Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/errno.h>
5#include <linux/kernel.h>
6#include <linux/mm.h>
7#include <linux/smp.h>
8#include <linux/prctl.h>
9#include <linux/slab.h>
10#include <linux/sched.h>
11#include <linux/sched/idle.h>
12#include <linux/sched/debug.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/init.h>
16#include <linux/export.h>
17#include <linux/pm.h>
18#include <linux/tick.h>
19#include <linux/random.h>
20#include <linux/user-return-notifier.h>
21#include <linux/dmi.h>
22#include <linux/utsname.h>
23#include <linux/stackprotector.h>
24#include <linux/cpuidle.h>
25#include <linux/acpi.h>
26#include <linux/elf-randomize.h>
27#include <trace/events/power.h>
28#include <linux/hw_breakpoint.h>
29#include <asm/cpu.h>
30#include <asm/apic.h>
31#include <asm/syscalls.h>
32#include <linux/uaccess.h>
33#include <asm/mwait.h>
34#include <asm/fpu/internal.h>
35#include <asm/debugreg.h>
36#include <asm/nmi.h>
37#include <asm/tlbflush.h>
38#include <asm/mce.h>
39#include <asm/vm86.h>
40#include <asm/switch_to.h>
41#include <asm/desc.h>
42#include <asm/prctl.h>
43#include <asm/spec-ctrl.h>
44#include <asm/io_bitmap.h>
45#include <asm/proto.h>
46
47#include "process.h"
48
49/*
50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
52 * so they are allowed to end up in the .data..cacheline_aligned
53 * section. Since TSS's are completely CPU-local, we want them
54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 */
56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 .x86_tss = {
58 /*
59 * .sp0 is only used when entering ring 0 from a lower
60 * privilege level. Since the init task never runs anything
61 * but ring 0 code, there is no need for a valid value here.
62 * Poison it.
63 */
64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65
66 /*
67 * .sp1 is cpu_current_top_of_stack. The init task never
68 * runs user code, but cpu_current_top_of_stack should still
69 * be well defined before the first context switch.
70 */
71 .sp1 = TOP_OF_INIT_STACK,
72
73#ifdef CONFIG_X86_32
74 .ss0 = __KERNEL_DS,
75 .ss1 = __KERNEL_CS,
76#endif
77 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
78 },
79};
80EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
81
82DEFINE_PER_CPU(bool, __tss_limit_invalid);
83EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
84
85/*
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
88 */
89int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90{
91 memcpy(dst, src, arch_task_struct_size);
92#ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94#endif
95
96 return fpu__copy(dst, src);
97}
98
99/*
100 * Free current thread data structures etc..
101 */
102void exit_thread(struct task_struct *tsk)
103{
104 struct thread_struct *t = &tsk->thread;
105 struct fpu *fpu = &t->fpu;
106
107 if (test_thread_flag(TIF_IO_BITMAP))
108 io_bitmap_exit();
109
110 free_vm86(t);
111
112 fpu__drop(fpu);
113}
114
115static int set_new_tls(struct task_struct *p, unsigned long tls)
116{
117 struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119 if (in_ia32_syscall())
120 return do_set_thread_area(p, -1, utls, 0);
121 else
122 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123}
124
125int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
126 unsigned long arg, struct task_struct *p, unsigned long tls)
127{
128 struct inactive_task_frame *frame;
129 struct fork_frame *fork_frame;
130 struct pt_regs *childregs;
131 int ret = 0;
132
133 childregs = task_pt_regs(p);
134 fork_frame = container_of(childregs, struct fork_frame, regs);
135 frame = &fork_frame->frame;
136
137 frame->bp = 0;
138 frame->ret_addr = (unsigned long) ret_from_fork;
139 p->thread.sp = (unsigned long) fork_frame;
140 p->thread.io_bitmap = NULL;
141 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143#ifdef CONFIG_X86_64
144 savesegment(gs, p->thread.gsindex);
145 p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
146 savesegment(fs, p->thread.fsindex);
147 p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
148 savesegment(es, p->thread.es);
149 savesegment(ds, p->thread.ds);
150#else
151 p->thread.sp0 = (unsigned long) (childregs + 1);
152 /*
153 * Clear all status flags including IF and set fixed bit. 64bit
154 * does not have this initialization as the frame does not contain
155 * flags. The flags consistency (especially vs. AC) is there
156 * ensured via objtool, which lacks 32bit support.
