at v5.5 1025 lines 27 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct io_bitmap; 11struct vm86; 12 13#include <asm/math_emu.h> 14#include <asm/segment.h> 15#include <asm/types.h> 16#include <uapi/asm/sigcontext.h> 17#include <asm/current.h> 18#include <asm/cpufeatures.h> 19#include <asm/page.h> 20#include <asm/pgtable_types.h> 21#include <asm/percpu.h> 22#include <asm/msr.h> 23#include <asm/desc_defs.h> 24#include <asm/nops.h> 25#include <asm/special_insns.h> 26#include <asm/fpu/types.h> 27#include <asm/unwind_hints.h> 28 29#include <linux/personality.h> 30#include <linux/cache.h> 31#include <linux/threads.h> 32#include <linux/math64.h> 33#include <linux/err.h> 34#include <linux/irqflags.h> 35#include <linux/mem_encrypt.h> 36 37/* 38 * We handle most unaligned accesses in hardware. On the other hand 39 * unaligned DMA can be quite expensive on some Nehalem processors. 40 * 41 * Based on this we disable the IP header alignment in network drivers. 42 */ 43#define NET_IP_ALIGN 0 44 45#define HBP_NUM 4 46 47/* 48 * These alignment constraints are for performance in the vSMP case, 49 * but in the task_struct case we must also meet hardware imposed 50 * alignment requirements of the FPU state: 51 */ 52#ifdef CONFIG_X86_VSMP 53# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 54# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 55#else 56# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 57# define ARCH_MIN_MMSTRUCT_ALIGN 0 58#endif 59 60enum tlb_infos { 61 ENTRIES, 62 NR_INFO 63}; 64 65extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 66extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 67extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 68extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 69extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 70extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 71extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 72 73/* 74 * CPU type and hardware bug flags. Kept separately for each CPU. 75 * Members of this structure are referenced in head_32.S, so think twice 76 * before touching them. [mj] 77 */ 78 79struct cpuinfo_x86 { 80 __u8 x86; /* CPU family */ 81 __u8 x86_vendor; /* CPU vendor */ 82 __u8 x86_model; 83 __u8 x86_stepping; 84#ifdef CONFIG_X86_64 85 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 86 int x86_tlbsize; 87#endif 88 __u8 x86_virt_bits; 89 __u8 x86_phys_bits; 90 /* CPUID returned core id bits: */ 91 __u8 x86_coreid_bits; 92 __u8 cu_id; 93 /* Max extended CPUID function supported: */ 94 __u32 extended_cpuid_level; 95 /* Maximum supported CPUID level, -1=no CPUID: */ 96 int cpuid_level; 97 /* 98 * Align to size of unsigned long because the x86_capability array 99 * is passed to bitops which require the alignment. Use unnamed 100 * union to enforce the array is aligned to size of unsigned long. 101 */ 102 union { 103 __u32 x86_capability[NCAPINTS + NBUGINTS]; 104 unsigned long x86_capability_alignment; 105 }; 106 char x86_vendor_id[16]; 107 char x86_model_id[64]; 108 /* in KB - valid for CPUS which support this call: */ 109 unsigned int x86_cache_size; 110 int x86_cache_alignment; /* In bytes */ 111 /* Cache QoS architectural values: */ 112 int x86_cache_max_rmid; /* max index */ 113 int x86_cache_occ_scale; /* scale to bytes */ 114 int x86_power; 115 unsigned long loops_per_jiffy; 116 /* cpuid returned max cores value: */ 117 u16 x86_max_cores; 118 u16 apicid; 119 u16 initial_apicid; 120 u16 x86_clflush_size; 121 /* number of cores as seen by the OS: */ 122 u16 booted_cores; 123 /* Physical processor