at v5.5-rc3 35 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_KERNEL_H 3#define _LINUX_KERNEL_H 4 5 6#include <stdarg.h> 7#include <linux/limits.h> 8#include <linux/linkage.h> 9#include <linux/stddef.h> 10#include <linux/types.h> 11#include <linux/compiler.h> 12#include <linux/bitops.h> 13#include <linux/log2.h> 14#include <linux/typecheck.h> 15#include <linux/printk.h> 16#include <linux/build_bug.h> 17#include <asm/byteorder.h> 18#include <asm/div64.h> 19#include <uapi/linux/kernel.h> 20#include <asm/div64.h> 21 22#define STACK_MAGIC 0xdeadbeef 23 24/** 25 * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value 26 * @x: value to repeat 27 * 28 * NOTE: @x is not checked for > 0xff; larger values produce odd results. 29 */ 30#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 31 32/* @a is a power of 2 value */ 33#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 34#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a)) 35#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 36#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 37#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 38 39/* generic data direction definitions */ 40#define READ 0 41#define WRITE 1 42 43/** 44 * ARRAY_SIZE - get the number of elements in array @arr 45 * @arr: array to be sized 46 */ 47#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 48 49#define u64_to_user_ptr(x) ( \ 50{ \ 51 typecheck(u64, (x)); \ 52 (void __user *)(uintptr_t)(x); \ 53} \ 54) 55 56/* 57 * This looks more complex than it should be. But we need to 58 * get the type for the ~ right in round_down (it needs to be 59 * as wide as the result!), and we want to evaluate the macro 60 * arguments just once each. 61 */ 62#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 63/** 64 * round_up - round up to next specified power of 2 65 * @x: the value to round 66 * @y: multiple to round up to (must be a power of 2) 67 * 68 * Rounds @x up to next multiple of @y (which must be a power of 2). 69 * To perform arbitrary rounding up, use roundup() below. 70 */ 71#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 72/** 73 * round_down - round down to next specified power of 2 74 * @x: the value to round 75 * @y: multiple to round down to (must be a power of 2) 76 * 77 * Rounds @x down to next multiple of @y (which must be a power of 2). 78 * To perform arbitrary rounding down, use rounddown() below. 79 */ 80#define round_down(x, y) ((x) & ~__round_mask(x, y)) 81 82/** 83 * FIELD_SIZEOF - get the size of a struct's field 84 * @t: the target struct 85 * @f: the target struct's field 86 * Return: the size of @f in the struct definition without having a 87 * declared instance of @t. 88 */ 89#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 90 91#define typeof_member(T, m) typeof(((T*)0)->m) 92 93#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 94 95#define DIV_ROUND_DOWN_ULL(ll, d) \ 96 ({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; }) 97 98#define DIV_ROUND_UP_ULL(ll, d) \ 99 DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d)) 100 101#if BITS_PER_LONG == 32 102# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 103#else 104# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 105#endif 106 107/** 108 * roundup - round up to the next specified multiple 109 * @x: the value to up 110 * @y: multiple to round up to 111 * 112 * Rounds @x up to next multiple of @y. If @y will always be a power 113 * of 2, consider using the faster round_up(). 114 */ 115#define roundup(x, y) ( \ 116{ \ 117 typeof(y) __y = y; \ 118 (((x) + (__y - 1)) / __y) * __y; \ 119} \ 120) 121/** 122 * rounddown - round down to next specified multiple 123 * @x: the value to round 124 * @y: multiple to round down to 125 * 126 * Rounds @x down to next multiple of @y. If @y will always be a power 127 * of 2, consider using the faster round_down(). 128 */ 129#define rounddown(x, y) ( \ 130{ \ 131 typeof(x) __x = (x); \ 132 __x - (__x % (y)); \ 133} \ 134) 135 136/* 137 * Divide positive or negative dividend by positive or negative divisor 138 * and round to closest integer. Result is undefined for negative 139 * divisors if the dividend variable type is unsigned and for negative 140 * dividends if the divisor variable type is unsigned. 141 */ 142#define DIV_ROUND_CLOSEST(x, divisor)( \ 143{ \ 144 typeof(x) __x = x; \ 145 typeof(divisor) __d = divisor; \ 146 (((typeof(x))-1) > 0 || \ 147 ((typeof(divisor))-1) > 0 || \ 148 (((__x) > 0) == ((__d) > 0))) ? \ 149 (((__x) + ((__d) / 2)) / (__d)) : \ 150 (((__x) - ((__d) / 2)) / (__d)); \ 151} \ 152) 153/* 154 * Same as above but for u64 dividends. divisor must be a 32-bit 155 * number. 