157 */
158 frame->flags = X86_EFLAGS_FIXED;
159#endif
160
161 /* Kernel thread ? */
162 if (unlikely(p->flags & PF_KTHREAD)) {
163 memset(childregs, 0, sizeof(struct pt_regs));
164 kthread_frame_init(frame, sp, arg);
165 return 0;
166 }
167
168 frame->bx = 0;
169 *childregs = *current_pt_regs();
170 childregs->ax = 0;
171 if (sp)
172 childregs->sp = sp;
173
174#ifdef CONFIG_X86_32
175 task_user_gs(p) = get_user_gs(current_pt_regs());
176#endif
177
178 /* Set a new TLS for the child thread? */
179 if (clone_flags & CLONE_SETTLS)
180 ret = set_new_tls(p, tls);
181
182 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
183 io_bitmap_share(p);
184
185 return ret;
186}
187
188void flush_thread(void)
189{
190 struct task_struct *tsk = current;
191
192 flush_ptrace_hw_breakpoint(tsk);
193 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
194
195 fpu__clear(&tsk->thread.fpu);
196}
197
198void disable_TSC(void)
199{
200 preempt_disable();
201 if (!test_and_set_thread_flag(TIF_NOTSC))
202 /*
203 * Must flip the CPU state synchronously with
204 * TIF_NOTSC in the current running context.
205 */
206 cr4_set_bits(X86_CR4_TSD);
207 preempt_enable();
208}
209
210static void enable_TSC(void)
211{
212 preempt_disable();
213 if (test_and_clear_thread_flag(TIF_NOTSC))
214 /*
215 * Must flip the CPU state synchronously with
216 * TIF_NOTSC in the current running context.
217 */
218 cr4_clear_bits(X86_CR4_TSD);
219 preempt_enable();
220}
221
222int get_tsc_mode(unsigned long adr)
223{
224 unsigned int val;
225
226 if (test_thread_flag(TIF_NOTSC))
227 val = PR_TSC_SIGSEGV;
228 else
229 val = PR_TSC_ENABLE;
230
231 return put_user(val, (unsigned int __user *)adr);
232}
233
234int set_tsc_mode(unsigned int val)
235{
236 if (val == PR_TSC_SIGSEGV)
237 disable_TSC();
238 else if (val == PR_TSC_ENABLE)
239 enable_TSC();
240 else
241 return -EINVAL;
242
243 return 0;
244}
245
246DEFINE_PER_CPU(u64, msr_misc_features_shadow);
247
248static void set_cpuid_faulting(bool on)
249{
250 u64 msrval;
251
252 msrval = this_cpu_read(msr_misc_features_shadow);
253 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
254 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
255 this_cpu_write(msr_misc_features_shadow, msrval);
256 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
257}
258
259static void disable_cpuid(void)
260{
261 preempt_disable();
262 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
263 /*
264 * Must flip the CPU state synchronously with
265 * TIF_NOCPUID in the current running context.
266 */
267 set_cpuid_faulting(true);
268 }
269 preempt_enable();
270}
271
272static void enable_cpuid(void)
273{
274 preempt_disable();
275 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
276 /*
277 * Must flip the CPU state synchronously with
278 * TIF_NOCPUID in the current running context.
