Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_KERNEL_H
3#define _LINUX_KERNEL_H
4
5
6#include <stdarg.h>
7#include <linux/limits.h>
8#include <linux/linkage.h>
9#include <linux/stddef.h>
10#include <linux/types.h>
11#include <linux/compiler.h>
12#include <linux/bitops.h>
13#include <linux/log2.h>
14#include <linux/typecheck.h>
15#include <linux/printk.h>
16#include <linux/build_bug.h>
17#include <asm/byteorder.h>
18#include <asm/div64.h>
19#include <uapi/linux/kernel.h>
20#include <asm/div64.h>
21
22#define STACK_MAGIC 0xdeadbeef
23
24/**
25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26 * @x: value to repeat
27 *
28 * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29 */
30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
31
32/* @a is a power of 2 value */
33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
38
39/* generic data direction definitions */
40#define READ 0
41#define WRITE 1
42
43/**
44 * ARRAY_SIZE - get the number of elements in array @arr
45 * @arr: array to be sized
46 */
47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
48
49#define u64_to_user_ptr(x) ( \
50{ \
51 typecheck(u64, (x)); \
52 (void __user *)(uintptr_t)(x); \
53} \
54)
55
56/*
57 * This looks more complex than it should be. But we need to
58 * get the type for the ~ right in round_down (it needs to be
59 * as wide as the result!), and we want to evaluate the macro
60 * arguments just once each.
61 */
62#define __round_mask(x, y) ((__typeof__(x))((y)-1))
63/**
64 * round_up - round up to next specified power of 2
65 * @x: the value to round
66 * @y: multiple to round up to (must be a power of 2)
67 *
68 * Rounds @x up to next multiple of @y (which must be a power of 2).
69 * To perform arbitrary rounding up, use roundup() below.
70 */
71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
72/**
73 * round_down - round down to next specified power of 2
74 * @x: the value to round
75 * @y: multiple to round down to (must be a power of 2)
76 *
77 * Rounds @x down to next multiple of @y (which must be a power of 2).
78 * To perform arbitrary rounding down, use rounddown() below.
79 */
80#define round_down(x, y) ((x) & ~__round_mask(x, y))
81
82/**
83 * FIELD_SIZEOF - get the size of a struct's field
84 * @t: the target struct
85 * @f: the target struct's field
86 * Return: the size of @f in the struct definition without having a
87 * declared instance of @t.
88 */
89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
90
91#define typeof_member(T, m) typeof(((T*)0)->m)
92
93#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
94
95#define DIV_ROUND_DOWN_ULL(ll, d) \
96 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
97
98#define DIV_ROUND_UP_ULL(ll, d) \
99 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
100
101#if BITS_PER_LONG == 32
102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
103#else
104# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
105#endif
106
107/**
108 * roundup - round up to the next specified multiple
109 * @x: the value to up
110 * @y: multiple to round up to
111 *
112 * Rounds @x up to next multiple of @y. If @y will always be a power
113 * of 2, consider using the faster round_up().
114 */
115#define roundup(x, y) ( \
116{ \
117 typeof(y) __y = y; \
118 (((x) + (__y - 1)) / __y) * __y; \
119} \
120)
121/**
122 * rounddown - round down to next specified multiple
123 * @x: the value to round
124 * @y: multiple to round down to
125 *
126 * Rounds @x down to next multiple of @y. If @y will always be a power
127 * of 2, consider using the faster round_down().
128 */
129#define rounddown(x, y) ( \
130{ \
131 typeof(x) __x = (x); \
132 __x - (__x % (y)); \
133} \
134)
135
136/*
137 * Divide positive or negative dividend by positive or negative divisor
138 * and round to closest integer. Result is undefined for negative
139 * divisors if the dividend variable type is unsigned and for negative
140 * dividends if the divisor variable type is unsigned.