156 */ 157#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 158{ \ 159 typeof(divisor) __d = divisor; \ 160 unsigned long long _tmp = (x) + (__d) / 2; \ 161 do_div(_tmp, __d); \ 162 _tmp; \ 163} \ 164) 165 166/* 167 * Multiplies an integer by a fraction, while avoiding unnecessary 168 * overflow or loss of precision. 169 */ 170#define mult_frac(x, numer, denom)( \ 171{ \ 172 typeof(x) quot = (x) / (denom); \ 173 typeof(x) rem = (x) % (denom); \ 174 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 175} \ 176) 177 178 179#define _RET_IP_ (unsigned long)__builtin_return_address(0) 180#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 181 182#define sector_div(a, b) do_div(a, b) 183 184/** 185 * upper_32_bits - return bits 32-63 of a number 186 * @n: the number we're accessing 187 * 188 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 189 * the "right shift count >= width of type" warning when that quantity is 190 * 32-bits. 191 */ 192#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 193 194/** 195 * lower_32_bits - return bits 0-31 of a number 196 * @n: the number we're accessing 197 */ 198#define lower_32_bits(n) ((u32)(n)) 199 200struct completion; 201struct pt_regs; 202struct user; 203 204#ifdef CONFIG_PREEMPT_VOLUNTARY 205extern int _cond_resched(void); 206# define might_resched() _cond_resched() 207#else 208# define might_resched() do { } while (0) 209#endif 210 211#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 212extern void ___might_sleep(const char *file, int line, int preempt_offset); 213extern void __might_sleep(const char *file, int line, int preempt_offset); 214extern void __cant_sleep(const char *file, int line, int preempt_offset); 215 216/** 217 * might_sleep - annotation for functions that can sleep 218 * 219 * this macro will print a stack trace if it is executed in an atomic 220 * context (spinlock, irq-handler, ...). Additional sections where blocking is 221 * not allowed can be annotated with non_block_start() and non_block_end() 222 * pairs. 223 * 224 * This is a useful debugging help to be able to catch problems early and not 225 * be bitten later when the calling function happens to sleep when it is not 226 * supposed to. 227 */ 228# define might_sleep() \ 229 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 230/** 231 * cant_sleep - annotation for functions that cannot sleep 232 * 233 * this macro will print a stack trace if it is executed with preemption enabled 234 */ 235# define cant_sleep() \ 236 do { __cant_sleep(__FILE__, __LINE__, 0); } while (0) 237# define sched_annotate_sleep() (current->task_state_change = 0) 238/** 239 * non_block_start - annotate the start of section where sleeping is prohibited 240 * 241 * This is on behalf of the oom reaper, specifically when it is calling the mmu 242 * notifiers. The problem is that if the notifier were to block on, for example, 243 * mutex_lock() and if the process which holds that mutex were to perform a 244 * sleeping memory allocation, the oom reaper is now blocked on completion of 245 * that memory allocation. Other blocking calls like wait_event() pose similar 246 * issues. 247 */ 248# define non_block_start() (current->non_block_count++) 249/** 250 * non_block_end - annotate the end of section where sleeping is prohibited 251 * 252 * Closes a section opened by non_block_start(). 253 */ 254# define non_block_end() WARN_ON(current->non_block_count-- == 0) 255#else 256 static inline void ___might_sleep(const char *file, int line, 257 int preempt_offset) { } 258 static inline void __might_sleep(const char *file, int line, 259 int preempt_offset) { } 260# define might_sleep() do { might_resched(); } while (0) 261# define cant_sleep() do { } while (0) 262# define sched_annotate_sleep() do { } while (0) 263# define non_block_start() do { } while (0) 264# define non_block_end() do { } while (0) 265#endif 266 267#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 268 269/** 270 * abs - return absolute value of an argument 271 * @x: the value. If it is unsigned type, it is converted to signed type first. 