279 */
280 set_cpuid_faulting(false);
281 }
282 preempt_enable();
283}
284
285static int get_cpuid_mode(void)
286{
287 return !test_thread_flag(TIF_NOCPUID);
288}
289
290static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
291{
292 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
293 return -ENODEV;
294
295 if (cpuid_enabled)
296 enable_cpuid();
297 else
298 disable_cpuid();
299
300 return 0;
301}
302
303/*
304 * Called immediately after a successful exec.
305 */
306void arch_setup_new_exec(void)
307{
308 /* If cpuid was previously disabled for this task, re-enable it. */
309 if (test_thread_flag(TIF_NOCPUID))
310 enable_cpuid();
311
312 /*
313 * Don't inherit TIF_SSBD across exec boundary when
314 * PR_SPEC_DISABLE_NOEXEC is used.
315 */
316 if (test_thread_flag(TIF_SSBD) &&
317 task_spec_ssb_noexec(current)) {
318 clear_thread_flag(TIF_SSBD);
319 task_clear_spec_ssb_disable(current);
320 task_clear_spec_ssb_noexec(current);
321 speculation_ctrl_update(task_thread_info(current)->flags);
322 }
323}
324
325#ifdef CONFIG_X86_IOPL_IOPERM
326static inline void tss_invalidate_io_bitmap(struct tss_struct *tss)
327{
328 /*
329 * Invalidate the I/O bitmap by moving io_bitmap_base outside the
330 * TSS limit so any subsequent I/O access from user space will
331 * trigger a #GP.
332 *
333 * This is correct even when VMEXIT rewrites the TSS limit
334 * to 0x67 as the only requirement is that the base points
335 * outside the limit.
336 */
337 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
338}
339
340static inline void switch_to_bitmap(unsigned long tifp)
341{
342 /*
343 * Invalidate I/O bitmap if the previous task used it. This prevents
344 * any possible leakage of an active I/O bitmap.
345 *
346 * If the next task has an I/O bitmap it will handle it on exit to
347 * user mode.
348 */
349 if (tifp & _TIF_IO_BITMAP)
350 tss_invalidate_io_bitmap(this_cpu_ptr(&cpu_tss_rw));
351}
352
353static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
354{
355 /*
356 * Copy at least the byte range of the incoming tasks bitmap which
357 * covers the permitted I/O ports.
358 *
359 * If the previous task which used an I/O bitmap had more bits
360 * permitted, then the copy needs to cover those as well so they
361 * get turned off.
362 */
363 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
364 max(tss->io_bitmap.prev_max, iobm->max));
365
366 /*
367 * Store the new max and the sequence number of this bitmap
368 * and a pointer to the bitmap itself.
369 */
370 tss->io_bitmap.prev_max = iobm->max;
371 tss->io_bitmap.prev_sequence = iobm->sequence;
372}
373
374/**
375 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
376 */
377void tss_update_io_bitmap(void)
378{
379 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
380 struct thread_struct *t = ¤t->thread;
381 u16 *base = &tss->x86_tss.io_bitmap_base;
382
383 if (!test_thread_flag(TIF_IO_BITMAP)) {
384 tss_invalidate_io_bitmap(tss);
385 return;
386 }
387
388 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
389 *base = IO_BITMAP_OFFSET_VALID_ALL;
390 } else {
391 struct io_bitmap *iobm = t->io_bitmap;
392
393 /*
394 * Only copy bitmap data when the sequence number differs. The
395 * update time is accounted to the incoming task.
396 */
397 if (tss->io_bitmap.prev_sequence != iobm->sequence)
398 tss_copy_io_bitmap(tss, iobm);
399
400 /* Enable the bitmap */
401 *base = IO_BITMAP_OFFSET_VALID_MAP;
402 }
403
404 /*
405 * Make sure that the TSS limit is covering the IO bitmap. It might have
406 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
407 * access from user space to trigger a #GP because tbe bitmap is outside
408 * the TSS limit.
