Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/ethtool.h>
92#include <linux/skbuff.h>
93#include <linux/bpf.h>
94#include <linux/bpf_trace.h>
95#include <net/net_namespace.h>
96#include <net/sock.h>
97#include <net/busy_poll.h>
98#include <linux/rtnetlink.h>
99#include <linux/stat.h>
100#include <net/dst.h>
101#include <net/dst_metadata.h>
102#include <net/pkt_sched.h>
103#include <net/pkt_cls.h>
104#include <net/checksum.h>
105#include <net/xfrm.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/module.h>
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
112#include <net/iw_handler.h>
113#include <asm/current.h>
114#include <linux/audit.h>
115#include <linux/dmaengine.h>
116#include <linux/err.h>
117#include <linux/ctype.h>
118#include <linux/if_arp.h>
119#include <linux/if_vlan.h>
120#include <linux/ip.h>
121#include <net/ip.h>
122#include <net/mpls.h>
123#include <linux/ipv6.h>
124#include <linux/in.h>
125#include <linux/jhash.h>
126#include <linux/random.h>
127#include <trace/events/napi.h>
128#include <trace/events/net.h>
129#include <trace/events/skb.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138#include <linux/netfilter_ingress.h>
139#include <linux/crash_dump.h>
140#include <linux/sctp.h>
141#include <net/udp_tunnel.h>
142#include <linux/net_namespace.h>
143#include <linux/indirect_call_wrapper.h>
144#include <net/devlink.h>
145
146#include "net-sysfs.h"
147
148#define MAX_GRO_SKBS 8
149#define MAX_NEST_DEV 8
150
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154static DEFINE_SPINLOCK(ptype_lock);
155static DEFINE_SPINLOCK(offload_lock);
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
158static struct list_head offload_base __read_mostly;
159
160static int netif_rx_internal(struct sk_buff *skb);
161static int call_netdevice_notifiers_info(unsigned long val,
162 struct netdev_notifier_info *info);
163static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168/*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187DEFINE_RWLOCK(dev_base_lock);
188EXPORT_SYMBOL(dev_base_lock);
189
190static DEFINE_MUTEX(ifalias_mutex);
191
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
195static unsigned int napi_gen_id = NR_CPUS;
196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198static seqcount_t devnet_rename_seq;
199
200static inline void dev_base_seq_inc(struct net *net)
201{
202 while (++net->dev_base_seq == 0)
203 ;
204}
205
206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207{
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211}
212
213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214{
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216}
217
218static inline void rps_lock(struct softnet_data *sd)
219{
220#ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222#endif
223}
224
225static inline void rps_unlock(struct softnet_data *sd)
226{
227#ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229#endif
230}
231
232static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 const char *name)
234{
235 struct netdev_name_node *name_node;
236
237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 if (!name_node)
239 return NULL;
240 INIT_HLIST_NODE(&name_node->hlist);
241 name_node->dev = dev;
242 name_node->name = name;
243 return name_node;
244}
245
246static struct netdev_name_node *
247netdev_name_node_head_alloc(struct net_device *dev)
248{
249 struct netdev_name_node *name_node;
250
251 name_node = netdev_name_node_alloc(dev, dev->name);
252 if (!name_node)
253 return NULL;
254 INIT_LIST_HEAD(&name_node->list);
255 return name_node;
256}
257
258static void netdev_name_node_free(struct netdev_name_node *name_node)
259{
260 kfree(name_node);
261}
262
263static void netdev_name_node_add(struct net *net,
264 struct netdev_name_node *name_node)
265{
266 hlist_add_head_rcu(&name_node->hlist,
267 dev_name_hash(net, name_node->name));
268}
269
270static void netdev_name_node_del(struct netdev_name_node *name_node)
271{
272 hlist_del_rcu(&name_node->hlist);
273}
274
275static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 const char *name)
277{
278 struct hlist_head *head = dev_name_hash(net, name);
279 struct netdev_name_node *name_node;
280
281 hlist_for_each_entry(name_node, head, hlist)
282 if (!strcmp(name_node->name, name))
283 return name_node;
284 return NULL;
285}
286
287static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 const char *name)
289{
290 struct hlist_head *head = dev_name_hash(net, name);
291 struct netdev_name_node *name_node;
292
293 hlist_for_each_entry_rcu(name_node, head, hlist)
294 if (!strcmp(name_node->name, name))
295 return name_node;
296 return NULL;
297}
298
299int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300{
301 struct netdev_name_node *name_node;
302 struct net *net = dev_net(dev);
303
304 name_node = netdev_name_node_lookup(net, name);
305 if (name_node)
306 return -EEXIST;
307 name_node = netdev_name_node_alloc(dev, name);
308 if (!name_node)
309 return -ENOMEM;
310 netdev_name_node_add(net, name_node);
311 /* The node that holds dev->name acts as a head of per-device list. */
312 list_add_tail(&name_node->list, &dev->name_node->list);
313
314 return 0;
315}
316EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319{
320 list_del(&name_node->list);
321 netdev_name_node_del(name_node);
322 kfree(name_node->name);
323 netdev_name_node_free(name_node);
324}
325
326int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327{
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
330
331 name_node = netdev_name_node_lookup(net, name);
332 if (!name_node)
333 return -ENOENT;
334 __netdev_name_node_alt_destroy(name_node);
335
336 return 0;
337}
338EXPORT_SYMBOL(netdev_name_node_alt_destroy);
339
340static void netdev_name_node_alt_flush(struct net_device *dev)
341{
342 struct netdev_name_node *name_node, *tmp;
343
344 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
345 __netdev_name_node_alt_destroy(name_node);
346}
347
348/* Device list insertion */
349static void list_netdevice(struct net_device *dev)
350{
351 struct net *net = dev_net(dev);
352
353 ASSERT_RTNL();
354
355 write_lock_bh(&dev_base_lock);
356 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
357 netdev_name_node_add(net, dev->name_node);
358 hlist_add_head_rcu(&dev->index_hlist,
359 dev_index_hash(net, dev->ifindex));
360 write_unlock_bh(&dev_base_lock);
361
362 dev_base_seq_inc(net);
363}
364
365/* Device list removal
366 * caller must respect a RCU grace period before freeing/reusing dev
367 */
368static void unlist_netdevice(struct net_device *dev)
369{
370 ASSERT_RTNL();
371
372 /* Unlink dev from the device chain */
373 write_lock_bh(&dev_base_lock);
374 list_del_rcu(&dev->dev_list);
375 netdev_name_node_del(dev->name_node);
376 hlist_del_rcu(&dev->index_hlist);
377 write_unlock_bh(&dev_base_lock);
378
379 dev_base_seq_inc(dev_net(dev));
380}
381
382/*
383 * Our notifier list
384 */
385
386static RAW_NOTIFIER_HEAD(netdev_chain);
387
388/*
389 * Device drivers call our routines to queue packets here. We empty the
390 * queue in the local softnet handler.
391 */
392
393DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
394EXPORT_PER_CPU_SYMBOL(softnet_data);
395
396/*******************************************************************************
397 *
398 * Protocol management and registration routines
399 *
400 *******************************************************************************/
401
402
403/*
404 * Add a protocol ID to the list. Now that the input handler is
405 * smarter we can dispense with all the messy stuff that used to be
406 * here.
407 *
408 * BEWARE!!! Protocol handlers, mangling input packets,
409 * MUST BE last in hash buckets and checking protocol handlers
410 * MUST start from promiscuous ptype_all chain in net_bh.
411 * It is true now, do not change it.
412 * Explanation follows: if protocol handler, mangling packet, will
413 * be the first on list, it is not able to sense, that packet
414 * is cloned and should be copied-on-write, so that it will
415 * change it and subsequent readers will get broken packet.
416 * --ANK (980803)
417 */
418
419static inline struct list_head *ptype_head(const struct packet_type *pt)
420{
421 if (pt->type == htons(ETH_P_ALL))
422 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
423 else
424 return pt->dev ? &pt->dev->ptype_specific :
425 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426}
427
428/**
429 * dev_add_pack - add packet handler
430 * @pt: packet type declaration
431 *
432 * Add a protocol handler to the networking stack. The passed &packet_type
433 * is linked into kernel lists and may not be freed until it has been
434 * removed from the kernel lists.
435 *
436 * This call does not sleep therefore it can not
437 * guarantee all CPU's that are in middle of receiving packets
438 * will see the new packet type (until the next received packet).
439 */
440
441void dev_add_pack(struct packet_type *pt)
442{
443 struct list_head *head = ptype_head(pt);
444
445 spin_lock(&ptype_lock);
446 list_add_rcu(&pt->list, head);
447 spin_unlock(&ptype_lock);
448}
449EXPORT_SYMBOL(dev_add_pack);
450
451/**
452 * __dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * The packet type might still be in use by receivers
461 * and must not be freed until after all the CPU's have gone
462 * through a quiescent state.
463 */
464void __dev_remove_pack(struct packet_type *pt)
465{
466 struct list_head *head = ptype_head(pt);
467 struct packet_type *pt1;
468
469 spin_lock(&ptype_lock);
470
471 list_for_each_entry(pt1, head, list) {
472 if (pt == pt1) {
473 list_del_rcu(&pt->list);
474 goto out;
475 }
476 }
477
478 pr_warn("dev_remove_pack: %p not found\n", pt);
479out:
480 spin_unlock(&ptype_lock);
481}
482EXPORT_SYMBOL(__dev_remove_pack);
483
484/**
485 * dev_remove_pack - remove packet handler
486 * @pt: packet type declaration
487 *
488 * Remove a protocol handler that was previously added to the kernel
489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
490 * from the kernel lists and can be freed or reused once this function
491 * returns.
492 *
493 * This call sleeps to guarantee that no CPU is looking at the packet
494 * type after return.
495 */
496void dev_remove_pack(struct packet_type *pt)
497{
498 __dev_remove_pack(pt);
499
500 synchronize_net();
501}
502EXPORT_SYMBOL(dev_remove_pack);
503
504
505/**
506 * dev_add_offload - register offload handlers
507 * @po: protocol offload declaration
508 *
509 * Add protocol offload handlers to the networking stack. The passed
510 * &proto_offload is linked into kernel lists and may not be freed until
511 * it has been removed from the kernel lists.
512 *
513 * This call does not sleep therefore it can not
514 * guarantee all CPU's that are in middle of receiving packets
515 * will see the new offload handlers (until the next received packet).
516 */
517void dev_add_offload(struct packet_offload *po)
518{
519 struct packet_offload *elem;
520
521 spin_lock(&offload_lock);
522 list_for_each_entry(elem, &offload_base, list) {
523 if (po->priority < elem->priority)
524 break;
525 }
526 list_add_rcu(&po->list, elem->list.prev);
527 spin_unlock(&offload_lock);
528}
529EXPORT_SYMBOL(dev_add_offload);
530
531/**
532 * __dev_remove_offload - remove offload handler
533 * @po: packet offload declaration
534 *
535 * Remove a protocol offload handler that was previously added to the
536 * kernel offload handlers by dev_add_offload(). The passed &offload_type
537 * is removed from the kernel lists and can be freed or reused once this
538 * function returns.
539 *
540 * The packet type might still be in use by receivers
541 * and must not be freed until after all the CPU's have gone
542 * through a quiescent state.
543 */
544static void __dev_remove_offload(struct packet_offload *po)
545{
546 struct list_head *head = &offload_base;
547 struct packet_offload *po1;
548
549 spin_lock(&offload_lock);
550
551 list_for_each_entry(po1, head, list) {
552 if (po == po1) {
553 list_del_rcu(&po->list);
554 goto out;
555 }
556 }
557
558 pr_warn("dev_remove_offload: %p not found\n", po);
559out:
560 spin_unlock(&offload_lock);
561}
562
563/**
564 * dev_remove_offload - remove packet offload handler
565 * @po: packet offload declaration
566 *
567 * Remove a packet offload handler that was previously added to the kernel
568 * offload handlers by dev_add_offload(). The passed &offload_type is
569 * removed from the kernel lists and can be freed or reused once this
570 * function returns.
571 *
572 * This call sleeps to guarantee that no CPU is looking at the packet
573 * type after return.
574 */
575void dev_remove_offload(struct packet_offload *po)
576{
577 __dev_remove_offload(po);
578
579 synchronize_net();
580}
581EXPORT_SYMBOL(dev_remove_offload);
582
583/******************************************************************************
584 *
585 * Device Boot-time Settings Routines
586 *
587 ******************************************************************************/
588
589/* Boot time configuration table */
590static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
591
592/**
593 * netdev_boot_setup_add - add new setup entry
594 * @name: name of the device
595 * @map: configured settings for the device
596 *
597 * Adds new setup entry to the dev_boot_setup list. The function
598 * returns 0 on error and 1 on success. This is a generic routine to
599 * all netdevices.
600 */
601static int netdev_boot_setup_add(char *name, struct ifmap *map)
602{
603 struct netdev_boot_setup *s;
604 int i;
605
606 s = dev_boot_setup;
607 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
608 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
609 memset(s[i].name, 0, sizeof(s[i].name));
610 strlcpy(s[i].name, name, IFNAMSIZ);
611 memcpy(&s[i].map, map, sizeof(s[i].map));
612 break;
613 }
614 }
615
616 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
617}
618
619/**
620 * netdev_boot_setup_check - check boot time settings
621 * @dev: the netdevice
622 *
623 * Check boot time settings for the device.
624 * The found settings are set for the device to be used
625 * later in the device probing.
626 * Returns 0 if no settings found, 1 if they are.
627 */
628int netdev_boot_setup_check(struct net_device *dev)
629{
630 struct netdev_boot_setup *s = dev_boot_setup;
631 int i;
632
633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
634 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
635 !strcmp(dev->name, s[i].name)) {
636 dev->irq = s[i].map.irq;
637 dev->base_addr = s[i].map.base_addr;
638 dev->mem_start = s[i].map.mem_start;
639 dev->mem_end = s[i].map.mem_end;
640 return 1;
641 }
642 }
643 return 0;
644}
645EXPORT_SYMBOL(netdev_boot_setup_check);
646
647
648/**
649 * netdev_boot_base - get address from boot time settings
650 * @prefix: prefix for network device
651 * @unit: id for network device
652 *
653 * Check boot time settings for the base address of device.
654 * The found settings are set for the device to be used
655 * later in the device probing.
656 * Returns 0 if no settings found.
657 */
658unsigned long netdev_boot_base(const char *prefix, int unit)
659{
660 const struct netdev_boot_setup *s = dev_boot_setup;
661 char name[IFNAMSIZ];
662 int i;
663
664 sprintf(name, "%s%d", prefix, unit);
665
666 /*
667 * If device already registered then return base of 1
668 * to indicate not to probe for this interface
669 */
670 if (__dev_get_by_name(&init_net, name))
671 return 1;
672
673 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
674 if (!strcmp(name, s[i].name))
675 return s[i].map.base_addr;
676 return 0;
677}
678
679/*
680 * Saves at boot time configured settings for any netdevice.
681 */
682int __init netdev_boot_setup(char *str)
683{
684 int ints[5];
685 struct ifmap map;
686
687 str = get_options(str, ARRAY_SIZE(ints), ints);
688 if (!str || !*str)
689 return 0;
690
691 /* Save settings */
692 memset(&map, 0, sizeof(map));
693 if (ints[0] > 0)
694 map.irq = ints[1];
695 if (ints[0] > 1)
696 map.base_addr = ints[2];
697 if (ints[0] > 2)
698 map.mem_start = ints[3];
699 if (ints[0] > 3)
700 map.mem_end = ints[4];
701
702 /* Add new entry to the list */
703 return netdev_boot_setup_add(str, &map);
704}
705
706__setup("netdev=", netdev_boot_setup);
707
708/*******************************************************************************
709 *
710 * Device Interface Subroutines
711 *
712 *******************************************************************************/
713
714/**
715 * dev_get_iflink - get 'iflink' value of a interface
716 * @dev: targeted interface
717 *
718 * Indicates the ifindex the interface is linked to.
719 * Physical interfaces have the same 'ifindex' and 'iflink' values.
720 */
721
722int dev_get_iflink(const struct net_device *dev)
723{
724 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
725 return dev->netdev_ops->ndo_get_iflink(dev);
726
727 return dev->ifindex;
728}
729EXPORT_SYMBOL(dev_get_iflink);
730
731/**
732 * dev_fill_metadata_dst - Retrieve tunnel egress information.
733 * @dev: targeted interface
734 * @skb: The packet.
735 *
736 * For better visibility of tunnel traffic OVS needs to retrieve
737 * egress tunnel information for a packet. Following API allows
738 * user to get this info.
739 */
740int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
741{
742 struct ip_tunnel_info *info;
743
744 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
745 return -EINVAL;
746
747 info = skb_tunnel_info_unclone(skb);
748 if (!info)
749 return -ENOMEM;
750 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
751 return -EINVAL;
752
753 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
754}
755EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
756
757/**
758 * __dev_get_by_name - find a device by its name
759 * @net: the applicable net namespace
760 * @name: name to find
761 *
762 * Find an interface by name. Must be called under RTNL semaphore
763 * or @dev_base_lock. If the name is found a pointer to the device
764 * is returned. If the name is not found then %NULL is returned. The
765 * reference counters are not incremented so the caller must be
766 * careful with locks.
767 */
768
769struct net_device *__dev_get_by_name(struct net *net, const char *name)
770{
771 struct netdev_name_node *node_name;
772
773 node_name = netdev_name_node_lookup(net, name);
774 return node_name ? node_name->dev : NULL;
775}
776EXPORT_SYMBOL(__dev_get_by_name);
777
778/**
779 * dev_get_by_name_rcu - find a device by its name
780 * @net: the applicable net namespace
781 * @name: name to find
782 *
783 * Find an interface by name.
784 * If the name is found a pointer to the device is returned.
785 * If the name is not found then %NULL is returned.
786 * The reference counters are not incremented so the caller must be
787 * careful with locks. The caller must hold RCU lock.
788 */
789
790struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791{
792 struct netdev_name_node *node_name;
793
794 node_name = netdev_name_node_lookup_rcu(net, name);
795 return node_name ? node_name->dev : NULL;
796}
797EXPORT_SYMBOL(dev_get_by_name_rcu);
798
799/**
800 * dev_get_by_name - find a device by its name
801 * @net: the applicable net namespace
802 * @name: name to find
803 *
804 * Find an interface by name. This can be called from any
805 * context and does its own locking. The returned handle has
806 * the usage count incremented and the caller must use dev_put() to
807 * release it when it is no longer needed. %NULL is returned if no
808 * matching device is found.
809 */
810
811struct net_device *dev_get_by_name(struct net *net, const char *name)
812{
813 struct net_device *dev;
814
815 rcu_read_lock();
816 dev = dev_get_by_name_rcu(net, name);
817 if (dev)
818 dev_hold(dev);
819 rcu_read_unlock();
820 return dev;
821}
822EXPORT_SYMBOL(dev_get_by_name);
823
824/**
825 * __dev_get_by_index - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold either the RTNL semaphore
833 * or @dev_base_lock.
834 */
835
836struct net_device *__dev_get_by_index(struct net *net, int ifindex)
837{
838 struct net_device *dev;
839 struct hlist_head *head = dev_index_hash(net, ifindex);
840
841 hlist_for_each_entry(dev, head, index_hlist)
842 if (dev->ifindex == ifindex)
843 return dev;
844
845 return NULL;
846}
847EXPORT_SYMBOL(__dev_get_by_index);
848
849/**
850 * dev_get_by_index_rcu - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns %NULL if the device
855 * is not found or a pointer to the device. The device has not
856 * had its reference counter increased so the caller must be careful
857 * about locking. The caller must hold RCU lock.
858 */
859
860struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
861{
862 struct net_device *dev;
863 struct hlist_head *head = dev_index_hash(net, ifindex);
864
865 hlist_for_each_entry_rcu(dev, head, index_hlist)
866 if (dev->ifindex == ifindex)
867 return dev;
868
869 return NULL;
870}
871EXPORT_SYMBOL(dev_get_by_index_rcu);
872
873
874/**
875 * dev_get_by_index - find a device by its ifindex
876 * @net: the applicable net namespace
877 * @ifindex: index of device
878 *
879 * Search for an interface by index. Returns NULL if the device
880 * is not found or a pointer to the device. The device returned has
881 * had a reference added and the pointer is safe until the user calls
882 * dev_put to indicate they have finished with it.
883 */
884
885struct net_device *dev_get_by_index(struct net *net, int ifindex)
886{
887 struct net_device *dev;
888
889 rcu_read_lock();
890 dev = dev_get_by_index_rcu(net, ifindex);
891 if (dev)
892 dev_hold(dev);
893 rcu_read_unlock();
894 return dev;
895}
896EXPORT_SYMBOL(dev_get_by_index);
897
898/**
899 * dev_get_by_napi_id - find a device by napi_id
900 * @napi_id: ID of the NAPI struct
901 *
902 * Search for an interface by NAPI ID. Returns %NULL if the device
903 * is not found or a pointer to the device. The device has not had
904 * its reference counter increased so the caller must be careful
905 * about locking. The caller must hold RCU lock.
906 */
907
908struct net_device *dev_get_by_napi_id(unsigned int napi_id)
909{
910 struct napi_struct *napi;
911
912 WARN_ON_ONCE(!rcu_read_lock_held());
913
914 if (napi_id < MIN_NAPI_ID)
915 return NULL;
916
917 napi = napi_by_id(napi_id);
918
919 return napi ? napi->dev : NULL;
920}
921EXPORT_SYMBOL(dev_get_by_napi_id);
922
923/**
924 * netdev_get_name - get a netdevice name, knowing its ifindex.
925 * @net: network namespace
926 * @name: a pointer to the buffer where the name will be stored.
927 * @ifindex: the ifindex of the interface to get the name from.
928 *
929 * The use of raw_seqcount_begin() and cond_resched() before
930 * retrying is required as we want to give the writers a chance
931 * to complete when CONFIG_PREEMPT is not set.
932 */
933int netdev_get_name(struct net *net, char *name, int ifindex)
934{
935 struct net_device *dev;
936 unsigned int seq;
937
938retry:
939 seq = raw_seqcount_begin(&devnet_rename_seq);
940 rcu_read_lock();
941 dev = dev_get_by_index_rcu(net, ifindex);
942 if (!dev) {
943 rcu_read_unlock();
944 return -ENODEV;
945 }
946
947 strcpy(name, dev->name);
948 rcu_read_unlock();
949 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
950 cond_resched();
951 goto retry;
952 }
953
954 return 0;
955}
956
957/**
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
968 *
969 */
970
971struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
973{
974 struct net_device *dev;
975
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
980
981 return NULL;
982}
983EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
985struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
986{
987 struct net_device *dev;
988
989 ASSERT_RTNL();
990 for_each_netdev(net, dev)
991 if (dev->type == type)
992 return dev;
993
994 return NULL;
995}
996EXPORT_SYMBOL(__dev_getfirstbyhwtype);
997
998struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
999{
1000 struct net_device *dev, *ret = NULL;
1001
1002 rcu_read_lock();
1003 for_each_netdev_rcu(net, dev)
1004 if (dev->type == type) {
1005 dev_hold(dev);
1006 ret = dev;
1007 break;
1008 }
1009 rcu_read_unlock();
1010 return ret;
1011}
1012EXPORT_SYMBOL(dev_getfirstbyhwtype);
1013
1014/**
1015 * __dev_get_by_flags - find any device with given flags
1016 * @net: the applicable net namespace
1017 * @if_flags: IFF_* values
1018 * @mask: bitmask of bits in if_flags to check
1019 *
1020 * Search for any interface with the given flags. Returns NULL if a device
1021 * is not found or a pointer to the device. Must be called inside
1022 * rtnl_lock(), and result refcount is unchanged.
1023 */
1024
1025struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1026 unsigned short mask)
1027{
1028 struct net_device *dev, *ret;
1029
1030 ASSERT_RTNL();
1031
1032 ret = NULL;
1033 for_each_netdev(net, dev) {
1034 if (((dev->flags ^ if_flags) & mask) == 0) {
1035 ret = dev;
1036 break;
1037 }
1038 }
1039 return ret;
1040}
1041EXPORT_SYMBOL(__dev_get_by_flags);
1042
1043/**
1044 * dev_valid_name - check if name is okay for network device
1045 * @name: name string
1046 *
1047 * Network device names need to be valid file names to
1048 * to allow sysfs to work. We also disallow any kind of
1049 * whitespace.
