else
176#define cpu_info boot_cpu_data
177#define cpu_data(cpu) boot_cpu_data
178#endif
179
180extern const struct seq_operations cpuinfo_op;
181
182#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
183
184extern void cpu_detect(struct cpuinfo_x86 *c);
185
186static inline unsigned long long l1tf_pfn_limit(void)
187{
188 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
189}
190
191extern void early_cpu_init(void);
192extern void identify_boot_cpu(void);
193extern void identify_secondary_cpu(struct cpuinfo_x86 *);
194extern void print_cpu_info(struct cpuinfo_x86 *);
195void print_cpu_msr(struct cpuinfo_x86 *);
196
197#ifdef CONFIG_X86_32
198extern int have_cpuid_p(void);
199#else
200static inline int have_cpuid_p(void)
201{
202 return 1;
203}
204#endif
205static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
206 unsigned int *ecx, unsigned int *edx)
207{
208 /* ecx is often an input as well as an output. */
209 asm volatile("cpuid"
210 : "=a" (*eax),
211 "=b" (*ebx),
212 "=c" (*ecx),
213 "=d" (*edx)
214 : "0" (*eax), "2" (*ecx)
215 : "memory");
216}
217
218#define native_cpuid_reg(reg) \
219static inline unsigned int native_cpuid_##reg(unsigned int op) \
220{ \
221 unsigned int eax = op, ebx, ecx = 0, edx; \
222 \
223 native_cpuid(&eax, &ebx, &ecx, &edx); \
224 \
225 return reg; \
226}
227
228/*
229 * Native CPUID functions returning a single datum.
230 */
231native_cpuid_reg(eax)
232native_cpuid_reg(ebx)
233native_cpuid_reg(ecx)
234native_cpuid_reg(edx)
235
236/*
237 * Friendlier CR3 helpers.
238 */
239static inline unsigned long read_cr3_pa(void)
240{
241 return __read_cr3() & CR3_ADDR_MASK;
242}
243
244static inline unsigned long native_read_cr3_pa(void)
245{
246 return __native_read_cr3() & CR3_ADDR_MASK;
247}
248
249static inline void load_cr3(pgd_t *pgdir)
250{
251 write_cr3(__sme_pa(pgdir));
252}
253
254/*
255 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
256 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
257 * unrelated to the task-switch mechanism:
258 */
259#ifdef CONFIG_X86_32
260/* This is the TSS defined by the hardware. */
261struct x86_hw_tss {
262 unsigned short back_link, __blh;
263 unsigned long sp0;
264 unsigned short ss0, __ss0h;
265 unsigned long sp1;
266
267 /*
268 * We don't use ring 1, so ss1 is a convenient scratch space in
269 * the same cacheline as sp0. We use ss1 to cache the value in
270 * MSR_IA32_SYSENTER_CS. When we context switch
271 * MSR_IA32_SYSENTER_CS, we first check if the new value being
272 * written matches ss1, and, if it's not, then we wrmsr the new
273 * value and update ss1.
274 *
275 * The only reason we context switch MSR_IA32_SYSENTER_CS is
276 * that we set it to zero in vm86 tasks to avoid corrupting the
277 * stack if we were to go through the sysenter path from vm86
278 * mode.
279 */
280 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
281
282 unsigned short __ss1h;
283 unsigned long sp2;
284 unsigned short ss2, __ss2h;
285 unsigned long __cr3;
286 unsigned long ip;
287 unsigned long flags;
288 unsigned long ax;
289 unsigned long cx;
290 unsigned long dx;
291 unsigned long bx;
292 unsigned long sp;
293 unsigned long bp;
294 unsigned long si;
295 unsigned long di;
296 unsigned short es, __esh;
297 unsigned short cs, __csh;
298 unsigned short ss, __ssh;
299 unsigned short ds, __dsh;
300 unsigned short fs, __fsh;
301 unsigned short gs, __gsh;
302 unsigned short ldt, __ldth;
303 unsigned short trace;
304 unsigned short io_bitmap_base;
305
306} __attribute__((packed));
307#else
308struct x86_hw_tss {
309 u32 reserved1;
310 u64 sp0;
311
312 /*
313 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
314 * Linux does not use ring 1, so sp1 is not otherwise needed.