409 */
410 refresh_tss_limit();
411}
412#else /* CONFIG_X86_IOPL_IOPERM */
413static inline void switch_to_bitmap(unsigned long tifp) { }
414#endif
415
416#ifdef CONFIG_SMP
417
418struct ssb_state {
419 struct ssb_state *shared_state;
420 raw_spinlock_t lock;
421 unsigned int disable_state;
422 unsigned long local_state;
423};
424
425#define LSTATE_SSB 0
426
427static DEFINE_PER_CPU(struct ssb_state, ssb_state);
428
429void speculative_store_bypass_ht_init(void)
430{
431 struct ssb_state *st = this_cpu_ptr(&ssb_state);
432 unsigned int this_cpu = smp_processor_id();
433 unsigned int cpu;
434
435 st->local_state = 0;
436
437 /*
438 * Shared state setup happens once on the first bringup
439 * of the CPU. It's not destroyed on CPU hotunplug.
440 */
441 if (st->shared_state)
442 return;
443
444 raw_spin_lock_init(&st->lock);
445
446 /*
447 * Go over HT siblings and check whether one of them has set up the
448 * shared state pointer already.
449 */
450 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
451 if (cpu == this_cpu)
452 continue;
453
454 if (!per_cpu(ssb_state, cpu).shared_state)
455 continue;
456
457 /* Link it to the state of the sibling: */
458 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
459 return;
460 }
461
462 /*
463 * First HT sibling to come up on the core. Link shared state of
464 * the first HT sibling to itself. The siblings on the same core
465 * which come up later will see the shared state pointer and link
466 * themself to the state of this CPU.
467 */
468 st->shared_state = st;
469}
470
471/*
472 * Logic is: First HT sibling enables SSBD for both siblings in the core
473 * and last sibling to disable it, disables it for the whole core. This how
474 * MSR_SPEC_CTRL works in "hardware":
475 *
476 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
477 */
478static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
479{
480 struct ssb_state *st = this_cpu_ptr(&ssb_state);
481 u64 msr = x86_amd_ls_cfg_base;
482
483 if (!static_cpu_has(X86_FEATURE_ZEN)) {
484 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
485 wrmsrl(MSR_AMD64_LS_CFG, msr);
486 return;
487 }
488
489 if (tifn & _TIF_SSBD) {
490 /*
491 * Since this can race with prctl(), block reentry on the
492 * same CPU.
493 */
494 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
495 return;
496
497 msr |= x86_amd_ls_cfg_ssbd_mask;
498
499 raw_spin_lock(&st->shared_state->lock);
500 /* First sibling enables SSBD: */
501 if (!st->shared_state->disable_state)
502 wrmsrl(MSR_AMD64_LS_CFG, msr);
503 st->shared_state->disable_state++;
504 raw_spin_unlock(&st->shared_state->lock);
505 } else {
506 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
507 return;
508
509 raw_spin_lock(&st->shared_state->lock);
510 st->shared_state->disable_state--;
511 if (!st->shared_state->disable_state)
512 wrmsrl(MSR_AMD64_LS_CFG, msr);
513 raw_spin_unlock(&st->shared_state->lock);
514 }
515}
516#else
517static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
518{
519 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
520
521 wrmsrl(MSR_AMD64_LS_CFG, msr);
522}
523#endif
524
525static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
526{
527 /*
528 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
529 * so ssbd_tif_to_spec_ctrl() just works.
530 */
531 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
532}
533
534/*
535 * Update the MSRs managing speculation control, during context switch.
536 *
537 * tifp: Previous task's thread flags
538 * tifn: Next task's thread flags
539 */
540static __always_inline void __speculation_ctrl_update(unsigned long tifp,
541 unsigned long tifn)
542{
543 unsigned long tif_diff = tifp ^ tifn;
544 u64 msr = x86_spec_ctrl_base;
545 bool updmsr = false;
546
547 lockdep_assert_irqs_disabled();
548
549 /*
550 * If TIF_SSBD is different, select the proper mitigation
551 * method. Note that if SSBD mitigation is disabled or permanentely
552 * enabled this branch can't be taken because nothing can set
553 * TIF_SSBD.
