Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3 * Copyright (C) 2008-2009 PetaLogix
4 * Copyright (C) 2006 Atmark Techno, Inc.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10
11#ifndef _ASM_MICROBLAZE_PGTABLE_H
12#define _ASM_MICROBLAZE_PGTABLE_H
13
14#include <asm/setup.h>
15
16#ifndef __ASSEMBLY__
17extern int mem_init_done;
18#endif
19
20#ifndef CONFIG_MMU
21
22#define pgd_present(pgd) (1) /* pages are always present on non MMU */
23#define pgd_none(pgd) (0)
24#define pgd_bad(pgd) (0)
25#define pgd_clear(pgdp)
26#define kern_addr_valid(addr) (1)
27#define pmd_offset(a, b) ((void *) 0)
28
29#define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */
30#define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */
31#define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */
32#define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */
33#define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */
34
35#define pgprot_noncached(x) (x)
36#define pgprot_writecombine pgprot_noncached
37#define pgprot_device pgprot_noncached
38
39#define __swp_type(x) (0)
40#define __swp_offset(x) (0)
41#define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
42#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
43#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
44
45#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
46
47#define swapper_pg_dir ((pgd_t *) NULL)
48
49#define arch_enter_lazy_cpu_mode() do {} while (0)
50
51#define pgprot_noncached_wc(prot) prot
52
53/*
54 * All 32bit addresses are effectively valid for vmalloc...
55 * Sort of meaningless for non-VM targets.
56 */
57#define VMALLOC_START 0
58#define VMALLOC_END 0xffffffff
59
60#else /* CONFIG_MMU */
61
62#include <asm-generic/pgtable-nopmd.h>
63
64#ifdef __KERNEL__
65#ifndef __ASSEMBLY__
66
67#include <linux/sched.h>
68#include <linux/threads.h>
69#include <asm/processor.h> /* For TASK_SIZE */
70#include <asm/mmu.h>
71#include <asm/page.h>
72
73#define FIRST_USER_ADDRESS 0UL
74
75extern unsigned long va_to_phys(unsigned long address);
76extern pte_t *va_to_pte(unsigned long address);
77
78/*
79 * The following only work if pte_present() is true.
80 * Undefined behaviour if not..
81 */
82
83static inline int pte_special(pte_t pte) { return 0; }
84
85static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
86
87/* Start and end of the vmalloc area. */
88/* Make sure to map the vmalloc area above the pinned kernel memory area
89 of 32Mb. */
90#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
91#define VMALLOC_END ioremap_bot
92
93#endif /* __ASSEMBLY__ */
94
95/*
96 * Macro to mark a page protection value as "uncacheable".
97 */
98
99#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
100 _PAGE_WRITETHRU)
101
102#define pgprot_noncached(prot) \
103 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
104 _PAGE_NO_CACHE | _PAGE_GUARDED))
105
106#define pgprot_noncached_wc(prot) \
107 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
108 _PAGE_NO_CACHE))
109
110/*
111 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
112 * table containing PTEs, together with a set of 16 segment registers, to
113 * define the virtual to physical address mapping.
114 *
115 * We use the hash table as an extended TLB, i.e. a cache of currently
116 * active mappings. We maintain a two-level page table tree, much
117 * like that used by the i386, for the sake of the Linux memory
118 * management code. Low-level assembler code in hashtable.S
119 * (procedure hash_page) is responsible for extracting ptes from the
120 * tree and putting them into the hash table when necessary, and
121 * updating the accessed and modified bits in the page table tree.
122 */
123
124/*
125 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
126 * instruction and data sides share a unified, 64-entry, semi-associative
127 * TLB which is maintained totally under software control. In addition, the
128 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
129 * TLB which serves as a first level to the shared TLB. These two TLBs are
130 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
131 */
132
133/*
134 * The normal case is that PTEs are 32-bits and we have a 1-page
135 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
136 *
137 */
138
139/* PGDIR_SHIFT determines what a top-level page table entry can map */
140#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
141#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
142#define PGDIR_MASK (~(PGDIR_SIZE-1))
143
144/*
145 * entries per page directory level: our page-table tree is two-level, so
146 * we don't really have any PMD directory.
147 */
148#define PTRS_PER_PTE (1 << PTE_SHIFT)
149#define PTRS_PER_PMD 1
150#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
151
152#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
153#define FIRST_USER_PGD_NR 0
154
155#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
156#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
157
158#define pte_ERROR(e) \
159 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
160 __FILE__, __LINE__, pte_val(e))
161#define pgd_ERROR(e) \
162 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
163 __FILE__, __LINE__, pgd_val(e))
164
165/*
166 * Bits in a linux-style PTE. These match the bits in the
167 * (hardware-defined) PTE as closely as possible.