315 */
316 u64 sp1;
317
318 /*
319 * Since Linux does not use ring 2, the 'sp2' slot is unused by
320 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
321 * the user RSP value.
322 */
323 u64 sp2;
324
325 u64 reserved2;
326 u64 ist[7];
327 u32 reserved3;
328 u32 reserved4;
329 u16 reserved5;
330 u16 io_bitmap_base;
331
332} __attribute__((packed));
333#endif
334
335/*
336 * IO-bitmap sizes:
337 */
338#define IO_BITMAP_BITS 65536
339#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
340#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
341
342#define IO_BITMAP_OFFSET_VALID_MAP \
343 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
344 offsetof(struct tss_struct, x86_tss))
345
346#define IO_BITMAP_OFFSET_VALID_ALL \
347 (offsetof(struct tss_struct, io_bitmap.mapall) - \
348 offsetof(struct tss_struct, x86_tss))
349
350#ifdef CONFIG_X86_IOPL_IOPERM
351/*
352 * sizeof(unsigned long) coming from an extra "long" at the end of the
353 * iobitmap. The limit is inclusive, i.e. the last valid byte.
354 */
355# define __KERNEL_TSS_LIMIT \
356 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
357 sizeof(unsigned long) - 1)
358#else
359# define __KERNEL_TSS_LIMIT \
360 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
361#endif
362
363/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
364#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
365
366struct entry_stack {
367 unsigned long words[64];
368};
369
370struct entry_stack_page {
371 struct entry_stack stack;
372} __aligned(PAGE_SIZE);
373
374/*
375 * All IO bitmap related data stored in the TSS:
376 */
377struct x86_io_bitmap {
378 /* The sequence number of the last active bitmap. */
379 u64 prev_sequence;
380
381 /*
382 * Store the dirty size of the last io bitmap offender. The next
383 * one will have to do the cleanup as the switch out to a non io
384 * bitmap user will just set x86_tss.io_bitmap_base to a value
385 * outside of the TSS limit. So for sane tasks there is no need to
386 * actually touch the io_bitmap at all.
387 */
388 unsigned int prev_max;
389
390 /*
391 * The extra 1 is there because the CPU will access an
392 * additional byte beyond the end of the IO permission
393 * bitmap. The extra byte must be all 1 bits, and must
394 * be within the limit.
395 */
396 unsigned long bitmap[IO_BITMAP_LONGS + 1];
397
398 /*
399 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
400 * except the additional byte at the end.
401 */
402 unsigned long mapall[IO_BITMAP_LONGS + 1];
403};
404
405struct tss_struct {
406 /*
407 * The fixed hardware portion. This must not cross a page boundary
408 * at risk of violating the SDM's advice and potentially triggering
409 * errata.
410 */
411 struct x86_hw_tss x86_tss;
412
413 struct x86_io_bitmap io_bitmap;
414} __aligned(PAGE_SIZE);
415
416DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
417
418/* Per CPU interrupt stacks */
419struct irq_stack {
420 char stack[IRQ_STACK_SIZE];
421} __aligned(IRQ_STACK_SIZE);
422
423DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
424
425#ifdef CONFIG_X86_32
426DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
427#else
428/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
429#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
430#endif
431
432#ifdef CONFIG_X86_64
433struct fixed_percpu_data {
434 /*
435 * GCC hardcodes the stack canary as %gs:40. Since the
436 * irq_stack is the object at %gs:0, we reserve the bottom
437 * 48 bytes of the irq stack for the canary.
438 */
439 char gs_base[40];
440 unsigned long stack_canary;
441};
442
443DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
444DECLARE_INIT_PER_CPU(fixed_percpu_data);
445
446static inline unsigned long cpu_kernelmode_gs_base(int cpu)
447{
448 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
449}
450
451DECLARE_PER_CPU(unsigned int, irq_count);
452extern asmlinkage void ignore_sysret(void);
453
454#if IS_ENABLED(CONFIG_KVM)
455/* Save actual FS/GS selectors and bases to current->thread */
456void save_fsgs_for_kvm(void);
457#endif
458#else /* X86_64 */
459#ifdef CONFIG_STACKPROTECTOR
460/*
461 * Make sure stack canary segment base is cached-aligned:
462 * "For Intel Atom processors, avoid non zero segment base address
463 * that is not aligned to cache line boundary at all cost."