554 */
555 if (tif_diff & _TIF_SSBD) {
556 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
557 amd_set_ssb_virt_state(tifn);
558 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
559 amd_set_core_ssb_state(tifn);
560 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
561 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
562 msr |= ssbd_tif_to_spec_ctrl(tifn);
563 updmsr = true;
564 }
565 }
566
567 /*
568 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
569 * otherwise avoid the MSR write.
570 */
571 if (IS_ENABLED(CONFIG_SMP) &&
572 static_branch_unlikely(&switch_to_cond_stibp)) {
573 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
574 msr |= stibp_tif_to_spec_ctrl(tifn);
575 }
576
577 if (updmsr)
578 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
579}
580
581static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
582{
583 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
584 if (task_spec_ssb_disable(tsk))
585 set_tsk_thread_flag(tsk, TIF_SSBD);
586 else
587 clear_tsk_thread_flag(tsk, TIF_SSBD);
588
589 if (task_spec_ib_disable(tsk))
590 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
591 else
592 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
593 }
594 /* Return the updated threadinfo flags*/
595 return task_thread_info(tsk)->flags;
596}
597
598void speculation_ctrl_update(unsigned long tif)
599{
600 unsigned long flags;
601
602 /* Forced update. Make sure all relevant TIF flags are different */
603 local_irq_save(flags);
604 __speculation_ctrl_update(~tif, tif);
605 local_irq_restore(flags);
606}
607
608/* Called from seccomp/prctl update */
609void speculation_ctrl_update_current(void)
610{
611 preempt_disable();
612 speculation_ctrl_update(speculation_ctrl_update_tif(current));
613 preempt_enable();
614}
615
616void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
617{
618 struct thread_struct *prev, *next;
619 unsigned long tifp, tifn;
620
621 prev = &prev_p->thread;
622 next = &next_p->thread;
623
624 tifn = READ_ONCE(task_thread_info(next_p)->flags);
625 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
626
627 switch_to_bitmap(tifp);
628
629 propagate_user_return_notify(prev_p, next_p);
630
631 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
632 arch_has_block_step()) {
633 unsigned long debugctl, msk;
634
635 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
636 debugctl &= ~DEBUGCTLMSR_BTF;
637 msk = tifn & _TIF_BLOCKSTEP;
638 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
639 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
640 }
641
642 if ((tifp ^ tifn) & _TIF_NOTSC)
643 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
644
645 if ((tifp ^ tifn) & _TIF_NOCPUID)
646 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
647
648 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
649 __speculation_ctrl_update(tifp, tifn);
650 } else {
651 speculation_ctrl_update_tif(prev_p);
652 tifn = speculation_ctrl_update_tif(next_p);
653
654 /* Enforce MSR update to ensure consistent state */
655 __speculation_ctrl_update(~tifn, tifn);
656 }
657}
658
659/*
660 * Idle related variables and functions
661 */
662unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
663EXPORT_SYMBOL(boot_option_idle_override);
664
665static void (*x86_idle)(void);
666
667#ifndef CONFIG_SMP
668static inline void play_dead(void)
669{
670 BUG();
671}
672#endif
673
674void arch_cpu_idle_enter(void)
675{
676 tsc_verify_tsc_adjust(false);
677 local_touch_nmi();
678}
679
680void arch_cpu_idle_dead(void)
681{
682 play_dead();
683}
684
685/*
686 * Called from the generic idle code.
687 */
688void arch_cpu_idle(void)
689{
690 x86_idle();
691}
692
693/*
694 * We use this if we don't have any better idle routine..