1050 */
1051bool dev_valid_name(const char *name)
1052{
1053 if (*name == '\0')
1054 return false;
1055 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1056 return false;
1057 if (!strcmp(name, ".") || !strcmp(name, ".."))
1058 return false;
1059
1060 while (*name) {
1061 if (*name == '/' || *name == ':' || isspace(*name))
1062 return false;
1063 name++;
1064 }
1065 return true;
1066}
1067EXPORT_SYMBOL(dev_valid_name);
1068
1069/**
1070 * __dev_alloc_name - allocate a name for a device
1071 * @net: network namespace to allocate the device name in
1072 * @name: name format string
1073 * @buf: scratch buffer and result name string
1074 *
1075 * Passed a format string - eg "lt%d" it will try and find a suitable
1076 * id. It scans list of devices to build up a free map, then chooses
1077 * the first empty slot. The caller must hold the dev_base or rtnl lock
1078 * while allocating the name and adding the device in order to avoid
1079 * duplicates.
1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1081 * Returns the number of the unit assigned or a negative errno code.
1082 */
1083
1084static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1085{
1086 int i = 0;
1087 const char *p;
1088 const int max_netdevices = 8*PAGE_SIZE;
1089 unsigned long *inuse;
1090 struct net_device *d;
1091
1092 if (!dev_valid_name(name))
1093 return -EINVAL;
1094
1095 p = strchr(name, '%');
1096 if (p) {
1097 /*
1098 * Verify the string as this thing may have come from
1099 * the user. There must be either one "%d" and no other "%"
1100 * characters.
1101 */
1102 if (p[1] != 'd' || strchr(p + 2, '%'))
1103 return -EINVAL;
1104
1105 /* Use one page as a bit array of possible slots */
1106 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1107 if (!inuse)
1108 return -ENOMEM;
1109
1110 for_each_netdev(net, d) {
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1115
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf, IFNAMSIZ, name, i);
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 set_bit(i, inuse);
1120 }
1121
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 free_page((unsigned long) inuse);
1124 }
1125
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!__dev_get_by_name(net, buf))
1128 return i;
1129
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1133 */
1134 return -ENFILE;
1135}
1136
1137static int dev_alloc_name_ns(struct net *net,
1138 struct net_device *dev,
1139 const char *name)
1140{
1141 char buf[IFNAMSIZ];
1142 int ret;
1143
1144 BUG_ON(!net);
1145 ret = __dev_alloc_name(net, name, buf);
1146 if (ret >= 0)
1147 strlcpy(dev->name, buf, IFNAMSIZ);
1148 return ret;
1149}
1150
1151/**
1152 * dev_alloc_name - allocate a name for a device
1153 * @dev: device
1154 * @name: name format string
1155 *
1156 * Passed a format string - eg "lt%d" it will try and find a suitable
1157 * id. It scans list of devices to build up a free map, then chooses
1158 * the first empty slot. The caller must hold the dev_base or rtnl lock
1159 * while allocating the name and adding the device in order to avoid
1160 * duplicates.
1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1162 * Returns the number of the unit assigned or a negative errno code.
1163 */
1164
1165int dev_alloc_name(struct net_device *dev, const char *name)
1166{
1167 return dev_alloc_name_ns(dev_net(dev), dev, name);
1168}
1169EXPORT_SYMBOL(dev_alloc_name);
1170
1171static int dev_get_valid_name(struct net *net, struct net_device *dev,
1172 const char *name)
1173{
1174 BUG_ON(!net);
1175
1176 if (!dev_valid_name(name))
1177 return -EINVAL;
1178
1179 if (strchr(name, '%'))
1180 return dev_alloc_name_ns(net, dev, name);
1181 else if (__dev_get_by_name(net, name))
1182 return -EEXIST;
1183 else if (dev->name != name)
1184 strlcpy(dev->name, name, IFNAMSIZ);
1185
1186 return 0;
1187}
1188
1189/**
1190 * dev_change_name - change name of a device
1191 * @dev: device
1192 * @newname: name (or format string) must be at least IFNAMSIZ
1193 *
1194 * Change name of a device, can pass format strings "eth%d".
1195 * for wildcarding.
1196 */
1197int dev_change_name(struct net_device *dev, const char *newname)
1198{
1199 unsigned char old_assign_type;
1200 char oldname[IFNAMSIZ];
1201 int err = 0;
1202 int ret;
1203 struct net *net;
1204
1205 ASSERT_RTNL();
1206 BUG_ON(!dev_net(dev));
1207
1208 net = dev_net(dev);
1209
1210 /* Some auto-enslaved devices e.g. failover slaves are
1211 * special, as userspace might rename the device after
1212 * the interface had been brought up and running since
1213 * the point kernel initiated auto-enslavement. Allow
1214 * live name change even when these slave devices are
1215 * up and running.
1216 *
1217 * Typically, users of these auto-enslaving devices
1218 * don't actually care about slave name change, as
1219 * they are supposed to operate on master interface
1220 * directly.
1221 */
1222 if (dev->flags & IFF_UP &&
1223 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1224 return -EBUSY;
1225
1226 write_seqcount_begin(&devnet_rename_seq);
1227
1228 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1229 write_seqcount_end(&devnet_rename_seq);
1230 return 0;
1231 }
1232
1233 memcpy(oldname, dev->name, IFNAMSIZ);
1234
1235 err = dev_get_valid_name(net, dev, newname);
1236 if (err < 0) {
1237 write_seqcount_end(&devnet_rename_seq);
1238 return err;
1239 }
1240
1241 if (oldname[0] && !strchr(oldname, '%'))
1242 netdev_info(dev, "renamed from %s\n", oldname);
1243
1244 old_assign_type = dev->name_assign_type;
1245 dev->name_assign_type = NET_NAME_RENAMED;
1246
1247rollback:
1248 ret = device_rename(&dev->dev, dev->name);
1249 if (ret) {
1250 memcpy(dev->name, oldname, IFNAMSIZ);
1251 dev->name_assign_type = old_assign_type;
1252 write_seqcount_end(&devnet_rename_seq);
1253 return ret;
1254 }
1255
1256 write_seqcount_end(&devnet_rename_seq);
1257
1258 netdev_adjacent_rename_links(dev, oldname);
1259
1260 write_lock_bh(&dev_base_lock);
1261 netdev_name_node_del(dev->name_node);
1262 write_unlock_bh(&dev_base_lock);
1263
1264 synchronize_rcu();
1265
1266 write_lock_bh(&dev_base_lock);
1267 netdev_name_node_add(net, dev->name_node);
1268 write_unlock_bh(&dev_base_lock);
1269
1270 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1271 ret = notifier_to_errno(ret);
1272
1273 if (ret) {
1274 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275 if (err >= 0) {
1276 err = ret;
1277 write_seqcount_begin(&devnet_rename_seq);
1278 memcpy(dev->name, oldname, IFNAMSIZ);
1279 memcpy(oldname, newname, IFNAMSIZ);
1280 dev->name_assign_type = old_assign_type;
1281 old_assign_type = NET_NAME_RENAMED;
1282 goto rollback;
1283 } else {
1284 pr_err("%s: name change rollback failed: %d\n",
1285 dev->name, ret);
1286 }
1287 }
1288
1289 return err;
1290}
1291
1292/**
1293 * dev_set_alias - change ifalias of a device
1294 * @dev: device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1297 *
1298 * Set ifalias for a device,
1299 */
1300int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301{
1302 struct dev_ifalias *new_alias = NULL;
1303
1304 if (len >= IFALIASZ)
1305 return -EINVAL;
1306
1307 if (len) {
1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 if (!new_alias)
1310 return -ENOMEM;
1311
1312 memcpy(new_alias->ifalias, alias, len);
1313 new_alias->ifalias[len] = 0;
1314 }
1315
1316 mutex_lock(&ifalias_mutex);
1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 mutex_is_locked(&ifalias_mutex));
1319 mutex_unlock(&ifalias_mutex);
1320
1321 if (new_alias)
1322 kfree_rcu(new_alias, rcuhead);
1323
1324 return len;
1325}
1326EXPORT_SYMBOL(dev_set_alias);
1327
1328/**
1329 * dev_get_alias - get ifalias of a device
1330 * @dev: device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1333 *
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1336 */
1337int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338{
1339 const struct dev_ifalias *alias;
1340 int ret = 0;
1341
1342 rcu_read_lock();
1343 alias = rcu_dereference(dev->ifalias);
1344 if (alias)
1345 ret = snprintf(name, len, "%s", alias->ifalias);
1346 rcu_read_unlock();
1347
1348 return ret;
1349}
1350
1351/**
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1354 *
1355 * Called to indicate a device has changed features.
1356 */
1357void netdev_features_change(struct net_device *dev)
1358{
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360}
1361EXPORT_SYMBOL(netdev_features_change);
1362
1363/**
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1366 *
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1370 */
1371void netdev_state_change(struct net_device *dev)
1372{
1373 if (dev->flags & IFF_UP) {
1374 struct netdev_notifier_change_info change_info = {
1375 .info.dev = dev,
1376 };
1377
1378 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 &change_info.info);
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1381 }
1382}
1383EXPORT_SYMBOL(netdev_state_change);
1384
1385/**
1386 * netdev_notify_peers - notify network peers about existence of @dev
1387 * @dev: network device
1388 *
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1394 */
1395void netdev_notify_peers(struct net_device *dev)
1396{
1397 rtnl_lock();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 rtnl_unlock();
1401}
1402EXPORT_SYMBOL(netdev_notify_peers);
1403
1404static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1405{
1406 const struct net_device_ops *ops = dev->netdev_ops;
1407 int ret;
1408
1409 ASSERT_RTNL();
1410
1411 if (!netif_device_present(dev))
1412 return -ENODEV;
1413
1414 /* Block netpoll from trying to do any rx path servicing.
1415 * If we don't do this there is a chance ndo_poll_controller
1416 * or ndo_poll may be running while we open the device
1417 */
1418 netpoll_poll_disable(dev);
1419
1420 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1421 ret = notifier_to_errno(ret);
1422 if (ret)
1423 return ret;
1424
1425 set_bit(__LINK_STATE_START, &dev->state);
1426
1427 if (ops->ndo_validate_addr)
1428 ret = ops->ndo_validate_addr(dev);
1429
1430 if (!ret && ops->ndo_open)
1431 ret = ops->ndo_open(dev);
1432
1433 netpoll_poll_enable(dev);
1434
1435 if (ret)
1436 clear_bit(__LINK_STATE_START, &dev->state);
1437 else {
1438 dev->flags |= IFF_UP;
1439 dev_set_rx_mode(dev);
1440 dev_activate(dev);
1441 add_device_randomness(dev->dev_addr, dev->addr_len);
1442 }
1443
1444 return ret;
1445}
1446
1447/**
1448 * dev_open - prepare an interface for use.
1449 * @dev: device to open
1450 * @extack: netlink extended ack
1451 *
1452 * Takes a device from down to up state. The device's private open
1453 * function is invoked and then the multicast lists are loaded. Finally
1454 * the device is moved into the up state and a %NETDEV_UP message is
1455 * sent to the netdev notifier chain.
1456 *
1457 * Calling this function on an active interface is a nop. On a failure
1458 * a negative errno code is returned.
1459 */
1460int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1461{
1462 int ret;
1463
1464 if (dev->flags & IFF_UP)
1465 return 0;
1466
1467 ret = __dev_open(dev, extack);
1468 if (ret < 0)
1469 return ret;
1470
1471 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1472 call_netdevice_notifiers(NETDEV_UP, dev);
1473
1474 return ret;
1475}
1476EXPORT_SYMBOL(dev_open);
1477
1478static void __dev_close_many(struct list_head *head)
1479{
1480 struct net_device *dev;
1481
1482 ASSERT_RTNL();
1483 might_sleep();
1484
1485 list_for_each_entry(dev, head, close_list) {
1486 /* Temporarily disable netpoll until the interface is down */
1487 netpoll_poll_disable(dev);
1488
1489 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1490
1491 clear_bit(__LINK_STATE_START, &dev->state);
1492
1493 /* Synchronize to scheduled poll. We cannot touch poll list, it
1494 * can be even on different cpu. So just clear netif_running().
1495 *
1496 * dev->stop() will invoke napi_disable() on all of it's
1497 * napi_struct instances on this device.
1498 */
1499 smp_mb__after_atomic(); /* Commit netif_running(). */
1500 }
1501
1502 dev_deactivate_many(head);
1503
1504 list_for_each_entry(dev, head, close_list) {
1505 const struct net_device_ops *ops = dev->netdev_ops;
1506
1507 /*
1508 * Call the device specific close. This cannot fail.
1509 * Only if device is UP
1510 *
1511 * We allow it to be called even after a DETACH hot-plug
1512 * event.
1513 */
1514 if (ops->ndo_stop)
1515 ops->ndo_stop(dev);
1516
1517 dev->flags &= ~IFF_UP;
1518 netpoll_poll_enable(dev);
1519 }
1520}
1521
1522static void __dev_close(struct net_device *dev)
1523{
1524 LIST_HEAD(single);
1525
1526 list_add(&dev->close_list, &single);
1527 __dev_close_many(&single);
1528 list_del(&single);
1529}
1530
1531void dev_close_many(struct list_head *head, bool unlink)
1532{
1533 struct net_device *dev, *tmp;
1534
1535 /* Remove the devices that don't need to be closed */
1536 list_for_each_entry_safe(dev, tmp, head, close_list)
1537 if (!(dev->flags & IFF_UP))
1538 list_del_init(&dev->close_list);
1539
1540 __dev_close_many(head);
1541
1542 list_for_each_entry_safe(dev, tmp, head, close_list) {
1543 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1544 call_netdevice_notifiers(NETDEV_DOWN, dev);
1545 if (unlink)
1546 list_del_init(&dev->close_list);
1547 }
1548}
1549EXPORT_SYMBOL(dev_close_many);
1550
1551/**
1552 * dev_close - shutdown an interface.
1553 * @dev: device to shutdown
1554 *
1555 * This function moves an active device into down state. A
1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1558 * chain.
1559 */
1560void dev_close(struct net_device *dev)
1561{
1562 if (dev->flags & IFF_UP) {
1563 LIST_HEAD(single);
1564
1565 list_add(&dev->close_list, &single);
1566 dev_close_many(&single, true);
1567 list_del(&single);
1568 }
1569}
1570EXPORT_SYMBOL(dev_close);
1571
1572
1573/**
1574 * dev_disable_lro - disable Large Receive Offload on a device
1575 * @dev: device
1576 *
1577 * Disable Large Receive Offload (LRO) on a net device. Must be
1578 * called under RTNL. This is needed if received packets may be
1579 * forwarded to another interface.
1580 */
1581void dev_disable_lro(struct net_device *dev)
1582{
1583 struct net_device *lower_dev;
1584 struct list_head *iter;
1585
1586 dev->wanted_features &= ~NETIF_F_LRO;
1587 netdev_update_features(dev);
1588
1589 if (unlikely(dev->features & NETIF_F_LRO))
1590 netdev_WARN(dev, "failed to disable LRO!\n");
1591
1592 netdev_for_each_lower_dev(dev, lower_dev, iter)
1593 dev_disable_lro(lower_dev);
1594}
1595EXPORT_SYMBOL(dev_disable_lro);
1596
1597/**
1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1599 * @dev: device
1600 *
1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1602 * called under RTNL. This is needed if Generic XDP is installed on
1603 * the device.
1604 */
1605static void dev_disable_gro_hw(struct net_device *dev)
1606{
1607 dev->wanted_features &= ~NETIF_F_GRO_HW;
1608 netdev_update_features(dev);
1609
1610 if (unlikely(dev->features & NETIF_F_GRO_HW))
1611 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1612}
1613
1614const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1615{
1616#define N(val) \
1617 case NETDEV_##val: \
1618 return "NETDEV_" __stringify(val);
1619 switch (cmd) {
1620 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1621 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1622 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1623 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1624 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1625 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1626 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1627 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1628 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1629 N(PRE_CHANGEADDR)
1630 }
1631#undef N
1632 return "UNKNOWN_NETDEV_EVENT";
1633}
1634EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
1636static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 struct net_device *dev)
1638{
1639 struct netdev_notifier_info info = {
1640 .dev = dev,
1641 };
1642
1643 return nb->notifier_call(nb, val, &info);
1644}
1645
1646static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 struct net_device *dev)
1648{
1649 int err;
1650
1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 err = notifier_to_errno(err);
1653 if (err)
1654 return err;
1655
1656 if (!(dev->flags & IFF_UP))
1657 return 0;
1658
1659 call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 return 0;
1661}
1662
1663static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1665{
1666 if (dev->flags & IFF_UP) {
1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 dev);
1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 }
1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672}
1673
1674static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 struct net *net)
1676{
1677 struct net_device *dev;
1678 int err;
1679
1680 for_each_netdev(net, dev) {
1681 err = call_netdevice_register_notifiers(nb, dev);
1682 if (err)
1683 goto rollback;
1684 }
1685 return 0;
1686
1687rollback:
1688 for_each_netdev_continue_reverse(net, dev)
1689 call_netdevice_unregister_notifiers(nb, dev);
1690 return err;
1691}
1692
1693static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 struct net *net)
1695{
1696 struct net_device *dev;
1697
1698 for_each_netdev(net, dev)
1699 call_netdevice_unregister_notifiers(nb, dev);
1700}
1701
1702static int dev_boot_phase = 1;
1703
1704/**
1705 * register_netdevice_notifier - register a network notifier block
1706 * @nb: notifier
1707 *
1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1712 *
1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1716 */
1717
1718int register_netdevice_notifier(struct notifier_block *nb)
1719{
1720 struct net *net;
1721 int err;
1722
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem);
1725 rtnl_lock();
1726 err = raw_notifier_chain_register(&netdev_chain, nb);
1727 if (err)
1728 goto unlock;
1729 if (dev_boot_phase)
1730 goto unlock;
1731 for_each_net(net) {
1732 err = call_netdevice_register_net_notifiers(nb, net);
1733 if (err)
1734 goto rollback;
1735 }
1736
1737unlock:
1738 rtnl_unlock();
1739 up_write(&pernet_ops_rwsem);
1740 return err;
1741
1742rollback:
1743 for_each_net_continue_reverse(net)
1744 call_netdevice_unregister_net_notifiers(nb, net);
1745
1746 raw_notifier_chain_unregister(&netdev_chain, nb);
1747 goto unlock;
1748}
1749EXPORT_SYMBOL(register_netdevice_notifier);
1750
1751/**
1752 * unregister_netdevice_notifier - unregister a network notifier block
1753 * @nb: notifier
1754 *
1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
1759 *
1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1763 */
1764
1765int unregister_netdevice_notifier(struct notifier_block *nb)
1766{
1767 struct net_device *dev;
1768 struct net *net;
1769 int err;
1770
1771 /* Close race with setup_net() and cleanup_net() */
1772 down_write(&pernet_ops_rwsem);
1773 rtnl_lock();
1774 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775 if (err)
1776 goto unlock;
1777
1778 for_each_net(net) {
1779 for_each_netdev(net, dev) {
1780 if (dev->flags & IFF_UP) {
1781 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1782 dev);
1783 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1784 }
1785 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1786 }
1787 }
1788unlock:
1789 rtnl_unlock();
1790 up_write(&pernet_ops_rwsem);
1791 return err;
1792}
1793EXPORT_SYMBOL(unregister_netdevice_notifier);
1794
1795/**
1796 * register_netdevice_notifier_net - register a per-netns network notifier block
1797 * @net: network namespace
1798 * @nb: notifier
1799 *
1800 * Register a notifier to be called when network device events occur.
1801 * The notifier passed is linked into the kernel structures and must
1802 * not be reused until it has been unregistered. A negative errno code
1803 * is returned on a failure.
1804 *
1805 * When registered all registration and up events are replayed
1806 * to the new notifier to allow device to have a race free
1807 * view of the network device list.
1808 */
1809
1810int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1811{
1812 int err;
1813
1814 rtnl_lock();
1815 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1816 if (err)
1817 goto unlock;
1818 if (dev_boot_phase)
1819 goto unlock;
1820
1821 err = call_netdevice_register_net_notifiers(nb, net);
1822 if (err)
1823 goto chain_unregister;
1824
1825unlock:
1826 rtnl_unlock();
1827 return err;
1828
1829chain_unregister:
1830 raw_notifier_chain_unregister(&netdev_chain, nb);
1831 goto unlock;
1832}
1833EXPORT_SYMBOL(register_netdevice_notifier_net);
1834
1835/**
1836 * unregister_netdevice_notifier_net - unregister a per-netns
1837 * network notifier block
1838 * @net: network namespace
1839 * @nb: notifier
1840 *
1841 * Unregister a notifier previously registered by
1842 * register_netdevice_notifier(). The notifier is unlinked into the
1843 * kernel structures and may then be reused. A negative errno code
1844 * is returned on a failure.
1845 *
1846 * After unregistering unregister and down device events are synthesized
1847 * for all devices on the device list to the removed notifier to remove
1848 * the need for special case cleanup code.
1849 */
1850
1851int unregister_netdevice_notifier_net(struct net *net,
1852 struct notifier_block *nb)
1853{
1854 int err;
1855
1856 rtnl_lock();
1857 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1858 if (err)
1859 goto unlock;
1860
1861 call_netdevice_unregister_net_notifiers(nb, net);
1862
1863unlock:
1864 rtnl_unlock();
1865 return err;
1866}
1867EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1868
1869/**
1870 * call_netdevice_notifiers_info - call all network notifier blocks
1871 * @val: value passed unmodified to notifier function
1872 * @info: notifier information data
1873 *
1874 * Call all network notifier blocks. Parameters and return value
1875 * are as for raw_notifier_call_chain().
1876 */
1877
1878static int call_netdevice_notifiers_info(unsigned long val,
1879 struct netdev_notifier_info *info)
1880{
1881 struct net *net = dev_net(info->dev);
1882 int ret;
1883
1884 ASSERT_RTNL();
1885
1886 /* Run per-netns notifier block chain first, then run the global one.
1887 * Hopefully, one day, the global one is going to be removed after
1888 * all notifier block registrators get converted to be per-netns.
1889 */
1890 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1891 if (ret & NOTIFY_STOP_MASK)
1892 return ret;
1893 return raw_notifier_call_chain(&netdev_chain, val, info);
1894}
1895
1896static int call_netdevice_notifiers_extack(unsigned long val,
1897 struct net_device *dev,
1898 struct netlink_ext_ack *extack)
1899{
1900 struct netdev_notifier_info info = {
1901 .dev = dev,
1902 .extack = extack,
1903 };
1904
1905 return call_netdevice_notifiers_info(val, &info);
1906}
1907
1908/**
1909 * call_netdevice_notifiers - call all network notifier blocks
1910 * @val: value passed unmodified to notifier function
1911 * @dev: net_device pointer passed unmodified to notifier function
1912 *
1913 * Call all network notifier blocks. Parameters and return value
1914 * are as for raw_notifier_call_chain().