141 */
142#define DIV_ROUND_CLOSEST(x, divisor)( \
143{ \
144 typeof(x) __x = x; \
145 typeof(divisor) __d = divisor; \
146 (((typeof(x))-1) > 0 || \
147 ((typeof(divisor))-1) > 0 || \
148 (((__x) > 0) == ((__d) > 0))) ? \
149 (((__x) + ((__d) / 2)) / (__d)) : \
150 (((__x) - ((__d) / 2)) / (__d)); \
151} \
152)
153/*
154 * Same as above but for u64 dividends. divisor must be a 32-bit
155 * number.
156 */
157#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
158{ \
159 typeof(divisor) __d = divisor; \
160 unsigned long long _tmp = (x) + (__d) / 2; \
161 do_div(_tmp, __d); \
162 _tmp; \
163} \
164)
165
166/*
167 * Multiplies an integer by a fraction, while avoiding unnecessary
168 * overflow or loss of precision.
169 */
170#define mult_frac(x, numer, denom)( \
171{ \
172 typeof(x) quot = (x) / (denom); \
173 typeof(x) rem = (x) % (denom); \
174 (quot * (numer)) + ((rem * (numer)) / (denom)); \
175} \
176)
177
178
179#define _RET_IP_ (unsigned long)__builtin_return_address(0)
180#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
181
182#define sector_div(a, b) do_div(a, b)
183
184/**
185 * upper_32_bits - return bits 32-63 of a number
186 * @n: the number we're accessing
187 *
188 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
189 * the "right shift count >= width of type" warning when that quantity is
190 * 32-bits.
191 */
192#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
193
194/**
195 * lower_32_bits - return bits 0-31 of a number
196 * @n: the number we're accessing
197 */
198#define lower_32_bits(n) ((u32)(n))
199
200struct completion;
201struct pt_regs;
202struct user;
203
204#ifdef CONFIG_PREEMPT_VOLUNTARY
205extern int _cond_resched(void);
206# define might_resched() _cond_resched()
207#else
208# define might_resched() do { } while (0)
209#endif
210
211#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
212extern void ___might_sleep(const char *file, int line, int preempt_offset);
213extern void __might_sleep(const char *file, int line, int preempt_offset);
214extern void __cant_sleep(const char *file, int line, int preempt_offset);
215
216/**
217 * might_sleep - annotation for functions that can sleep
218 *
219 * this macro will print a stack trace if it is executed in an atomic
220 * context (spinlock, irq-handler, ...). Additional sections where blocking is
221 * not allowed can be annotated with non_block_start() and non_block_end()
222 * pairs.
223 *
224 * This is a useful debugging help to be able to catch problems early and not
225 * be bitten later when the calling function happens to sleep when it is not
226 * supposed to.
227 */
228# define might_sleep() \
229 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
230/**
231 * cant_sleep - annotation for functions that cannot sleep
232 *
233 * this macro will print a stack trace if it is executed with preemption enabled
234 */
235# define cant_sleep() \
236 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
237# define sched_annotate_sleep() (current->task_state_change = 0)
238/**
239 * non_block_start - annotate the start of section where sleeping is prohibited
240 *
241 * This is on behalf of the oom reaper, specifically when it is calling the mmu
242 * notifiers. The problem is that if the notifier were to block on, for example,
243 * mutex_lock() and if the process which holds that mutex were to perform a
244 * sleeping memory allocation, the oom reaper is now blocked on completion of
245 * that memory allocation. Other blocking calls like wait_event() pose similar
246 * issues.
247 */
248# define non_block_start() (current->non_block_count++)
249/**
250 * non_block_end - annotate the end of section where sleeping is prohibited
251 *
252 * Closes a section opened by non_block_start().
253 */
254# define non_block_end() WARN_ON(current->non_block_count-- == 0)
255#else
256 static inline void ___might_sleep(const char *file, int line,
257 int preempt_offset) { }
258 static inline void __might_sleep(const char *file, int line,
259 int preempt_offset) { }
260# define might_sleep() do { might_resched(); } while (0)
261# define cant_sleep() do { } while (0)
262# define sched_annotate_sleep() do { } while (0)
263# define non_block_start() do { } while (0)
264# define non_block_end() do { } while (0)
265#endif
266
267#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
268
269/**
270 * abs - return absolute value of an argument
271 * @x: the value. If it is unsigned type, it is converted to signed type first.