695 */
696void __cpuidle default_idle(void)
697{
698 trace_cpu_idle_rcuidle(1, smp_processor_id());
699 safe_halt();
700 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
701}
702#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
703EXPORT_SYMBOL(default_idle);
704#endif
705
706#ifdef CONFIG_XEN
707bool xen_set_default_idle(void)
708{
709 bool ret = !!x86_idle;
710
711 x86_idle = default_idle;
712
713 return ret;
714}
715#endif
716
717void stop_this_cpu(void *dummy)
718{
719 local_irq_disable();
720 /*
721 * Remove this CPU:
722 */
723 set_cpu_online(smp_processor_id(), false);
724 disable_local_APIC();
725 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
726
727 /*
728 * Use wbinvd on processors that support SME. This provides support
729 * for performing a successful kexec when going from SME inactive
730 * to SME active (or vice-versa). The cache must be cleared so that
731 * if there are entries with the same physical address, both with and
732 * without the encryption bit, they don't race each other when flushed
733 * and potentially end up with the wrong entry being committed to
734 * memory.
735 */
736 if (boot_cpu_has(X86_FEATURE_SME))
737 native_wbinvd();
738 for (;;) {
739 /*
740 * Use native_halt() so that memory contents don't change
741 * (stack usage and variables) after possibly issuing the
742 * native_wbinvd() above.
743 */
744 native_halt();
745 }
746}
747
748/*
749 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
750 * states (local apic timer and TSC stop).
751 */
752static void amd_e400_idle(void)
753{
754 /*
755 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
756 * gets set after static_cpu_has() places have been converted via
757 * alternatives.
758 */
759 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
760 default_idle();
761 return;
762 }
763
764 tick_broadcast_enter();
765
766 default_idle();
767
768 /*
769 * The switch back from broadcast mode needs to be called with
770 * interrupts disabled.
771 */
772 local_irq_disable();
773 tick_broadcast_exit();
774 local_irq_enable();
775}
776
777/*
778 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
779 * We can't rely on cpuidle installing MWAIT, because it will not load
780 * on systems that support only C1 -- so the boot default must be MWAIT.
781 *
782 * Some AMD machines are the opposite, they depend on using HALT.
783 *
784 * So for default C1, which is used during boot until cpuidle loads,
785 * use MWAIT-C1 on Intel HW that has it, else use HALT.
786 */
787static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
788{
789 if (c->x86_vendor != X86_VENDOR_INTEL)
790 return 0;
791
792 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
793 return 0;
794
795 return 1;
796}
797
798/*
799 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
800 * with interrupts enabled and no flags, which is backwards compatible with the
801 * original MWAIT implementation.
802 */
803static __cpuidle void mwait_idle(void)
804{
805 if (!current_set_polling_and_test()) {
806 trace_cpu_idle_rcuidle(1, smp_processor_id());
807 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
808 mb(); /* quirk */
809 clflush((void *)¤t_thread_info()->flags);
810 mb(); /* quirk */
811 }
812
813 __monitor((void *)¤t_thread_info()->flags, 0, 0);
814 if (!need_resched())
815 __sti_mwait(0, 0);
816 else
817 local_irq_enable();
818 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
819 } else {
820 local_irq_enable();
821 }
822 __current_clr_polling();
823}
824
825void select_idle_routine(const struct cpuinfo_x86 *c)
826{
827#ifdef CONFIG_SMP
828 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
829 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
830#endif
831 if (x86_idle || boot_option_idle_override == IDLE_POLL)
832 return;
833
834 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
835 pr_info("using AMD E400 aware idle routine\n");
836 x86_idle = amd_e400_idle;
837 } else if (prefer_mwait_c1_over_halt(c)) {
838 pr_info("using mwait in idle threads\n");
839 x86_idle = mwait_idle;
840 } else
841 x86_idle = default_idle;
842}
843
844void amd_e400_c1e_apic_setup(void)
845{
846 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
847 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
848 local_irq_disable();
849 tick_broadcast_force();
850 local_irq_enable();
851 }
852}
853
854void __init arch_post_acpi_subsys_init(void)
855{
856 u32 lo, hi;
857
858 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
859 return;
860
861 /*
862 * AMD E400 detection needs to happen after ACPI has been enabled. If
863 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
864 * MSR_K8_INT_PENDING_MSG.