id: */ 124 u16 phys_proc_id; 125 /* Logical processor id: */ 126 u16 logical_proc_id; 127 /* Core id: */ 128 u16 cpu_core_id; 129 u16 cpu_die_id; 130 u16 logical_die_id; 131 /* Index into per_cpu list: */ 132 u16 cpu_index; 133 u32 microcode; 134 /* Address space bits used by the cache internally */ 135 u8 x86_cache_bits; 136 unsigned initialized : 1; 137} __randomize_layout; 138 139struct cpuid_regs { 140 u32 eax, ebx, ecx, edx; 141}; 142 143enum cpuid_regs_idx { 144 CPUID_EAX = 0, 145 CPUID_EBX, 146 CPUID_ECX, 147 CPUID_EDX, 148}; 149 150#define X86_VENDOR_INTEL 0 151#define X86_VENDOR_CYRIX 1 152#define X86_VENDOR_AMD 2 153#define X86_VENDOR_UMC 3 154#define X86_VENDOR_CENTAUR 5 155#define X86_VENDOR_TRANSMETA 7 156#define X86_VENDOR_NSC 8 157#define X86_VENDOR_HYGON 9 158#define X86_VENDOR_ZHAOXIN 10 159#define X86_VENDOR_NUM 11 160 161#define X86_VENDOR_UNKNOWN 0xff 162 163/* 164 * capabilities of CPUs 165 */ 166extern struct cpuinfo_x86 boot_cpu_data; 167extern struct cpuinfo_x86 new_cpu_data; 168 169extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 170extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 171 172#ifdef CONFIG_SMP 173DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 174#define cpu_data(cpu) per_cpu(cpu_info, cpu) 175#else 176#define cpu_info boot_cpu_data 177#define cpu_data(cpu) boot_cpu_data 178#endif 179 180extern const struct seq_operations cpuinfo_op; 181 182#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 183 184extern void cpu_detect(struct cpuinfo_x86 *c); 185 186static inline unsigned long long l1tf_pfn_limit(void) 187{ 188 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 189} 190 191extern void early_cpu_init(void); 192extern void identify_boot_cpu(void); 193extern void identify_secondary_cpu(struct cpuinfo_x86 *); 194extern void print_cpu_info(struct cpuinfo_x86 *); 195void print_cpu_msr(struct cpuinfo_x86 *); 196 197#ifdef CONFIG_X86_32 198extern int have_cpuid_p(void); 199#else 200static inline int have_cpuid_p(void) 201{ 202 return 1; 203} 204#endif 205static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 206 unsigned int *ecx, unsigned int *edx) 207{ 208 /* ecx is often an input as well as an output. */ 209 asm volatile("cpuid" 210 : "=a" (*eax), 211 "=b" (*ebx), 212 "=c" (*ecx), 213 "=d" (*edx) 214 : "0" (*eax), "2" (*ecx) 215 : "memory"); 216} 217 218#define native_cpuid_reg(reg) \ 219static inline unsigned int native_cpuid_##reg(unsigned int op) \ 220{ \ 221 unsigned int eax = op, ebx, ecx = 0, edx; \ 222 \ 223 native_cpuid(&eax, &ebx, &ecx, &edx); \ 224 \ 225 return reg; \ 226} 227 228/* 229 * Native CPUID functions returning a single datum. 230 */ 231native_cpuid_reg(eax) 232native_cpuid_reg(ebx) 233native_cpuid_reg(ecx) 234native_cpuid_reg(edx) 235 236/* 237 * Friendlier CR3 helpers. 238 */ 239static inline unsigned long read_cr3_pa(void) 240{ 241 return __read_cr3() & CR3_ADDR_MASK; 242} 243 244static inline unsigned long native_read_cr3_pa(void) 245{ 246 return __native_read_cr3() & CR3_ADDR_MASK; 247} 248 249static inline void load_cr3(pgd_t *pgdir) 250{ 251 write_cr3(__sme_pa(pgdir)); 252} 253 254/* 255 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 256 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 257 * unrelated to the task-switch mechanism: 258 */ 259#ifdef CONFIG_X86_32 260/* This is the TSS defined by the hardware. */ 261struct x86_hw_tss { 262 unsigned short back_link, __blh; 263 unsigned long sp0; 264 unsigned short ss0, __ss0h; 265 unsigned long sp1; 266 267 /* 268 * We don't use ring 1, so ss1 is a convenient scratch space in 269 * the same cacheline as sp0. We use ss1 to cache the value in 270 * MSR_IA32_SYSENTER_CS. When we context switch 271 * MSR_IA32_SYSENTER_CS, we first check if the new value being 272 * written matches ss1, and, if it's not, then we wrmsr the new 273 * value and update ss1. 