272 * char is treated as if it was signed (regardless of whether it really is)
273 * but the macro's return type is preserved as char.
274 *
275 * Return: an absolute value of x.
276 */
277#define abs(x) __abs_choose_expr(x, long long, \
278 __abs_choose_expr(x, long, \
279 __abs_choose_expr(x, int, \
280 __abs_choose_expr(x, short, \
281 __abs_choose_expr(x, char, \
282 __builtin_choose_expr( \
283 __builtin_types_compatible_p(typeof(x), char), \
284 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \
285 ((void)0)))))))
286
287#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
288 __builtin_types_compatible_p(typeof(x), signed type) || \
289 __builtin_types_compatible_p(typeof(x), unsigned type), \
290 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
291
292/**
293 * reciprocal_scale - "scale" a value into range [0, ep_ro)
294 * @val: value
295 * @ep_ro: right open interval endpoint
296 *
297 * Perform a "reciprocal multiplication" in order to "scale" a value into
298 * range [0, @ep_ro), where the upper interval endpoint is right-open.
299 * This is useful, e.g. for accessing a index of an array containing
300 * @ep_ro elements, for example. Think of it as sort of modulus, only that
301 * the result isn't that of modulo. ;) Note that if initial input is a
302 * small value, then result will return 0.
303 *
304 * Return: a result based on @val in interval [0, @ep_ro).
305 */
306static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
307{
308 return (u32)(((u64) val * ep_ro) >> 32);
309}
310
311#if defined(CONFIG_MMU) && \
312 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
313#define might_fault() __might_fault(__FILE__, __LINE__)
314void __might_fault(const char *file, int line);
315#else
316static inline void might_fault(void) { }
317#endif
318
319extern struct atomic_notifier_head panic_notifier_list;
320extern long (*panic_blink)(int state);
321__printf(1, 2)
322void panic(const char *fmt, ...) __noreturn __cold;
323void nmi_panic(struct pt_regs *regs, const char *msg);
324extern void oops_enter(void);
325extern void oops_exit(void);
326void print_oops_end_marker(void);
327extern int oops_may_print(void);
328void do_exit(long error_code) __noreturn;
329void complete_and_exit(struct completion *, long) __noreturn;
330
331/* Internal, do not use. */
332int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
333int __must_check _kstrtol(const char *s, unsigned int base, long *res);
334
335int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
336int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
337
338/**
339 * kstrtoul - convert a string to an unsigned long
340 * @s: The start of the string. The string must be null-terminated, and may also
341 * include a single newline before its terminating null. The first character
342 * may also be a plus sign, but not a minus sign.
343 * @base: The number base to use. The maximum supported base is 16. If base is
344 * given as 0, then the base of the string is automatically detected with the
345 * conventional semantics - If it begins with 0x the number will be parsed as a
346 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
347 * parsed as an octal number. Otherwise it will be parsed as a decimal.
348 * @res: Where to write the result of the conversion on success.
349 *
350 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
351 * Used as a replacement for the simple_strtoull. Return code must be checked.
352*/
353static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
354{
355 /*
356 * We want to shortcut function call, but
357 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
358 */
359 if (sizeof(unsigned long) == sizeof(unsigned long long) &&
360 __alignof__(unsigned long) == __alignof__(unsigned long long))
361 return kstrtoull(s, base, (unsigned long long *)res);
362 else
363 return _kstrtoul(s, base, res);
364}
365
366/**
367 * kstrtol - convert a string to a long
368 * @s: The start of the string. The string must be null-terminated, and may also
369 * include a single newline before its terminating null. The first character
370 * may also be a plus sign or a minus sign.
371 * @base: The number base to use. The maximum supported base is 16. If base is
372 * given as 0, then the base of the string is automatically detected with the
373 * conventional semantics - If it begins with 0x the number will be parsed as a
374 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be
375 * parsed as an octal number. Otherwise it will be parsed as a decimal.
376 * @res: Where to write the result of the conversion on success.
377 *
378 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
379 * Used as a replacement for the simple_strtoull. Return code must be checked.
380 */
381static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
382{
383 /*
384 * We want to shortcut function call, but
385 * __builtin_types_compatible_p(long, long long) = 0.