272 * char is treated as if it was signed (regardless of whether it really is) 273 * but the macro's return type is preserved as char. 274 * 275 * Return: an absolute value of x. 276 */ 277#define abs(x) __abs_choose_expr(x, long long, \ 278 __abs_choose_expr(x, long, \ 279 __abs_choose_expr(x, int, \ 280 __abs_choose_expr(x, short, \ 281 __abs_choose_expr(x, char, \ 282 __builtin_choose_expr( \ 283 __builtin_types_compatible_p(typeof(x), char), \ 284 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 285 ((void)0))))))) 286 287#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 288 __builtin_types_compatible_p(typeof(x), signed type) || \ 289 __builtin_types_compatible_p(typeof(x), unsigned type), \ 290 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 291 292/** 293 * reciprocal_scale - "scale" a value into range [0, ep_ro) 294 * @val: value 295 * @ep_ro: right open interval endpoint 296 * 297 * Perform a "reciprocal multiplication" in order to "scale" a value into 298 * range [0, @ep_ro), where the upper interval endpoint is right-open. 299 * This is useful, e.g. for accessing a index of an array containing 300 * @ep_ro elements, for example. Think of it as sort of modulus, only that 301 * the result isn't that of modulo. ;) Note that if initial input is a 302 * small value, then result will return 0. 303 * 304 * Return: a result based on @val in interval [0, @ep_ro). 305 */ 306static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 307{ 308 return (u32)(((u64) val * ep_ro) >> 32); 309} 310 311#if defined(CONFIG_MMU) && \ 312 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 313#define might_fault() __might_fault(__FILE__, __LINE__) 314void __might_fault(const char *file, int line); 315#else 316static inline void might_fault(void) { } 317#endif 318 319extern struct atomic_notifier_head panic_notifier_list; 320extern long (*panic_blink)(int state); 321__printf(1, 2) 322void panic(const char *fmt, ...) __noreturn __cold; 323void nmi_panic(struct pt_regs *regs, const char *msg); 324extern void oops_enter(void); 325extern void oops_exit(void); 326void print_oops_end_marker(void); 327extern int oops_may_print(void); 328void do_exit(long error_code) __noreturn; 329void complete_and_exit(struct completion *, long) __noreturn; 330 331/* Internal, do not use. */ 332int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 333int __must_check _kstrtol(const char *s, unsigned int base, long *res); 334 335int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 336int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 337 338/** 339 * kstrtoul - convert a string to an unsigned long 340 * @s: The start of the string. The string must be null-terminated, and may also 341 * include a single newline before its terminating null. The first character 342 * may also be a plus sign, but not a minus sign. 343 * @base: The number base to use. The maximum supported base is 16. If base is 344 * given as 0, then the base of the string is automatically detected with the 345 * conventional semantics - If it begins with 0x the number will be parsed as a 346 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 347 * parsed as an octal number. Otherwise it will be parsed as a decimal. 348 * @res: Where to write the result of the conversion on success. 349 * 350 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 351 * Used as a replacement for the simple_strtoull. Return code must be checked. 352*/ 353static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 354{ 355 /* 356 * We want to shortcut function call, but 357 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 358 */ 359 if (sizeof(unsigned long) == sizeof(unsigned long long) && 360 __alignof__(unsigned long) == __alignof__(unsigned long long)) 361 return kstrtoull(s, base, (unsigned long long *)res); 362 else 363 return _kstrtoul(s, base, res); 364} 365 366/** 367 * kstrtol - convert a string to a long 368 * @s: The start of the string. The string must be null-terminated, and may also 369 * include a single newline before its terminating null. The first character 370 * may also be a plus sign or a minus sign. 371 * @base: The number base to use. The maximum supported base is 16. If base is 372 * given as 0, then the base of the string is automatically detected with the 373 * conventional semantics - If it begins with 0x the number will be parsed as a 374 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 375 * parsed as an octal number. Otherwise it will be parsed as a decimal. 376 * @res: Where to write the result of the conversion on success. 377 * 378 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 379 * Used as a replacement for the simple_strtoull. Return code must be checked. 