274 * 275 * The only reason we context switch MSR_IA32_SYSENTER_CS is 276 * that we set it to zero in vm86 tasks to avoid corrupting the 277 * stack if we were to go through the sysenter path from vm86 278 * mode. 279 */ 280 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 281 282 unsigned short __ss1h; 283 unsigned long sp2; 284 unsigned short ss2, __ss2h; 285 unsigned long __cr3; 286 unsigned long ip; 287 unsigned long flags; 288 unsigned long ax; 289 unsigned long cx; 290 unsigned long dx; 291 unsigned long bx; 292 unsigned long sp; 293 unsigned long bp; 294 unsigned long si; 295 unsigned long di; 296 unsigned short es, __esh; 297 unsigned short cs, __csh; 298 unsigned short ss, __ssh; 299 unsigned short ds, __dsh; 300 unsigned short fs, __fsh; 301 unsigned short gs, __gsh; 302 unsigned short ldt, __ldth; 303 unsigned short trace; 304 unsigned short io_bitmap_base; 305 306} __attribute__((packed)); 307#else 308struct x86_hw_tss { 309 u32 reserved1; 310 u64 sp0; 311 312 /* 313 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 314 * Linux does not use ring 1, so sp1 is not otherwise needed. 315 */ 316 u64 sp1; 317 318 /* 319 * Since Linux does not use ring 2, the 'sp2' slot is unused by 320 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 321 * the user RSP value. 322 */ 323 u64 sp2; 324 325 u64 reserved2; 326 u64 ist[7]; 327 u32 reserved3; 328 u32 reserved4; 329 u16 reserved5; 330 u16 io_bitmap_base; 331 332} __attribute__((packed)); 333#endif 334 335/* 336 * IO-bitmap sizes: 337 */ 338#define IO_BITMAP_BITS 65536 339#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 340#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 341 342#define IO_BITMAP_OFFSET_VALID_MAP \ 343 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 344 offsetof(struct tss_struct, x86_tss)) 345 346#define IO_BITMAP_OFFSET_VALID_ALL \ 347 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 348 offsetof(struct tss_struct, x86_tss)) 349 350#ifdef CONFIG_X86_IOPL_IOPERM 351/* 352 * sizeof(unsigned long) coming from an extra "long" at the end of the 353 * iobitmap. The limit is inclusive, i.e. the last valid byte. 354 */ 355# define __KERNEL_TSS_LIMIT \ 356 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 357 sizeof(unsigned long) - 1) 358#else 359# define __KERNEL_TSS_LIMIT \ 360 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 361#endif 362 363/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 364#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 365 366struct entry_stack { 367 unsigned long words[64]; 368}; 369 370struct entry_stack_page { 371 struct entry_stack stack; 372} __aligned(PAGE_SIZE); 373 374/* 375 * All IO bitmap related data stored in the TSS: 376 */ 377struct x86_io_bitmap { 378 /* The sequence number of the last active bitmap. */ 379 u64 prev_sequence; 380 381 /* 382 * Store the dirty size of the last io bitmap offender. The next 383 * one will have to do the cleanup as the switch out to a non io 384 * bitmap user will just set x86_tss.io_bitmap_base to a value 385 * outside of the TSS limit. So for sane tasks there is no need to 386 * actually touch the io_bitmap at all. 387 */ 388 unsigned int prev_max; 389 390 /* 391 * The extra 1 is there because the CPU will access an 392 * additional byte beyond the end of the IO permission 393 * bitmap. The extra byte must be all 1 bits, and must 394 * be within the limit. 