386 */
387 if (sizeof(long) == sizeof(long long) &&
388 __alignof__(long) == __alignof__(long long))
389 return kstrtoll(s, base, (long long *)res);
390 else
391 return _kstrtol(s, base, res);
392}
393
394int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
395int __must_check kstrtoint(const char *s, unsigned int base, int *res);
396
397static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
398{
399 return kstrtoull(s, base, res);
400}
401
402static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
403{
404 return kstrtoll(s, base, res);
405}
406
407static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
408{
409 return kstrtouint(s, base, res);
410}
411
412static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
413{
414 return kstrtoint(s, base, res);
415}
416
417int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
418int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
419int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
420int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
421int __must_check kstrtobool(const char *s, bool *res);
422
423int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
424int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
425int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
426int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
427int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
428int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
429int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
430int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
431int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
432int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
433int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
434
435static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
436{
437 return kstrtoull_from_user(s, count, base, res);
438}
439
440static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
441{
442 return kstrtoll_from_user(s, count, base, res);
443}
444
445static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
446{
447 return kstrtouint_from_user(s, count, base, res);
448}
449
450static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
451{
452 return kstrtoint_from_user(s, count, base, res);
453}
454
455/*
456 * Use kstrto<foo> instead.
457 *
458 * NOTE: simple_strto<foo> does not check for the range overflow and,
459 * depending on the input, may give interesting results.
460 *
461 * Use these functions if and only if you cannot use kstrto<foo>, because
462 * the conversion ends on the first non-digit character, which may be far
463 * beyond the supported range. It might be useful to parse the strings like
464 * 10x50 or 12:21 without altering original string or temporary buffer in use.
465 * Keep in mind above caveat.
466 */
467
468extern unsigned long simple_strtoul(const char *,char **,unsigned int);
469extern long simple_strtol(const char *,char **,unsigned int);
470extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
471extern long long simple_strtoll(const char *,char **,unsigned int);
472
473extern int num_to_str(char *buf, int size,
474 unsigned long long num, unsigned int width);
475
476/* lib/printf utilities */
477
478extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
479extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
480extern __printf(3, 4)
481int snprintf(char *buf, size_t size, const char *fmt, ...);
482extern __printf(3, 0)
483int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
484extern __printf(3, 4)
485int scnprintf(char *buf, size_t size, const char *fmt, ...);
486extern __printf(3, 0)
487int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
488extern __printf(2, 3) __malloc
489char *kasprintf(gfp_t gfp, const char *fmt, ...);
490extern __printf(2, 0) __malloc
491char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
492extern __printf(2, 0)
493const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
494
495extern __scanf(2, 3)
496int sscanf(const char *, const char *, ...);
497extern __scanf(2, 0)
498int vsscanf(const char *, const char *, va_list);
499
500extern int get_option(char **str, int *pint);
501extern char *get_options(const char *str, int nints, int *ints);
502extern unsigned long long memparse(const char *ptr, char **retptr);
503extern bool parse_option_str(const char *str, const char *option);
504extern char *next_arg(char *args, char **param, char **val);
505
506extern int core_kernel_text(unsigned long addr);
507extern int init_kernel_text(unsigned long addr);
508extern int core_kernel_data(unsigned long addr);
509extern int __kernel_text_address(unsigned long addr);
510extern int kernel_text_address(unsigned long addr);
511extern int func_ptr_is_kernel_text(void *ptr);
512
513u64 int_pow(u64 base, unsigned int exp);
514unsigned long int_sqrt(unsigned long);
515
516#if BITS_PER_LONG < 64
517u32 int_sqrt64(u64 x);
518#else
519static inline u32 int_sqrt64(u64 x)
520{
521 return (u32)int_sqrt(x);
522}
523#endif
524
525extern void bust_spinlocks(int yes);
526extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
527extern int panic_timeout;
528extern unsigned long panic_print;
529extern int panic_on_oops;
530extern int panic_on_unrecovered_nmi;
531extern int panic_on_io_nmi;
532extern int panic_on_warn;
533extern int sysctl_panic_on_rcu_stall;
534extern int sysctl_panic_on_stackoverflow;
535
536extern bool crash_kexec_post_notifiers;
537
538/*
539 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
540 * holds a CPU number which is executing panic() currently. A value of
541 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
542 */
543extern atomic_t panic_cpu;
544#define PANIC_CPU_INVALID -1
545
546/*
547 * Only to be used by arch init code. If the user over-wrote the default
548 * CONFIG_PANIC_TIMEOUT, honor it.