168 */
169
170/* There are several potential gotchas here. The hardware TLBLO
171 * field looks like this:
172 *
173 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
174 * RPN..................... 0 0 EX WR ZSEL....... W I M G
175 *
176 * Where possible we make the Linux PTE bits match up with this
177 *
178 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
179 * support down to 1k pages), this is done in the TLBMiss exception
180 * handler.
181 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
182 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
183 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct
184 * zone.
185 * - PRESENT *must* be in the bottom two bits because swap cache
186 * entries use the top 30 bits. Because 4xx doesn't support SMP
187 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
188 * is cleared in the TLB miss handler before the TLB entry is loaded.
189 * - All other bits of the PTE are loaded into TLBLO without
190 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
191 * software PTE bits. We actually use bits 21, 24, 25, and
192 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
193 * PRESENT.
194 */
195
196/* Definitions for MicroBlaze. */
197#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
198#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
199#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
200#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
201#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
202#define _PAGE_RW 0x040 /* software: Writes permitted */
203#define _PAGE_DIRTY 0x080 /* software: dirty page */
204#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
205#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
206#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
207#define _PMD_PRESENT PAGE_MASK
208
209/*
210 * Some bits are unused...
211 */
212#ifndef _PAGE_HASHPTE
213#define _PAGE_HASHPTE 0
214#endif
215#ifndef _PTE_NONE_MASK
216#define _PTE_NONE_MASK 0
217#endif
218#ifndef _PAGE_SHARED
219#define _PAGE_SHARED 0
220#endif
221#ifndef _PAGE_EXEC
222#define _PAGE_EXEC 0
223#endif
224
225#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
226
227/*
228 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
229 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
230 * to have it in the Linux PTE, and in fact the bit could be reused for
231 * another purpose. -- paulus.
232 */
233#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
234#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
235
236#define _PAGE_KERNEL \
237 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
238
239#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
240
241#define PAGE_NONE __pgprot(_PAGE_BASE)
242#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
243#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
244#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
245#define PAGE_SHARED_X \
246 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
247#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
248#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
249
250#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
251#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
252#define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
253
254/*
255 * We consider execute permission the same as read.
256 * Also, write permissions imply read permissions.
257 */
258#define __P000 PAGE_NONE
259#define __P001 PAGE_READONLY_X
260#define __P010 PAGE_COPY
261#define __P011 PAGE_COPY_X
262#define __P100 PAGE_READONLY
263#define __P101 PAGE_READONLY_X
264#define __P110 PAGE_COPY
265#define __P111 PAGE_COPY_X
266
267#define __S000 PAGE_NONE
268#define __S001 PAGE_READONLY_X
269#define __S010 PAGE_SHARED
270#define __S011 PAGE_SHARED_X
271#define __S100 PAGE_READONLY
272#define __S101 PAGE_READONLY_X
273#define __S110 PAGE_SHARED
274#define __S111 PAGE_SHARED_X
275
276#ifndef __ASSEMBLY__
277/*
278 * ZERO_PAGE is a global shared page that is always zero: used
279 * for zero-mapped memory areas etc..
280 */
281extern unsigned long empty_zero_page[1024];
282#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
283
284#endif /* __ASSEMBLY__ */
285
286#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
287#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
288#define pte_clear(mm, addr, ptep) \
289 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
290
291#define pmd_none(pmd) (!pmd_val(pmd))
292#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
293#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
294#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
295
296#define pte_page(x) (mem_map + (unsigned long) \
297 ((pte_val(x) - memory_start) >> PAGE_SHIFT))
298#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
299
300#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
301
302#define pfn_pte(pfn, prot) \
303 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
304
305#ifndef __ASSEMBLY__
306/*
307 * The following only work if pte_present() is true.
308 * Undefined behaviour if not..
309 */
310static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
311static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
312static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
313static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
314static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
315
316static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
317static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
318
319static inline pte_t pte_rdprotect(pte_t pte) \
320 { pte_val(pte) &= ~_PAGE_USER; return pte; }
321static inline pte_t pte_wrprotect(pte_t pte) \
322 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
323static inline pte_t pte_exprotect(pte_t pte) \
324 { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
325static inline pte_t pte_mkclean(pte_t pte) \
326 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
327static inline pte_t pte_mkold(pte_t pte) \
328 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
329
330static inline pte_t pte_mkread(pte_t pte) \
331 { pte_val(pte) |= _PAGE_USER; return pte; }
332static inline pte_t pte_mkexec(pte_t pte) \
333 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
334static inline pte_t pte_mkwrite(pte_t pte) \
335 { pte_val(pte) |= _PAGE_RW; return pte; }
336static inline pte_t pte_mkdirty(pte_t pte) \
337 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
338static inline pte_t pte_mkyoung(pte_t pte) \
339 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
340
341/*
342 * Conversion functions: convert a page and protection to a page entry,
343 * and a page entry and page directory to the page they refer to.