395 */ 396 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 397 398 /* 399 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 400 * except the additional byte at the end. 401 */ 402 unsigned long mapall[IO_BITMAP_LONGS + 1]; 403}; 404 405struct tss_struct { 406 /* 407 * The fixed hardware portion. This must not cross a page boundary 408 * at risk of violating the SDM's advice and potentially triggering 409 * errata. 410 */ 411 struct x86_hw_tss x86_tss; 412 413 struct x86_io_bitmap io_bitmap; 414} __aligned(PAGE_SIZE); 415 416DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 417 418/* Per CPU interrupt stacks */ 419struct irq_stack { 420 char stack[IRQ_STACK_SIZE]; 421} __aligned(IRQ_STACK_SIZE); 422 423DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 424 425#ifdef CONFIG_X86_32 426DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 427#else 428/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 429#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 430#endif 431 432#ifdef CONFIG_X86_64 433struct fixed_percpu_data { 434 /* 435 * GCC hardcodes the stack canary as %gs:40. Since the 436 * irq_stack is the object at %gs:0, we reserve the bottom 437 * 48 bytes of the irq stack for the canary. 438 */ 439 char gs_base[40]; 440 unsigned long stack_canary; 441}; 442 443DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 444DECLARE_INIT_PER_CPU(fixed_percpu_data); 445 446static inline unsigned long cpu_kernelmode_gs_base(int cpu) 447{ 448 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 449} 450 451DECLARE_PER_CPU(unsigned int, irq_count); 452extern asmlinkage void ignore_sysret(void); 453 454#if IS_ENABLED(CONFIG_KVM) 455/* Save actual FS/GS selectors and bases to current->thread */ 456void save_fsgs_for_kvm(void); 457#endif 458#else /* X86_64 */ 459#ifdef CONFIG_STACKPROTECTOR 460/* 461 * Make sure stack canary segment base is cached-aligned: 462 * "For Intel Atom processors, avoid non zero segment base address 463 * that is not aligned to cache line boundary at all cost." 464 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 465 */ 466struct stack_canary { 467 char __pad[20]; /* canary at %gs:20 */ 468 unsigned long canary; 469}; 470DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 471#endif 472/* Per CPU softirq stack pointer */ 473DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 474#endif /* X86_64 */ 475 476extern unsigned int fpu_kernel_xstate_size; 477extern unsigned int fpu_user_xstate_size; 478 479struct perf_event; 480 481typedef struct { 482 unsigned long seg; 483} mm_segment_t; 484 485struct thread_struct { 486 /* Cached TLS descriptors: */ 487 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 488#ifdef CONFIG_X86_32 489 unsigned long sp0; 490#endif 491 unsigned long sp; 492#ifdef CONFIG_X86_32 493 unsigned long sysenter_cs; 494#else 495 unsigned short es; 496 unsigned short ds; 497 unsigned short fsindex; 498 unsigned short gsindex; 499#endif 500 501#ifdef CONFIG_X86_64 502 unsigned long fsbase; 503 unsigned long gsbase; 504#else 505 /* 506 * XXX: this could presumably be unsigned short. Alternatively, 507 * 32-bit kernels could be taught to use fsindex instead. 