549 */
550static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
551{
552 if (panic_timeout == arch_default_timeout)
553 panic_timeout = timeout;
554}
555extern const char *print_tainted(void);
556enum lockdep_ok {
557 LOCKDEP_STILL_OK,
558 LOCKDEP_NOW_UNRELIABLE
559};
560extern void add_taint(unsigned flag, enum lockdep_ok);
561extern int test_taint(unsigned flag);
562extern unsigned long get_taint(void);
563extern int root_mountflags;
564
565extern bool early_boot_irqs_disabled;
566
567/*
568 * Values used for system_state. Ordering of the states must not be changed
569 * as code checks for <, <=, >, >= STATE.
570 */
571extern enum system_states {
572 SYSTEM_BOOTING,
573 SYSTEM_SCHEDULING,
574 SYSTEM_RUNNING,
575 SYSTEM_HALT,
576 SYSTEM_POWER_OFF,
577 SYSTEM_RESTART,
578 SYSTEM_SUSPEND,
579} system_state;
580
581/* This cannot be an enum because some may be used in assembly source. */
582#define TAINT_PROPRIETARY_MODULE 0
583#define TAINT_FORCED_MODULE 1
584#define TAINT_CPU_OUT_OF_SPEC 2
585#define TAINT_FORCED_RMMOD 3
586#define TAINT_MACHINE_CHECK 4
587#define TAINT_BAD_PAGE 5
588#define TAINT_USER 6
589#define TAINT_DIE 7
590#define TAINT_OVERRIDDEN_ACPI_TABLE 8
591#define TAINT_WARN 9
592#define TAINT_CRAP 10
593#define TAINT_FIRMWARE_WORKAROUND 11
594#define TAINT_OOT_MODULE 12
595#define TAINT_UNSIGNED_MODULE 13
596#define TAINT_SOFTLOCKUP 14
597#define TAINT_LIVEPATCH 15
598#define TAINT_AUX 16
599#define TAINT_RANDSTRUCT 17
600#define TAINT_FLAGS_COUNT 18
601
602struct taint_flag {
603 char c_true; /* character printed when tainted */
604 char c_false; /* character printed when not tainted */
605 bool module; /* also show as a per-module taint flag */
606};
607
608extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
609
610extern const char hex_asc[];
611#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
612#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
613
614static inline char *hex_byte_pack(char *buf, u8 byte)
615{
616 *buf++ = hex_asc_hi(byte);
617 *buf++ = hex_asc_lo(byte);
618 return buf;
619}
620
621extern const char hex_asc_upper[];
622#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
623#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
624
625static inline char *hex_byte_pack_upper(char *buf, u8 byte)
626{
627 *buf++ = hex_asc_upper_hi(byte);
628 *buf++ = hex_asc_upper_lo(byte);
629 return buf;
630}
631
632extern int hex_to_bin(char ch);
633extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
634extern char *bin2hex(char *dst, const void *src, size_t count);
635
636bool mac_pton(const char *s, u8 *mac);
637
638/*
639 * General tracing related utility functions - trace_printk(),
640 * tracing_on/tracing_off and tracing_start()/tracing_stop
641 *
642 * Use tracing_on/tracing_off when you want to quickly turn on or off
643 * tracing. It simply enables or disables the recording of the trace events.
644 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
645 * file, which gives a means for the kernel and userspace to interact.
646 * Place a tracing_off() in the kernel where you want tracing to end.
647 * From user space, examine the trace, and then echo 1 > tracing_on
648 * to continue tracing.