464 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
465 */
466struct stack_canary {
467 char __pad[20]; /* canary at %gs:20 */
468 unsigned long canary;
469};
470DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
471#endif
472/* Per CPU softirq stack pointer */
473DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
474#endif /* X86_64 */
475
476extern unsigned int fpu_kernel_xstate_size;
477extern unsigned int fpu_user_xstate_size;
478
479struct perf_event;
480
481typedef struct {
482 unsigned long seg;
483} mm_segment_t;
484
485struct thread_struct {
486 /* Cached TLS descriptors: */
487 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
488#ifdef CONFIG_X86_32
489 unsigned long sp0;
490#endif
491 unsigned long sp;
492#ifdef CONFIG_X86_32
493 unsigned long sysenter_cs;
494#else
495 unsigned short es;
496 unsigned short ds;
497 unsigned short fsindex;
498 unsigned short gsindex;
499#endif
500
501#ifdef CONFIG_X86_64
502 unsigned long fsbase;
503 unsigned long gsbase;
504#else
505 /*
506 * XXX: this could presumably be unsigned short. Alternatively,
507 * 32-bit kernels could be taught to use fsindex instead.
508 */
509 unsigned long fs;
510 unsigned long gs;
511#endif
512
513 /* Save middle states of ptrace breakpoints */
514 struct perf_event *ptrace_bps[HBP_NUM];
515 /* Debug status used for traps, single steps, etc... */
516 unsigned long debugreg6;
517 /* Keep track of the exact dr7 value set by the user */
518 unsigned long ptrace_dr7;
519 /* Fault info: */
520 unsigned long cr2;
521 unsigned long trap_nr;
522 unsigned long error_code;
523#ifdef CONFIG_VM86
524 /* Virtual 86 mode info */
525 struct vm86 *vm86;
526#endif
527 /* IO permissions: */
528 struct io_bitmap *io_bitmap;
529
530 /*
531 * IOPL. Priviledge level dependent I/O permission which is
532 * emulated via the I/O bitmap to prevent user space from disabling
533 * interrupts.
534 */
535 unsigned long iopl_emul;
536
537 mm_segment_t addr_limit;
538
539 unsigned int sig_on_uaccess_err:1;
540 unsigned int uaccess_err:1; /* uaccess failed */
541
542 /* Floating point and extended processor state */
543 struct fpu fpu;
544 /*
545 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
546 * the end.
547 */
548};
549
550/* Whitelist the FPU state from the task_struct for hardened usercopy. */
551static inline void arch_thread_struct_whitelist(unsigned long *offset,
552 unsigned long *size)
553{
554 *offset = offsetof(struct thread_struct, fpu.state);
555 *size = fpu_kernel_xstate_size;
556}
557
558/*
559 * Thread-synchronous status.
560 *
561 * This is different from the flags in that nobody else
562 * ever touches our thread-synchronous status, so we don't
563 * have to worry about atomic accesses.
564 */
565#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
566
567static inline void
568native_load_sp0(unsigned long sp0)
569{
570 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
571}
572
573static inline void native_swapgs(void)
574{
575#ifdef CONFIG_X86_64
576 asm volatile("swapgs" ::: "memory");
577#endif
578}
579
580static inline unsigned long current_top_of_stack(void)
581{
582 /*
583 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
584 * and around vm86 mode and sp0 on x86_64 is special because of the
585 * entry trampoline.
586 */
587 return this_cpu_read_stable(cpu_current_top_of_stack);
588}
589
590static inline bool on_thread_stack(void)
591{
592 return (unsigned long)(current_top_of_stack() -
593 current_stack_pointer) < THREAD_SIZE;
594}
595
596#ifdef CONFIG_PARAVIRT_XXL
597#include <asm/paravirt.h>
598#else
599#define __cpuid native_cpuid
600
601static inline void load_sp0(unsigned long sp0)
602{
603 native_load_sp0(sp0);
604}
605
606#endif /* CONFIG_PARAVIRT_XXL */
607
608/* Free all resources held by a thread. */
609extern void release_thread(struct task_struct *);
610
611unsigned long get_wchan(struct task_struct *p);
612
613/*
614 * Generic CPUID function
615 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
616 * resulting in stale register contents being returned.