508 */ 509 unsigned long fs; 510 unsigned long gs; 511#endif 512 513 /* Save middle states of ptrace breakpoints */ 514 struct perf_event *ptrace_bps[HBP_NUM]; 515 /* Debug status used for traps, single steps, etc... */ 516 unsigned long debugreg6; 517 /* Keep track of the exact dr7 value set by the user */ 518 unsigned long ptrace_dr7; 519 /* Fault info: */ 520 unsigned long cr2; 521 unsigned long trap_nr; 522 unsigned long error_code; 523#ifdef CONFIG_VM86 524 /* Virtual 86 mode info */ 525 struct vm86 *vm86; 526#endif 527 /* IO permissions: */ 528 struct io_bitmap *io_bitmap; 529 530 /* 531 * IOPL. Priviledge level dependent I/O permission which is 532 * emulated via the I/O bitmap to prevent user space from disabling 533 * interrupts. 534 */ 535 unsigned long iopl_emul; 536 537 mm_segment_t addr_limit; 538 539 unsigned int sig_on_uaccess_err:1; 540 unsigned int uaccess_err:1; /* uaccess failed */ 541 542 /* Floating point and extended processor state */ 543 struct fpu fpu; 544 /* 545 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 546 * the end. 547 */ 548}; 549 550/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 551static inline void arch_thread_struct_whitelist(unsigned long *offset, 552 unsigned long *size) 553{ 554 *offset = offsetof(struct thread_struct, fpu.state); 555 *size = fpu_kernel_xstate_size; 556} 557 558/* 559 * Thread-synchronous status. 560 * 561 * This is different from the flags in that nobody else 562 * ever touches our thread-synchronous status, so we don't 563 * have to worry about atomic accesses. 564 */ 565#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 566 567static inline void 568native_load_sp0(unsigned long sp0) 569{ 570 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 571} 572 573static inline void native_swapgs(void) 574{ 575#ifdef CONFIG_X86_64 576 asm volatile("swapgs" ::: "memory"); 577#endif 578} 579 580static inline unsigned long current_top_of_stack(void) 581{ 582 /* 583 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 584 * and around vm86 mode and sp0 on x86_64 is special because of the 585 * entry trampoline. 586 */ 587 return this_cpu_read_stable(cpu_current_top_of_stack); 588} 589 590static inline bool on_thread_stack(void) 591{ 592 return (unsigned long)(current_top_of_stack() - 593 current_stack_pointer) < THREAD_SIZE; 594} 595 596#ifdef CONFIG_PARAVIRT_XXL 597#include <asm/paravirt.h> 598#else 599#define __cpuid native_cpuid 600 601static inline void load_sp0(unsigned long sp0) 602{ 603 native_load_sp0(sp0); 604} 605 606#endif /* CONFIG_PARAVIRT_XXL */ 607 608/* Free all resources held by a thread. */ 609extern void release_thread(struct task_struct *); 610 611unsigned long get_wchan(struct task_struct *p); 612 613/* 614 * Generic CPUID function 615 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 616 * resulting in stale register contents being returned. 617 */ 618static inline void cpuid(unsigned int op, 619 unsigned int *eax, unsigned int *ebx, 620 unsigned int *ecx, unsigned int *edx) 621{ 622 *eax = op; 623 *ecx = 0; 624 __cpuid(eax, ebx, ecx, edx); 625} 626 627/* Some CPUID calls want 'count' to be placed in ecx */ 628static inline void cpuid_count(unsigned int op, int count, 629 unsigned int *eax, unsigned int *ebx, 630 unsigned int *ecx, unsigned int *edx) 631{ 632 *eax = op; 633 *ecx = count; 634 __cpuid(eax, ebx, ecx, edx); 635} 636 637/* 638 * CPUID functions returning a single datum 639 */ 640static inline unsigned int cpuid_eax(unsigned int op) 641{ 642 unsigned int eax, ebx, ecx, edx; 643 644 cpuid(op, &eax, &ebx, &ecx, &edx); 645 646 return eax; 647} 648 649static inline unsigned int cpuid_ebx(unsigned int op) 650{ 651 unsigned int eax, ebx, ecx, edx; 652 653 cpuid(op, &eax, &ebx, &ecx, &edx); 654 655 return ebx; 656} 657 658static inline unsigned int cpuid_ecx(unsigned