649 *
650 * tracing_stop/tracing_start has slightly more overhead. It is used
651 * by things like suspend to ram where disabling the recording of the
652 * trace is not enough, but tracing must actually stop because things
653 * like calling smp_processor_id() may crash the system.
654 *
655 * Most likely, you want to use tracing_on/tracing_off.
656 */
657
658enum ftrace_dump_mode {
659 DUMP_NONE,
660 DUMP_ALL,
661 DUMP_ORIG,
662};
663
664#ifdef CONFIG_TRACING
665void tracing_on(void);
666void tracing_off(void);
667int tracing_is_on(void);
668void tracing_snapshot(void);
669void tracing_snapshot_alloc(void);
670
671extern void tracing_start(void);
672extern void tracing_stop(void);
673
674static inline __printf(1, 2)
675void ____trace_printk_check_format(const char *fmt, ...)
676{
677}
678#define __trace_printk_check_format(fmt, args...) \
679do { \
680 if (0) \
681 ____trace_printk_check_format(fmt, ##args); \
682} while (0)
683
684/**
685 * trace_printk - printf formatting in the ftrace buffer
686 * @fmt: the printf format for printing
687 *
688 * Note: __trace_printk is an internal function for trace_printk() and
689 * the @ip is passed in via the trace_printk() macro.
690 *
691 * This function allows a kernel developer to debug fast path sections
692 * that printk is not appropriate for. By scattering in various
693 * printk like tracing in the code, a developer can quickly see
694 * where problems are occurring.
695 *
696 * This is intended as a debugging tool for the developer only.
697 * Please refrain from leaving trace_printks scattered around in
698 * your code. (Extra memory is used for special buffers that are
699 * allocated when trace_printk() is used.)
700 *
701 * A little optimization trick is done here. If there's only one
702 * argument, there's no need to scan the string for printf formats.
703 * The trace_puts() will suffice. But how can we take advantage of
704 * using trace_puts() when trace_printk() has only one argument?
705 * By stringifying the args and checking the size we can tell
706 * whether or not there are args. __stringify((__VA_ARGS__)) will
707 * turn into "()\0" with a size of 3 when there are no args, anything
708 * else will be bigger. All we need to do is define a string to this,
709 * and then take its size and compare to 3. If it's bigger, use
710 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
711 * let gcc optimize the rest.
712 */
713
714#define trace_printk(fmt, ...) \
715do { \
716 char _______STR[] = __stringify((__VA_ARGS__)); \
717 if (sizeof(_______STR) > 3) \
718 do_trace_printk(fmt, ##__VA_ARGS__); \
719 else \
720 trace_puts(fmt); \
721} while (0)
722
723#define do_trace_printk(fmt, args...) \
724do { \
725 static const char *trace_printk_fmt __used \
726 __attribute__((section("__trace_printk_fmt"))) = \
727 __builtin_constant_p(fmt) ? fmt : NULL; \
728 \
729 __trace_printk_check_format(fmt, ##args); \
730 \
731 if (__builtin_constant_p(fmt)) \
732 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
733 else \
734 __trace_printk(_THIS_IP_, fmt, ##args); \
735} while (0)
736
737extern __printf(2, 3)
738int __trace_bprintk(unsigned long ip, const char *fmt, ...);
739
740extern __printf(2, 3)
741int __trace_printk(unsigned long ip, const char *fmt, ...);
742
743/**
744 * trace_puts - write a string into the ftrace buffer
745 * @str: the string to record
746 *
747 * Note: __trace_bputs is an internal function for trace_puts and
748 * the @ip is passed in via the trace_puts macro.
749 *
750 * This is similar to trace_printk() but is made for those really fast
751 * paths that a developer wants the least amount of "Heisenbug" effects,
752 * where the processing of the print format is still too much.
753 *
754 * This function allows a kernel developer to debug fast path sections
755 * that printk is not appropriate for. By scattering in various
756 * printk like tracing in the code, a developer can quickly see
757 * where problems are occurring.
758 *
759 * This is intended as a debugging tool for the developer only.
760 * Please refrain from leaving trace_puts scattered around in
761 * your code. (Extra memory is used for special buffers that are
762 * allocated when trace_puts() is used.)