380 */ 381static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 382{ 383 /* 384 * We want to shortcut function call, but 385 * __builtin_types_compatible_p(long, long long) = 0. 386 */ 387 if (sizeof(long) == sizeof(long long) && 388 __alignof__(long) == __alignof__(long long)) 389 return kstrtoll(s, base, (long long *)res); 390 else 391 return _kstrtol(s, base, res); 392} 393 394int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 395int __must_check kstrtoint(const char *s, unsigned int base, int *res); 396 397static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 398{ 399 return kstrtoull(s, base, res); 400} 401 402static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 403{ 404 return kstrtoll(s, base, res); 405} 406 407static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 408{ 409 return kstrtouint(s, base, res); 410} 411 412static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 413{ 414 return kstrtoint(s, base, res); 415} 416 417int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 418int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 419int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 420int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 421int __must_check kstrtobool(const char *s, bool *res); 422 423int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 424int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 425int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 426int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 427int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 428int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 429int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 430int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 431int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 432int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 433int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 434 435static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 436{ 437 return kstrtoull_from_user(s, count, base, res); 438} 439 440static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 441{ 442 return kstrtoll_from_user(s, count, base, res); 443} 444 445static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 446{ 447 return kstrtouint_from_user(s, count, base, res); 448} 449 450static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 451{ 452 return kstrtoint_from_user(s, count, base, res); 453} 454 455/* 456 * Use kstrto<foo> instead. 457 * 458 * NOTE: simple_strto<foo> does not check for the range overflow and, 459 * depending on the input, may give interesting results. 460 * 461 * Use these functions if and only if you cannot use kstrto<foo>, because 462 * the conversion ends on the first non-digit character, which may be far 463 * beyond the supported range. It might be useful to parse the strings like 464 * 10x50 or 12:21 without altering original string or temporary buffer in use. 465 * Keep in mind above caveat. 466 */ 467 468extern unsigned long simple_strtoul(const char *,char **,unsigned int); 469extern long simple_strtol(const char *,char **,unsigned int); 470extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 471extern long long simple_strtoll(const char *,char **,unsigned int); 472 473extern int num_to_str(char *buf, int size, 474 unsigned long long num, unsigned int width); 475 476/* lib/printf utilities */ 477 478extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 479extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 480extern __printf(3, 4) 481int snprintf(char *buf, size_t size, const char *fmt, ...); 482extern __printf(3, 0) 483int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 484extern __printf(3, 4) 485int scnprintf(char *buf, size_t size, const char *fmt, ...); 486extern __printf(3, 0) 487int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 488extern __printf(2, 3) __malloc 489char *kasprintf(gfp_t gfp, const char *fmt, ...); 490extern __printf(2, 0) __malloc 491char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 492extern __printf(2, 0) 493const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 494 495extern __scanf(2, 3) 496int sscanf(const char *, const char *, ...); 497extern __scanf(2, 0) 498int vsscanf(const char *, const char *, va_list); 499 500extern int get_option(char **str, int *pint); 501extern char *get_options(const char *str, int nints, int *ints); 502extern unsigned long long memparse(const char *ptr, char **retptr); 503extern bool parse_option_str(const char *str, const char *option); 504extern char *next_arg(char *args, char **param, char **val); 505 506extern int core_kernel_text(unsigned long addr); 507extern int init_kernel_text(unsigned long addr); 508extern int core_kernel_data(unsigned long addr); 509extern int __kernel_text_address(unsigned long addr); 510extern int kernel_text_address(unsigned long addr); 511extern int func_ptr_is_kernel_text(void *ptr); 512 513u64 int_pow(u64 base, unsigned int exp); 514unsigned long int_sqrt(unsigned long); 515 516#if BITS_PER_LONG < 64 517u32 int_sqrt64(u64 x); 518#else 519static inline u32 int_sqrt64(u64 x) 520{ 521 return (u32)int_sqrt(x); 522} 523#endif 524 525extern void bust_spinlocks(int yes); 526extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 527extern int panic_timeout; 528extern unsigned long panic_print; 529extern int panic_on_oops; 530extern int panic_on_unrecovered_nmi; 531extern int panic_on_io_nmi; 532extern int panic_on_warn; 533extern int sysctl_panic_on_rcu_stall; 534extern int sysctl_panic_on_stackoverflow; 535 536extern bool crash_kexec_post_notifiers; 537 538/* 539 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 540 * holds a CPU number which is executing panic() currently. A value of 541 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 542 */ 543extern atomic_t panic_cpu; 544#define PANIC_CPU_INVALID -1 545 546/* 547 * Only to be used by arch init code. If the user over-wrote the default 548 * CONFIG_PANIC_TIMEOUT, honor it. 549 */ 550static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 551{ 552 if (panic_timeout == arch_default_timeout) 553 panic_timeout = timeout; 554} 555extern const char *print_tainted(void); 556enum lockdep_ok { 557 LOCKDEP_STILL_OK, 558 LOCKDEP_NOW_UNRELIABLE 559}; 560extern void add_taint(unsigned flag, enum lockdep_ok); 561extern int test_taint(unsigned flag); 562extern unsigned long get_taint(void); 563extern int root_mountflags; 564 565extern bool early_boot_irqs_disabled; 566 567/* 568 * Values used for system_state. Ordering of the states must not be changed 569 * as code checks for <, <=, >, >= STATE. 570 */ 571extern enum system_states { 572 SYSTEM_BOOTING, 573 SYSTEM_SCHEDULING, 574 SYSTEM_RUNNING, 575 SYSTEM_HALT, 576 SYSTEM_POWER_OFF, 577 SYSTEM_RESTART, 578 SYSTEM_SUSPEND, 579} system_state; 580 581/* This cannot be an enum because some may be used in assembly source. */ 582#define TAINT_PROPRIETARY_MODULE 0 583#define TAINT_FORCED_MODULE 1 584#define TAINT_CPU_OUT_OF_SPEC 2 585#define TAINT_FORCED_RMMOD 3 586#define TAINT_MACHINE_CHECK 4 587#define TAINT_BAD_PAGE 5 588#define TAINT_USER 6 589#define TAINT_DIE 7 590#define TAINT_OVERRIDDEN_ACPI_TABLE 8 591#define TAINT_WARN 9 592#define TAINT_CRAP 10 593#define TAINT_FIRMWARE_WORKAROUND 11 594#define TAINT_OOT_MODULE 12 595#define TAINT_UNSIGNED_MODULE 13 596#define TAINT_SOFTLOCKUP 14 597#define TAINT_LIVEPATCH 15 598#define TAINT_AUX 16 599#define TAINT_RANDSTRUCT 17 600#define TAINT_FLAGS_COUNT 18 601 602struct taint_flag { 603 char c_true; /* character printed when tainted */ 604 char c_false; /* character printed when not tainted */ 605 bool module; /* also show as a per-module taint flag */ 606}; 607 608extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 609 610extern const char hex_asc[]; 611#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 612#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 613 614static inline char *hex_byte_pack(char *buf, u8 byte) 615{ 616 *buf++ = hex_asc_hi(byte); 617 *buf++ = hex_asc_lo(byte); 618 return buf; 619} 620 621extern const char hex_asc_upper[]; 622#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 623#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 624 625static inline char *hex_byte_pack_upper(char *buf, u8 byte) 626{ 627 *buf++ = hex_asc_upper_hi(byte); 628 *buf++ = hex_asc_upper_lo(byte); 629 return buf; 630} 631 632extern int hex_to_bin(char ch); 633extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 634extern char *bin2hex(char *dst, const void *src, size_t count); 635 636bool mac_pton(const char *s, u8 *mac); 637 638/* 639 * General tracing related utility functions - trace_printk(), 640 * tracing_on/tracing_off and tracing_start()/tracing_stop 641 * 642 * Use tracing_on/tracing_off when you want to quickly turn on or off 643 * tracing. It simply enables or disables the recording of the trace events. 644 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 645 * file, which gives a means for the kernel and userspace to interact. 