1915 */
1916
1917int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1918{
1919 return call_netdevice_notifiers_extack(val, dev, NULL);
1920}
1921EXPORT_SYMBOL(call_netdevice_notifiers);
1922
1923/**
1924 * call_netdevice_notifiers_mtu - call all network notifier blocks
1925 * @val: value passed unmodified to notifier function
1926 * @dev: net_device pointer passed unmodified to notifier function
1927 * @arg: additional u32 argument passed to the notifier function
1928 *
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1931 */
1932static int call_netdevice_notifiers_mtu(unsigned long val,
1933 struct net_device *dev, u32 arg)
1934{
1935 struct netdev_notifier_info_ext info = {
1936 .info.dev = dev,
1937 .ext.mtu = arg,
1938 };
1939
1940 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1941
1942 return call_netdevice_notifiers_info(val, &info.info);
1943}
1944
1945#ifdef CONFIG_NET_INGRESS
1946static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1947
1948void net_inc_ingress_queue(void)
1949{
1950 static_branch_inc(&ingress_needed_key);
1951}
1952EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1953
1954void net_dec_ingress_queue(void)
1955{
1956 static_branch_dec(&ingress_needed_key);
1957}
1958EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1959#endif
1960
1961#ifdef CONFIG_NET_EGRESS
1962static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1963
1964void net_inc_egress_queue(void)
1965{
1966 static_branch_inc(&egress_needed_key);
1967}
1968EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1969
1970void net_dec_egress_queue(void)
1971{
1972 static_branch_dec(&egress_needed_key);
1973}
1974EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1975#endif
1976
1977static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1978#ifdef CONFIG_JUMP_LABEL
1979static atomic_t netstamp_needed_deferred;
1980static atomic_t netstamp_wanted;
1981static void netstamp_clear(struct work_struct *work)
1982{
1983 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1984 int wanted;
1985
1986 wanted = atomic_add_return(deferred, &netstamp_wanted);
1987 if (wanted > 0)
1988 static_branch_enable(&netstamp_needed_key);
1989 else
1990 static_branch_disable(&netstamp_needed_key);
1991}
1992static DECLARE_WORK(netstamp_work, netstamp_clear);
1993#endif
1994
1995void net_enable_timestamp(void)
1996{
1997#ifdef CONFIG_JUMP_LABEL
1998 int wanted;
1999
2000 while (1) {
2001 wanted = atomic_read(&netstamp_wanted);
2002 if (wanted <= 0)
2003 break;
2004 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2005 return;
2006 }
2007 atomic_inc(&netstamp_needed_deferred);
2008 schedule_work(&netstamp_work);
2009#else
2010 static_branch_inc(&netstamp_needed_key);
2011#endif
2012}
2013EXPORT_SYMBOL(net_enable_timestamp);
2014
2015void net_disable_timestamp(void)
2016{
2017#ifdef CONFIG_JUMP_LABEL
2018 int wanted;
2019
2020 while (1) {
2021 wanted = atomic_read(&netstamp_wanted);
2022 if (wanted <= 1)
2023 break;
2024 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2025 return;
2026 }
2027 atomic_dec(&netstamp_needed_deferred);
2028 schedule_work(&netstamp_work);
2029#else
2030 static_branch_dec(&netstamp_needed_key);
2031#endif
2032}
2033EXPORT_SYMBOL(net_disable_timestamp);
2034
2035static inline void net_timestamp_set(struct sk_buff *skb)
2036{
2037 skb->tstamp = 0;
2038 if (static_branch_unlikely(&netstamp_needed_key))
2039 __net_timestamp(skb);
2040}
2041
2042#define net_timestamp_check(COND, SKB) \
2043 if (static_branch_unlikely(&netstamp_needed_key)) { \
2044 if ((COND) && !(SKB)->tstamp) \
2045 __net_timestamp(SKB); \
2046 } \
2047
2048bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2049{
2050 unsigned int len;
2051
2052 if (!(dev->flags & IFF_UP))
2053 return false;
2054
2055 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2056 if (skb->len <= len)
2057 return true;
2058
2059 /* if TSO is enabled, we don't care about the length as the packet
2060 * could be forwarded without being segmented before
2061 */
2062 if (skb_is_gso(skb))
2063 return true;
2064
2065 return false;
2066}
2067EXPORT_SYMBOL_GPL(is_skb_forwardable);
2068
2069int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2070{
2071 int ret = ____dev_forward_skb(dev, skb);
2072
2073 if (likely(!ret)) {
2074 skb->protocol = eth_type_trans(skb, dev);
2075 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2076 }
2077
2078 return ret;
2079}
2080EXPORT_SYMBOL_GPL(__dev_forward_skb);
2081
2082/**
2083 * dev_forward_skb - loopback an skb to another netif
2084 *
2085 * @dev: destination network device
2086 * @skb: buffer to forward
2087 *
2088 * return values:
2089 * NET_RX_SUCCESS (no congestion)
2090 * NET_RX_DROP (packet was dropped, but freed)
2091 *
2092 * dev_forward_skb can be used for injecting an skb from the
2093 * start_xmit function of one device into the receive queue
2094 * of another device.
2095 *
2096 * The receiving device may be in another namespace, so
2097 * we have to clear all information in the skb that could
2098 * impact namespace isolation.
2099 */
2100int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2101{
2102 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2103}
2104EXPORT_SYMBOL_GPL(dev_forward_skb);
2105
2106static inline int deliver_skb(struct sk_buff *skb,
2107 struct packet_type *pt_prev,
2108 struct net_device *orig_dev)
2109{
2110 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2111 return -ENOMEM;
2112 refcount_inc(&skb->users);
2113 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2114}
2115
2116static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2117 struct packet_type **pt,
2118 struct net_device *orig_dev,
2119 __be16 type,
2120 struct list_head *ptype_list)
2121{
2122 struct packet_type *ptype, *pt_prev = *pt;
2123
2124 list_for_each_entry_rcu(ptype, ptype_list, list) {
2125 if (ptype->type != type)
2126 continue;
2127 if (pt_prev)
2128 deliver_skb(skb, pt_prev, orig_dev);
2129 pt_prev = ptype;
2130 }
2131 *pt = pt_prev;
2132}
2133
2134static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2135{
2136 if (!ptype->af_packet_priv || !skb->sk)
2137 return false;
2138
2139 if (ptype->id_match)
2140 return ptype->id_match(ptype, skb->sk);
2141 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2142 return true;
2143
2144 return false;
2145}
2146
2147/**
2148 * dev_nit_active - return true if any network interface taps are in use
2149 *
2150 * @dev: network device to check for the presence of taps
2151 */
2152bool dev_nit_active(struct net_device *dev)
2153{
2154 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2155}
2156EXPORT_SYMBOL_GPL(dev_nit_active);
2157
2158/*
2159 * Support routine. Sends outgoing frames to any network
2160 * taps currently in use.
2161 */
2162
2163void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2164{
2165 struct packet_type *ptype;
2166 struct sk_buff *skb2 = NULL;
2167 struct packet_type *pt_prev = NULL;
2168 struct list_head *ptype_list = &ptype_all;
2169
2170 rcu_read_lock();
2171again:
2172 list_for_each_entry_rcu(ptype, ptype_list, list) {
2173 if (ptype->ignore_outgoing)
2174 continue;
2175
2176 /* Never send packets back to the socket
2177 * they originated from - MvS (miquels@drinkel.ow.org)
2178 */
2179 if (skb_loop_sk(ptype, skb))
2180 continue;
2181
2182 if (pt_prev) {
2183 deliver_skb(skb2, pt_prev, skb->dev);
2184 pt_prev = ptype;
2185 continue;
2186 }
2187
2188 /* need to clone skb, done only once */
2189 skb2 = skb_clone(skb, GFP_ATOMIC);
2190 if (!skb2)
2191 goto out_unlock;
2192
2193 net_timestamp_set(skb2);
2194
2195 /* skb->nh should be correctly
2196 * set by sender, so that the second statement is
2197 * just protection against buggy protocols.
2198 */
2199 skb_reset_mac_header(skb2);
2200
2201 if (skb_network_header(skb2) < skb2->data ||
2202 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2203 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2204 ntohs(skb2->protocol),
2205 dev->name);
2206 skb_reset_network_header(skb2);
2207 }
2208
2209 skb2->transport_header = skb2->network_header;
2210 skb2->pkt_type = PACKET_OUTGOING;
2211 pt_prev = ptype;
2212 }
2213
2214 if (ptype_list == &ptype_all) {
2215 ptype_list = &dev->ptype_all;
2216 goto again;
2217 }
2218out_unlock:
2219 if (pt_prev) {
2220 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2221 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2222 else
2223 kfree_skb(skb2);
2224 }
2225 rcu_read_unlock();
2226}
2227EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2228
2229/**
2230 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2231 * @dev: Network device
2232 * @txq: number of queues available
2233 *
2234 * If real_num_tx_queues is changed the tc mappings may no longer be
2235 * valid. To resolve this verify the tc mapping remains valid and if
2236 * not NULL the mapping. With no priorities mapping to this
2237 * offset/count pair it will no longer be used. In the worst case TC0
2238 * is invalid nothing can be done so disable priority mappings. If is
2239 * expected that drivers will fix this mapping if they can before
2240 * calling netif_set_real_num_tx_queues.
2241 */
2242static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2243{
2244 int i;
2245 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2246
2247 /* If TC0 is invalidated disable TC mapping */
2248 if (tc->offset + tc->count > txq) {
2249 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2250 dev->num_tc = 0;
2251 return;
2252 }
2253
2254 /* Invalidated prio to tc mappings set to TC0 */
2255 for (i = 1; i < TC_BITMASK + 1; i++) {
2256 int q = netdev_get_prio_tc_map(dev, i);
2257
2258 tc = &dev->tc_to_txq[q];
2259 if (tc->offset + tc->count > txq) {
2260 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2261 i, q);
2262 netdev_set_prio_tc_map(dev, i, 0);
2263 }
2264 }
2265}
2266
2267int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2268{
2269 if (dev->num_tc) {
2270 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2271 int i;
2272
2273 /* walk through the TCs and see if it falls into any of them */
2274 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2275 if ((txq - tc->offset) < tc->count)
2276 return i;
2277 }
2278
2279 /* didn't find it, just return -1 to indicate no match */
2280 return -1;
2281 }
2282
2283 return 0;
2284}
2285EXPORT_SYMBOL(netdev_txq_to_tc);
2286
2287#ifdef CONFIG_XPS
2288struct static_key xps_needed __read_mostly;
2289EXPORT_SYMBOL(xps_needed);
2290struct static_key xps_rxqs_needed __read_mostly;
2291EXPORT_SYMBOL(xps_rxqs_needed);
2292static DEFINE_MUTEX(xps_map_mutex);
2293#define xmap_dereference(P) \
2294 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2295
2296static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2297 int tci, u16 index)
2298{
2299 struct xps_map *map = NULL;
2300 int pos;
2301
2302 if (dev_maps)
2303 map = xmap_dereference(dev_maps->attr_map[tci]);
2304 if (!map)
2305 return false;
2306
2307 for (pos = map->len; pos--;) {
2308 if (map->queues[pos] != index)
2309 continue;
2310
2311 if (map->len > 1) {
2312 map->queues[pos] = map->queues[--map->len];
2313 break;
2314 }
2315
2316 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2317 kfree_rcu(map, rcu);
2318 return false;
2319 }
2320
2321 return true;
2322}
2323
2324static bool remove_xps_queue_cpu(struct net_device *dev,
2325 struct xps_dev_maps *dev_maps,
2326 int cpu, u16 offset, u16 count)
2327{
2328 int num_tc = dev->num_tc ? : 1;
2329 bool active = false;
2330 int tci;
2331
2332 for (tci = cpu * num_tc; num_tc--; tci++) {
2333 int i, j;
2334
2335 for (i = count, j = offset; i--; j++) {
2336 if (!remove_xps_queue(dev_maps, tci, j))
2337 break;
2338 }
2339
2340 active |= i < 0;
2341 }
2342
2343 return active;
2344}
2345
2346static void reset_xps_maps(struct net_device *dev,
2347 struct xps_dev_maps *dev_maps,
2348 bool is_rxqs_map)
2349{
2350 if (is_rxqs_map) {
2351 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2352 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2353 } else {
2354 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2355 }
2356 static_key_slow_dec_cpuslocked(&xps_needed);
2357 kfree_rcu(dev_maps, rcu);
2358}
2359
2360static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2361 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2362 u16 offset, u16 count, bool is_rxqs_map)
2363{
2364 bool active = false;
2365 int i, j;
2366
2367 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2368 j < nr_ids;)
2369 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2370 count);
2371 if (!active)
2372 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2373
2374 if (!is_rxqs_map) {
2375 for (i = offset + (count - 1); count--; i--) {
2376 netdev_queue_numa_node_write(
2377 netdev_get_tx_queue(dev, i),
2378 NUMA_NO_NODE);
2379 }
2380 }
2381}
2382
2383static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2384 u16 count)
2385{
2386 const unsigned long *possible_mask = NULL;
2387 struct xps_dev_maps *dev_maps;
2388 unsigned int nr_ids;
2389
2390 if (!static_key_false(&xps_needed))
2391 return;
2392
2393 cpus_read_lock();
2394 mutex_lock(&xps_map_mutex);
2395
2396 if (static_key_false(&xps_rxqs_needed)) {
2397 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2398 if (dev_maps) {
2399 nr_ids = dev->num_rx_queues;
2400 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2401 offset, count, true);
2402 }
2403 }
2404
2405 dev_maps = xmap_dereference(dev->xps_cpus_map);
2406 if (!dev_maps)
2407 goto out_no_maps;
2408
2409 if (num_possible_cpus() > 1)
2410 possible_mask = cpumask_bits(cpu_possible_mask);
2411 nr_ids = nr_cpu_ids;
2412 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2413 false);
2414
2415out_no_maps:
2416 mutex_unlock(&xps_map_mutex);
2417 cpus_read_unlock();
2418}
2419
2420static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2421{
2422 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2423}
2424
2425static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2426 u16 index, bool is_rxqs_map)
2427{
2428 struct xps_map *new_map;
2429 int alloc_len = XPS_MIN_MAP_ALLOC;
2430 int i, pos;
2431
2432 for (pos = 0; map && pos < map->len; pos++) {
2433 if (map->queues[pos] != index)
2434 continue;
2435 return map;
2436 }
2437
2438 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2439 if (map) {
2440 if (pos < map->alloc_len)
2441 return map;
2442
2443 alloc_len = map->alloc_len * 2;
2444 }
2445
2446 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2447 * map
2448 */
2449 if (is_rxqs_map)
2450 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2451 else
2452 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2453 cpu_to_node(attr_index));
2454 if (!new_map)
2455 return NULL;
2456
2457 for (i = 0; i < pos; i++)
2458 new_map->queues[i] = map->queues[i];
2459 new_map->alloc_len = alloc_len;
2460 new_map->len = pos;
2461
2462 return new_map;
2463}
2464
2465/* Must be called under cpus_read_lock */
2466int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2467 u16 index, bool is_rxqs_map)
2468{
2469 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2470 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2471 int i, j, tci, numa_node_id = -2;
2472 int maps_sz, num_tc = 1, tc = 0;
2473 struct xps_map *map, *new_map;
2474 bool active = false;
2475 unsigned int nr_ids;
2476
2477 if (dev->num_tc) {
2478 /* Do not allow XPS on subordinate device directly */
2479 num_tc = dev->num_tc;
2480 if (num_tc < 0)
2481 return -EINVAL;
2482
2483 /* If queue belongs to subordinate dev use its map */
2484 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2485
2486 tc = netdev_txq_to_tc(dev, index);
2487 if (tc < 0)
2488 return -EINVAL;
2489 }
2490
2491 mutex_lock(&xps_map_mutex);
2492 if (is_rxqs_map) {
2493 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2494 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2495 nr_ids = dev->num_rx_queues;
2496 } else {
2497 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2498 if (num_possible_cpus() > 1) {
2499 online_mask = cpumask_bits(cpu_online_mask);
2500 possible_mask = cpumask_bits(cpu_possible_mask);
2501 }
2502 dev_maps = xmap_dereference(dev->xps_cpus_map);
2503 nr_ids = nr_cpu_ids;
2504 }
2505
2506 if (maps_sz < L1_CACHE_BYTES)
2507 maps_sz = L1_CACHE_BYTES;
2508
2509 /* allocate memory for queue storage */
2510 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2511 j < nr_ids;) {
2512 if (!new_dev_maps)
2513 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2514 if (!new_dev_maps) {
2515 mutex_unlock(&xps_map_mutex);
2516 return -ENOMEM;
2517 }
2518
2519 tci = j * num_tc + tc;
2520 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2521 NULL;
2522
2523 map = expand_xps_map(map, j, index, is_rxqs_map);
2524 if (!map)
2525 goto error;
2526
2527 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2528 }
2529
2530 if (!new_dev_maps)
2531 goto out_no_new_maps;
2532
2533 if (!dev_maps) {
2534 /* Increment static keys at most once per type */
2535 static_key_slow_inc_cpuslocked(&xps_needed);
2536 if (is_rxqs_map)
2537 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2538 }
2539
2540 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2541 j < nr_ids;) {
2542 /* copy maps belonging to foreign traffic classes */
2543 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2544 /* fill in the new device map from the old device map */
2545 map = xmap_dereference(dev_maps->attr_map[tci]);
2546 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2547 }
2548
2549 /* We need to explicitly update tci as prevous loop
2550 * could break out early if dev_maps is NULL.
2551 */
2552 tci = j * num_tc + tc;
2553
2554 if (netif_attr_test_mask(j, mask, nr_ids) &&
2555 netif_attr_test_online(j, online_mask, nr_ids)) {
2556 /* add tx-queue to CPU/rx-queue maps */
2557 int pos = 0;
2558
2559 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2560 while ((pos < map->len) && (map->queues[pos] != index))
2561 pos++;
2562
2563 if (pos == map->len)
2564 map->queues[map->len++] = index;
2565#ifdef CONFIG_NUMA
2566 if (!is_rxqs_map) {
2567 if (numa_node_id == -2)
2568 numa_node_id = cpu_to_node(j);
2569 else if (numa_node_id != cpu_to_node(j))
2570 numa_node_id = -1;
2571 }
2572#endif
2573 } else if (dev_maps) {
2574 /* fill in the new device map from the old device map */
2575 map = xmap_dereference(dev_maps->attr_map[tci]);
2576 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2577 }
2578
2579 /* copy maps belonging to foreign traffic classes */
2580 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2581 /* fill in the new device map from the old device map */
2582 map = xmap_dereference(dev_maps->attr_map[tci]);
2583 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2584 }
2585 }
2586
2587 if (is_rxqs_map)
2588 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2589 else
2590 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2591
2592 /* Cleanup old maps */
2593 if (!dev_maps)
2594 goto out_no_old_maps;
2595
2596 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2597 j < nr_ids;) {
2598 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2599 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 if (map && map != new_map)
2602 kfree_rcu(map, rcu);
2603 }
2604 }
2605
2606 kfree_rcu(dev_maps, rcu);
2607
2608out_no_old_maps:
2609 dev_maps = new_dev_maps;
2610 active = true;
2611
2612out_no_new_maps:
2613 if (!is_rxqs_map) {
2614 /* update Tx queue numa node */
2615 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2616 (numa_node_id >= 0) ?
2617 numa_node_id : NUMA_NO_NODE);
2618 }
2619
2620 if (!dev_maps)
2621 goto out_no_maps;
2622
2623 /* removes tx-queue from unused CPUs/rx-queues */
2624 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2625 j < nr_ids;) {
2626 for (i = tc, tci = j * num_tc; i--; tci++)
2627 active |= remove_xps_queue(dev_maps, tci, index);
2628 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2629 !netif_attr_test_online(j, online_mask, nr_ids))
2630 active |= remove_xps_queue(dev_maps, tci, index);
2631 for (i = num_tc - tc, tci++; --i; tci++)
2632 active |= remove_xps_queue(dev_maps, tci, index);
2633 }
2634
2635 /* free map if not active */
2636 if (!active)
2637 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2638
2639out_no_maps:
2640 mutex_unlock(&xps_map_mutex);
2641
2642 return 0;
2643error:
2644 /* remove any maps that we added */
2645 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2646 j < nr_ids;) {
2647 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2648 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2649 map = dev_maps ?
2650 xmap_dereference(dev_maps->attr_map[tci]) :
2651 NULL;
2652 if (new_map && new_map != map)
2653 kfree(new_map);
2654 }
2655 }
2656
2657 mutex_unlock(&xps_map_mutex);
2658
2659 kfree(new_dev_maps);
2660 return -ENOMEM;
2661}
2662EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2663
2664int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2665 u16 index)
2666{
2667 int ret;
2668
2669 cpus_read_lock();
2670 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2671 cpus_read_unlock();
2672
2673 return ret;
2674}
2675EXPORT_SYMBOL(netif_set_xps_queue);
2676
2677#endif
2678static void netdev_unbind_all_sb_channels(struct net_device *dev)
2679{
2680 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2681
2682 /* Unbind any subordinate channels */
2683 while (txq-- != &dev->_tx[0]) {
2684 if (txq->sb_dev)
2685 netdev_unbind_sb_channel(dev, txq->sb_dev);
2686 }
2687}
2688
2689void netdev_reset_tc(struct net_device *dev)
2690{
2691#ifdef CONFIG_XPS
2692 netif_reset_xps_queues_gt(dev, 0);
2693#endif
2694 netdev_unbind_all_sb_channels(dev);
2695
2696 /* Reset TC configuration of device */
2697 dev->num_tc = 0;
2698 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2699 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2700}
2701EXPORT_SYMBOL(netdev_reset_tc);
2702
2703int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2704{
2705 if (tc >= dev->num_tc)
2706 return -EINVAL;
2707
2708#ifdef CONFIG_XPS
2709 netif_reset_xps_queues(dev, offset, count);
2710#endif
2711 dev->tc_to_txq[tc].count = count;
2712 dev->tc_to_txq[tc].offset = offset;
2713 return 0;
2714}
2715EXPORT_SYMBOL(netdev_set_tc_queue);
2716
2717int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2718{
2719 if (num_tc > TC_MAX_QUEUE)
2720 return -EINVAL;
2721
2722#ifdef CONFIG_XPS
2723 netif_reset_xps_queues_gt(dev, 0);
2724#endif
2725 netdev_unbind_all_sb_channels(dev);
2726
2727 dev->num_tc = num_tc;
2728 return 0;
2729}
2730EXPORT_SYMBOL(netdev_set_num_tc);
2731
2732void netdev_unbind_sb_channel(struct net_device *dev,
2733 struct net_device *sb_dev)
2734{
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737#ifdef CONFIG_XPS
2738 netif_reset_xps_queues_gt(sb_dev, 0);
2739#endif
2740 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2741 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2742
2743 while (txq-- != &dev->_tx[0]) {
2744 if (txq->sb_dev == sb_dev)
2745 txq->sb_dev = NULL;
2746 }
2747}
2748EXPORT_SYMBOL(netdev_unbind_sb_channel);
2749
2750int netdev_bind_sb_channel_queue(struct net_device *dev,
2751 struct net_device *sb_dev,
2752 u8 tc, u16 count, u16 offset)
2753{
2754 /* Make certain the sb_dev and dev are already configured */
2755 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2756 return -EINVAL;
2757
2758 /* We cannot hand out queues we don't have */
2759 if ((offset + count) > dev->real_num_tx_queues)
2760 return -EINVAL;
2761
2762 /* Record the mapping */
2763 sb_dev->tc_to_txq[tc].count = count;
2764 sb_dev->tc_to_txq[tc].offset = offset;
2765
2766 /* Provide a way for Tx queue to find the tc_to_txq map or
2767 * XPS map for itself.
2768 */
2769 while (count--)
2770 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2771
2772 return 0;
2773}
2774EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2775
2776int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2777{
2778 /* Do not use a multiqueue device to represent a subordinate channel */
2779 if (netif_is_multiqueue(dev))
2780 return -ENODEV;
2781
2782 /* We allow channels 1 - 32767 to be used for subordinate channels.
2783 * Channel 0 is meant to be "native" mode and used only to represent
2784 * the main root device. We allow writing 0 to reset the device back
2785 * to normal mode after being used as a subordinate channel.
2786 */
2787 if (channel > S16_MAX)
2788 return -EINVAL;
2789
2790 dev->num_tc = -channel;
2791
2792 return 0;
2793}
2794EXPORT_SYMBOL(netdev_set_sb_channel);
2795
2796/*
2797 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2798 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2799 */
2800int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2801{
2802 bool disabling;
2803 int rc;
2804
2805 disabling = txq < dev->real_num_tx_queues;
2806
2807 if (txq < 1 || txq > dev->num_tx_queues)
2808 return -EINVAL;
2809
2810 if (dev->reg_state == NETREG_REGISTERED ||
2811 dev->reg_state == NETREG_UNREGISTERING) {
2812 ASSERT_RTNL();
2813
2814 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2815 txq);
2816 if (rc)
2817 return rc;
2818
2819 if (dev->num_tc)
2820 netif_setup_tc(dev, txq);
2821
2822 dev->real_num_tx_queues = txq;
2823
2824 if (disabling) {
2825 synchronize_net();
2826 qdisc_reset_all_tx_gt(dev, txq);
2827#ifdef CONFIG_XPS
2828 netif_reset_xps_queues_gt(dev, txq);
2829#endif
2830 }
2831 } else {
2832 dev->real_num_tx_queues = txq;
2833 }
2834
2835 return 0;
2836}
2837EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2838
2839#ifdef CONFIG_SYSFS
2840/**
2841 * netif_set_real_num_rx_queues - set actual number of RX queues used
2842 * @dev: Network device
2843 * @rxq: Actual number of RX queues
2844 *
2845 * This must be called either with the rtnl_lock held or before
2846 * registration of the net device. Returns 0 on success, or a
2847 * negative error code. If called before registration, it always
2848 * succeeds.