617 */
618static inline void cpuid(unsigned int op,
619 unsigned int *eax, unsigned int *ebx,
620 unsigned int *ecx, unsigned int *edx)
621{
622 *eax = op;
623 *ecx = 0;
624 __cpuid(eax, ebx, ecx, edx);
625}
626
627/* Some CPUID calls want 'count' to be placed in ecx */
628static inline void cpuid_count(unsigned int op, int count,
629 unsigned int *eax, unsigned int *ebx,
630 unsigned int *ecx, unsigned int *edx)
631{
632 *eax = op;
633 *ecx = count;
634 __cpuid(eax, ebx, ecx, edx);
635}
636
637/*
638 * CPUID functions returning a single datum
639 */
640static inline unsigned int cpuid_eax(unsigned int op)
641{
642 unsigned int eax, ebx, ecx, edx;
643
644 cpuid(op, &eax, &ebx, &ecx, &edx);
645
646 return eax;
647}
648
649static inline unsigned int cpuid_ebx(unsigned int op)
650{
651 unsigned int eax, ebx, ecx, edx;
652
653 cpuid(op, &eax, &ebx, &ecx, &edx);
654
655 return ebx;
656}
657
658static inline unsigned int cpuid_ecx(unsigned int op)
659{
660 unsigned int eax, ebx, ecx, edx;
661
662 cpuid(op, &eax, &ebx, &ecx, &edx);
663
664 return ecx;
665}
666
667static inline unsigned int cpuid_edx(unsigned int op)
668{
669 unsigned int eax, ebx, ecx, edx;
670
671 cpuid(op, &eax, &ebx, &ecx, &edx);
672
673 return edx;
674}
675
676/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
677static __always_inline void rep_nop(void)
678{
679 asm volatile("rep; nop" ::: "memory");
680}
681
682static __always_inline void cpu_relax(void)
683{
684 rep_nop();
685}
686
687/*
688 * This function forces the icache and prefetched instruction stream to
689 * catch up with reality in two very specific cases:
690 *
691 * a) Text was modified using one virtual address and is about to be executed
692 * from the same physical page at a different virtual address.
693 *
694 * b) Text was modified on a different CPU, may subsequently be
695 * executed on this CPU, and you want to make sure the new version
696 * gets executed. This generally means you're calling this in a IPI.
697 *
698 * If you're calling this for a different reason, you're probably doing
699 * it wrong.
700 */
701static inline void sync_core(void)
702{
703 /*
704 * There are quite a few ways to do this. IRET-to-self is nice
705 * because it works on every CPU, at any CPL (so it's compatible
706 * with paravirtualization), and it never exits to a hypervisor.
707 * The only down sides are that it's a bit slow (it seems to be
708 * a bit more than 2x slower than the fastest options) and that
709 * it unmasks NMIs. The "push %cs" is needed because, in
710 * paravirtual environments, __KERNEL_CS may not be a valid CS
711 * value when we do IRET directly.
712 *
713 * In case NMI unmasking or performance ever becomes a problem,
714 * the next best option appears to be MOV-to-CR2 and an
715 * unconditional jump. That sequence also works on all CPUs,
716 * but it will fault at CPL3 (i.e. Xen PV).
717 *
718 * CPUID is the conventional way, but it's nasty: it doesn't
719 * exist on some 486-like CPUs, and it usually exits to a
720 * hypervisor.
721 *
722 * Like all of Linux's memory ordering operations, this is a
723 * compiler barrier as well.