646 * Place a tracing_off() in the kernel where you want tracing to end. 647 * From user space, examine the trace, and then echo 1 > tracing_on 648 * to continue tracing. 649 * 650 * tracing_stop/tracing_start has slightly more overhead. It is used 651 * by things like suspend to ram where disabling the recording of the 652 * trace is not enough, but tracing must actually stop because things 653 * like calling smp_processor_id() may crash the system. 654 * 655 * Most likely, you want to use tracing_on/tracing_off. 656 */ 657 658enum ftrace_dump_mode { 659 DUMP_NONE, 660 DUMP_ALL, 661 DUMP_ORIG, 662}; 663 664#ifdef CONFIG_TRACING 665void tracing_on(void); 666void tracing_off(void); 667int tracing_is_on(void); 668void tracing_snapshot(void); 669void tracing_snapshot_alloc(void); 670 671extern void tracing_start(void); 672extern void tracing_stop(void); 673 674static inline __printf(1, 2) 675void ____trace_printk_check_format(const char *fmt, ...) 676{ 677} 678#define __trace_printk_check_format(fmt, args...) \ 679do { \ 680 if (0) \ 681 ____trace_printk_check_format(fmt, ##args); \ 682} while (0) 683 684/** 685 * trace_printk - printf formatting in the ftrace buffer 686 * @fmt: the printf format for printing 687 * 688 * Note: __trace_printk is an internal function for trace_printk() and 689 * the @ip is passed in via the trace_printk() macro. 690 * 691 * This function allows a kernel developer to debug fast path sections 692 * that printk is not appropriate for. By scattering in various 693 * printk like tracing in the code, a developer can quickly see 694 * where problems are occurring. 695 * 696 * This is intended as a debugging tool for the developer only. 697 * Please refrain from leaving trace_printks scattered around in 698 * your code. (Extra memory is used for special buffers that are 699 * allocated when trace_printk() is used.) 700 * 701 * A little optimization trick is done here. If there's only one 702 * argument, there's no need to scan the string for printf formats. 703 * The trace_puts() will suffice. But how can we take advantage of 704 * using trace_puts() when trace_printk() has only one argument? 705 * By stringifying the args and checking the size we can tell 706 * whether or not there are args. __stringify((__VA_ARGS__)) will 707 * turn into "()\0" with a size of 3 when there are no args, anything 708 * else will be bigger. All we need to do is define a string to this, 709 * and then take its size and compare to 3. If it's bigger, use 710 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 711 * let gcc optimize the rest. 712 */ 713 714#define trace_printk(fmt, ...) \ 715do { \ 716 char _______STR[] = __stringify((__VA_ARGS__)); \ 717 if (sizeof(_______STR) > 3) \ 718 do_trace_printk(fmt, ##__VA_ARGS__); \ 719 else \ 720 trace_puts(fmt); \ 721} while (0) 722 723#define do_trace_printk(fmt, args...) \ 724do { \ 725 static const char *trace_printk_fmt __used \ 726 __attribute__((section("__trace_printk_fmt"))) = \ 727 __builtin_constant_p(fmt) ? fmt : NULL; \ 728 \ 729 __trace_printk_check_format(fmt, ##args); \ 730 \ 731 if (__builtin_constant_p(fmt)) \ 732 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 733 else \ 734 __trace_printk(_THIS_IP_, fmt, ##args); \ 735} while (0) 736 737extern __printf(2, 3) 738int __trace_bprintk(unsigned long ip, const char *fmt, ...); 739 740extern __printf(2, 3) 741int __trace_printk(unsigned long ip, const char *fmt, ...); 742 743/** 744 * trace_puts - write a string into the ftrace buffer 745 * @str: the string to record 746 * 747 * Note: __trace_bputs is an internal function for trace_puts and 748 * the @ip is passed in via the trace_puts macro. 749 * 750 * This is similar to trace_printk() but is made for those really fast 751 * paths that a developer wants the least amount of "Heisenbug" effects, 752 * where the processing of the print format is still too much. 753 * 754 * This function allows a kernel developer to debug fast path sections 755 * that printk is not appropriate for. By scattering in various 756 * printk like tracing in the code, a developer can quickly see 757 * where problems are occurring. 