2849 */
2850int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2851{
2852 int rc;
2853
2854 if (rxq < 1 || rxq > dev->num_rx_queues)
2855 return -EINVAL;
2856
2857 if (dev->reg_state == NETREG_REGISTERED) {
2858 ASSERT_RTNL();
2859
2860 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2861 rxq);
2862 if (rc)
2863 return rc;
2864 }
2865
2866 dev->real_num_rx_queues = rxq;
2867 return 0;
2868}
2869EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2870#endif
2871
2872/**
2873 * netif_get_num_default_rss_queues - default number of RSS queues
2874 *
2875 * This routine should set an upper limit on the number of RSS queues
2876 * used by default by multiqueue devices.
2877 */
2878int netif_get_num_default_rss_queues(void)
2879{
2880 return is_kdump_kernel() ?
2881 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2882}
2883EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2884
2885static void __netif_reschedule(struct Qdisc *q)
2886{
2887 struct softnet_data *sd;
2888 unsigned long flags;
2889
2890 local_irq_save(flags);
2891 sd = this_cpu_ptr(&softnet_data);
2892 q->next_sched = NULL;
2893 *sd->output_queue_tailp = q;
2894 sd->output_queue_tailp = &q->next_sched;
2895 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2896 local_irq_restore(flags);
2897}
2898
2899void __netif_schedule(struct Qdisc *q)
2900{
2901 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2902 __netif_reschedule(q);
2903}
2904EXPORT_SYMBOL(__netif_schedule);
2905
2906struct dev_kfree_skb_cb {
2907 enum skb_free_reason reason;
2908};
2909
2910static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2911{
2912 return (struct dev_kfree_skb_cb *)skb->cb;
2913}
2914
2915void netif_schedule_queue(struct netdev_queue *txq)
2916{
2917 rcu_read_lock();
2918 if (!netif_xmit_stopped(txq)) {
2919 struct Qdisc *q = rcu_dereference(txq->qdisc);
2920
2921 __netif_schedule(q);
2922 }
2923 rcu_read_unlock();
2924}
2925EXPORT_SYMBOL(netif_schedule_queue);
2926
2927void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2928{
2929 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2930 struct Qdisc *q;
2931
2932 rcu_read_lock();
2933 q = rcu_dereference(dev_queue->qdisc);
2934 __netif_schedule(q);
2935 rcu_read_unlock();
2936 }
2937}
2938EXPORT_SYMBOL(netif_tx_wake_queue);
2939
2940void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2941{
2942 unsigned long flags;
2943
2944 if (unlikely(!skb))
2945 return;
2946
2947 if (likely(refcount_read(&skb->users) == 1)) {
2948 smp_rmb();
2949 refcount_set(&skb->users, 0);
2950 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2951 return;
2952 }
2953 get_kfree_skb_cb(skb)->reason = reason;
2954 local_irq_save(flags);
2955 skb->next = __this_cpu_read(softnet_data.completion_queue);
2956 __this_cpu_write(softnet_data.completion_queue, skb);
2957 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2958 local_irq_restore(flags);
2959}
2960EXPORT_SYMBOL(__dev_kfree_skb_irq);
2961
2962void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2963{
2964 if (in_irq() || irqs_disabled())
2965 __dev_kfree_skb_irq(skb, reason);
2966 else
2967 dev_kfree_skb(skb);
2968}
2969EXPORT_SYMBOL(__dev_kfree_skb_any);
2970
2971
2972/**
2973 * netif_device_detach - mark device as removed
2974 * @dev: network device
2975 *
2976 * Mark device as removed from system and therefore no longer available.
2977 */
2978void netif_device_detach(struct net_device *dev)
2979{
2980 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2981 netif_running(dev)) {
2982 netif_tx_stop_all_queues(dev);
2983 }
2984}
2985EXPORT_SYMBOL(netif_device_detach);
2986
2987/**
2988 * netif_device_attach - mark device as attached
2989 * @dev: network device
2990 *
2991 * Mark device as attached from system and restart if needed.
2992 */
2993void netif_device_attach(struct net_device *dev)
2994{
2995 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2996 netif_running(dev)) {
2997 netif_tx_wake_all_queues(dev);
2998 __netdev_watchdog_up(dev);
2999 }
3000}
3001EXPORT_SYMBOL(netif_device_attach);
3002
3003/*
3004 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3005 * to be used as a distribution range.
3006 */
3007static u16 skb_tx_hash(const struct net_device *dev,
3008 const struct net_device *sb_dev,
3009 struct sk_buff *skb)
3010{
3011 u32 hash;
3012 u16 qoffset = 0;
3013 u16 qcount = dev->real_num_tx_queues;
3014
3015 if (dev->num_tc) {
3016 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3017
3018 qoffset = sb_dev->tc_to_txq[tc].offset;
3019 qcount = sb_dev->tc_to_txq[tc].count;
3020 }
3021
3022 if (skb_rx_queue_recorded(skb)) {
3023 hash = skb_get_rx_queue(skb);
3024 while (unlikely(hash >= qcount))
3025 hash -= qcount;
3026 return hash + qoffset;
3027 }
3028
3029 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3030}
3031
3032static void skb_warn_bad_offload(const struct sk_buff *skb)
3033{
3034 static const netdev_features_t null_features;
3035 struct net_device *dev = skb->dev;
3036 const char *name = "";
3037
3038 if (!net_ratelimit())
3039 return;
3040
3041 if (dev) {
3042 if (dev->dev.parent)
3043 name = dev_driver_string(dev->dev.parent);
3044 else
3045 name = netdev_name(dev);
3046 }
3047 skb_dump(KERN_WARNING, skb, false);
3048 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3049 name, dev ? &dev->features : &null_features,
3050 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3051}
3052
3053/*
3054 * Invalidate hardware checksum when packet is to be mangled, and
3055 * complete checksum manually on outgoing path.
3056 */
3057int skb_checksum_help(struct sk_buff *skb)
3058{
3059 __wsum csum;
3060 int ret = 0, offset;
3061
3062 if (skb->ip_summed == CHECKSUM_COMPLETE)
3063 goto out_set_summed;
3064
3065 if (unlikely(skb_shinfo(skb)->gso_size)) {
3066 skb_warn_bad_offload(skb);
3067 return -EINVAL;
3068 }
3069
3070 /* Before computing a checksum, we should make sure no frag could
3071 * be modified by an external entity : checksum could be wrong.
3072 */
3073 if (skb_has_shared_frag(skb)) {
3074 ret = __skb_linearize(skb);
3075 if (ret)
3076 goto out;
3077 }
3078
3079 offset = skb_checksum_start_offset(skb);
3080 BUG_ON(offset >= skb_headlen(skb));
3081 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3082
3083 offset += skb->csum_offset;
3084 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3085
3086 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3087 if (ret)
3088 goto out;
3089
3090 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3091out_set_summed:
3092 skb->ip_summed = CHECKSUM_NONE;
3093out:
3094 return ret;
3095}
3096EXPORT_SYMBOL(skb_checksum_help);
3097
3098int skb_crc32c_csum_help(struct sk_buff *skb)
3099{
3100 __le32 crc32c_csum;
3101 int ret = 0, offset, start;
3102
3103 if (skb->ip_summed != CHECKSUM_PARTIAL)
3104 goto out;
3105
3106 if (unlikely(skb_is_gso(skb)))
3107 goto out;
3108
3109 /* Before computing a checksum, we should make sure no frag could
3110 * be modified by an external entity : checksum could be wrong.
3111 */
3112 if (unlikely(skb_has_shared_frag(skb))) {
3113 ret = __skb_linearize(skb);
3114 if (ret)
3115 goto out;
3116 }
3117 start = skb_checksum_start_offset(skb);
3118 offset = start + offsetof(struct sctphdr, checksum);
3119 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3120 ret = -EINVAL;
3121 goto out;
3122 }
3123
3124 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3125 if (ret)
3126 goto out;
3127
3128 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3129 skb->len - start, ~(__u32)0,
3130 crc32c_csum_stub));
3131 *(__le32 *)(skb->data + offset) = crc32c_csum;
3132 skb->ip_summed = CHECKSUM_NONE;
3133 skb->csum_not_inet = 0;
3134out:
3135 return ret;
3136}
3137
3138__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3139{
3140 __be16 type = skb->protocol;
3141
3142 /* Tunnel gso handlers can set protocol to ethernet. */
3143 if (type == htons(ETH_P_TEB)) {
3144 struct ethhdr *eth;
3145
3146 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3147 return 0;
3148
3149 eth = (struct ethhdr *)skb->data;
3150 type = eth->h_proto;
3151 }
3152
3153 return __vlan_get_protocol(skb, type, depth);
3154}
3155
3156/**
3157 * skb_mac_gso_segment - mac layer segmentation handler.
3158 * @skb: buffer to segment
3159 * @features: features for the output path (see dev->features)
3160 */
3161struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3162 netdev_features_t features)
3163{
3164 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3165 struct packet_offload *ptype;
3166 int vlan_depth = skb->mac_len;
3167 __be16 type = skb_network_protocol(skb, &vlan_depth);
3168
3169 if (unlikely(!type))
3170 return ERR_PTR(-EINVAL);
3171
3172 __skb_pull(skb, vlan_depth);
3173
3174 rcu_read_lock();
3175 list_for_each_entry_rcu(ptype, &offload_base, list) {
3176 if (ptype->type == type && ptype->callbacks.gso_segment) {
3177 segs = ptype->callbacks.gso_segment(skb, features);
3178 break;
3179 }
3180 }
3181 rcu_read_unlock();
3182
3183 __skb_push(skb, skb->data - skb_mac_header(skb));
3184
3185 return segs;
3186}
3187EXPORT_SYMBOL(skb_mac_gso_segment);
3188
3189
3190/* openvswitch calls this on rx path, so we need a different check.
3191 */
3192static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3193{
3194 if (tx_path)
3195 return skb->ip_summed != CHECKSUM_PARTIAL &&
3196 skb->ip_summed != CHECKSUM_UNNECESSARY;
3197
3198 return skb->ip_summed == CHECKSUM_NONE;
3199}
3200
3201/**
3202 * __skb_gso_segment - Perform segmentation on skb.
3203 * @skb: buffer to segment
3204 * @features: features for the output path (see dev->features)
3205 * @tx_path: whether it is called in TX path
3206 *
3207 * This function segments the given skb and returns a list of segments.
3208 *
3209 * It may return NULL if the skb requires no segmentation. This is
3210 * only possible when GSO is used for verifying header integrity.
3211 *
3212 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3213 */
3214struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3215 netdev_features_t features, bool tx_path)
3216{
3217 struct sk_buff *segs;
3218
3219 if (unlikely(skb_needs_check(skb, tx_path))) {
3220 int err;
3221
3222 /* We're going to init ->check field in TCP or UDP header */
3223 err = skb_cow_head(skb, 0);
3224 if (err < 0)
3225 return ERR_PTR(err);
3226 }
3227
3228 /* Only report GSO partial support if it will enable us to
3229 * support segmentation on this frame without needing additional
3230 * work.
3231 */
3232 if (features & NETIF_F_GSO_PARTIAL) {
3233 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3234 struct net_device *dev = skb->dev;
3235
3236 partial_features |= dev->features & dev->gso_partial_features;
3237 if (!skb_gso_ok(skb, features | partial_features))
3238 features &= ~NETIF_F_GSO_PARTIAL;
3239 }
3240
3241 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3242 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3243
3244 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3245 SKB_GSO_CB(skb)->encap_level = 0;
3246
3247 skb_reset_mac_header(skb);
3248 skb_reset_mac_len(skb);
3249
3250 segs = skb_mac_gso_segment(skb, features);
3251
3252 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3253 skb_warn_bad_offload(skb);
3254
3255 return segs;
3256}
3257EXPORT_SYMBOL(__skb_gso_segment);
3258
3259/* Take action when hardware reception checksum errors are detected. */
3260#ifdef CONFIG_BUG
3261void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3262{
3263 if (net_ratelimit()) {
3264 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3265 skb_dump(KERN_ERR, skb, true);
3266 dump_stack();
3267 }
3268}
3269EXPORT_SYMBOL(netdev_rx_csum_fault);
3270#endif
3271
3272/* XXX: check that highmem exists at all on the given machine. */
3273static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3274{
3275#ifdef CONFIG_HIGHMEM
3276 int i;
3277
3278 if (!(dev->features & NETIF_F_HIGHDMA)) {
3279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3280 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3281
3282 if (PageHighMem(skb_frag_page(frag)))
3283 return 1;
3284 }
3285 }
3286#endif
3287 return 0;
3288}
3289
3290/* If MPLS offload request, verify we are testing hardware MPLS features
3291 * instead of standard features for the netdev.
3292 */
3293#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3294static netdev_features_t net_mpls_features(struct sk_buff *skb,
3295 netdev_features_t features,
3296 __be16 type)
3297{
3298 if (eth_p_mpls(type))
3299 features &= skb->dev->mpls_features;
3300
3301 return features;
3302}
3303#else
3304static netdev_features_t net_mpls_features(struct sk_buff *skb,
3305 netdev_features_t features,
3306 __be16 type)
3307{
3308 return features;
3309}
3310#endif
3311
3312static netdev_features_t harmonize_features(struct sk_buff *skb,
3313 netdev_features_t features)
3314{
3315 int tmp;
3316 __be16 type;
3317
3318 type = skb_network_protocol(skb, &tmp);
3319 features = net_mpls_features(skb, features, type);
3320
3321 if (skb->ip_summed != CHECKSUM_NONE &&
3322 !can_checksum_protocol(features, type)) {
3323 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3324 }
3325 if (illegal_highdma(skb->dev, skb))
3326 features &= ~NETIF_F_SG;
3327
3328 return features;
3329}
3330
3331netdev_features_t passthru_features_check(struct sk_buff *skb,
3332 struct net_device *dev,
3333 netdev_features_t features)
3334{
3335 return features;
3336}
3337EXPORT_SYMBOL(passthru_features_check);
3338
3339static netdev_features_t dflt_features_check(struct sk_buff *skb,
3340 struct net_device *dev,
3341 netdev_features_t features)
3342{
3343 return vlan_features_check(skb, features);
3344}
3345
3346static netdev_features_t gso_features_check(const struct sk_buff *skb,
3347 struct net_device *dev,
3348 netdev_features_t features)
3349{
3350 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3351
3352 if (gso_segs > dev->gso_max_segs)
3353 return features & ~NETIF_F_GSO_MASK;
3354
3355 /* Support for GSO partial features requires software
3356 * intervention before we can actually process the packets
3357 * so we need to strip support for any partial features now
3358 * and we can pull them back in after we have partially
3359 * segmented the frame.
3360 */
3361 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3362 features &= ~dev->gso_partial_features;
3363
3364 /* Make sure to clear the IPv4 ID mangling feature if the
3365 * IPv4 header has the potential to be fragmented.
3366 */
3367 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3368 struct iphdr *iph = skb->encapsulation ?
3369 inner_ip_hdr(skb) : ip_hdr(skb);
3370
3371 if (!(iph->frag_off & htons(IP_DF)))
3372 features &= ~NETIF_F_TSO_MANGLEID;
3373 }
3374
3375 return features;
3376}
3377
3378netdev_features_t netif_skb_features(struct sk_buff *skb)
3379{
3380 struct net_device *dev = skb->dev;
3381 netdev_features_t features = dev->features;
3382
3383 if (skb_is_gso(skb))
3384 features = gso_features_check(skb, dev, features);
3385
3386 /* If encapsulation offload request, verify we are testing
3387 * hardware encapsulation features instead of standard
3388 * features for the netdev
3389 */
3390 if (skb->encapsulation)
3391 features &= dev->hw_enc_features;
3392
3393 if (skb_vlan_tagged(skb))
3394 features = netdev_intersect_features(features,
3395 dev->vlan_features |
3396 NETIF_F_HW_VLAN_CTAG_TX |
3397 NETIF_F_HW_VLAN_STAG_TX);
3398
3399 if (dev->netdev_ops->ndo_features_check)
3400 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3401 features);
3402 else
3403 features &= dflt_features_check(skb, dev, features);
3404
3405 return harmonize_features(skb, features);
3406}
3407EXPORT_SYMBOL(netif_skb_features);
3408
3409static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3410 struct netdev_queue *txq, bool more)
3411{
3412 unsigned int len;
3413 int rc;
3414
3415 if (dev_nit_active(dev))
3416 dev_queue_xmit_nit(skb, dev);
3417
3418 len = skb->len;
3419 trace_net_dev_start_xmit(skb, dev);
3420 rc = netdev_start_xmit(skb, dev, txq, more);
3421 trace_net_dev_xmit(skb, rc, dev, len);
3422
3423 return rc;
3424}
3425
3426struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3427 struct netdev_queue *txq, int *ret)
3428{
3429 struct sk_buff *skb = first;
3430 int rc = NETDEV_TX_OK;
3431
3432 while (skb) {
3433 struct sk_buff *next = skb->next;
3434
3435 skb_mark_not_on_list(skb);
3436 rc = xmit_one(skb, dev, txq, next != NULL);
3437 if (unlikely(!dev_xmit_complete(rc))) {
3438 skb->next = next;
3439 goto out;
3440 }
3441
3442 skb = next;
3443 if (netif_tx_queue_stopped(txq) && skb) {
3444 rc = NETDEV_TX_BUSY;
3445 break;
3446 }
3447 }
3448
3449out:
3450 *ret = rc;
3451 return skb;
3452}
3453
3454static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3455 netdev_features_t features)
3456{
3457 if (skb_vlan_tag_present(skb) &&
3458 !vlan_hw_offload_capable(features, skb->vlan_proto))
3459 skb = __vlan_hwaccel_push_inside(skb);
3460 return skb;
3461}
3462
3463int skb_csum_hwoffload_help(struct sk_buff *skb,
3464 const netdev_features_t features)
3465{
3466 if (unlikely(skb->csum_not_inet))
3467 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3468 skb_crc32c_csum_help(skb);
3469
3470 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3471}
3472EXPORT_SYMBOL(skb_csum_hwoffload_help);
3473
3474static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3475{
3476 netdev_features_t features;
3477
3478 features = netif_skb_features(skb);
3479 skb = validate_xmit_vlan(skb, features);
3480 if (unlikely(!skb))
3481 goto out_null;
3482
3483 skb = sk_validate_xmit_skb(skb, dev);
3484 if (unlikely(!skb))
3485 goto out_null;
3486
3487 if (netif_needs_gso(skb, features)) {
3488 struct sk_buff *segs;
3489
3490 segs = skb_gso_segment(skb, features);
3491 if (IS_ERR(segs)) {
3492 goto out_kfree_skb;
3493 } else if (segs) {
3494 consume_skb(skb);
3495 skb = segs;
3496 }
3497 } else {
3498 if (skb_needs_linearize(skb, features) &&
3499 __skb_linearize(skb))
3500 goto out_kfree_skb;
3501
3502 /* If packet is not checksummed and device does not
3503 * support checksumming for this protocol, complete
3504 * checksumming here.
3505 */
3506 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3507 if (skb->encapsulation)
3508 skb_set_inner_transport_header(skb,
3509 skb_checksum_start_offset(skb));
3510 else
3511 skb_set_transport_header(skb,
3512 skb_checksum_start_offset(skb));
3513 if (skb_csum_hwoffload_help(skb, features))
3514 goto out_kfree_skb;
3515 }
3516 }
3517
3518 skb = validate_xmit_xfrm(skb, features, again);
3519
3520 return skb;
3521
3522out_kfree_skb:
3523 kfree_skb(skb);
3524out_null:
3525 atomic_long_inc(&dev->tx_dropped);
3526 return NULL;
3527}
3528
3529struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3530{
3531 struct sk_buff *next, *head = NULL, *tail;
3532
3533 for (; skb != NULL; skb = next) {
3534 next = skb->next;
3535 skb_mark_not_on_list(skb);
3536
3537 /* in case skb wont be segmented, point to itself */
3538 skb->prev = skb;
3539
3540 skb = validate_xmit_skb(skb, dev, again);
3541 if (!skb)
3542 continue;
3543
3544 if (!head)
3545 head = skb;
3546 else
3547 tail->next = skb;
3548 /* If skb was segmented, skb->prev points to
3549 * the last segment. If not, it still contains skb.
3550 */
3551 tail = skb->prev;
3552 }
3553 return head;
3554}
3555EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3556
3557static void qdisc_pkt_len_init(struct sk_buff *skb)
3558{
3559 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3560
3561 qdisc_skb_cb(skb)->pkt_len = skb->len;
3562
3563 /* To get more precise estimation of bytes sent on wire,
3564 * we add to pkt_len the headers size of all segments
3565 */
3566 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3567 unsigned int hdr_len;
3568 u16 gso_segs = shinfo->gso_segs;
3569
3570 /* mac layer + network layer */
3571 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3572
3573 /* + transport layer */
3574 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3575 const struct tcphdr *th;
3576 struct tcphdr _tcphdr;
3577
3578 th = skb_header_pointer(skb, skb_transport_offset(skb),
3579 sizeof(_tcphdr), &_tcphdr);
3580 if (likely(th))
3581 hdr_len += __tcp_hdrlen(th);
3582 } else {
3583 struct udphdr _udphdr;
3584
3585 if (skb_header_pointer(skb, skb_transport_offset(skb),
3586 sizeof(_udphdr), &_udphdr))
3587 hdr_len += sizeof(struct udphdr);
3588 }
3589
3590 if (shinfo->gso_type & SKB_GSO_DODGY)
3591 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3592 shinfo->gso_size);
3593
3594 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3595 }
3596}
3597
3598static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3599 struct net_device *dev,
3600 struct netdev_queue *txq)
3601{
3602 spinlock_t *root_lock = qdisc_lock(q);
3603 struct sk_buff *to_free = NULL;
3604 bool contended;
3605 int rc;
3606
3607 qdisc_calculate_pkt_len(skb, q);
3608
3609 if (q->flags & TCQ_F_NOLOCK) {
3610 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) &&
3611 qdisc_run_begin(q)) {
3612 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3613 &q->state))) {
3614 __qdisc_drop(skb, &to_free);
3615 rc = NET_XMIT_DROP;
3616 goto end_run;
3617 }
3618 qdisc_bstats_cpu_update(q, skb);
3619
3620 rc = NET_XMIT_SUCCESS;
3621 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3622 __qdisc_run(q);
3623
3624end_run:
3625 qdisc_run_end(q);
3626 } else {
3627 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3628 qdisc_run(q);
3629 }
3630
3631 if (unlikely(to_free))
3632 kfree_skb_list(to_free);
3633 return rc;
3634 }
3635
3636 /*
3637 * Heuristic to force contended enqueues to serialize on a
3638 * separate lock before trying to get qdisc main lock.
3639 * This permits qdisc->running owner to get the lock more
3640 * often and dequeue packets faster.
3641 */
3642 contended = qdisc_is_running(q);
3643 if (unlikely(contended))
3644 spin_lock(&q->busylock);
3645
3646 spin_lock(root_lock);
3647 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3648 __qdisc_drop(skb, &to_free);
3649 rc = NET_XMIT_DROP;
3650 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3651 qdisc_run_begin(q)) {
3652 /*
3653 * This is a work-conserving queue; there are no old skbs
3654 * waiting to be sent out; and the qdisc is not running -
3655 * xmit the skb directly.
