at v5.5 524 lines 17 kB view raw
1/* 2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu> 3 * Copyright (C) 2008-2009 PetaLogix 4 * Copyright (C) 2006 Atmark Techno, Inc. 5 * 6 * This file is subject to the terms and conditions of the GNU General Public 7 * License. See the file "COPYING" in the main directory of this archive 8 * for more details. 9 */ 10 11#ifndef _ASM_MICROBLAZE_PGTABLE_H 12#define _ASM_MICROBLAZE_PGTABLE_H 13 14#include <asm/setup.h> 15 16#ifndef __ASSEMBLY__ 17extern int mem_init_done; 18#endif 19 20#ifndef CONFIG_MMU 21 22#define pgd_present(pgd) (1) /* pages are always present on non MMU */ 23#define pgd_none(pgd) (0) 24#define pgd_bad(pgd) (0) 25#define pgd_clear(pgdp) 26#define kern_addr_valid(addr) (1) 27#define pmd_offset(a, b) ((void *) 0) 28 29#define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */ 30#define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */ 31#define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */ 32#define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */ 33#define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */ 34 35#define pgprot_noncached(x) (x) 36#define pgprot_writecombine pgprot_noncached 37#define pgprot_device pgprot_noncached 38 39#define __swp_type(x) (0) 40#define __swp_offset(x) (0) 41#define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 42#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 43#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 44 45#define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 46 47#define swapper_pg_dir ((pgd_t *) NULL) 48 49#define arch_enter_lazy_cpu_mode() do {} while (0) 50 51#define pgprot_noncached_wc(prot) prot 52 53/* 54 * All 32bit addresses are effectively valid for vmalloc... 55 * Sort of meaningless for non-VM targets. 56 */ 57#define VMALLOC_START 0 58#define VMALLOC_END 0xffffffff 59 60#else /* CONFIG_MMU */ 61 62#include <asm-generic/pgtable-nopmd.h> 63 64#ifdef __KERNEL__ 65#ifndef __ASSEMBLY__ 66 67#include <linux/sched.h> 68#include <linux/threads.h> 69#include <asm/processor.h> /* For TASK_SIZE */ 70#include <asm/mmu.h> 71#include <asm/page.h> 72 73#define FIRST_USER_ADDRESS 0UL 74 75extern unsigned long va_to_phys(unsigned long address); 76extern pte_t *va_to_pte(unsigned long address); 77 78/* 79 * The following only work if pte_present() is true. 80 * Undefined behaviour if not.. 81 */ 82 83static inline int pte_special(pte_t pte) { return 0; } 84 85static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 86 87/* Start and end of the vmalloc area. */ 88/* Make sure to map the vmalloc area above the pinned kernel memory area 89 of 32Mb. */ 90#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE) 91#define VMALLOC_END ioremap_bot 92 93#endif /* __ASSEMBLY__ */ 94 95/* 96 * Macro to mark a page protection value as "uncacheable". 97 */ 98 99#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \ 100 _PAGE_WRITETHRU) 101 102#define pgprot_noncached(prot) \ 103 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 104 _PAGE_NO_CACHE | _PAGE_GUARDED)) 105 106#define pgprot_noncached_wc(prot) \ 107 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 108 _PAGE_NO_CACHE)) 109 110/* 111 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash 112 * table containing PTEs, together with a set of 16 segment registers, to 113 * define the virtual to physical address mapping. 114 * 115 * We use the hash table as an extended TLB, i.e. a cache of currently 116 * active mappings. We maintain a two-level page table tree, much 117 * like that used by the i386, for the sake of the Linux memory 118 * management code. Low-level assembler code in hashtable.S 119 * (procedure hash_page) is responsible for extracting ptes from the 120 * tree and putting them into the hash table when necessary, and 121 * updating the accessed and modified bits in the page table tree. 122 */ 123 124/* 125 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The 126 * instruction and data sides share a unified, 64-entry, semi-associative 127 * TLB which is maintained totally under software control. In addition, the 128 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative 129 * TLB which serves as a first level to the shared TLB. These two TLBs are 130 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions). 131 */ 132 133/* 134 * The normal case is that PTEs are 32-bits and we have a 1-page 135 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 136 * 137 */ 138 139/* PGDIR_SHIFT determines what a top-level page table entry can map */ 140#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT) 141#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 142#define PGDIR_MASK (~(PGDIR_SIZE-1)) 143 144/* 145 * entries per page directory level: our page-table tree is two-level, so 146 * we don't really have any PMD directory. 147 */ 148#define PTRS_PER_PTE (1 << PTE_SHIFT) 149#define PTRS_PER_PMD 1 150#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 151 152#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 153#define FIRST_USER_PGD_NR 0 154 155#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 156#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 157 158#define pte_ERROR(e) \ 159 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \ 160 __FILE__, __LINE__, pte_val(e)) 161#define pgd_ERROR(e) \ 162 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \ 163 __FILE__, __LINE__, pgd_val(e)) 164 165/* 166 * Bits in a linux-style PTE. These match the bits in the 167 * (hardware-defined) PTE as closely as possible. 168 */ 169 170/* There are several potential gotchas here. The hardware TLBLO 171 * field looks like this: 172 * 173 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 174 * RPN..................... 0 0 EX WR ZSEL....... W I M G 175 * 176 * Where possible we make the Linux PTE bits match up with this 177 * 178 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can 179 * support down to 1k pages), this is done in the TLBMiss exception 180 * handler. 