758 * 759 * This is intended as a debugging tool for the developer only. 760 * Please refrain from leaving trace_puts scattered around in 761 * your code. (Extra memory is used for special buffers that are 762 * allocated when trace_puts() is used.) 763 * 764 * Returns: 0 if nothing was written, positive # if string was. 765 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 766 */ 767 768#define trace_puts(str) ({ \ 769 static const char *trace_printk_fmt __used \ 770 __attribute__((section("__trace_printk_fmt"))) = \ 771 __builtin_constant_p(str) ? str : NULL; \ 772 \ 773 if (__builtin_constant_p(str)) \ 774 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 775 else \ 776 __trace_puts(_THIS_IP_, str, strlen(str)); \ 777}) 778extern int __trace_bputs(unsigned long ip, const char *str); 779extern int __trace_puts(unsigned long ip, const char *str, int size); 780 781extern void trace_dump_stack(int skip); 782 783/* 784 * The double __builtin_constant_p is because gcc will give us an error 785 * if we try to allocate the static variable to fmt if it is not a 786 * constant. Even with the outer if statement. 787 */ 788#define ftrace_vprintk(fmt, vargs) \ 789do { \ 790 if (__builtin_constant_p(fmt)) { \ 791 static const char *trace_printk_fmt __used \ 792 __attribute__((section("__trace_printk_fmt"))) = \ 793 __builtin_constant_p(fmt) ? fmt : NULL; \ 794 \ 795 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 796 } else \ 797 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 798} while (0) 799 800extern __printf(2, 0) int 801__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 802 803extern __printf(2, 0) int 804__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 805 806extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 807#else 808static inline void tracing_start(void) { } 809static inline void tracing_stop(void) { } 810static inline void trace_dump_stack(int skip) { } 811 812static inline void tracing_on(void) { } 813static inline void tracing_off(void) { } 814static inline int tracing_is_on(void) { return 0; } 815static inline void tracing_snapshot(void) { } 816static inline void tracing_snapshot_alloc(void) { } 817 818static inline __printf(1, 2) 819int trace_printk(const char *fmt, ...) 820{ 821 return 0; 822} 823static __printf(1, 0) inline int 824ftrace_vprintk(const char *fmt, va_list ap) 825{ 826 return 0; 827} 828static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 829#endif /* CONFIG_TRACING */ 830 831/* 832 * min()/max()/clamp() macros must accomplish three things: 833 * 834 * - avoid multiple evaluations of the arguments (so side-effects like 835 * "x++" happen only once) when non-constant. 836 * - perform strict type-checking (to generate warnings instead of 837 * nasty runtime surprises). See the "unnecessary" pointer comparison 838 * in __typecheck(). 839 * - retain result as a constant expressions when called with only 840 * constant expressions (to avoid tripping VLA warnings in stack 841 * allocation usage). 842 */ 843#define __typecheck(x, y) \ 844 (!!(sizeof((typeof(x) *)1 == (typeof(y) *)1))) 845 846/* 847 * This returns a constant expression while determining if an argument is 848 * a constant expression, most importantly without evaluating the argument. 849 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de> 850 */ 851#define __is_constexpr(x) \ 852 (sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8))) 853 854#define __no_side_effects(x, y) \ 855 (__is_constexpr(x) && __is_constexpr(y)) 856 857#define __safe_cmp(x, y) \ 858 (__typecheck(x, y) && __no_side_effects(x, y)) 859 860#define __cmp(x, y, op) ((x) op (y) ? (x) : (y)) 861 862#define __cmp_once(x, y, unique_x, unique_y, op) ({ \ 863 typeof(x) unique_x = (x); \ 864 typeof(y) unique_y = (y); \ 865 __cmp(unique_x, unique_y, op); }) 866 867#define __careful_cmp(x, y, op) \ 868 __builtin_choose_expr(__safe_cmp(x, y), \ 869 __cmp(x, y, op), \ 870 __cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op)) 871 872/** 873 * min - return minimum of two values of the same or compatible types 874 * @x: first value 875 * @y: second value 876 */ 877#define min(x, y) __careful_cmp(x, y, <) 878 879/** 880 * max - return maximum of two values of the same or compatible types 881 * @x: first value 882 * @y: second value 883 */ 884#define max(x, y) __careful_cmp(x, y, >) 885 886/** 887 * min3 - return minimum of three values 888 * @x: first value 889 * @y: second value 890 * @z: third value 891 */ 892#define min3(x, y, z) min((typeof(x))min(x, y), z) 893 894/** 895 * max3 - return maximum of three values 896 * @x: first value 897 * @y: second value 898 * @z: third value 899 */ 900#define max3(x, y, z) max((typeof(x))max(x, y), z) 901 902/** 903 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 904 * @x: value1 905 * @y: value2 906 */ 907#define min_not_zero(x, y) ({ \ 908 typeof(x) __x = (x); \ 909 typeof(y) __y = (y); \ 910 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 911 912/** 913 * clamp - return a value clamped to a given range with strict typechecking 914 * @val: current value 915 * @lo: lowest allowable value 916 * @hi: highest allowable value 917 * 918 * This macro does strict typechecking of @lo/@hi to make sure they are of the 919 * same type as @val. See the unnecessary pointer comparisons. 