3656 */
3657
3658 qdisc_bstats_update(q, skb);
3659
3660 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3661 if (unlikely(contended)) {
3662 spin_unlock(&q->busylock);
3663 contended = false;
3664 }
3665 __qdisc_run(q);
3666 }
3667
3668 qdisc_run_end(q);
3669 rc = NET_XMIT_SUCCESS;
3670 } else {
3671 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3672 if (qdisc_run_begin(q)) {
3673 if (unlikely(contended)) {
3674 spin_unlock(&q->busylock);
3675 contended = false;
3676 }
3677 __qdisc_run(q);
3678 qdisc_run_end(q);
3679 }
3680 }
3681 spin_unlock(root_lock);
3682 if (unlikely(to_free))
3683 kfree_skb_list(to_free);
3684 if (unlikely(contended))
3685 spin_unlock(&q->busylock);
3686 return rc;
3687}
3688
3689#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3690static void skb_update_prio(struct sk_buff *skb)
3691{
3692 const struct netprio_map *map;
3693 const struct sock *sk;
3694 unsigned int prioidx;
3695
3696 if (skb->priority)
3697 return;
3698 map = rcu_dereference_bh(skb->dev->priomap);
3699 if (!map)
3700 return;
3701 sk = skb_to_full_sk(skb);
3702 if (!sk)
3703 return;
3704
3705 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3706
3707 if (prioidx < map->priomap_len)
3708 skb->priority = map->priomap[prioidx];
3709}
3710#else
3711#define skb_update_prio(skb)
3712#endif
3713
3714/**
3715 * dev_loopback_xmit - loop back @skb
3716 * @net: network namespace this loopback is happening in
3717 * @sk: sk needed to be a netfilter okfn
3718 * @skb: buffer to transmit
3719 */
3720int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3721{
3722 skb_reset_mac_header(skb);
3723 __skb_pull(skb, skb_network_offset(skb));
3724 skb->pkt_type = PACKET_LOOPBACK;
3725 skb->ip_summed = CHECKSUM_UNNECESSARY;
3726 WARN_ON(!skb_dst(skb));
3727 skb_dst_force(skb);
3728 netif_rx_ni(skb);
3729 return 0;
3730}
3731EXPORT_SYMBOL(dev_loopback_xmit);
3732
3733#ifdef CONFIG_NET_EGRESS
3734static struct sk_buff *
3735sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3736{
3737 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3738 struct tcf_result cl_res;
3739
3740 if (!miniq)
3741 return skb;
3742
3743 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3744 mini_qdisc_bstats_cpu_update(miniq, skb);
3745
3746 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3747 case TC_ACT_OK:
3748 case TC_ACT_RECLASSIFY:
3749 skb->tc_index = TC_H_MIN(cl_res.classid);
3750 break;
3751 case TC_ACT_SHOT:
3752 mini_qdisc_qstats_cpu_drop(miniq);
3753 *ret = NET_XMIT_DROP;
3754 kfree_skb(skb);
3755 return NULL;
3756 case TC_ACT_STOLEN:
3757 case TC_ACT_QUEUED:
3758 case TC_ACT_TRAP:
3759 *ret = NET_XMIT_SUCCESS;
3760 consume_skb(skb);
3761 return NULL;
3762 case TC_ACT_REDIRECT:
3763 /* No need to push/pop skb's mac_header here on egress! */
3764 skb_do_redirect(skb);
3765 *ret = NET_XMIT_SUCCESS;
3766 return NULL;
3767 default:
3768 break;
3769 }
3770
3771 return skb;
3772}
3773#endif /* CONFIG_NET_EGRESS */
3774
3775#ifdef CONFIG_XPS
3776static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3777 struct xps_dev_maps *dev_maps, unsigned int tci)
3778{
3779 struct xps_map *map;
3780 int queue_index = -1;
3781
3782 if (dev->num_tc) {
3783 tci *= dev->num_tc;
3784 tci += netdev_get_prio_tc_map(dev, skb->priority);
3785 }
3786
3787 map = rcu_dereference(dev_maps->attr_map[tci]);
3788 if (map) {
3789 if (map->len == 1)
3790 queue_index = map->queues[0];
3791 else
3792 queue_index = map->queues[reciprocal_scale(
3793 skb_get_hash(skb), map->len)];
3794 if (unlikely(queue_index >= dev->real_num_tx_queues))
3795 queue_index = -1;
3796 }
3797 return queue_index;
3798}
3799#endif
3800
3801static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3802 struct sk_buff *skb)
3803{
3804#ifdef CONFIG_XPS
3805 struct xps_dev_maps *dev_maps;
3806 struct sock *sk = skb->sk;
3807 int queue_index = -1;
3808
3809 if (!static_key_false(&xps_needed))
3810 return -1;
3811
3812 rcu_read_lock();
3813 if (!static_key_false(&xps_rxqs_needed))
3814 goto get_cpus_map;
3815
3816 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3817 if (dev_maps) {
3818 int tci = sk_rx_queue_get(sk);
3819
3820 if (tci >= 0 && tci < dev->num_rx_queues)
3821 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3822 tci);
3823 }
3824
3825get_cpus_map:
3826 if (queue_index < 0) {
3827 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3828 if (dev_maps) {
3829 unsigned int tci = skb->sender_cpu - 1;
3830
3831 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3832 tci);
3833 }
3834 }
3835 rcu_read_unlock();
3836
3837 return queue_index;
3838#else
3839 return -1;
3840#endif
3841}
3842
3843u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3844 struct net_device *sb_dev)
3845{
3846 return 0;
3847}
3848EXPORT_SYMBOL(dev_pick_tx_zero);
3849
3850u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3851 struct net_device *sb_dev)
3852{
3853 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3854}
3855EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3856
3857u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3858 struct net_device *sb_dev)
3859{
3860 struct sock *sk = skb->sk;
3861 int queue_index = sk_tx_queue_get(sk);
3862
3863 sb_dev = sb_dev ? : dev;
3864
3865 if (queue_index < 0 || skb->ooo_okay ||
3866 queue_index >= dev->real_num_tx_queues) {
3867 int new_index = get_xps_queue(dev, sb_dev, skb);
3868
3869 if (new_index < 0)
3870 new_index = skb_tx_hash(dev, sb_dev, skb);
3871
3872 if (queue_index != new_index && sk &&
3873 sk_fullsock(sk) &&
3874 rcu_access_pointer(sk->sk_dst_cache))
3875 sk_tx_queue_set(sk, new_index);
3876
3877 queue_index = new_index;
3878 }
3879
3880 return queue_index;
3881}
3882EXPORT_SYMBOL(netdev_pick_tx);
3883
3884struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3885 struct sk_buff *skb,
3886 struct net_device *sb_dev)
3887{
3888 int queue_index = 0;
3889
3890#ifdef CONFIG_XPS
3891 u32 sender_cpu = skb->sender_cpu - 1;
3892
3893 if (sender_cpu >= (u32)NR_CPUS)
3894 skb->sender_cpu = raw_smp_processor_id() + 1;
3895#endif
3896
3897 if (dev->real_num_tx_queues != 1) {
3898 const struct net_device_ops *ops = dev->netdev_ops;
3899
3900 if (ops->ndo_select_queue)
3901 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3902 else
3903 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3904
3905 queue_index = netdev_cap_txqueue(dev, queue_index);
3906 }
3907
3908 skb_set_queue_mapping(skb, queue_index);
3909 return netdev_get_tx_queue(dev, queue_index);
3910}
3911
3912/**
3913 * __dev_queue_xmit - transmit a buffer
3914 * @skb: buffer to transmit
3915 * @sb_dev: suboordinate device used for L2 forwarding offload
3916 *
3917 * Queue a buffer for transmission to a network device. The caller must
3918 * have set the device and priority and built the buffer before calling
3919 * this function. The function can be called from an interrupt.
3920 *
3921 * A negative errno code is returned on a failure. A success does not
3922 * guarantee the frame will be transmitted as it may be dropped due
3923 * to congestion or traffic shaping.
3924 *
3925 * -----------------------------------------------------------------------------------
3926 * I notice this method can also return errors from the queue disciplines,
3927 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3928 * be positive.
3929 *
3930 * Regardless of the return value, the skb is consumed, so it is currently
3931 * difficult to retry a send to this method. (You can bump the ref count
3932 * before sending to hold a reference for retry if you are careful.)
3933 *
3934 * When calling this method, interrupts MUST be enabled. This is because
3935 * the BH enable code must have IRQs enabled so that it will not deadlock.
3936 * --BLG
3937 */
3938static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3939{
3940 struct net_device *dev = skb->dev;
3941 struct netdev_queue *txq;
3942 struct Qdisc *q;
3943 int rc = -ENOMEM;
3944 bool again = false;
3945
3946 skb_reset_mac_header(skb);
3947
3948 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3949 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3950
3951 /* Disable soft irqs for various locks below. Also
3952 * stops preemption for RCU.
3953 */
3954 rcu_read_lock_bh();
3955
3956 skb_update_prio(skb);
3957
3958 qdisc_pkt_len_init(skb);
3959#ifdef CONFIG_NET_CLS_ACT
3960 skb->tc_at_ingress = 0;
3961# ifdef CONFIG_NET_EGRESS
3962 if (static_branch_unlikely(&egress_needed_key)) {
3963 skb = sch_handle_egress(skb, &rc, dev);
3964 if (!skb)
3965 goto out;
3966 }
3967# endif
3968#endif
3969 /* If device/qdisc don't need skb->dst, release it right now while
3970 * its hot in this cpu cache.
3971 */
3972 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3973 skb_dst_drop(skb);
3974 else
3975 skb_dst_force(skb);
3976
3977 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3978 q = rcu_dereference_bh(txq->qdisc);
3979
3980 trace_net_dev_queue(skb);
3981 if (q->enqueue) {
3982 rc = __dev_xmit_skb(skb, q, dev, txq);
3983 goto out;
3984 }
3985
3986 /* The device has no queue. Common case for software devices:
3987 * loopback, all the sorts of tunnels...
3988
3989 * Really, it is unlikely that netif_tx_lock protection is necessary
3990 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3991 * counters.)
3992 * However, it is possible, that they rely on protection
3993 * made by us here.
3994
3995 * Check this and shot the lock. It is not prone from deadlocks.
3996 *Either shot noqueue qdisc, it is even simpler 8)
3997 */
3998 if (dev->flags & IFF_UP) {
3999 int cpu = smp_processor_id(); /* ok because BHs are off */
4000
4001 if (txq->xmit_lock_owner != cpu) {
4002 if (dev_xmit_recursion())
4003 goto recursion_alert;
4004
4005 skb = validate_xmit_skb(skb, dev, &again);
4006 if (!skb)
4007 goto out;
4008
4009 HARD_TX_LOCK(dev, txq, cpu);
4010
4011 if (!netif_xmit_stopped(txq)) {
4012 dev_xmit_recursion_inc();
4013 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4014 dev_xmit_recursion_dec();
4015 if (dev_xmit_complete(rc)) {
4016 HARD_TX_UNLOCK(dev, txq);
4017 goto out;
4018 }
4019 }
4020 HARD_TX_UNLOCK(dev, txq);
4021 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4022 dev->name);
4023 } else {
4024 /* Recursion is detected! It is possible,
4025 * unfortunately
4026 */
4027recursion_alert:
4028 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4029 dev->name);
4030 }
4031 }
4032
4033 rc = -ENETDOWN;
4034 rcu_read_unlock_bh();
4035
4036 atomic_long_inc(&dev->tx_dropped);
4037 kfree_skb_list(skb);
4038 return rc;
4039out:
4040 rcu_read_unlock_bh();
4041 return rc;
4042}
4043
4044int dev_queue_xmit(struct sk_buff *skb)
4045{
4046 return __dev_queue_xmit(skb, NULL);
4047}
4048EXPORT_SYMBOL(dev_queue_xmit);
4049
4050int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4051{
4052 return __dev_queue_xmit(skb, sb_dev);
4053}
4054EXPORT_SYMBOL(dev_queue_xmit_accel);
4055
4056int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4057{
4058 struct net_device *dev = skb->dev;
4059 struct sk_buff *orig_skb = skb;
4060 struct netdev_queue *txq;
4061 int ret = NETDEV_TX_BUSY;
4062 bool again = false;
4063
4064 if (unlikely(!netif_running(dev) ||
4065 !netif_carrier_ok(dev)))
4066 goto drop;
4067
4068 skb = validate_xmit_skb_list(skb, dev, &again);
4069 if (skb != orig_skb)
4070 goto drop;
4071
4072 skb_set_queue_mapping(skb, queue_id);
4073 txq = skb_get_tx_queue(dev, skb);
4074
4075 local_bh_disable();
4076
4077 HARD_TX_LOCK(dev, txq, smp_processor_id());
4078 if (!netif_xmit_frozen_or_drv_stopped(txq))
4079 ret = netdev_start_xmit(skb, dev, txq, false);
4080 HARD_TX_UNLOCK(dev, txq);
4081
4082 local_bh_enable();
4083
4084 if (!dev_xmit_complete(ret))
4085 kfree_skb(skb);
4086
4087 return ret;
4088drop:
4089 atomic_long_inc(&dev->tx_dropped);
4090 kfree_skb_list(skb);
4091 return NET_XMIT_DROP;
4092}
4093EXPORT_SYMBOL(dev_direct_xmit);
4094
4095/*************************************************************************
4096 * Receiver routines
4097 *************************************************************************/
4098
4099int netdev_max_backlog __read_mostly = 1000;
4100EXPORT_SYMBOL(netdev_max_backlog);
4101
4102int netdev_tstamp_prequeue __read_mostly = 1;
4103int netdev_budget __read_mostly = 300;
4104unsigned int __read_mostly netdev_budget_usecs = 2000;
4105int weight_p __read_mostly = 64; /* old backlog weight */
4106int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4107int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4108int dev_rx_weight __read_mostly = 64;
4109int dev_tx_weight __read_mostly = 64;
4110/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4111int gro_normal_batch __read_mostly = 8;
4112
4113/* Called with irq disabled */
4114static inline void ____napi_schedule(struct softnet_data *sd,
4115 struct napi_struct *napi)
4116{
4117 list_add_tail(&napi->poll_list, &sd->poll_list);
4118 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4119}
4120
4121#ifdef CONFIG_RPS
4122
4123/* One global table that all flow-based protocols share. */
4124struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4125EXPORT_SYMBOL(rps_sock_flow_table);
4126u32 rps_cpu_mask __read_mostly;
4127EXPORT_SYMBOL(rps_cpu_mask);
4128
4129struct static_key_false rps_needed __read_mostly;
4130EXPORT_SYMBOL(rps_needed);
4131struct static_key_false rfs_needed __read_mostly;
4132EXPORT_SYMBOL(rfs_needed);
4133
4134static struct rps_dev_flow *
4135set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4136 struct rps_dev_flow *rflow, u16 next_cpu)
4137{
4138 if (next_cpu < nr_cpu_ids) {
4139#ifdef CONFIG_RFS_ACCEL
4140 struct netdev_rx_queue *rxqueue;
4141 struct rps_dev_flow_table *flow_table;
4142 struct rps_dev_flow *old_rflow;
4143 u32 flow_id;
4144 u16 rxq_index;
4145 int rc;
4146
4147 /* Should we steer this flow to a different hardware queue? */
4148 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4149 !(dev->features & NETIF_F_NTUPLE))
4150 goto out;
4151 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4152 if (rxq_index == skb_get_rx_queue(skb))
4153 goto out;
4154
4155 rxqueue = dev->_rx + rxq_index;
4156 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157 if (!flow_table)
4158 goto out;
4159 flow_id = skb_get_hash(skb) & flow_table->mask;
4160 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4161 rxq_index, flow_id);
4162 if (rc < 0)
4163 goto out;
4164 old_rflow = rflow;
4165 rflow = &flow_table->flows[flow_id];
4166 rflow->filter = rc;
4167 if (old_rflow->filter == rflow->filter)
4168 old_rflow->filter = RPS_NO_FILTER;
4169 out:
4170#endif
4171 rflow->last_qtail =
4172 per_cpu(softnet_data, next_cpu).input_queue_head;
4173 }
4174
4175 rflow->cpu = next_cpu;
4176 return rflow;
4177}
4178
4179/*
4180 * get_rps_cpu is called from netif_receive_skb and returns the target
4181 * CPU from the RPS map of the receiving queue for a given skb.
4182 * rcu_read_lock must be held on entry.
4183 */
4184static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4185 struct rps_dev_flow **rflowp)
4186{
4187 const struct rps_sock_flow_table *sock_flow_table;
4188 struct netdev_rx_queue *rxqueue = dev->_rx;
4189 struct rps_dev_flow_table *flow_table;
4190 struct rps_map *map;
4191 int cpu = -1;
4192 u32 tcpu;
4193 u32 hash;
4194
4195 if (skb_rx_queue_recorded(skb)) {
4196 u16 index = skb_get_rx_queue(skb);
4197
4198 if (unlikely(index >= dev->real_num_rx_queues)) {
4199 WARN_ONCE(dev->real_num_rx_queues > 1,
4200 "%s received packet on queue %u, but number "
4201 "of RX queues is %u\n",
4202 dev->name, index, dev->real_num_rx_queues);
4203 goto done;
4204 }
4205 rxqueue += index;
4206 }
4207
4208 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4209
4210 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4211 map = rcu_dereference(rxqueue->rps_map);
4212 if (!flow_table && !map)
4213 goto done;
4214
4215 skb_reset_network_header(skb);
4216 hash = skb_get_hash(skb);
4217 if (!hash)
4218 goto done;
4219
4220 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4221 if (flow_table && sock_flow_table) {
4222 struct rps_dev_flow *rflow;
4223 u32 next_cpu;
4224 u32 ident;
4225
4226 /* First check into global flow table if there is a match */
4227 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4228 if ((ident ^ hash) & ~rps_cpu_mask)
4229 goto try_rps;
4230
4231 next_cpu = ident & rps_cpu_mask;
4232
4233 /* OK, now we know there is a match,
4234 * we can look at the local (per receive queue) flow table
4235 */
4236 rflow = &flow_table->flows[hash & flow_table->mask];
4237 tcpu = rflow->cpu;
4238
4239 /*
4240 * If the desired CPU (where last recvmsg was done) is
4241 * different from current CPU (one in the rx-queue flow
4242 * table entry), switch if one of the following holds:
4243 * - Current CPU is unset (>= nr_cpu_ids).
4244 * - Current CPU is offline.
4245 * - The current CPU's queue tail has advanced beyond the
4246 * last packet that was enqueued using this table entry.
4247 * This guarantees that all previous packets for the flow
4248 * have been dequeued, thus preserving in order delivery.
4249 */
4250 if (unlikely(tcpu != next_cpu) &&
4251 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4252 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4253 rflow->last_qtail)) >= 0)) {
4254 tcpu = next_cpu;
4255 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4256 }
4257
4258 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4259 *rflowp = rflow;
4260 cpu = tcpu;
4261 goto done;
4262 }
4263 }
4264
4265try_rps:
4266
4267 if (map) {
4268 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4269 if (cpu_online(tcpu)) {
4270 cpu = tcpu;
4271 goto done;
4272 }
4273 }
4274
4275done:
4276 return cpu;
4277}
4278
4279#ifdef CONFIG_RFS_ACCEL
4280
4281/**
4282 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4283 * @dev: Device on which the filter was set
4284 * @rxq_index: RX queue index
4285 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4286 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4287 *
4288 * Drivers that implement ndo_rx_flow_steer() should periodically call
4289 * this function for each installed filter and remove the filters for
4290 * which it returns %true.
4291 */
4292bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4293 u32 flow_id, u16 filter_id)
4294{
4295 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4296 struct rps_dev_flow_table *flow_table;
4297 struct rps_dev_flow *rflow;
4298 bool expire = true;
4299 unsigned int cpu;
4300
4301 rcu_read_lock();
4302 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4303 if (flow_table && flow_id <= flow_table->mask) {
4304 rflow = &flow_table->flows[flow_id];
4305 cpu = READ_ONCE(rflow->cpu);
4306 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4307 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4308 rflow->last_qtail) <
4309 (int)(10 * flow_table->mask)))
4310 expire = false;
4311 }
4312 rcu_read_unlock();
4313 return expire;
4314}
4315EXPORT_SYMBOL(rps_may_expire_flow);
4316
4317#endif /* CONFIG_RFS_ACCEL */
4318
4319/* Called from hardirq (IPI) context */
4320static void rps_trigger_softirq(void *data)
4321{
4322 struct softnet_data *sd = data;
4323
4324 ____napi_schedule(sd, &sd->backlog);
4325 sd->received_rps++;
4326}
4327
4328#endif /* CONFIG_RPS */
4329
4330/*
4331 * Check if this softnet_data structure is another cpu one
4332 * If yes, queue it to our IPI list and return 1
4333 * If no, return 0
4334 */
4335static int rps_ipi_queued(struct softnet_data *sd)
4336{
4337#ifdef CONFIG_RPS
4338 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4339
4340 if (sd != mysd) {
4341 sd->rps_ipi_next = mysd->rps_ipi_list;
4342 mysd->rps_ipi_list = sd;
4343
4344 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4345 return 1;
4346 }
4347#endif /* CONFIG_RPS */
4348 return 0;
4349}
4350
4351#ifdef CONFIG_NET_FLOW_LIMIT
4352int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4353#endif
4354
4355static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4356{
4357#ifdef CONFIG_NET_FLOW_LIMIT
4358 struct sd_flow_limit *fl;
4359 struct softnet_data *sd;
4360 unsigned int old_flow, new_flow;
4361
4362 if (qlen < (netdev_max_backlog >> 1))
4363 return false;
4364
4365 sd = this_cpu_ptr(&softnet_data);
4366
4367 rcu_read_lock();
4368 fl = rcu_dereference(sd->flow_limit);
4369 if (fl) {
4370 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4371 old_flow = fl->history[fl->history_head];
4372 fl->history[fl->history_head] = new_flow;
4373
4374 fl->history_head++;
4375 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4376
4377 if (likely(fl->buckets[old_flow]))
4378 fl->buckets[old_flow]--;
4379
4380 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4381 fl->count++;
4382 rcu_read_unlock();
4383 return true;
4384 }
4385 }
4386 rcu_read_unlock();
4387#endif
4388 return false;
4389}
4390
4391/*
4392 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4393 * queue (may be a remote CPU queue).
4394 */
4395static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4396 unsigned int *qtail)
4397{
4398 struct softnet_data *sd;
4399 unsigned long flags;
4400 unsigned int qlen;
4401
4402 sd = &per_cpu(softnet_data, cpu);
4403
4404 local_irq_save(flags);
4405
4406 rps_lock(sd);
4407 if (!netif_running(skb->dev))
4408 goto drop;
4409 qlen = skb_queue_len(&sd->input_pkt_queue);
4410 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4411 if (qlen) {
4412enqueue:
4413 __skb_queue_tail(&sd->input_pkt_queue, skb);
4414 input_queue_tail_incr_save(sd, qtail);
4415 rps_unlock(sd);
4416 local_irq_restore(flags);
4417 return NET_RX_SUCCESS;
4418 }
4419
4420 /* Schedule NAPI for backlog device
4421 * We can use non atomic operation since we own the queue lock
4422 */
4423 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4424 if (!rps_ipi_queued(sd))
4425 ____napi_schedule(sd, &sd->backlog);
4426 }
4427 goto enqueue;
4428 }
4429
4430drop:
4431 sd->dropped++;
4432 rps_unlock(sd);
4433
4434 local_irq_restore(flags);
4435
4436 atomic_long_inc(&skb->dev->rx_dropped);
4437 kfree_skb(skb);
4438 return NET_RX_DROP;
4439}
4440
4441static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4442{
4443 struct net_device *dev = skb->dev;
4444 struct netdev_rx_queue *rxqueue;
4445
4446 rxqueue = dev->_rx;
4447
4448 if (skb_rx_queue_recorded(skb)) {
4449 u16 index = skb_get_rx_queue(skb);
4450
4451 if (unlikely(index >= dev->real_num_rx_queues)) {
4452 WARN_ONCE(dev->real_num_rx_queues > 1,
4453 "%s received packet on queue %u, but number "
4454 "of RX queues is %u\n",
4455 dev->name, index, dev->real_num_rx_queues);
4456
4457 return rxqueue; /* Return first rxqueue */
4458 }
4459 rxqueue += index;
4460 }
4461 return rxqueue;
4462}
4463
4464static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4465 struct xdp_buff *xdp,
4466 struct bpf_prog *xdp_prog)
4467{
4468 struct netdev_rx_queue *rxqueue;
4469 void *orig_data, *orig_data_end;
4470 u32 metalen, act = XDP_DROP;
4471 __be16 orig_eth_type;
4472 struct ethhdr *eth;
4473 bool orig_bcast;
4474 int hlen, off;
4475 u32 mac_len;
4476
4477 /* Reinjected packets coming from act_mirred or similar should
4478 * not get XDP generic processing.