int op) 659{ 660 unsigned int eax, ebx, ecx, edx; 661 662 cpuid(op, &eax, &ebx, &ecx, &edx); 663 664 return ecx; 665} 666 667static inline unsigned int cpuid_edx(unsigned int op) 668{ 669 unsigned int eax, ebx, ecx, edx; 670 671 cpuid(op, &eax, &ebx, &ecx, &edx); 672 673 return edx; 674} 675 676/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */ 677static __always_inline void rep_nop(void) 678{ 679 asm volatile("rep; nop" ::: "memory"); 680} 681 682static __always_inline void cpu_relax(void) 683{ 684 rep_nop(); 685} 686 687/* 688 * This function forces the icache and prefetched instruction stream to 689 * catch up with reality in two very specific cases: 690 * 691 * a) Text was modified using one virtual address and is about to be executed 692 * from the same physical page at a different virtual address. 693 * 694 * b) Text was modified on a different CPU, may subsequently be 695 * executed on this CPU, and you want to make sure the new version 696 * gets executed. This generally means you're calling this in a IPI. 697 * 698 * If you're calling this for a different reason, you're probably doing 699 * it wrong. 700 */ 701static inline void sync_core(void) 702{ 703 /* 704 * There are quite a few ways to do this. IRET-to-self is nice 705 * because it works on every CPU, at any CPL (so it's compatible 706 * with paravirtualization), and it never exits to a hypervisor. 707 * The only down sides are that it's a bit slow (it seems to be 708 * a bit more than 2x slower than the fastest options) and that 709 * it unmasks NMIs. The "push %cs" is needed because, in 710 * paravirtual environments, __KERNEL_CS may not be a valid CS 711 * value when we do IRET directly. 712 * 713 * In case NMI unmasking or performance ever becomes a problem, 714 * the next best option appears to be MOV-to-CR2 and an 715 * unconditional jump. That sequence also works on all CPUs, 716 * but it will fault at CPL3 (i.e. Xen PV). 717 * 718 * CPUID is the conventional way, but it's nasty: it doesn't 719 * exist on some 486-like CPUs, and it usually exits to a 720 * hypervisor. 721 * 722 * Like all of Linux's memory ordering operations, this is a 723 * compiler barrier as well. 724 */ 725#ifdef CONFIG_X86_32 726 asm volatile ( 727 "pushfl\n\t" 728 "pushl %%cs\n\t" 729 "pushl $1f\n\t" 730 "iret\n\t" 731 "1:" 732 : ASM_CALL_CONSTRAINT : : "memory"); 733#else 734 unsigned int tmp; 735 736 asm volatile ( 737 UNWIND_HINT_SAVE 738 "mov %%ss, %0\n\t" 739 "pushq %q0\n\t" 740 "pushq %%rsp\n\t" 741 "addq $8, (%%rsp)\n\t" 742 "pushfq\n\t" 743 "mov %%cs, %0\n\t" 744 "pushq %q0\n\t" 745 "pushq $1f\n\t" 746 "iretq\n\t" 747 UNWIND_HINT_RESTORE 748 "1:" 749 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory"); 750#endif 751} 752 753extern void select_idle_routine(const struct cpuinfo_x86 *c); 754extern void amd_e400_c1e_apic_setup(void); 755 756extern unsigned long boot_option_idle_override; 757 758enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 759 IDLE_POLL}; 760 761extern void enable_sep_cpu(void); 762extern int sysenter_setup(void); 763 764 765/* Defined in head.S */ 766extern struct desc_ptr early_gdt_descr; 767 768extern void switch_to_new_gdt(int); 769extern void load_direct_gdt(int); 770extern void load_fixmap_gdt(int); 771extern void load_percpu_segment(int); 772extern void cpu_init(void); 773extern void cr4_init(void); 774 775static inline unsigned long get_debugctlmsr(void) 776{ 777 unsigned long debugctlmsr = 0; 778 779#ifndef CONFIG_X86_DEBUGCTLMSR 780 if (boot_cpu_data.x86 < 6) 781 return 0; 782#endif 783 