724 */
725#ifdef CONFIG_X86_32
726 asm volatile (
727 "pushfl\n\t"
728 "pushl %%cs\n\t"
729 "pushl $1f\n\t"
730 "iret\n\t"
731 "1:"
732 : ASM_CALL_CONSTRAINT : : "memory");
733#else
734 unsigned int tmp;
735
736 asm volatile (
737 UNWIND_HINT_SAVE
738 "mov %%ss, %0\n\t"
739 "pushq %q0\n\t"
740 "pushq %%rsp\n\t"
741 "addq $8, (%%rsp)\n\t"
742 "pushfq\n\t"
743 "mov %%cs, %0\n\t"
744 "pushq %q0\n\t"
745 "pushq $1f\n\t"
746 "iretq\n\t"
747 UNWIND_HINT_RESTORE
748 "1:"
749 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
750#endif
751}
752
753extern void select_idle_routine(const struct cpuinfo_x86 *c);
754extern void amd_e400_c1e_apic_setup(void);
755
756extern unsigned long boot_option_idle_override;
757
758enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
759 IDLE_POLL};
760
761extern void enable_sep_cpu(void);
762extern int sysenter_setup(void);
763
764
765/* Defined in head.S */
766extern struct desc_ptr early_gdt_descr;
767
768extern void switch_to_new_gdt(int);
769extern void load_direct_gdt(int);
770extern void load_fixmap_gdt(int);
771extern void load_percpu_segment(int);
772extern void cpu_init(void);
773extern void cr4_init(void);
774
775static inline unsigned long get_debugctlmsr(void)
776{
777 unsigned long debugctlmsr = 0;
778
779#ifndef CONFIG_X86_DEBUGCTLMSR
780 if (boot_cpu_data.x86 < 6)
781 return 0;
782#endif
783 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
784
785 return debugctlmsr;
786}
787
788static inline void update_debugctlmsr(unsigned long debugctlmsr)
789{
790#ifndef CONFIG_X86_DEBUGCTLMSR
791 if (boot_cpu_data.x86 < 6)
792 return;
793#endif
794 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
795}
796
797extern void set_task_blockstep(struct task_struct *task, bool on);
798
799/* Boot loader type from the setup header: */
800extern int bootloader_type;
801extern int bootloader_version;
802
803extern char ignore_fpu_irq;
804
805#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
806#define ARCH_HAS_PREFETCHW
807#define ARCH_HAS_SPINLOCK_PREFETCH
808
809#ifdef CONFIG_X86_32
810# define BASE_PREFETCH ""
811# define ARCH_HAS_PREFETCH
812#else
813# define BASE_PREFETCH "prefetcht0 %P1"
814#endif
815
816/*
817 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
818 *
819 * It's not worth to care about 3dnow prefetches for the K6
820 * because they are microcoded there and very slow.
821 */
822static inline void prefetch(const void *x)
823{
824 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
825 X86_FEATURE_XMM,
826 "m" (*(const char *)x));
827}
828
829/*
830 * 3dnow prefetch to get an exclusive cache line.
831 * Useful for spinlocks to avoid one state transition in the
832 * cache coherency protocol:
833 */
834static inline void prefetchw(const void *x)
835{
836 alternative_input(BASE_PREFETCH, "prefetchw %P1",
837 X86_FEATURE_3DNOWPREFETCH,
838 "m" (*(const char *)x));
839}
840
841static inline void spin_lock_prefetch(const void *x)
842{
843 prefetchw(x);
844}
845
846#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
847 TOP_OF_KERNEL_STACK_PADDING)
848
849#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
850
851#define task_pt_regs(task) \
852({ \
853 unsigned long __ptr = (unsigned long)task_stack_page(task); \
854 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
855 ((struct pt_regs *)__ptr) - 1; \
856})
857
858#ifdef CONFIG_X86_32
859/*
860 * User space process size: 3GB (default).
861 */
862#define IA32_PAGE_OFFSET PAGE_OFFSET
863#define TASK_SIZE PAGE_OFFSET
864#define TASK_SIZE_LOW TASK_SIZE
865#define TASK_SIZE_MAX TASK_SIZE
866#define DEFAULT_MAP_WINDOW TASK_SIZE
867#define STACK_TOP TASK_SIZE
868#define STACK_TOP_MAX STACK_TOP
869
870#define INIT_THREAD { \
871 .sp0 = TOP_OF_INIT_STACK, \
872 .sysenter_cs = __KERNEL_CS, \
873 .addr_limit = KERNEL_DS, \
874}
875
876#define KSTK_ESP(task) (task_pt_regs(task)->sp)
877
878#else
879/*
880 * User space process size. This is the first address outside the user range.
881 * There are a few constraints that determine this:
882 *
883 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
884 * address, then that syscall will enter the kernel with a
885 * non-canonical return address, and SYSRET will explode dangerously.