4479 */
4480 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4481 return XDP_PASS;
4482
4483 /* XDP packets must be linear and must have sufficient headroom
4484 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4485 * native XDP provides, thus we need to do it here as well.
4486 */
4487 if (skb_is_nonlinear(skb) ||
4488 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4489 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4490 int troom = skb->tail + skb->data_len - skb->end;
4491
4492 /* In case we have to go down the path and also linearize,
4493 * then lets do the pskb_expand_head() work just once here.
4494 */
4495 if (pskb_expand_head(skb,
4496 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4497 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4498 goto do_drop;
4499 if (skb_linearize(skb))
4500 goto do_drop;
4501 }
4502
4503 /* The XDP program wants to see the packet starting at the MAC
4504 * header.
4505 */
4506 mac_len = skb->data - skb_mac_header(skb);
4507 hlen = skb_headlen(skb) + mac_len;
4508 xdp->data = skb->data - mac_len;
4509 xdp->data_meta = xdp->data;
4510 xdp->data_end = xdp->data + hlen;
4511 xdp->data_hard_start = skb->data - skb_headroom(skb);
4512 orig_data_end = xdp->data_end;
4513 orig_data = xdp->data;
4514 eth = (struct ethhdr *)xdp->data;
4515 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4516 orig_eth_type = eth->h_proto;
4517
4518 rxqueue = netif_get_rxqueue(skb);
4519 xdp->rxq = &rxqueue->xdp_rxq;
4520
4521 act = bpf_prog_run_xdp(xdp_prog, xdp);
4522
4523 /* check if bpf_xdp_adjust_head was used */
4524 off = xdp->data - orig_data;
4525 if (off) {
4526 if (off > 0)
4527 __skb_pull(skb, off);
4528 else if (off < 0)
4529 __skb_push(skb, -off);
4530
4531 skb->mac_header += off;
4532 skb_reset_network_header(skb);
4533 }
4534
4535 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4536 * pckt.
4537 */
4538 off = orig_data_end - xdp->data_end;
4539 if (off != 0) {
4540 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4541 skb->len -= off;
4542
4543 }
4544
4545 /* check if XDP changed eth hdr such SKB needs update */
4546 eth = (struct ethhdr *)xdp->data;
4547 if ((orig_eth_type != eth->h_proto) ||
4548 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4549 __skb_push(skb, ETH_HLEN);
4550 skb->protocol = eth_type_trans(skb, skb->dev);
4551 }
4552
4553 switch (act) {
4554 case XDP_REDIRECT:
4555 case XDP_TX:
4556 __skb_push(skb, mac_len);
4557 break;
4558 case XDP_PASS:
4559 metalen = xdp->data - xdp->data_meta;
4560 if (metalen)
4561 skb_metadata_set(skb, metalen);
4562 break;
4563 default:
4564 bpf_warn_invalid_xdp_action(act);
4565 /* fall through */
4566 case XDP_ABORTED:
4567 trace_xdp_exception(skb->dev, xdp_prog, act);
4568 /* fall through */
4569 case XDP_DROP:
4570 do_drop:
4571 kfree_skb(skb);
4572 break;
4573 }
4574
4575 return act;
4576}
4577
4578/* When doing generic XDP we have to bypass the qdisc layer and the
4579 * network taps in order to match in-driver-XDP behavior.
4580 */
4581void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4582{
4583 struct net_device *dev = skb->dev;
4584 struct netdev_queue *txq;
4585 bool free_skb = true;
4586 int cpu, rc;
4587
4588 txq = netdev_core_pick_tx(dev, skb, NULL);
4589 cpu = smp_processor_id();
4590 HARD_TX_LOCK(dev, txq, cpu);
4591 if (!netif_xmit_stopped(txq)) {
4592 rc = netdev_start_xmit(skb, dev, txq, 0);
4593 if (dev_xmit_complete(rc))
4594 free_skb = false;
4595 }
4596 HARD_TX_UNLOCK(dev, txq);
4597 if (free_skb) {
4598 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4599 kfree_skb(skb);
4600 }
4601}
4602EXPORT_SYMBOL_GPL(generic_xdp_tx);
4603
4604static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4605
4606int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4607{
4608 if (xdp_prog) {
4609 struct xdp_buff xdp;
4610 u32 act;
4611 int err;
4612
4613 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4614 if (act != XDP_PASS) {
4615 switch (act) {
4616 case XDP_REDIRECT:
4617 err = xdp_do_generic_redirect(skb->dev, skb,
4618 &xdp, xdp_prog);
4619 if (err)
4620 goto out_redir;
4621 break;
4622 case XDP_TX:
4623 generic_xdp_tx(skb, xdp_prog);
4624 break;
4625 }
4626 return XDP_DROP;
4627 }
4628 }
4629 return XDP_PASS;
4630out_redir:
4631 kfree_skb(skb);
4632 return XDP_DROP;
4633}
4634EXPORT_SYMBOL_GPL(do_xdp_generic);
4635
4636static int netif_rx_internal(struct sk_buff *skb)
4637{
4638 int ret;
4639
4640 net_timestamp_check(netdev_tstamp_prequeue, skb);
4641
4642 trace_netif_rx(skb);
4643
4644#ifdef CONFIG_RPS
4645 if (static_branch_unlikely(&rps_needed)) {
4646 struct rps_dev_flow voidflow, *rflow = &voidflow;
4647 int cpu;
4648
4649 preempt_disable();
4650 rcu_read_lock();
4651
4652 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4653 if (cpu < 0)
4654 cpu = smp_processor_id();
4655
4656 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4657
4658 rcu_read_unlock();
4659 preempt_enable();
4660 } else
4661#endif
4662 {
4663 unsigned int qtail;
4664
4665 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4666 put_cpu();
4667 }
4668 return ret;
4669}
4670
4671/**
4672 * netif_rx - post buffer to the network code
4673 * @skb: buffer to post
4674 *
4675 * This function receives a packet from a device driver and queues it for
4676 * the upper (protocol) levels to process. It always succeeds. The buffer
4677 * may be dropped during processing for congestion control or by the
4678 * protocol layers.
4679 *
4680 * return values:
4681 * NET_RX_SUCCESS (no congestion)
4682 * NET_RX_DROP (packet was dropped)
4683 *
4684 */
4685
4686int netif_rx(struct sk_buff *skb)
4687{
4688 int ret;
4689
4690 trace_netif_rx_entry(skb);
4691
4692 ret = netif_rx_internal(skb);
4693 trace_netif_rx_exit(ret);
4694
4695 return ret;
4696}
4697EXPORT_SYMBOL(netif_rx);
4698
4699int netif_rx_ni(struct sk_buff *skb)
4700{
4701 int err;
4702
4703 trace_netif_rx_ni_entry(skb);
4704
4705 preempt_disable();
4706 err = netif_rx_internal(skb);
4707 if (local_softirq_pending())
4708 do_softirq();
4709 preempt_enable();
4710 trace_netif_rx_ni_exit(err);
4711
4712 return err;
4713}
4714EXPORT_SYMBOL(netif_rx_ni);
4715
4716static __latent_entropy void net_tx_action(struct softirq_action *h)
4717{
4718 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4719
4720 if (sd->completion_queue) {
4721 struct sk_buff *clist;
4722
4723 local_irq_disable();
4724 clist = sd->completion_queue;
4725 sd->completion_queue = NULL;
4726 local_irq_enable();
4727
4728 while (clist) {
4729 struct sk_buff *skb = clist;
4730
4731 clist = clist->next;
4732
4733 WARN_ON(refcount_read(&skb->users));
4734 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4735 trace_consume_skb(skb);
4736 else
4737 trace_kfree_skb(skb, net_tx_action);
4738
4739 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4740 __kfree_skb(skb);
4741 else
4742 __kfree_skb_defer(skb);
4743 }
4744
4745 __kfree_skb_flush();
4746 }
4747
4748 if (sd->output_queue) {
4749 struct Qdisc *head;
4750
4751 local_irq_disable();
4752 head = sd->output_queue;
4753 sd->output_queue = NULL;
4754 sd->output_queue_tailp = &sd->output_queue;
4755 local_irq_enable();
4756
4757 while (head) {
4758 struct Qdisc *q = head;
4759 spinlock_t *root_lock = NULL;
4760
4761 head = head->next_sched;
4762
4763 if (!(q->flags & TCQ_F_NOLOCK)) {
4764 root_lock = qdisc_lock(q);
4765 spin_lock(root_lock);
4766 }
4767 /* We need to make sure head->next_sched is read
4768 * before clearing __QDISC_STATE_SCHED
4769 */
4770 smp_mb__before_atomic();
4771 clear_bit(__QDISC_STATE_SCHED, &q->state);
4772 qdisc_run(q);
4773 if (root_lock)
4774 spin_unlock(root_lock);
4775 }
4776 }
4777
4778 xfrm_dev_backlog(sd);
4779}
4780
4781#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4782/* This hook is defined here for ATM LANE */
4783int (*br_fdb_test_addr_hook)(struct net_device *dev,
4784 unsigned char *addr) __read_mostly;
4785EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4786#endif
4787
4788static inline struct sk_buff *
4789sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4790 struct net_device *orig_dev)
4791{
4792#ifdef CONFIG_NET_CLS_ACT
4793 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4794 struct tcf_result cl_res;
4795
4796 /* If there's at least one ingress present somewhere (so
4797 * we get here via enabled static key), remaining devices
4798 * that are not configured with an ingress qdisc will bail
4799 * out here.
4800 */
4801 if (!miniq)
4802 return skb;
4803
4804 if (*pt_prev) {
4805 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4806 *pt_prev = NULL;
4807 }
4808
4809 qdisc_skb_cb(skb)->pkt_len = skb->len;
4810 skb->tc_at_ingress = 1;
4811 mini_qdisc_bstats_cpu_update(miniq, skb);
4812
4813 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4814 case TC_ACT_OK:
4815 case TC_ACT_RECLASSIFY:
4816 skb->tc_index = TC_H_MIN(cl_res.classid);
4817 break;
4818 case TC_ACT_SHOT:
4819 mini_qdisc_qstats_cpu_drop(miniq);
4820 kfree_skb(skb);
4821 return NULL;
4822 case TC_ACT_STOLEN:
4823 case TC_ACT_QUEUED:
4824 case TC_ACT_TRAP:
4825 consume_skb(skb);
4826 return NULL;
4827 case TC_ACT_REDIRECT:
4828 /* skb_mac_header check was done by cls/act_bpf, so
4829 * we can safely push the L2 header back before
4830 * redirecting to another netdev
4831 */
4832 __skb_push(skb, skb->mac_len);
4833 skb_do_redirect(skb);
4834 return NULL;
4835 case TC_ACT_CONSUMED:
4836 return NULL;
4837 default:
4838 break;
4839 }
4840#endif /* CONFIG_NET_CLS_ACT */
4841 return skb;
4842}
4843
4844/**
4845 * netdev_is_rx_handler_busy - check if receive handler is registered
4846 * @dev: device to check
4847 *
4848 * Check if a receive handler is already registered for a given device.
4849 * Return true if there one.
4850 *
4851 * The caller must hold the rtnl_mutex.
4852 */
4853bool netdev_is_rx_handler_busy(struct net_device *dev)
4854{
4855 ASSERT_RTNL();
4856 return dev && rtnl_dereference(dev->rx_handler);
4857}
4858EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4859
4860/**
4861 * netdev_rx_handler_register - register receive handler
4862 * @dev: device to register a handler for
4863 * @rx_handler: receive handler to register
4864 * @rx_handler_data: data pointer that is used by rx handler
4865 *
4866 * Register a receive handler for a device. This handler will then be
4867 * called from __netif_receive_skb. A negative errno code is returned
4868 * on a failure.
4869 *
4870 * The caller must hold the rtnl_mutex.
4871 *
4872 * For a general description of rx_handler, see enum rx_handler_result.
4873 */
4874int netdev_rx_handler_register(struct net_device *dev,
4875 rx_handler_func_t *rx_handler,
4876 void *rx_handler_data)
4877{
4878 if (netdev_is_rx_handler_busy(dev))
4879 return -EBUSY;
4880
4881 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4882 return -EINVAL;
4883
4884 /* Note: rx_handler_data must be set before rx_handler */
4885 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4886 rcu_assign_pointer(dev->rx_handler, rx_handler);
4887
4888 return 0;
4889}
4890EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4891
4892/**
4893 * netdev_rx_handler_unregister - unregister receive handler
4894 * @dev: device to unregister a handler from
4895 *
4896 * Unregister a receive handler from a device.
4897 *
4898 * The caller must hold the rtnl_mutex.
4899 */
4900void netdev_rx_handler_unregister(struct net_device *dev)
4901{
4902
4903 ASSERT_RTNL();
4904 RCU_INIT_POINTER(dev->rx_handler, NULL);
4905 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4906 * section has a guarantee to see a non NULL rx_handler_data
4907 * as well.
4908 */
4909 synchronize_net();
4910 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4911}
4912EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4913
4914/*
4915 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4916 * the special handling of PFMEMALLOC skbs.
4917 */
4918static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4919{
4920 switch (skb->protocol) {
4921 case htons(ETH_P_ARP):
4922 case htons(ETH_P_IP):
4923 case htons(ETH_P_IPV6):
4924 case htons(ETH_P_8021Q):
4925 case htons(ETH_P_8021AD):
4926 return true;
4927 default:
4928 return false;
4929 }
4930}
4931
4932static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4933 int *ret, struct net_device *orig_dev)
4934{
4935#ifdef CONFIG_NETFILTER_INGRESS
4936 if (nf_hook_ingress_active(skb)) {
4937 int ingress_retval;
4938
4939 if (*pt_prev) {
4940 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4941 *pt_prev = NULL;
4942 }
4943
4944 rcu_read_lock();
4945 ingress_retval = nf_hook_ingress(skb);
4946 rcu_read_unlock();
4947 return ingress_retval;
4948 }
4949#endif /* CONFIG_NETFILTER_INGRESS */
4950 return 0;
4951}
4952
4953static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4954 struct packet_type **ppt_prev)
4955{
4956 struct packet_type *ptype, *pt_prev;
4957 rx_handler_func_t *rx_handler;
4958 struct net_device *orig_dev;
4959 bool deliver_exact = false;
4960 int ret = NET_RX_DROP;
4961 __be16 type;
4962
4963 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4964
4965 trace_netif_receive_skb(skb);
4966
4967 orig_dev = skb->dev;
4968
4969 skb_reset_network_header(skb);
4970 if (!skb_transport_header_was_set(skb))
4971 skb_reset_transport_header(skb);
4972 skb_reset_mac_len(skb);
4973
4974 pt_prev = NULL;
4975
4976another_round:
4977 skb->skb_iif = skb->dev->ifindex;
4978
4979 __this_cpu_inc(softnet_data.processed);
4980
4981 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4982 int ret2;
4983
4984 preempt_disable();
4985 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4986 preempt_enable();
4987
4988 if (ret2 != XDP_PASS)
4989 return NET_RX_DROP;
4990 skb_reset_mac_len(skb);
4991 }
4992
4993 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4994 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4995 skb = skb_vlan_untag(skb);
4996 if (unlikely(!skb))
4997 goto out;
4998 }
4999
5000 if (skb_skip_tc_classify(skb))
5001 goto skip_classify;
5002
5003 if (pfmemalloc)
5004 goto skip_taps;
5005
5006 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5007 if (pt_prev)
5008 ret = deliver_skb(skb, pt_prev, orig_dev);
5009 pt_prev = ptype;
5010 }
5011
5012 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5013 if (pt_prev)
5014 ret = deliver_skb(skb, pt_prev, orig_dev);
5015 pt_prev = ptype;
5016 }
5017
5018skip_taps:
5019#ifdef CONFIG_NET_INGRESS
5020 if (static_branch_unlikely(&ingress_needed_key)) {
5021 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5022 if (!skb)
5023 goto out;
5024
5025 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5026 goto out;
5027 }
5028#endif
5029 skb_reset_tc(skb);
5030skip_classify:
5031 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5032 goto drop;
5033
5034 if (skb_vlan_tag_present(skb)) {
5035 if (pt_prev) {
5036 ret = deliver_skb(skb, pt_prev, orig_dev);
5037 pt_prev = NULL;
5038 }
5039 if (vlan_do_receive(&skb))
5040 goto another_round;
5041 else if (unlikely(!skb))
5042 goto out;
5043 }
5044
5045 rx_handler = rcu_dereference(skb->dev->rx_handler);
5046 if (rx_handler) {
5047 if (pt_prev) {
5048 ret = deliver_skb(skb, pt_prev, orig_dev);
5049 pt_prev = NULL;
5050 }
5051 switch (rx_handler(&skb)) {
5052 case RX_HANDLER_CONSUMED:
5053 ret = NET_RX_SUCCESS;
5054 goto out;
5055 case RX_HANDLER_ANOTHER:
5056 goto another_round;
5057 case RX_HANDLER_EXACT:
5058 deliver_exact = true;
5059 case RX_HANDLER_PASS:
5060 break;
5061 default:
5062 BUG();
5063 }
5064 }
5065
5066 if (unlikely(skb_vlan_tag_present(skb))) {
5067check_vlan_id:
5068 if (skb_vlan_tag_get_id(skb)) {
5069 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5070 * find vlan device.
5071 */
5072 skb->pkt_type = PACKET_OTHERHOST;
5073 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5074 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5075 /* Outer header is 802.1P with vlan 0, inner header is
5076 * 802.1Q or 802.1AD and vlan_do_receive() above could
5077 * not find vlan dev for vlan id 0.
5078 */
5079 __vlan_hwaccel_clear_tag(skb);
5080 skb = skb_vlan_untag(skb);
5081 if (unlikely(!skb))
5082 goto out;
5083 if (vlan_do_receive(&skb))
5084 /* After stripping off 802.1P header with vlan 0
5085 * vlan dev is found for inner header.
5086 */
5087 goto another_round;
5088 else if (unlikely(!skb))
5089 goto out;
5090 else
5091 /* We have stripped outer 802.1P vlan 0 header.
5092 * But could not find vlan dev.
5093 * check again for vlan id to set OTHERHOST.
5094 */
5095 goto check_vlan_id;
5096 }
5097 /* Note: we might in the future use prio bits
5098 * and set skb->priority like in vlan_do_receive()
5099 * For the time being, just ignore Priority Code Point
5100 */
5101 __vlan_hwaccel_clear_tag(skb);
5102 }
5103
5104 type = skb->protocol;
5105
5106 /* deliver only exact match when indicated */
5107 if (likely(!deliver_exact)) {
5108 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5109 &ptype_base[ntohs(type) &
5110 PTYPE_HASH_MASK]);
5111 }
5112
5113 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5114 &orig_dev->ptype_specific);
5115
5116 if (unlikely(skb->dev != orig_dev)) {
5117 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5118 &skb->dev->ptype_specific);
5119 }
5120
5121 if (pt_prev) {
5122 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5123 goto drop;
5124 *ppt_prev = pt_prev;
5125 } else {
5126drop:
5127 if (!deliver_exact)
5128 atomic_long_inc(&skb->dev->rx_dropped);
5129 else
5130 atomic_long_inc(&skb->dev->rx_nohandler);
5131 kfree_skb(skb);
5132 /* Jamal, now you will not able to escape explaining
5133 * me how you were going to use this. :-)
5134 */
5135 ret = NET_RX_DROP;
5136 }
5137
5138out:
5139 return ret;
5140}
5141
5142static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5143{
5144 struct net_device *orig_dev = skb->dev;
5145 struct packet_type *pt_prev = NULL;
5146 int ret;
5147
5148 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5149 if (pt_prev)
5150 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5151 skb->dev, pt_prev, orig_dev);
5152 return ret;
5153}
5154
5155/**
5156 * netif_receive_skb_core - special purpose version of netif_receive_skb
5157 * @skb: buffer to process
5158 *
5159 * More direct receive version of netif_receive_skb(). It should
5160 * only be used by callers that have a need to skip RPS and Generic XDP.
5161 * Caller must also take care of handling if (page_is_)pfmemalloc.
5162 *
5163 * This function may only be called from softirq context and interrupts
5164 * should be enabled.
5165 *
5166 * Return values (usually ignored):
5167 * NET_RX_SUCCESS: no congestion
5168 * NET_RX_DROP: packet was dropped
5169 */
5170int netif_receive_skb_core(struct sk_buff *skb)
5171{
5172 int ret;
5173
5174 rcu_read_lock();
5175 ret = __netif_receive_skb_one_core(skb, false);
5176 rcu_read_unlock();
5177
5178 return ret;
5179}
5180EXPORT_SYMBOL(netif_receive_skb_core);
5181
5182static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5183 struct packet_type *pt_prev,
5184 struct net_device *orig_dev)
5185{
5186 struct sk_buff *skb, *next;
5187
5188 if (!pt_prev)
5189 return;
5190 if (list_empty(head))
5191 return;
5192 if (pt_prev->list_func != NULL)
5193 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5194 ip_list_rcv, head, pt_prev, orig_dev);
5195 else
5196 list_for_each_entry_safe(skb, next, head, list) {
5197 skb_list_del_init(skb);
5198 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5199 }
5200}
5201
5202static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5203{
5204 /* Fast-path assumptions:
5205 * - There is no RX handler.
5206 * - Only one packet_type matches.
5207 * If either of these fails, we will end up doing some per-packet
5208 * processing in-line, then handling the 'last ptype' for the whole
5209 * sublist. This can't cause out-of-order delivery to any single ptype,
5210 * because the 'last ptype' must be constant across the sublist, and all
5211 * other ptypes are handled per-packet.
5212 */
5213 /* Current (common) ptype of sublist */
5214 struct packet_type *pt_curr = NULL;
5215 /* Current (common) orig_dev of sublist */
5216 struct net_device *od_curr = NULL;
5217 struct list_head sublist;
5218 struct sk_buff *skb, *next;
5219
5220 INIT_LIST_HEAD(&sublist);
5221 list_for_each_entry_safe(skb, next, head, list) {
5222 struct net_device *orig_dev = skb->dev;
5223 struct packet_type *pt_prev = NULL;
5224
5225 skb_list_del_init(skb);
5226 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5227 if (!pt_prev)
5228 continue;
5229 if (pt_curr != pt_prev || od_curr != orig_dev) {
5230 /* dispatch old sublist */
5231 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5232 /* start new sublist */
5233 INIT_LIST_HEAD(&sublist);
5234 pt_curr = pt_prev;
5235 od_curr = orig_dev;
5236 }
5237 list_add_tail(&skb->list, &sublist);
5238 }
5239
5240 /* dispatch final sublist */
5241 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5242}
5243
5244static int __netif_receive_skb(struct sk_buff *skb)
5245{
5246 int ret;
5247
5248 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5249 unsigned int noreclaim_flag;
5250
5251 /*
5252 * PFMEMALLOC skbs are special, they should
5253 * - be delivered to SOCK_MEMALLOC sockets only
5254 * - stay away from userspace
5255 * - have bounded memory usage
5256 *
5257 * Use PF_MEMALLOC as this saves us from propagating the allocation
5258 * context down to all allocation sites.