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 784 785 return debugctlmsr; 786} 787 788static inline void update_debugctlmsr(unsigned long debugctlmsr) 789{ 790#ifndef CONFIG_X86_DEBUGCTLMSR 791 if (boot_cpu_data.x86 < 6) 792 return; 793#endif 794 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 795} 796 797extern void set_task_blockstep(struct task_struct *task, bool on); 798 799/* Boot loader type from the setup header: */ 800extern int bootloader_type; 801extern int bootloader_version; 802 803extern char ignore_fpu_irq; 804 805#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 806#define ARCH_HAS_PREFETCHW 807#define ARCH_HAS_SPINLOCK_PREFETCH 808 809#ifdef CONFIG_X86_32 810# define BASE_PREFETCH "" 811# define ARCH_HAS_PREFETCH 812#else 813# define BASE_PREFETCH "prefetcht0 %P1" 814#endif 815 816/* 817 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 818 * 819 * It's not worth to care about 3dnow prefetches for the K6 820 * because they are microcoded there and very slow. 821 */ 822static inline void prefetch(const void *x) 823{ 824 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 825 X86_FEATURE_XMM, 826 "m" (*(const char *)x)); 827} 828 829/* 830 * 3dnow prefetch to get an exclusive cache line. 831 * Useful for spinlocks to avoid one state transition in the 832 * cache coherency protocol: 833 */ 834static inline void prefetchw(const void *x) 835{ 836 alternative_input(BASE_PREFETCH, "prefetchw %P1", 837 X86_FEATURE_3DNOWPREFETCH, 838 "m" (*(const char *)x)); 839} 840 841static inline void spin_lock_prefetch(const void *x) 842{ 843 prefetchw(x); 844} 845 846#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 847 TOP_OF_KERNEL_STACK_PADDING) 848 849#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 850 851#define task_pt_regs(task) \ 852({ \ 853 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 854 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 855 ((struct pt_regs *)__ptr) - 1; \ 856}) 857 858#ifdef CONFIG_X86_32 859/* 860 * User space process size: 3GB (default). 861 */ 862#define IA32_PAGE_OFFSET PAGE_OFFSET 863#define TASK_SIZE PAGE_OFFSET 864#define TASK_SIZE_LOW TASK_SIZE 865#define TASK_SIZE_MAX TASK_SIZE 866#define DEFAULT_MAP_WINDOW TASK_SIZE 867#define STACK_TOP TASK_SIZE 868#define STACK_TOP_MAX STACK_TOP 869 870#define INIT_THREAD { \ 871 .sp0 = TOP_OF_INIT_STACK, \ 872 .sysenter_cs = __KERNEL_CS, \ 873 .addr_limit = KERNEL_DS, \ 874} 875 876#define KSTK_ESP(task) (task_pt_regs(task)->sp) 877 878#else 879/* 880 * User space process size. This is the first address outside the user range. 881 * There are a few constraints that determine this: 882 * 883 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical 884 * address, then that syscall will enter the kernel with a 885 * non-canonical return address, and SYSRET will explode dangerously. 886 * We avoid this particular problem by preventing anything executable 887 * from being mapped at the maximum canonical address. 888 * 889 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the 890 * CPUs malfunction if they execute code from the highest canonical page. 891 * They'll speculate right off the end of the canonical space, and 892 * bad things happen. This is worked around in the same way as the 893 * Intel problem. 