181 * - We use only zones 0 (for kernel pages) and 1 (for user pages) 182 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 183 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct 184 * zone. 185 * - PRESENT *must* be in the bottom two bits because swap cache 186 * entries use the top 30 bits. Because 4xx doesn't support SMP 187 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 188 * is cleared in the TLB miss handler before the TLB entry is loaded. 189 * - All other bits of the PTE are loaded into TLBLO without 190 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 191 * software PTE bits. We actually use bits 21, 24, 25, and 192 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 193 * PRESENT. 194 */ 195 196/* Definitions for MicroBlaze. */ 197#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 198#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 199#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 200#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 201#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 202#define _PAGE_RW 0x040 /* software: Writes permitted */ 203#define _PAGE_DIRTY 0x080 /* software: dirty page */ 204#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 205#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 206#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 207#define _PMD_PRESENT PAGE_MASK 208 209/* 210 * Some bits are unused... 211 */ 212#ifndef _PAGE_HASHPTE 213#define _PAGE_HASHPTE 0 214#endif 215#ifndef _PTE_NONE_MASK 216#define _PTE_NONE_MASK 0 217#endif 218#ifndef _PAGE_SHARED 219#define _PAGE_SHARED 0 220#endif 221#ifndef _PAGE_EXEC 222#define _PAGE_EXEC 0 223#endif 224 225#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 226 227/* 228 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 229 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 230 * to have it in the Linux PTE, and in fact the bit could be reused for 231 * another purpose. -- paulus. 232 */ 233#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 234#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 235 236#define _PAGE_KERNEL \ 237 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC) 238 239#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 240 241#define PAGE_NONE __pgprot(_PAGE_BASE) 242#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 243#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 244#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 245#define PAGE_SHARED_X \ 246 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 247#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 248#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 249 250#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 251#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) 252#define PAGE_KERNEL_CI __pgprot(_PAGE_IO) 253 254/* 255 * We consider execute permission the same as read. 256 * Also, write permissions imply read permissions. 257 */ 258#define __P000 PAGE_NONE 259#define __P001 PAGE_READONLY_X 260#define __P010 PAGE_COPY 261#define __P011 PAGE_COPY_X 262#define __P100 PAGE_READONLY 263#define __P101 PAGE_READONLY_X 264#define __P110 PAGE_COPY 265#define __P111 PAGE_COPY_X 266 267#define __S000 PAGE_NONE 268#define __S001 PAGE_READONLY_X 269#define __S010 PAGE_SHARED 270#define __S011 PAGE_SHARED_X 271#define __S100 PAGE_READONLY 272#define __S101 PAGE_READONLY_X 273#define __S110 PAGE_SHARED 274#define __S111 PAGE_SHARED_X 275 276#ifndef __ASSEMBLY__ 277/* 278 * ZERO_PAGE is a global shared page that is always zero: used 279 * for zero-mapped memory areas etc.. 280 */ 281extern unsigned long empty_zero_page[1024]; 282#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 283 284#endif /* __ASSEMBLY__ */ 285 286#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 287#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 288#define pte_clear(mm, addr, ptep) \ 289 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 290 291#define pmd_none(pmd) (!pmd_val(pmd)) 292#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) 293#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) 294#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 295 296#define pte_page(x) (mem_map + (unsigned long) \ 297 ((pte_val(x) - memory_start) >> PAGE_SHIFT)) 298#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 299 300#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 301 302#define pfn_pte(pfn, prot) \ 303 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot)) 304 305#ifndef __ASSEMBLY__ 306/* 307 * The following only work if pte_present() is true. 308 * Undefined behaviour if not.. 309 */ 310static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 311static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 312static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 313static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 314static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 315 316static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 317static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 318 319static inline pte_t pte_rdprotect(pte_t pte) \ 320 { pte_val(pte) &= ~_PAGE_USER; return pte; } 321static inline pte_t pte_wrprotect(pte_t pte) \ 322 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 323static inline pte_t pte_exprotect(pte_t pte) \ 324 { pte_val(pte) &= ~_PAGE_EXEC; return pte; } 325static inline pte_t pte_mkclean(pte_t pte) \ 326 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 327static inline pte_t pte_mkold(pte_t pte) \ 328 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 329 330static inline pte_t pte_mkread(pte_t pte) \ 331 { pte_val(pte) |= _PAGE_USER; return pte; } 332static inline pte_t pte_mkexec(pte_t pte) \ 333 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 334static inline pte_t pte_mkwrite(pte_t pte) \ 335 { pte_val(pte) |= _PAGE_RW; return pte; } 336static inline pte_t pte_mkdirty(pte_t pte) \ 337 { pte_val(pte) |= _PAGE_DIRTY; return pte; } 338static inline pte_t pte_mkyoung(pte_t pte) \ 339 { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 340 341/* 342 * Conversion functions: convert a page and protection to a page entry, 343 * and a page entry and page directory to the page they refer to. 344 */ 345 346static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot) 347{ 348 pte_t pte; 349 pte_val(pte) = physpage | pgprot_val(pgprot); 350 return pte; 351} 352 353#define mk_pte(page, pgprot) \ 354({ \ 355 pte_t pte; \ 356 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \ 357 pgprot_val(pgprot); \ 358 pte; \ 359}) 360 361static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 362{ 363 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 364 return pte; 365} 366 367/* 368 * Atomic PTE updates. 369 * 370 * pte_update clears and sets bit atomically, and returns 371 * the old pte value. 372 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant 373 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits. 374 */ 375static inline unsigned long pte_update(pte_t *p, unsigned long clr, 376 unsigned long set) 377{ 378 unsigned long flags, old, tmp; 379 380 raw_local_irq_save(flags); 381 382 __asm__ __volatile__( "lw %0, %2, r0 \n" 383 "andn %1, %0, %3 \n" 384 "or %1, %1, %4 \n" 385 "sw %1, %2, r0 \n" 386 : "=&r" (old), "=&r" (tmp) 387 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set) 388 : "cc"); 389 390 raw_local_irq_restore(flags); 391 392 return old; 393} 394 395/* 396 * set_pte stores a linux PTE into the linux page table. 397 */ 398static inline void set_pte(struct mm_struct *mm, unsigned long addr, 399 pte_t *ptep, pte_t pte) 400{ 401 *ptep = pte; 402} 403 404static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 405 pte_t *ptep, pte_t pte) 406{ 407 *ptep = pte; 408} 409 410#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 411static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 412 unsigned long address, pte_t *ptep) 413{ 414 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; 415} 416 417static inline int ptep_test_and_clear_dirty(struct mm_struct *mm, 418 unsigned long addr, pte_t *ptep) 419{ 420 return (pte_update(ptep, \ 421 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 422} 423 424#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 425static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 426 unsigned long addr, pte_t *ptep) 427{ 428 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 429} 430 431/*static inline void ptep_set_wrprotect(struct mm_struct *mm, 432 unsigned long addr, pte_t *ptep) 433{ 434 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 435}*/ 436 437static inline void ptep_mkdirty(struct mm_struct *mm, 438 unsigned long addr, pte_t *ptep) 439{ 440 pte_update(ptep, 0, _PAGE_DIRTY); 441} 442 443/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/ 444 445/* Convert pmd entry to page */ 446/* our pmd entry is an effective address of pte table*/ 447/* returns effective address of the pmd entry*/ 448#define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 449 450/* returns struct *page of the pmd entry*/ 451#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 452 453/* to find an entry in a kernel page-table-directory */ 454#define pgd_offset_k(address) pgd_offset(&init_mm, address) 455 456/* to find an entry in a page-table-directory */ 457#define pgd_index(address) ((address) >> PGDIR_SHIFT) 458#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 459 460/* Find an entry in the third-level page table.. */ 461#define pte_index(address) \ 462 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 463#define pte_offset_kernel(dir, addr) \ 464 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 465#define pte_offset_map(dir, addr) \ 466 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) 467 468#define pte_unmap(pte) kunmap_atomic(pte) 469 470extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 471 472/* 473 * Encode and decode a swap entry. 474 * Note that the bits we use in a PTE for representing a swap entry 475 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit 476 * (if used). -- paulus 477 */ 478#define __swp_type(entry) ((entry).val & 0x3f) 479#define __swp_offset(entry) ((entry).val >> 6) 480#define __swp_entry(type, offset) \ 481 ((swp_entry_t) { (type) | ((offset) << 6) }) 482#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) 483#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) 484 485extern unsigned long iopa(unsigned long addr); 486 487/* Values for nocacheflag and cmode */ 488/* These are not used by the APUS kernel_map, but prevents 489 * compilation errors. 490 */ 491#define IOMAP_FULL_CACHING 0 492#define IOMAP_NOCACHE_SER 1 493#define IOMAP_NOCACHE_NONSER 2 494#define IOMAP_NO_COPYBACK 3 495 496/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 497#define kern_addr_valid(addr) (1) 498 499void do_page_fault(struct pt_regs *regs, unsigned long address, 500 unsigned long error_code); 501 502void mapin_ram(void); 503int map_page(unsigned long va, phys_addr_t pa, int flags); 504 505extern int mem_init_done; 506 507asmlinkage void __init mmu_init(void); 508 509void __init *early_get_page(void); 510 511#endif /* __ASSEMBLY__ */ 512#endif /* __KERNEL__ */ 513 514#endif /* CONFIG_MMU */ 515 516#ifndef __ASSEMBLY__ 517#include <asm-generic/pgtable.h> 518 519extern unsigned long ioremap_bot, ioremap_base; 520 521void setup_memory(void); 522#endif /* __ASSEMBLY__ */ 523 524#endif /* _ASM_MICROBLAZE_PGTABLE_H */