920 */ 921#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 922 923/* 924 * ..and if you can't take the strict 925 * types, you can specify one yourself. 926 * 927 * Or not use min/max/clamp at all, of course. 928 */ 929 930/** 931 * min_t - return minimum of two values, using the specified type 932 * @type: data type to use 933 * @x: first value 934 * @y: second value 935 */ 936#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <) 937 938/** 939 * max_t - return maximum of two values, using the specified type 940 * @type: data type to use 941 * @x: first value 942 * @y: second value 943 */ 944#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >) 945 946/** 947 * clamp_t - return a value clamped to a given range using a given type 948 * @type: the type of variable to use 949 * @val: current value 950 * @lo: minimum allowable value 951 * @hi: maximum allowable value 952 * 953 * This macro does no typechecking and uses temporary variables of type 954 * @type to make all the comparisons. 955 */ 956#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 957 958/** 959 * clamp_val - return a value clamped to a given range using val's type 960 * @val: current value 961 * @lo: minimum allowable value 962 * @hi: maximum allowable value 963 * 964 * This macro does no typechecking and uses temporary variables of whatever 965 * type the input argument @val is. This is useful when @val is an unsigned 966 * type and @lo and @hi are literals that will otherwise be assigned a signed 967 * integer type. 968 */ 969#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 970 971 972/** 973 * swap - swap values of @a and @b 974 * @a: first value 975 * @b: second value 976 */ 977#define swap(a, b) \ 978 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 979 980/* This counts to 12. Any more, it will return 13th argument. */ 981#define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n 982#define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 983 984#define __CONCAT(a, b) a ## b 985#define CONCATENATE(a, b) __CONCAT(a, b) 986 987/** 988 * container_of - cast a member of a structure out to the containing structure 989 * @ptr: the pointer to the member. 990 * @type: the type of the container struct this is embedded in. 991 * @member: the name of the member within the struct. 992 * 993 */ 994#define container_of(ptr, type, member) ({ \ 995 void *__mptr = (void *)(ptr); \ 996 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 997 !__same_type(*(ptr), void), \ 998 "pointer type mismatch in container_of()"); \ 999 ((type *)(__mptr - offsetof(type, member))); }) 1000 1001/** 1002 * container_of_safe - cast a member of a structure out to the containing structure 1003 * @ptr: the pointer to the member. 1004 * @type: the type of the container struct this is embedded in. 1005 * @member: the name of the member within the struct. 1006 * 1007 * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged. 1008 */ 1009#define container_of_safe(ptr, type, member) ({ \ 1010 void *__mptr = (void *)(ptr); \ 1011 BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) && \ 1012 !__same_type(*(ptr), void), \ 1013 "pointer type mismatch in container_of()"); \ 1014 IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) : \ 1015 ((type *)(__mptr - offsetof(type, member))); }) 1016 1017/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 1018#ifdef CONFIG_FTRACE_MCOUNT_RECORD 1019# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 1020#endif 1021 1022/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 1023#define VERIFY_OCTAL_PERMISSIONS(perms) \ 1024 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 1025 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 1026 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 1027 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 1028 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 1029 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 1030 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 1031 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 1032 BUILD_BUG_ON_ZERO((perms) & 2) + \ 1033 (perms)) 1034#endif