763 *
764 * Returns: 0 if nothing was written, positive # if string was.
765 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
766 */
767
768#define trace_puts(str) ({ \
769 static const char *trace_printk_fmt __used \
770 __attribute__((section("__trace_printk_fmt"))) = \
771 __builtin_constant_p(str) ? str : NULL; \
772 \
773 if (__builtin_constant_p(str)) \
774 __trace_bputs(_THIS_IP_, trace_printk_fmt); \
775 else \
776 __trace_puts(_THIS_IP_, str, strlen(str)); \
777})
778extern int __trace_bputs(unsigned long ip, const char *str);
779extern int __trace_puts(unsigned long ip, const char *str, int size);
780
781extern void trace_dump_stack(int skip);
782
783/*
784 * The double __builtin_constant_p is because gcc will give us an error
785 * if we try to allocate the static variable to fmt if it is not a
786 * constant. Even with the outer if statement.
787 */
788#define ftrace_vprintk(fmt, vargs) \
789do { \
790 if (__builtin_constant_p(fmt)) { \
791 static const char *trace_printk_fmt __used \
792 __attribute__((section("__trace_printk_fmt"))) = \
793 __builtin_constant_p(fmt) ? fmt : NULL; \
794 \
795 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
796 } else \
797 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \
798} while (0)
799
800extern __printf(2, 0) int
801__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
802
803extern __printf(2, 0) int
804__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
805
806extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
807#else
808static inline void tracing_start(void) { }
809static inline void tracing_stop(void) { }
810static inline void trace_dump_stack(int skip) { }
811
812static inline void tracing_on(void) { }
813static inline void tracing_off(void) { }
814static inline int tracing_is_on(void) { return 0; }
815static inline void tracing_snapshot(void) { }
816static inline void tracing_snapshot_alloc(void) { }
817
818static inline __printf(1, 2)
819int trace_printk(const char *fmt, ...)
820{
821 return 0;
822}
823static __printf(1, 0) inline int
824ftrace_vprintk(const char *fmt, va_list ap)
825{
826 return 0;
827}
828static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
829#endif /* CONFIG_TRACING */
830
831/*
832 * min()/max()/clamp() macros must accomplish three things:
833 *
834 * - avoid multiple evaluations of the arguments (so side-effects like
835 * "x++" happen only once) when non-constant.
836 * - perform strict type-checking (to generate warnings instead of
837 * nasty runtime surprises). See the "unnecessary" pointer comparison
838 * in __typecheck().
839 * - retain result as a constant expressions when called with only
840 * constant expressions (to avoid tripping VLA warnings in stack
841 * allocation usage).
842 */
843#define __typecheck(x, y) \
844 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
845
846/*
847 * This returns a constant expression while determining if an argument is
848 * a constant expression, most importantly without evaluating the argument.
849 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
850 */
851#define __is_constexpr(x) \
852 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
853
854#define __no_side_effects(x, y) \
855 (__is_constexpr(x) && __is_constexpr(y))
856
857#define __safe_cmp(x, y) \
858 (__typecheck(x, y) && __no_side_effects(x, y))
859
860#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
861
862#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
863 typeof(x) unique_x = (x); \
864 typeof(y) unique_y = (y); \
865 __cmp(unique_x, unique_y, op); })
866
867#define __careful_cmp(x, y, op) \
868 __builtin_choose_expr(__safe_cmp(x, y), \
869 __cmp(x, y, op), \
870 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
871
872/**
873 * min - return minimum of two values of the same or compatible types
874 * @x: first value
875 * @y: second value
876 */
877#define min(x, y) __careful_cmp(x, y, <)
878
879/**
880 * max - return maximum of two values of the same or compatible types
881 * @x: first value
882 * @y: second value
883 */
884#define max(x, y) __careful_cmp(x, y, >)
885
886/**
887 * min3 - return minimum of three values
888 * @x: first value
889 * @y: second value
890 * @z: third value
891 */
892#define min3(x, y, z) min((typeof(x))min(x, y), z)
893
894/**
895 * max3 - return maximum of three values
896 * @x: first value
897 * @y: second value
898 * @z: third value
899 */
900#define max3(x, y, z) max((typeof(x))max(x, y), z)
901
902/**
903 * min_not_zero - return the minimum that is _not_ zero, unless both are zero
904 * @x: value1
905 * @y: value2
906 */
907#define min_not_zero(x, y) ({ \
908 typeof(x) __x = (x); \
909 typeof(y) __y = (y); \
910 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
911
912/**
913 * clamp - return a value clamped to a given range with strict typechecking
914 * @val: current value
915 * @lo: lowest allowable value
916 * @hi: highest allowable value
917 *
918 * This macro does strict typechecking of @lo/@hi to make sure they are of the
919 * same type as @val. See the unnecessary pointer comparisons.