886 * We avoid this particular problem by preventing anything executable
887 * from being mapped at the maximum canonical address.
888 *
889 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
890 * CPUs malfunction if they execute code from the highest canonical page.
891 * They'll speculate right off the end of the canonical space, and
892 * bad things happen. This is worked around in the same way as the
893 * Intel problem.
894 *
895 * With page table isolation enabled, we map the LDT in ... [stay tuned]
896 */
897#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
898
899#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
900
901/* This decides where the kernel will search for a free chunk of vm
902 * space during mmap's.
903 */
904#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
905 0xc0000000 : 0xFFFFe000)
906
907#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
908 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
909#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
910 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
911#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
912 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
913
914#define STACK_TOP TASK_SIZE_LOW
915#define STACK_TOP_MAX TASK_SIZE_MAX
916
917#define INIT_THREAD { \
918 .addr_limit = KERNEL_DS, \
919}
920
921extern unsigned long KSTK_ESP(struct task_struct *task);
922
923#endif /* CONFIG_X86_64 */
924
925extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
926 unsigned long new_sp);
927
928/*
929 * This decides where the kernel will search for a free chunk of vm
930 * space during mmap's.
931 */
932#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
933#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
934
935#define KSTK_EIP(task) (task_pt_regs(task)->ip)
936
937/* Get/set a process' ability to use the timestamp counter instruction */
938#define GET_TSC_CTL(adr) get_tsc_mode((adr))
939#define SET_TSC_CTL(val) set_tsc_mode((val))
940
941extern int get_tsc_mode(unsigned long adr);
942extern int set_tsc_mode(unsigned int val);
943
944DECLARE_PER_CPU(u64, msr_misc_features_shadow);
945
946/* Register/unregister a process' MPX related resource */
947#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
948#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
949
950#ifdef CONFIG_X86_INTEL_MPX
951extern int mpx_enable_management(void);
952extern int mpx_disable_management(void);
953#else
954static inline int mpx_enable_management(void)
955{
956 return -EINVAL;
957}
958static inline int mpx_disable_management(void)
959{
960 return -EINVAL;
961}
962#endif /* CONFIG_X86_INTEL_MPX */
963
964#ifdef CONFIG_CPU_SUP_AMD
965extern u16 amd_get_nb_id(int cpu);
966extern u32 amd_get_nodes_per_socket(void);
967#else
968static inline u16 amd_get_nb_id(int cpu) { return 0; }
969static inline u32 amd_get_nodes_per_socket(void) { return 0; }
970#endif
971
972static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
973{
974 uint32_t base, eax, signature[3];
975
976 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
977 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
978
979 if (!memcmp(sig, signature, 12) &&
980 (leaves == 0 || ((eax - base) >= leaves)))
981 return base;
982 }
983
984 return 0;
985}
986
987extern unsigned long arch_align_stack(unsigned long sp);
988void free_init_pages(const char *what, unsigned long begin, unsigned long end);
989extern void free_kernel_image_pages(const char *what, void *begin, void *end);
990
991void default_idle(void);
992#ifdef CONFIG_XEN
993bool xen_set_default_idle(void);
994#else
995#define xen_set_default_idle 0
996#endif
997
998void stop_this_cpu(void *dummy);
999void microcode_check(void);
1000
1001enum l1tf_mitigations {
1002 L1TF_MITIGATION_OFF,
1003 L1TF_MITIGATION_FLUSH_NOWARN,
1004 L1TF_MITIGATION_FLUSH,
1005 L1TF_MITIGATION_FLUSH_NOSMT,
1006 L1TF_MITIGATION_FULL,
1007 L1TF_MITIGATION_FULL_FORCE
1008};
1009
1010extern enum l1tf_mitigations l1tf_mitigation;
1011
1012enum mds_mitigations {
1013 MDS_MITIGATION_OFF,
1014 MDS_MITIGATION_FULL,
1015 MDS_MITIGATION_VMWERV,
1016};
1017
1018enum taa_mitigations {
1019 TAA_MITIGATION_OFF,
1020 TAA_MITIGATION_UCODE_NEEDED,
1021 TAA_MITIGATION_VERW,
1022 TAA_MITIGATION_TSX_DISABLED,
1023};
1024
1025#endif /* _ASM_X86_PROCESSOR_H */