344 */
345
346static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
347{
348 pte_t pte;
349 pte_val(pte) = physpage | pgprot_val(pgprot);
350 return pte;
351}
352
353#define mk_pte(page, pgprot) \
354({ \
355 pte_t pte; \
356 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \
357 pgprot_val(pgprot); \
358 pte; \
359})
360
361static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
362{
363 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
364 return pte;
365}
366
367/*
368 * Atomic PTE updates.
369 *
370 * pte_update clears and sets bit atomically, and returns
371 * the old pte value.
372 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
373 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
374 */
375static inline unsigned long pte_update(pte_t *p, unsigned long clr,
376 unsigned long set)
377{
378 unsigned long flags, old, tmp;
379
380 raw_local_irq_save(flags);
381
382 __asm__ __volatile__( "lw %0, %2, r0 \n"
383 "andn %1, %0, %3 \n"
384 "or %1, %1, %4 \n"
385 "sw %1, %2, r0 \n"
386 : "=&r" (old), "=&r" (tmp)
387 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
388 : "cc");
389
390 raw_local_irq_restore(flags);
391
392 return old;
393}
394
395/*
396 * set_pte stores a linux PTE into the linux page table.
397 */
398static inline void set_pte(struct mm_struct *mm, unsigned long addr,
399 pte_t *ptep, pte_t pte)
400{
401 *ptep = pte;
402}
403
404static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
405 pte_t *ptep, pte_t pte)
406{
407 *ptep = pte;
408}
409
410#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
411static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
412 unsigned long address, pte_t *ptep)
413{
414 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
415}
416
417static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
418 unsigned long addr, pte_t *ptep)
419{
420 return (pte_update(ptep, \
421 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
422}
423
424#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
425static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
426 unsigned long addr, pte_t *ptep)
427{
428 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
429}
430
431/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
432 unsigned long addr, pte_t *ptep)
433{
434 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
435}*/
436
437static inline void ptep_mkdirty(struct mm_struct *mm,
438 unsigned long addr, pte_t *ptep)
439{
440 pte_update(ptep, 0, _PAGE_DIRTY);
441}
442
443/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
444
445/* Convert pmd entry to page */
446/* our pmd entry is an effective address of pte table*/
447/* returns effective address of the pmd entry*/
448#define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
449
450/* returns struct *page of the pmd entry*/
451#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
452
453/* to find an entry in a kernel page-table-directory */
454#define pgd_offset_k(address) pgd_offset(&init_mm, address)
455
456/* to find an entry in a page-table-directory */
457#define pgd_index(address) ((address) >> PGDIR_SHIFT)
458#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
459
460/* Find an entry in the third-level page table.. */
461#define pte_index(address) \
462 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
463#define pte_offset_kernel(dir, addr) \
464 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
465#define pte_offset_map(dir, addr) \
466 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
467
468#define pte_unmap(pte) kunmap_atomic(pte)
469
470extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
471
472/*
473 * Encode and decode a swap entry.
474 * Note that the bits we use in a PTE for representing a swap entry
475 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
476 * (if used). -- paulus
477 */
478#define __swp_type(entry) ((entry).val & 0x3f)
479#define __swp_offset(entry) ((entry).val >> 6)
480#define __swp_entry(type, offset) \
481 ((swp_entry_t) { (type) | ((offset) << 6) })
482#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
483#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
484
485extern unsigned long iopa(unsigned long addr);
486
487/* Values for nocacheflag and cmode */
488/* These are not used by the APUS kernel_map, but prevents
489 * compilation errors.
490 */
491#define IOMAP_FULL_CACHING 0
492#define IOMAP_NOCACHE_SER 1
493#define IOMAP_NOCACHE_NONSER 2
494#define IOMAP_NO_COPYBACK 3
495
496/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
497#define kern_addr_valid(addr) (1)
498
499void do_page_fault(struct pt_regs *regs, unsigned long address,
500 unsigned long error_code);
501
502void mapin_ram(void);
503int map_page(unsigned long va, phys_addr_t pa, int flags);
504
505extern int mem_init_done;
506
507asmlinkage void __init mmu_init(void);
508
509void __init *early_get_page(void);
510
511#endif /* __ASSEMBLY__ */
512#endif /* __KERNEL__ */
513
514#endif /* CONFIG_MMU */
515
516#ifndef __ASSEMBLY__
517#include <asm-generic/pgtable.h>
518
519extern unsigned long ioremap_bot, ioremap_base;
520
521void setup_memory(void);
522#endif /* __ASSEMBLY__ */
523
524#endif /* _ASM_MICROBLAZE_PGTABLE_H */