865 */
866 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
867 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
868 return;
869
870 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
871
872 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
873 mark_tsc_unstable("TSC halt in AMD C1E");
874 pr_info("System has AMD C1E enabled\n");
875}
876
877static int __init idle_setup(char *str)
878{
879 if (!str)
880 return -EINVAL;
881
882 if (!strcmp(str, "poll")) {
883 pr_info("using polling idle threads\n");
884 boot_option_idle_override = IDLE_POLL;
885 cpu_idle_poll_ctrl(true);
886 } else if (!strcmp(str, "halt")) {
887 /*
888 * When the boot option of idle=halt is added, halt is
889 * forced to be used for CPU idle. In such case CPU C2/C3
890 * won't be used again.
891 * To continue to load the CPU idle driver, don't touch
892 * the boot_option_idle_override.
893 */
894 x86_idle = default_idle;
895 boot_option_idle_override = IDLE_HALT;
896 } else if (!strcmp(str, "nomwait")) {
897 /*
898 * If the boot option of "idle=nomwait" is added,
899 * it means that mwait will be disabled for CPU C2/C3
900 * states. In such case it won't touch the variable
901 * of boot_option_idle_override.
902 */
903 boot_option_idle_override = IDLE_NOMWAIT;
904 } else
905 return -1;
906
907 return 0;
908}
909early_param("idle", idle_setup);
910
911unsigned long arch_align_stack(unsigned long sp)
912{
913 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
914 sp -= get_random_int() % 8192;
915 return sp & ~0xf;
916}
917
918unsigned long arch_randomize_brk(struct mm_struct *mm)
919{
920 return randomize_page(mm->brk, 0x02000000);
921}
922
923/*
924 * Called from fs/proc with a reference on @p to find the function
925 * which called into schedule(). This needs to be done carefully
926 * because the task might wake up and we might look at a stack
927 * changing under us.
928 */
929unsigned long get_wchan(struct task_struct *p)
930{
931 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
932 int count = 0;
933
934 if (p == current || p->state == TASK_RUNNING)
935 return 0;
936
937 if (!try_get_task_stack(p))
938 return 0;
939
940 start = (unsigned long)task_stack_page(p);
941 if (!start)
942 goto out;
943
944 /*
945 * Layout of the stack page:
946 *
947 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
948 * PADDING
949 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
950 * stack
951 * ----------- bottom = start
952 *
953 * The tasks stack pointer points at the location where the
954 * framepointer is stored. The data on the stack is:
955 * ... IP FP ... IP FP
956 *
957 * We need to read FP and IP, so we need to adjust the upper
958 * bound by another unsigned long.
959 */
960 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
961 top -= 2 * sizeof(unsigned long);
962 bottom = start;
963
964 sp = READ_ONCE(p->thread.sp);
965 if (sp < bottom || sp > top)
966 goto out;
967
968 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
969 do {
970 if (fp < bottom || fp > top)
971 goto out;
972 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
973 if (!in_sched_functions(ip)) {
974 ret = ip;
975 goto out;
976 }
977 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
978 } while (count++ < 16 && p->state != TASK_RUNNING);
979
980out:
981 put_task_stack(p);
982 return ret;
983}
984
985long do_arch_prctl_common(struct task_struct *task, int option,
986 unsigned long cpuid_enabled)
987{
988 switch (option) {
989 case ARCH_GET_CPUID:
990 return get_cpuid_mode();
991 case ARCH_SET_CPUID:
992 return set_cpuid_mode(task, cpuid_enabled);
993 }
994
995 return -EINVAL;
996}