894 * 895 * With page table isolation enabled, we map the LDT in ... [stay tuned] 896 */ 897#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE) 898 899#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE) 900 901/* This decides where the kernel will search for a free chunk of vm 902 * space during mmap's. 903 */ 904#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \ 905 0xc0000000 : 0xFFFFe000) 906 907#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \ 908 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW) 909#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \ 910 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 911#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \ 912 IA32_PAGE_OFFSET : TASK_SIZE_MAX) 913 914#define STACK_TOP TASK_SIZE_LOW 915#define STACK_TOP_MAX TASK_SIZE_MAX 916 917#define INIT_THREAD { \ 918 .addr_limit = KERNEL_DS, \ 919} 920 921extern unsigned long KSTK_ESP(struct task_struct *task); 922 923#endif /* CONFIG_X86_64 */ 924 925extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 926 unsigned long new_sp); 927 928/* 929 * This decides where the kernel will search for a free chunk of vm 930 * space during mmap's. 931 */ 932#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 933#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 934 935#define KSTK_EIP(task) (task_pt_regs(task)->ip) 936 937/* Get/set a process' ability to use the timestamp counter instruction */ 938#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 939#define SET_TSC_CTL(val) set_tsc_mode((val)) 940 941extern int get_tsc_mode(unsigned long adr); 942extern int set_tsc_mode(unsigned int val); 943 944DECLARE_PER_CPU(u64, msr_misc_features_shadow); 945 946/* Register/unregister a process' MPX related resource */ 947#define MPX_ENABLE_MANAGEMENT() mpx_enable_management() 948#define MPX_DISABLE_MANAGEMENT() mpx_disable_management() 949 950#ifdef CONFIG_X86_INTEL_MPX 951extern int mpx_enable_management(void); 952extern int mpx_disable_management(void); 953#else 954static inline int mpx_enable_management(void) 955{ 956 return -EINVAL; 957} 958static inline int mpx_disable_management(void) 959{ 960 return -EINVAL; 961} 962#endif /* CONFIG_X86_INTEL_MPX */ 963 964#ifdef CONFIG_CPU_SUP_AMD 965extern u16 amd_get_nb_id(int cpu); 966extern u32 amd_get_nodes_per_socket(void); 967#else 968static inline u16 amd_get_nb_id(int cpu) { return 0; } 969static inline u32 amd_get_nodes_per_socket(void) { return 0; } 970#endif 971 972static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 973{ 974 uint32_t base, eax, signature[3]; 975 976 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 977 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 978 979 if (!memcmp(sig, signature, 12) && 980 (leaves == 0 || ((eax - base) >= leaves))) 981 return base; 982 } 983 984 return 0; 985} 986 987extern unsigned long arch_align_stack(unsigned long sp); 988void free_init_pages(const char *what, unsigned long begin, unsigned long end); 989extern void free_kernel_image_pages(const char *what, void *begin, void *end); 990 991void default_idle(void); 992#ifdef CONFIG_XEN 993bool xen_set_default_idle(void); 994#else 995#define xen_set_default_idle 0 996#endif 997 998void stop_this_cpu(void *dummy); 999void microcode_check(void); 1000 1001enum l1tf_mitigations { 1002 L1TF_MITIGATION_OFF, 1003 L1TF_MITIGATION_FLUSH_NOWARN, 1004 L1TF_MITIGATION_FLUSH, 1005 L1TF_MITIGATION_FLUSH_NOSMT, 1006 L1TF_MITIGATION_FULL, 1007 L1TF_MITIGATION_FULL_FORCE 1008}; 1009 1010extern enum l1tf_mitigations l1tf_mitigation; 1011 1012enum mds_mitigations { 1013 MDS_MITIGATION_OFF, 1014 MDS_MITIGATION_FULL, 1015 MDS_MITIGATION_VMWERV, 1016}; 1017 1018enum taa_mitigations { 1019 TAA_MITIGATION_OFF, 1020 TAA_MITIGATION_UCODE_NEEDED, 1021 TAA_MITIGATION_VERW, 1022 TAA_MITIGATION_TSX_DISABLED, 1023}; 1024 1025#endif /* _ASM_X86_PROCESSOR_H */