920 */
921#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
922
923/*
924 * ..and if you can't take the strict
925 * types, you can specify one yourself.
926 *
927 * Or not use min/max/clamp at all, of course.
928 */
929
930/**
931 * min_t - return minimum of two values, using the specified type
932 * @type: data type to use
933 * @x: first value
934 * @y: second value
935 */
936#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
937
938/**
939 * max_t - return maximum of two values, using the specified type
940 * @type: data type to use
941 * @x: first value
942 * @y: second value
943 */
944#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
945
946/**
947 * clamp_t - return a value clamped to a given range using a given type
948 * @type: the type of variable to use
949 * @val: current value
950 * @lo: minimum allowable value
951 * @hi: maximum allowable value
952 *
953 * This macro does no typechecking and uses temporary variables of type
954 * @type to make all the comparisons.
955 */
956#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
957
958/**
959 * clamp_val - return a value clamped to a given range using val's type
960 * @val: current value
961 * @lo: minimum allowable value
962 * @hi: maximum allowable value
963 *
964 * This macro does no typechecking and uses temporary variables of whatever
965 * type the input argument @val is. This is useful when @val is an unsigned
966 * type and @lo and @hi are literals that will otherwise be assigned a signed
967 * integer type.
968 */
969#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
970
971
972/**
973 * swap - swap values of @a and @b
974 * @a: first value
975 * @b: second value
976 */
977#define swap(a, b) \
978 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
979
980/* This counts to 12. Any more, it will return 13th argument. */
981#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
982#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
983
984#define __CONCAT(a, b) a ## b
985#define CONCATENATE(a, b) __CONCAT(a, b)
986
987/**
988 * container_of - cast a member of a structure out to the containing structure
989 * @ptr: the pointer to the member.
990 * @type: the type of the container struct this is embedded in.
991 * @member: the name of the member within the struct.
992 *
993 */
994#define container_of(ptr, type, member) ({ \
995 void *__mptr = (void *)(ptr); \
996 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
997 !__same_type(*(ptr), void), \
998 "pointer type mismatch in container_of()"); \
999 ((type *)(__mptr - offsetof(type, member))); })
1000
1001/**
1002 * container_of_safe - cast a member of a structure out to the containing structure
1003 * @ptr: the pointer to the member.
1004 * @type: the type of the container struct this is embedded in.
1005 * @member: the name of the member within the struct.
1006 *
1007 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
1008 */
1009#define container_of_safe(ptr, type, member) ({ \
1010 void *__mptr = (void *)(ptr); \
1011 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \
1012 !__same_type(*(ptr), void), \
1013 "pointer type mismatch in container_of()"); \
1014 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \
1015 ((type *)(__mptr - offsetof(type, member))); })
1016
1017/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
1018#ifdef CONFIG_FTRACE_MCOUNT_RECORD
1019# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
1020#endif
1021
1022/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
1023#define VERIFY_OCTAL_PERMISSIONS(perms) \
1024 (BUILD_BUG_ON_ZERO((perms) < 0) + \
1025 BUILD_BUG_ON_ZERO((perms) > 0777) + \
1026 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
1027 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
1028 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
1029 /* USER_WRITABLE >= GROUP_WRITABLE */ \
1030 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
1031 /* OTHER_WRITABLE? Generally considered a bad idea. */ \
1032 BUILD_BUG_ON_ZERO((perms) & 2) + \
1033 (perms))
1034#endif