5259 */
5260 noreclaim_flag = memalloc_noreclaim_save();
5261 ret = __netif_receive_skb_one_core(skb, true);
5262 memalloc_noreclaim_restore(noreclaim_flag);
5263 } else
5264 ret = __netif_receive_skb_one_core(skb, false);
5265
5266 return ret;
5267}
5268
5269static void __netif_receive_skb_list(struct list_head *head)
5270{
5271 unsigned long noreclaim_flag = 0;
5272 struct sk_buff *skb, *next;
5273 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5274
5275 list_for_each_entry_safe(skb, next, head, list) {
5276 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5277 struct list_head sublist;
5278
5279 /* Handle the previous sublist */
5280 list_cut_before(&sublist, head, &skb->list);
5281 if (!list_empty(&sublist))
5282 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5283 pfmemalloc = !pfmemalloc;
5284 /* See comments in __netif_receive_skb */
5285 if (pfmemalloc)
5286 noreclaim_flag = memalloc_noreclaim_save();
5287 else
5288 memalloc_noreclaim_restore(noreclaim_flag);
5289 }
5290 }
5291 /* Handle the remaining sublist */
5292 if (!list_empty(head))
5293 __netif_receive_skb_list_core(head, pfmemalloc);
5294 /* Restore pflags */
5295 if (pfmemalloc)
5296 memalloc_noreclaim_restore(noreclaim_flag);
5297}
5298
5299static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5300{
5301 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5302 struct bpf_prog *new = xdp->prog;
5303 int ret = 0;
5304
5305 switch (xdp->command) {
5306 case XDP_SETUP_PROG:
5307 rcu_assign_pointer(dev->xdp_prog, new);
5308 if (old)
5309 bpf_prog_put(old);
5310
5311 if (old && !new) {
5312 static_branch_dec(&generic_xdp_needed_key);
5313 } else if (new && !old) {
5314 static_branch_inc(&generic_xdp_needed_key);
5315 dev_disable_lro(dev);
5316 dev_disable_gro_hw(dev);
5317 }
5318 break;
5319
5320 case XDP_QUERY_PROG:
5321 xdp->prog_id = old ? old->aux->id : 0;
5322 break;
5323
5324 default:
5325 ret = -EINVAL;
5326 break;
5327 }
5328
5329 return ret;
5330}
5331
5332static int netif_receive_skb_internal(struct sk_buff *skb)
5333{
5334 int ret;
5335
5336 net_timestamp_check(netdev_tstamp_prequeue, skb);
5337
5338 if (skb_defer_rx_timestamp(skb))
5339 return NET_RX_SUCCESS;
5340
5341 rcu_read_lock();
5342#ifdef CONFIG_RPS
5343 if (static_branch_unlikely(&rps_needed)) {
5344 struct rps_dev_flow voidflow, *rflow = &voidflow;
5345 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5346
5347 if (cpu >= 0) {
5348 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5349 rcu_read_unlock();
5350 return ret;
5351 }
5352 }
5353#endif
5354 ret = __netif_receive_skb(skb);
5355 rcu_read_unlock();
5356 return ret;
5357}
5358
5359static void netif_receive_skb_list_internal(struct list_head *head)
5360{
5361 struct sk_buff *skb, *next;
5362 struct list_head sublist;
5363
5364 INIT_LIST_HEAD(&sublist);
5365 list_for_each_entry_safe(skb, next, head, list) {
5366 net_timestamp_check(netdev_tstamp_prequeue, skb);
5367 skb_list_del_init(skb);
5368 if (!skb_defer_rx_timestamp(skb))
5369 list_add_tail(&skb->list, &sublist);
5370 }
5371 list_splice_init(&sublist, head);
5372
5373 rcu_read_lock();
5374#ifdef CONFIG_RPS
5375 if (static_branch_unlikely(&rps_needed)) {
5376 list_for_each_entry_safe(skb, next, head, list) {
5377 struct rps_dev_flow voidflow, *rflow = &voidflow;
5378 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5379
5380 if (cpu >= 0) {
5381 /* Will be handled, remove from list */
5382 skb_list_del_init(skb);
5383 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384 }
5385 }
5386 }
5387#endif
5388 __netif_receive_skb_list(head);
5389 rcu_read_unlock();
5390}
5391
5392/**
5393 * netif_receive_skb - process receive buffer from network
5394 * @skb: buffer to process
5395 *
5396 * netif_receive_skb() is the main receive data processing function.
5397 * It always succeeds. The buffer may be dropped during processing
5398 * for congestion control or by the protocol layers.
5399 *
5400 * This function may only be called from softirq context and interrupts
5401 * should be enabled.
5402 *
5403 * Return values (usually ignored):
5404 * NET_RX_SUCCESS: no congestion
5405 * NET_RX_DROP: packet was dropped
5406 */
5407int netif_receive_skb(struct sk_buff *skb)
5408{
5409 int ret;
5410
5411 trace_netif_receive_skb_entry(skb);
5412
5413 ret = netif_receive_skb_internal(skb);
5414 trace_netif_receive_skb_exit(ret);
5415
5416 return ret;
5417}
5418EXPORT_SYMBOL(netif_receive_skb);
5419
5420/**
5421 * netif_receive_skb_list - process many receive buffers from network
5422 * @head: list of skbs to process.
5423 *
5424 * Since return value of netif_receive_skb() is normally ignored, and
5425 * wouldn't be meaningful for a list, this function returns void.
5426 *
5427 * This function may only be called from softirq context and interrupts
5428 * should be enabled.
5429 */
5430void netif_receive_skb_list(struct list_head *head)
5431{
5432 struct sk_buff *skb;
5433
5434 if (list_empty(head))
5435 return;
5436 if (trace_netif_receive_skb_list_entry_enabled()) {
5437 list_for_each_entry(skb, head, list)
5438 trace_netif_receive_skb_list_entry(skb);
5439 }
5440 netif_receive_skb_list_internal(head);
5441 trace_netif_receive_skb_list_exit(0);
5442}
5443EXPORT_SYMBOL(netif_receive_skb_list);
5444
5445DEFINE_PER_CPU(struct work_struct, flush_works);
5446
5447/* Network device is going away, flush any packets still pending */
5448static void flush_backlog(struct work_struct *work)
5449{
5450 struct sk_buff *skb, *tmp;
5451 struct softnet_data *sd;
5452
5453 local_bh_disable();
5454 sd = this_cpu_ptr(&softnet_data);
5455
5456 local_irq_disable();
5457 rps_lock(sd);
5458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5459 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5460 __skb_unlink(skb, &sd->input_pkt_queue);
5461 kfree_skb(skb);
5462 input_queue_head_incr(sd);
5463 }
5464 }
5465 rps_unlock(sd);
5466 local_irq_enable();
5467
5468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5469 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5470 __skb_unlink(skb, &sd->process_queue);
5471 kfree_skb(skb);
5472 input_queue_head_incr(sd);
5473 }
5474 }
5475 local_bh_enable();
5476}
5477
5478static void flush_all_backlogs(void)
5479{
5480 unsigned int cpu;
5481
5482 get_online_cpus();
5483
5484 for_each_online_cpu(cpu)
5485 queue_work_on(cpu, system_highpri_wq,
5486 per_cpu_ptr(&flush_works, cpu));
5487
5488 for_each_online_cpu(cpu)
5489 flush_work(per_cpu_ptr(&flush_works, cpu));
5490
5491 put_online_cpus();
5492}
5493
5494INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5495INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5496static int napi_gro_complete(struct sk_buff *skb)
5497{
5498 struct packet_offload *ptype;
5499 __be16 type = skb->protocol;
5500 struct list_head *head = &offload_base;
5501 int err = -ENOENT;
5502
5503 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5504
5505 if (NAPI_GRO_CB(skb)->count == 1) {
5506 skb_shinfo(skb)->gso_size = 0;
5507 goto out;
5508 }
5509
5510 rcu_read_lock();
5511 list_for_each_entry_rcu(ptype, head, list) {
5512 if (ptype->type != type || !ptype->callbacks.gro_complete)
5513 continue;
5514
5515 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5516 ipv6_gro_complete, inet_gro_complete,
5517 skb, 0);
5518 break;
5519 }
5520 rcu_read_unlock();
5521
5522 if (err) {
5523 WARN_ON(&ptype->list == head);
5524 kfree_skb(skb);
5525 return NET_RX_SUCCESS;
5526 }
5527
5528out:
5529 return netif_receive_skb_internal(skb);
5530}
5531
5532static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5533 bool flush_old)
5534{
5535 struct list_head *head = &napi->gro_hash[index].list;
5536 struct sk_buff *skb, *p;
5537
5538 list_for_each_entry_safe_reverse(skb, p, head, list) {
5539 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5540 return;
5541 skb_list_del_init(skb);
5542 napi_gro_complete(skb);
5543 napi->gro_hash[index].count--;
5544 }
5545
5546 if (!napi->gro_hash[index].count)
5547 __clear_bit(index, &napi->gro_bitmask);
5548}
5549
5550/* napi->gro_hash[].list contains packets ordered by age.
5551 * youngest packets at the head of it.
5552 * Complete skbs in reverse order to reduce latencies.
5553 */
5554void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5555{
5556 unsigned long bitmask = napi->gro_bitmask;
5557 unsigned int i, base = ~0U;
5558
5559 while ((i = ffs(bitmask)) != 0) {
5560 bitmask >>= i;
5561 base += i;
5562 __napi_gro_flush_chain(napi, base, flush_old);
5563 }
5564}
5565EXPORT_SYMBOL(napi_gro_flush);
5566
5567static struct list_head *gro_list_prepare(struct napi_struct *napi,
5568 struct sk_buff *skb)
5569{
5570 unsigned int maclen = skb->dev->hard_header_len;
5571 u32 hash = skb_get_hash_raw(skb);
5572 struct list_head *head;
5573 struct sk_buff *p;
5574
5575 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5576 list_for_each_entry(p, head, list) {
5577 unsigned long diffs;
5578
5579 NAPI_GRO_CB(p)->flush = 0;
5580
5581 if (hash != skb_get_hash_raw(p)) {
5582 NAPI_GRO_CB(p)->same_flow = 0;
5583 continue;
5584 }
5585
5586 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5587 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5588 if (skb_vlan_tag_present(p))
5589 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5590 diffs |= skb_metadata_dst_cmp(p, skb);
5591 diffs |= skb_metadata_differs(p, skb);
5592 if (maclen == ETH_HLEN)
5593 diffs |= compare_ether_header(skb_mac_header(p),
5594 skb_mac_header(skb));
5595 else if (!diffs)
5596 diffs = memcmp(skb_mac_header(p),
5597 skb_mac_header(skb),
5598 maclen);
5599 NAPI_GRO_CB(p)->same_flow = !diffs;
5600 }
5601
5602 return head;
5603}
5604
5605static void skb_gro_reset_offset(struct sk_buff *skb)
5606{
5607 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5608 const skb_frag_t *frag0 = &pinfo->frags[0];
5609
5610 NAPI_GRO_CB(skb)->data_offset = 0;
5611 NAPI_GRO_CB(skb)->frag0 = NULL;
5612 NAPI_GRO_CB(skb)->frag0_len = 0;
5613
5614 if (!skb_headlen(skb) && pinfo->nr_frags &&
5615 !PageHighMem(skb_frag_page(frag0))) {
5616 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5617 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5618 skb_frag_size(frag0),
5619 skb->end - skb->tail);
5620 }
5621}
5622
5623static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5624{
5625 struct skb_shared_info *pinfo = skb_shinfo(skb);
5626
5627 BUG_ON(skb->end - skb->tail < grow);
5628
5629 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5630
5631 skb->data_len -= grow;
5632 skb->tail += grow;
5633
5634 skb_frag_off_add(&pinfo->frags[0], grow);
5635 skb_frag_size_sub(&pinfo->frags[0], grow);
5636
5637 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5638 skb_frag_unref(skb, 0);
5639 memmove(pinfo->frags, pinfo->frags + 1,
5640 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5641 }
5642}
5643
5644static void gro_flush_oldest(struct list_head *head)
5645{
5646 struct sk_buff *oldest;
5647
5648 oldest = list_last_entry(head, struct sk_buff, list);
5649
5650 /* We are called with head length >= MAX_GRO_SKBS, so this is
5651 * impossible.
5652 */
5653 if (WARN_ON_ONCE(!oldest))
5654 return;
5655
5656 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5657 * SKB to the chain.
5658 */
5659 skb_list_del_init(oldest);
5660 napi_gro_complete(oldest);
5661}
5662
5663INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5664 struct sk_buff *));
5665INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5666 struct sk_buff *));
5667static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5668{
5669 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5670 struct list_head *head = &offload_base;
5671 struct packet_offload *ptype;
5672 __be16 type = skb->protocol;
5673 struct list_head *gro_head;
5674 struct sk_buff *pp = NULL;
5675 enum gro_result ret;
5676 int same_flow;
5677 int grow;
5678
5679 if (netif_elide_gro(skb->dev))
5680 goto normal;
5681
5682 gro_head = gro_list_prepare(napi, skb);
5683
5684 rcu_read_lock();
5685 list_for_each_entry_rcu(ptype, head, list) {
5686 if (ptype->type != type || !ptype->callbacks.gro_receive)
5687 continue;
5688
5689 skb_set_network_header(skb, skb_gro_offset(skb));
5690 skb_reset_mac_len(skb);
5691 NAPI_GRO_CB(skb)->same_flow = 0;
5692 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5693 NAPI_GRO_CB(skb)->free = 0;
5694 NAPI_GRO_CB(skb)->encap_mark = 0;
5695 NAPI_GRO_CB(skb)->recursion_counter = 0;
5696 NAPI_GRO_CB(skb)->is_fou = 0;
5697 NAPI_GRO_CB(skb)->is_atomic = 1;
5698 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5699
5700 /* Setup for GRO checksum validation */
5701 switch (skb->ip_summed) {
5702 case CHECKSUM_COMPLETE:
5703 NAPI_GRO_CB(skb)->csum = skb->csum;
5704 NAPI_GRO_CB(skb)->csum_valid = 1;
5705 NAPI_GRO_CB(skb)->csum_cnt = 0;
5706 break;
5707 case CHECKSUM_UNNECESSARY:
5708 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5709 NAPI_GRO_CB(skb)->csum_valid = 0;
5710 break;
5711 default:
5712 NAPI_GRO_CB(skb)->csum_cnt = 0;
5713 NAPI_GRO_CB(skb)->csum_valid = 0;
5714 }
5715
5716 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5717 ipv6_gro_receive, inet_gro_receive,
5718 gro_head, skb);
5719 break;
5720 }
5721 rcu_read_unlock();
5722
5723 if (&ptype->list == head)
5724 goto normal;
5725
5726 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5727 ret = GRO_CONSUMED;
5728 goto ok;
5729 }
5730
5731 same_flow = NAPI_GRO_CB(skb)->same_flow;
5732 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5733
5734 if (pp) {
5735 skb_list_del_init(pp);
5736 napi_gro_complete(pp);
5737 napi->gro_hash[hash].count--;
5738 }
5739
5740 if (same_flow)
5741 goto ok;
5742
5743 if (NAPI_GRO_CB(skb)->flush)
5744 goto normal;
5745
5746 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5747 gro_flush_oldest(gro_head);
5748 } else {
5749 napi->gro_hash[hash].count++;
5750 }
5751 NAPI_GRO_CB(skb)->count = 1;
5752 NAPI_GRO_CB(skb)->age = jiffies;
5753 NAPI_GRO_CB(skb)->last = skb;
5754 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5755 list_add(&skb->list, gro_head);
5756 ret = GRO_HELD;
5757
5758pull:
5759 grow = skb_gro_offset(skb) - skb_headlen(skb);
5760 if (grow > 0)
5761 gro_pull_from_frag0(skb, grow);
5762ok:
5763 if (napi->gro_hash[hash].count) {
5764 if (!test_bit(hash, &napi->gro_bitmask))
5765 __set_bit(hash, &napi->gro_bitmask);
5766 } else if (test_bit(hash, &napi->gro_bitmask)) {
5767 __clear_bit(hash, &napi->gro_bitmask);
5768 }
5769
5770 return ret;
5771
5772normal:
5773 ret = GRO_NORMAL;
5774 goto pull;
5775}
5776
5777struct packet_offload *gro_find_receive_by_type(__be16 type)
5778{
5779 struct list_head *offload_head = &offload_base;
5780 struct packet_offload *ptype;
5781
5782 list_for_each_entry_rcu(ptype, offload_head, list) {
5783 if (ptype->type != type || !ptype->callbacks.gro_receive)
5784 continue;
5785 return ptype;
5786 }
5787 return NULL;
5788}
5789EXPORT_SYMBOL(gro_find_receive_by_type);
5790
5791struct packet_offload *gro_find_complete_by_type(__be16 type)
5792{
5793 struct list_head *offload_head = &offload_base;
5794 struct packet_offload *ptype;
5795
5796 list_for_each_entry_rcu(ptype, offload_head, list) {
5797 if (ptype->type != type || !ptype->callbacks.gro_complete)
5798 continue;
5799 return ptype;
5800 }
5801 return NULL;
5802}
5803EXPORT_SYMBOL(gro_find_complete_by_type);
5804
5805/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5806static void gro_normal_list(struct napi_struct *napi)
5807{
5808 if (!napi->rx_count)
5809 return;
5810 netif_receive_skb_list_internal(&napi->rx_list);
5811 INIT_LIST_HEAD(&napi->rx_list);
5812 napi->rx_count = 0;
5813}
5814
5815/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5816 * pass the whole batch up to the stack.
5817 */
5818static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5819{
5820 list_add_tail(&skb->list, &napi->rx_list);
5821 if (++napi->rx_count >= gro_normal_batch)
5822 gro_normal_list(napi);
5823}
5824
5825static void napi_skb_free_stolen_head(struct sk_buff *skb)
5826{
5827 skb_dst_drop(skb);
5828 skb_ext_put(skb);
5829 kmem_cache_free(skbuff_head_cache, skb);
5830}
5831
5832static gro_result_t napi_skb_finish(struct napi_struct *napi,
5833 struct sk_buff *skb,
5834 gro_result_t ret)
5835{
5836 switch (ret) {
5837 case GRO_NORMAL:
5838 gro_normal_one(napi, skb);
5839 break;
5840
5841 case GRO_DROP:
5842 kfree_skb(skb);
5843 break;
5844
5845 case GRO_MERGED_FREE:
5846 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5847 napi_skb_free_stolen_head(skb);
5848 else
5849 __kfree_skb(skb);
5850 break;
5851
5852 case GRO_HELD:
5853 case GRO_MERGED:
5854 case GRO_CONSUMED:
5855 break;
5856 }
5857
5858 return ret;
5859}
5860
5861gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5862{
5863 gro_result_t ret;
5864
5865 skb_mark_napi_id(skb, napi);
5866 trace_napi_gro_receive_entry(skb);
5867
5868 skb_gro_reset_offset(skb);
5869
5870 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5871 trace_napi_gro_receive_exit(ret);
5872
5873 return ret;
5874}
5875EXPORT_SYMBOL(napi_gro_receive);
5876
5877static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5878{
5879 if (unlikely(skb->pfmemalloc)) {
5880 consume_skb(skb);
5881 return;
5882 }
5883 __skb_pull(skb, skb_headlen(skb));
5884 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5885 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5886 __vlan_hwaccel_clear_tag(skb);
5887 skb->dev = napi->dev;
5888 skb->skb_iif = 0;
5889
5890 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5891 skb->pkt_type = PACKET_HOST;
5892
5893 skb->encapsulation = 0;
5894 skb_shinfo(skb)->gso_type = 0;
5895 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5896 skb_ext_reset(skb);
5897
5898 napi->skb = skb;
5899}
5900
5901struct sk_buff *napi_get_frags(struct napi_struct *napi)
5902{
5903 struct sk_buff *skb = napi->skb;
5904
5905 if (!skb) {
5906 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5907 if (skb) {
5908 napi->skb = skb;
5909 skb_mark_napi_id(skb, napi);
5910 }
5911 }
5912 return skb;
5913}
5914EXPORT_SYMBOL(napi_get_frags);
5915
5916static gro_result_t napi_frags_finish(struct napi_struct *napi,
5917 struct sk_buff *skb,
5918 gro_result_t ret)
5919{
5920 switch (ret) {
5921 case GRO_NORMAL:
5922 case GRO_HELD:
5923 __skb_push(skb, ETH_HLEN);
5924 skb->protocol = eth_type_trans(skb, skb->dev);
5925 if (ret == GRO_NORMAL)
5926 gro_normal_one(napi, skb);
5927 break;
5928
5929 case GRO_DROP:
5930 napi_reuse_skb(napi, skb);
5931 break;
5932
5933 case GRO_MERGED_FREE:
5934 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5935 napi_skb_free_stolen_head(skb);
5936 else
5937 napi_reuse_skb(napi, skb);
5938 break;
5939
5940 case GRO_MERGED:
5941 case GRO_CONSUMED:
5942 break;
5943 }
5944
5945 return ret;
5946}
5947
5948/* Upper GRO stack assumes network header starts at gro_offset=0
5949 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5950 * We copy ethernet header into skb->data to have a common layout.
5951 */
5952static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5953{
5954 struct sk_buff *skb = napi->skb;
5955 const struct ethhdr *eth;
5956 unsigned int hlen = sizeof(*eth);
5957
5958 napi->skb = NULL;
5959
5960 skb_reset_mac_header(skb);
5961 skb_gro_reset_offset(skb);
5962
5963 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5964 eth = skb_gro_header_slow(skb, hlen, 0);
5965 if (unlikely(!eth)) {
5966 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5967 __func__, napi->dev->name);
5968 napi_reuse_skb(napi, skb);
5969 return NULL;
5970 }
5971 } else {
5972 eth = (const struct ethhdr *)skb->data;
5973 gro_pull_from_frag0(skb, hlen);
5974 NAPI_GRO_CB(skb)->frag0 += hlen;
5975 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5976 }
5977 __skb_pull(skb, hlen);
5978
5979 /*
5980 * This works because the only protocols we care about don't require
5981 * special handling.
5982 * We'll fix it up properly in napi_frags_finish()
5983 */
5984 skb->protocol = eth->h_proto;
5985
5986 return skb;
5987}
5988
5989gro_result_t napi_gro_frags(struct napi_struct *napi)
5990{
5991 gro_result_t ret;
5992 struct sk_buff *skb = napi_frags_skb(napi);
5993
5994 if (!skb)
5995 return GRO_DROP;
5996
5997 trace_napi_gro_frags_entry(skb);
5998
5999 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6000 trace_napi_gro_frags_exit(ret);
6001
6002 return ret;
6003}
6004EXPORT_SYMBOL(napi_gro_frags);
6005
6006/* Compute the checksum from gro_offset and return the folded value
6007 * after adding in any pseudo checksum.
6008 */
6009__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6010{
6011 __wsum wsum;
6012 __sum16 sum;
6013
6014 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6015
6016 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6017 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6018 /* See comments in __skb_checksum_complete(). */
6019 if (likely(!sum)) {
6020 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6021 !skb->csum_complete_sw)
6022 netdev_rx_csum_fault(skb->dev, skb);
6023 }
6024
6025 NAPI_GRO_CB(skb)->csum = wsum;
6026 NAPI_GRO_CB(skb)->csum_valid = 1;
6027
6028 return sum;
6029}
6030EXPORT_SYMBOL(__skb_gro_checksum_complete);
6031
6032static void net_rps_send_ipi(struct softnet_data *remsd)
6033{
6034#ifdef CONFIG_RPS
6035 while (remsd) {
6036 struct softnet_data *next = remsd->rps_ipi_next;
6037
6038 if (cpu_online(remsd->cpu))
6039 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6040 remsd = next;
6041 }
6042#endif
6043}
6044
6045/*
6046 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6047 * Note: called with local irq disabled, but exits with local irq enabled.
6048 */
6049static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6050{
6051#ifdef CONFIG_RPS
6052 struct softnet_data *remsd = sd->rps_ipi_list;
6053
6054 if (remsd) {
6055 sd->rps_ipi_list = NULL;
6056
6057 local_irq_enable();
6058
6059 /* Send pending IPI's to kick RPS processing on remote cpus. */
6060 net_rps_send_ipi(remsd);
6061 } else
6062#endif
6063 local_irq_enable();
6064}
6065
6066static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6067{
6068#ifdef CONFIG_RPS
6069 return sd->rps_ipi_list != NULL;
6070#else
6071 return false;
6072#endif
6073}
6074
6075static int process_backlog(struct napi_struct *napi, int quota)
6076{
6077 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6078 bool again = true;
6079 int work = 0;
6080
6081 /* Check if we have pending ipi, its better to send them now,
6082 * not waiting net_rx_action() end.
6083 */
6084 if (sd_has_rps_ipi_waiting(sd)) {
6085 local_irq_disable();
6086 net_rps_action_and_irq_enable(sd);
6087 }
6088
6089 napi->weight = dev_rx_weight;
6090 while (again) {
6091 struct sk_buff *skb;
6092
6093 while ((skb = __skb_dequeue(&sd->process_queue))) {
6094 rcu_read_lock();
6095 __netif_receive_skb(skb);
6096 rcu_read_unlock();
6097 input_queue_head_incr(sd);
6098 if (++work >= quota)
6099 return work;
6100
6101 }
6102
6103 local_irq_disable();
6104 rps_lock(sd);
6105 if (skb_queue_empty(&sd->input_pkt_queue)) {
6106 /*
6107 * Inline a custom version of __napi_complete().
6108 * only current cpu owns and manipulates this napi,
6109 * and NAPI_STATE_SCHED is the only possible flag set
6110 * on backlog.
6111 * We can use a plain write instead of clear_bit(),
6112 * and we dont need an smp_mb() memory barrier.
6113 */
6114 napi->state = 0;
6115 again = false;
6116 } else {
6117 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6118 &sd->process_queue);
6119 }
6120 rps_unlock(sd);
6121 local_irq_enable();
6122 }
6123
6124 return work;
6125}
6126
6127/**
6128 * __napi_schedule - schedule for receive
6129 * @n: entry to schedule
6130 *
6131 * The entry's receive function will be scheduled to run.
6132 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6133 */
6134void __napi_schedule(struct napi_struct *n)
6135{
6136 unsigned long flags;
6137
6138 local_irq_save(flags);
6139 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6140 local_irq_restore(flags);
6141}
6142EXPORT_SYMBOL(__napi_schedule);
6143
6144/**
6145 * napi_schedule_prep - check if napi can be scheduled
6146 * @n: napi context
6147 *
6148 * Test if NAPI routine is already running, and if not mark
6149 * it as running. This is used as a condition variable
6150 * insure only one NAPI poll instance runs. We also make
6151 * sure there is no pending NAPI disable.
6152 */
6153bool napi_schedule_prep(struct napi_struct *n)
6154{
6155 unsigned long val, new;
6156
6157 do {
6158 val = READ_ONCE(n->state);
6159 if (unlikely(val & NAPIF_STATE_DISABLE))
6160 return false;
6161 new = val | NAPIF_STATE_SCHED;
6162
6163 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6164 * This was suggested by Alexander Duyck, as compiler
6165 * emits better code than :
6166 * if (val & NAPIF_STATE_SCHED)
6167 * new |= NAPIF_STATE_MISSED;
6168 */
6169 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6170 NAPIF_STATE_MISSED;
6171 } while (cmpxchg(&n->state, val, new) != val);
6172
6173 return !(val & NAPIF_STATE_SCHED);
6174}
6175EXPORT_SYMBOL(napi_schedule_prep);
6176
6177/**
6178 * __napi_schedule_irqoff - schedule for receive
6179 * @n: entry to schedule
6180 *
6181 * Variant of __napi_schedule() assuming hard irqs are masked
6182 */
6183void __napi_schedule_irqoff(struct napi_struct *n)
6184{
6185 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6186}
6187EXPORT_SYMBOL(__napi_schedule_irqoff);
6188
6189bool napi_complete_done(struct napi_struct *n, int work_done)
6190{
6191 unsigned long flags, val, new;
6192
6193 /*
6194 * 1) Don't let napi dequeue from the cpu poll list
6195 * just in case its running on a different cpu.
6196 * 2) If we are busy polling, do nothing here, we have
6197 * the guarantee we will be called later.
6198 */
6199 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6200 NAPIF_STATE_IN_BUSY_POLL)))
6201 return false;
6202
6203 gro_normal_list(n);
6204
6205 if (n->gro_bitmask) {
6206 unsigned long timeout = 0;
6207
6208 if (work_done)
6209 timeout = n->dev->gro_flush_timeout;
6210
6211 /* When the NAPI instance uses a timeout and keeps postponing
6212 * it, we need to bound somehow the time packets are kept in
6213 * the GRO layer
6214 */
6215 napi_gro_flush(n, !!timeout);
6216 if (timeout)
6217 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6218 HRTIMER_MODE_REL_PINNED);
6219 }
6220 if (unlikely(!list_empty(&n->poll_list))) {
6221 /* If n->poll_list is not empty, we need to mask irqs */
6222 local_irq_save(flags);
6223 list_del_init(&n->poll_list);
6224 local_irq_restore(flags);
6225 }
6226
6227 do {
6228 val = READ_ONCE(n->state);
6229
6230 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6231
6232 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6233
6234 /* If STATE_MISSED was set, leave STATE_SCHED set,
6235 * because we will call napi->poll() one more time.
6236 * This C code was suggested by Alexander Duyck to help gcc.
6237 */
6238 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6239 NAPIF_STATE_SCHED;
6240 } while (cmpxchg(&n->state, val, new) != val);
6241
6242 if (unlikely(val & NAPIF_STATE_MISSED)) {
6243 __napi_schedule(n);
6244 return false;
6245 }
6246
6247 return true;
6248}
6249EXPORT_SYMBOL(napi_complete_done);
6250
6251/* must be called under rcu_read_lock(), as we dont take a reference */
6252static struct napi_struct *napi_by_id(unsigned int napi_id)
6253{
6254 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6255 struct napi_struct *napi;
6256
6257 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6258 if (napi->napi_id == napi_id)
6259 return napi;
6260
6261 return NULL;
6262}
6263
6264#if defined(CONFIG_NET_RX_BUSY_POLL)
6265
6266#define BUSY_POLL_BUDGET 8
6267
6268static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6269{
6270 int rc;
6271
6272 /* Busy polling means there is a high chance device driver hard irq
6273 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6274 * set in napi_schedule_prep().
6275 * Since we are about to call napi->poll() once more, we can safely
6276 * clear NAPI_STATE_MISSED.
6277 *
6278 * Note: x86 could use a single "lock and ..." instruction
6279 * to perform these two clear_bit()
6280 */
6281 clear_bit(NAPI_STATE_MISSED, &napi->state);
6282 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6283
6284 local_bh_disable();
6285
6286 /* All we really want here is to re-enable device interrupts.
6287 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6288 */
6289 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6290 /* We can't gro_normal_list() here, because napi->poll() might have
6291 * rearmed the napi (napi_complete_done()) in which case it could
6292 * already be running on another CPU.
6293 */
6294 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6295 netpoll_poll_unlock(have_poll_lock);
6296 if (rc == BUSY_POLL_BUDGET) {
6297 /* As the whole budget was spent, we still own the napi so can
6298 * safely handle the rx_list.
6299 */
6300 gro_normal_list(napi);
6301 __napi_schedule(napi);
6302 }
6303 local_bh_enable();
6304}
6305
6306void napi_busy_loop(unsigned int napi_id,
6307 bool (*loop_end)(void *, unsigned long),
6308 void *loop_end_arg)
6309{
6310 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6311 int (*napi_poll)(struct napi_struct *napi, int budget);
6312 void *have_poll_lock = NULL;
6313 struct napi_struct *napi;
6314
6315restart:
6316 napi_poll = NULL;
6317
6318 rcu_read_lock();
6319
6320 napi = napi_by_id(napi_id);
6321 if (!napi)
6322 goto out;
6323
6324 preempt_disable();
6325 for (;;) {
6326 int work = 0;
6327
6328 local_bh_disable();
6329 if (!napi_poll) {
6330 unsigned long val = READ_ONCE(napi->state);
6331
6332 /* If multiple threads are competing for this napi,
6333 * we avoid dirtying napi->state as much as we can.
6334 */
6335 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6336 NAPIF_STATE_IN_BUSY_POLL))
6337 goto count;
6338 if (cmpxchg(&napi->state, val,
6339 val | NAPIF_STATE_IN_BUSY_POLL |
6340 NAPIF_STATE_SCHED) != val)
6341 goto count;
6342 have_poll_lock = netpoll_poll_lock(napi);
6343 napi_poll = napi->poll;
6344 }
6345 work = napi_poll(napi, BUSY_POLL_BUDGET);
6346 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6347 gro_normal_list(napi);
6348count:
6349 if (work > 0)
6350 __NET_ADD_STATS(dev_net(napi->dev),
6351 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6352 local_bh_enable();
6353
6354 if (!loop_end || loop_end(loop_end_arg, start_time))
6355 break;
6356
6357 if (unlikely(need_resched())) {
6358 if (napi_poll)
6359 busy_poll_stop(napi, have_poll_lock);
6360 preempt_enable();
6361 rcu_read_unlock();
6362 cond_resched();
6363 if (loop_end(loop_end_arg, start_time))
6364 return;
6365 goto restart;
6366 }
6367 cpu_relax();
6368 }
6369 if (napi_poll)
6370 busy_poll_stop(napi, have_poll_lock);
6371 preempt_enable();
6372out:
6373 rcu_read_unlock();
6374}
6375EXPORT_SYMBOL(napi_busy_loop);
6376
6377#endif /* CONFIG_NET_RX_BUSY_POLL */
6378
6379static void napi_hash_add(struct napi_struct *napi)
6380{
6381 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6382 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6383 return;
6384
6385 spin_lock(&napi_hash_lock);
6386
6387 /* 0..NR_CPUS range is reserved for sender_cpu use */
6388 do {
6389 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6390 napi_gen_id = MIN_NAPI_ID;
6391 } while (napi_by_id(napi_gen_id));
6392 napi->napi_id = napi_gen_id;
6393
6394 hlist_add_head_rcu(&napi->napi_hash_node,
6395 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6396
6397 spin_unlock(&napi_hash_lock);
6398}
6399
6400/* Warning : caller is responsible to make sure rcu grace period
6401 * is respected before freeing memory containing @napi
6402 */
6403bool napi_hash_del(struct napi_struct *napi)
6404{
6405 bool rcu_sync_needed = false;
6406
6407 spin_lock(&napi_hash_lock);
6408
6409 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6410 rcu_sync_needed = true;
6411 hlist_del_rcu(&napi->napi_hash_node);
6412 }
6413 spin_unlock(&napi_hash_lock);
6414 return rcu_sync_needed;
6415}
6416EXPORT_SYMBOL_GPL(napi_hash_del);
6417
6418static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6419{
6420 struct napi_struct *napi;
6421
6422 napi = container_of(timer, struct napi_struct, timer);
6423
6424 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6425 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6426 */
6427 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6428 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6429 __napi_schedule_irqoff(napi);
6430
6431 return HRTIMER_NORESTART;
6432}
6433
6434static void init_gro_hash(struct napi_struct *napi)
6435{
6436 int i;
6437
6438 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6439 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6440 napi->gro_hash[i].count = 0;
6441 }
6442 napi->gro_bitmask = 0;
6443}
6444
6445void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6446 int (*poll)(struct napi_struct *, int), int weight)
6447{
6448 INIT_LIST_HEAD(&napi->poll_list);
6449 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6450 napi->timer.function = napi_watchdog;
6451 init_gro_hash(napi);
6452 napi->skb = NULL;
6453 INIT_LIST_HEAD(&napi->rx_list);
6454 napi->rx_count = 0;
6455 napi->poll = poll;
6456 if (weight > NAPI_POLL_WEIGHT)
6457 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6458 weight);
6459 napi->weight = weight;
6460 list_add(&napi->dev_list, &dev->napi_list);
6461 napi->dev = dev;
6462#ifdef CONFIG_NETPOLL
6463 napi->poll_owner = -1;
6464#endif
6465 set_bit(NAPI_STATE_SCHED, &napi->state);
6466 napi_hash_add(napi);
6467}
6468EXPORT_SYMBOL(netif_napi_add);
6469
6470void napi_disable(struct napi_struct *n)
6471{
6472 might_sleep();
6473 set_bit(NAPI_STATE_DISABLE, &n->state);
6474
6475 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6476 msleep(1);
6477 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6478 msleep(1);
6479
6480 hrtimer_cancel(&n->timer);
6481
6482 clear_bit(NAPI_STATE_DISABLE, &n->state);
6483}
6484EXPORT_SYMBOL(napi_disable);
6485
6486static void flush_gro_hash(struct napi_struct *napi)
6487{
6488 int i;
6489
6490 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6491 struct sk_buff *skb, *n;
6492
6493 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6494 kfree_skb(skb);
6495 napi->gro_hash[i].count = 0;
6496 }
6497}
6498
6499/* Must be called in process context */
6500void netif_napi_del(struct napi_struct *napi)
6501{
6502 might_sleep();
6503 if (napi_hash_del(napi))
6504 synchronize_net();
6505 list_del_init(&napi->dev_list);
6506 napi_free_frags(napi);
6507
6508 flush_gro_hash(napi);
6509 napi->gro_bitmask = 0;
6510}
6511EXPORT_SYMBOL(netif_napi_del);
6512
6513static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6514{
6515 void *have;
6516 int work, weight;
6517
6518 list_del_init(&n->poll_list);
6519
6520 have = netpoll_poll_lock(n);
6521
6522 weight = n->weight;
6523
6524 /* This NAPI_STATE_SCHED test is for avoiding a race
6525 * with netpoll's poll_napi(). Only the entity which
6526 * obtains the lock and sees NAPI_STATE_SCHED set will
6527 * actually make the ->poll() call. Therefore we avoid
6528 * accidentally calling ->poll() when NAPI is not scheduled.
6529 */
6530 work = 0;
6531 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6532 work = n->poll(n, weight);
6533 trace_napi_poll(n, work, weight);
6534 }
6535
6536 WARN_ON_ONCE(work > weight);
6537
6538 if (likely(work < weight))
6539 goto out_unlock;
6540
6541 /* Drivers must not modify the NAPI state if they
6542 * consume the entire weight. In such cases this code
6543 * still "owns" the NAPI instance and therefore can
6544 * move the instance around on the list at-will.
6545 */
6546 if (unlikely(napi_disable_pending(n))) {
6547 napi_complete(n);
6548 goto out_unlock;
6549 }
6550
6551 gro_normal_list(n);
6552
6553 if (n->gro_bitmask) {
6554 /* flush too old packets
6555 * If HZ < 1000, flush all packets.
6556 */
6557 napi_gro_flush(n, HZ >= 1000);
6558 }
6559
6560 /* Some drivers may have called napi_schedule
6561 * prior to exhausting their budget.
6562 */
6563 if (unlikely(!list_empty(&n->poll_list))) {
6564 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6565 n->dev ? n->dev->name : "backlog");
6566 goto out_unlock;
6567 }
6568
6569 list_add_tail(&n->poll_list, repoll);
6570
6571out_unlock:
6572 netpoll_poll_unlock(have);
6573
6574 return work;
6575}
6576
6577static __latent_entropy void net_rx_action(struct softirq_action *h)
6578{
6579 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6580 unsigned long time_limit = jiffies +
6581 usecs_to_jiffies(netdev_budget_usecs);
6582 int budget = netdev_budget;
6583 LIST_HEAD(list);
6584 LIST_HEAD(repoll);
6585
6586 local_irq_disable();
6587 list_splice_init(&sd->poll_list, &list);
6588 local_irq_enable();
6589
6590 for (;;) {
6591 struct napi_struct *n;
6592
6593 if (list_empty(&list)) {
6594 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6595 goto out;
6596 break;
6597 }
6598
6599 n = list_first_entry(&list, struct napi_struct, poll_list);
6600 budget -= napi_poll(n, &repoll);
6601
6602 /* If softirq window is exhausted then punt.
6603 * Allow this to run for 2 jiffies since which will allow
6604 * an average latency of 1.5/HZ.
6605 */
6606 if (unlikely(budget <= 0 ||
6607 time_after_eq(jiffies, time_limit))) {
6608 sd->time_squeeze++;
6609 break;
6610 }
6611 }
6612
6613 local_irq_disable();
6614
6615 list_splice_tail_init(&sd->poll_list, &list);
6616 list_splice_tail(&repoll, &list);
6617 list_splice(&list, &sd->poll_list);
6618 if (!list_empty(&sd->poll_list))
6619 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6620
6621 net_rps_action_and_irq_enable(sd);
6622out:
6623 __kfree_skb_flush();
6624}
6625
6626struct netdev_adjacent {
6627 struct net_device *dev;
6628
6629 /* upper master flag, there can only be one master device per list */
6630 bool master;
6631
6632 /* lookup ignore flag */
6633 bool ignore;
6634
6635 /* counter for the number of times this device was added to us */
6636 u16 ref_nr;
6637
6638 /* private field for the users */
6639 void *private;
6640
6641 struct list_head list;
6642 struct rcu_head rcu;
6643};
6644
6645static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6646 struct list_head *adj_list)
6647{
6648 struct netdev_adjacent *adj;
6649
6650 list_for_each_entry(adj, adj_list, list) {
6651 if (adj->dev == adj_dev)
6652 return adj;
6653 }
6654 return NULL;
6655}
6656
6657static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6658{
6659 struct net_device *dev = data;
6660
6661 return upper_dev == dev;
6662}
6663
6664/**
6665 * netdev_has_upper_dev - Check if device is linked to an upper device
6666 * @dev: device
6667 * @upper_dev: upper device to check
6668 *
6669 * Find out if a device is linked to specified upper device and return true
6670 * in case it is. Note that this checks only immediate upper device,
6671 * not through a complete stack of devices. The caller must hold the RTNL lock.
6672 */
6673bool netdev_has_upper_dev(struct net_device *dev,
6674 struct net_device *upper_dev)
6675{
6676 ASSERT_RTNL();
6677
6678 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6679 upper_dev);
6680}
6681EXPORT_SYMBOL(netdev_has_upper_dev);
6682
6683/**
6684 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6685 * @dev: device
6686 * @upper_dev: upper device to check
6687 *
6688 * Find out if a device is linked to specified upper device and return true
6689 * in case it is. Note that this checks the entire upper device chain.
6690 * The caller must hold rcu lock.
6691 */
6692
6693bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6694 struct net_device *upper_dev)
6695{
6696 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6697 upper_dev);
6698}
6699EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6700
6701/**
6702 * netdev_has_any_upper_dev - Check if device is linked to some device
6703 * @dev: device
6704 *
6705 * Find out if a device is linked to an upper device and return true in case
6706 * it is. The caller must hold the RTNL lock.
6707 */
6708bool netdev_has_any_upper_dev(struct net_device *dev)
6709{
6710 ASSERT_RTNL();
6711
6712 return !list_empty(&dev->adj_list.upper);
6713}
6714EXPORT_SYMBOL(netdev_has_any_upper_dev);
6715
6716/**
6717 * netdev_master_upper_dev_get - Get master upper device
6718 * @dev: device
6719 *
6720 * Find a master upper device and return pointer to it or NULL in case
6721 * it's not there. The caller must hold the RTNL lock.
6722 */
6723struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6724{
6725 struct netdev_adjacent *upper;
6726
6727 ASSERT_RTNL();
6728
6729 if (list_empty(&dev->adj_list.upper))
6730 return NULL;
6731
6732 upper = list_first_entry(&dev->adj_list.upper,
6733 struct netdev_adjacent, list);
6734 if (likely(upper->master))
6735 return upper->dev;
6736 return NULL;
6737}
6738EXPORT_SYMBOL(netdev_master_upper_dev_get);
6739
6740static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6741{
6742 struct netdev_adjacent *upper;
6743
6744 ASSERT_RTNL();
6745
6746 if (list_empty(&dev->adj_list.upper))
6747 return NULL;
6748
6749 upper = list_first_entry(&dev->adj_list.upper,
6750 struct netdev_adjacent, list);
6751 if (likely(upper->master) && !upper->ignore)
6752 return upper->dev;
6753 return NULL;
6754}
6755
6756/**
6757 * netdev_has_any_lower_dev - Check if device is linked to some device
6758 * @dev: device
6759 *
6760 * Find out if a device is linked to a lower device and return true in case
6761 * it is. The caller must hold the RTNL lock.
6762 */
6763static bool netdev_has_any_lower_dev(struct net_device *dev)
6764{
6765 ASSERT_RTNL();
6766
6767 return !list_empty(&dev->adj_list.lower);
6768}
6769
6770void *netdev_adjacent_get_private(struct list_head *adj_list)
6771{
6772 struct netdev_adjacent *adj;
6773
6774 adj = list_entry(adj_list, struct netdev_adjacent, list);
6775
6776 return adj->private;
6777}
6778EXPORT_SYMBOL(netdev_adjacent_get_private);
6779
6780/**
6781 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6782 * @dev: device
6783 * @iter: list_head ** of the current position
6784 *
6785 * Gets the next device from the dev's upper list, starting from iter
6786 * position. The caller must hold RCU read lock.
6787 */
6788struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6789 struct list_head **iter)
6790{
6791 struct netdev_adjacent *upper;
6792
6793 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6794
6795 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6796
6797 if (&upper->list == &dev->adj_list.upper)
6798 return NULL;
6799
6800 *iter = &upper->list;
6801
6802 return upper->dev;
6803}
6804EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6805
6806static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6807 struct list_head **iter,
6808 bool *ignore)
6809{
6810 struct netdev_adjacent *upper;
6811
6812 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6813
6814 if (&upper->list == &dev->adj_list.upper)
6815 return NULL;
6816
6817 *iter = &upper->list;
6818 *ignore = upper->ignore;
6819
6820 return upper->dev;
6821}
6822
6823static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6824 struct list_head **iter)
6825{
6826 struct netdev_adjacent *upper;
6827
6828 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6829
6830 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6831
6832 if (&upper->list == &dev->adj_list.upper)
6833 return NULL;
6834
6835 *iter = &upper->list;
6836
6837 return upper->dev;
6838}
6839
6840static int __netdev_walk_all_upper_dev(struct net_device *dev,
6841 int (*fn)(struct net_device *dev,
6842 void *data),
6843 void *data)
6844{
6845 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6846 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6847 int ret, cur = 0;
6848 bool ignore;
6849
6850 now = dev;
6851 iter = &dev->adj_list.upper;
6852
6853 while (1) {
6854 if (now != dev) {
6855 ret = fn(now, data);
6856 if (ret)
6857 return ret;
6858 }
6859
6860 next = NULL;
6861 while (1) {
6862 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6863 if (!udev)
6864 break;
6865 if (ignore)
6866 continue;
6867
6868 next = udev;
6869 niter = &udev->adj_list.upper;
6870 dev_stack[cur] = now;
6871 iter_stack[cur++] = iter;
6872 break;
6873 }
6874
6875 if (!next) {
6876 if (!cur)
6877 return 0;
6878 next = dev_stack[--cur];
6879 niter = iter_stack[cur];
6880 }
6881
6882 now = next;
6883 iter = niter;
6884 }
6885
6886 return 0;
6887}
6888
6889int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6890 int (*fn)(struct net_device *dev,
6891 void *data),
6892 void *data)
6893{
6894 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6895 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6896 int ret, cur = 0;
6897
6898 now = dev;
6899 iter = &dev->adj_list.upper;
6900
6901 while (1) {
6902 if (now != dev) {
6903 ret = fn(now, data);
6904 if (ret)
6905 return ret;
6906 }
6907
6908 next = NULL;
6909 while (1) {
6910 udev = netdev_next_upper_dev_rcu(now, &iter);
6911 if (!udev)
6912 break;
6913
6914 next = udev;
6915 niter = &udev->adj_list.upper;
6916 dev_stack[cur] = now;
6917 iter_stack[cur++] = iter;
6918 break;
6919 }
6920
6921 if (!next) {
6922 if (!cur)
6923 return 0;
6924 next = dev_stack[--cur];
6925 niter = iter_stack[cur];
6926 }
6927
6928 now = next;
6929 iter = niter;
6930 }
6931
6932 return 0;
6933}
6934EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6935
6936static bool __netdev_has_upper_dev(struct net_device *dev,
6937 struct net_device *upper_dev)
6938{
6939 ASSERT_RTNL();
6940
6941 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6942 upper_dev);
6943}
6944
6945/**
6946 * netdev_lower_get_next_private - Get the next ->private from the
6947 * lower neighbour list
6948 * @dev: device
6949 * @iter: list_head ** of the current position
6950 *
6951 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6952 * list, starting from iter position. The caller must hold either hold the
6953 * RTNL lock or its own locking that guarantees that the neighbour lower
6954 * list will remain unchanged.
6955 */
6956void *netdev_lower_get_next_private(struct net_device *dev,
6957 struct list_head **iter)
6958{
6959 struct netdev_adjacent *lower;
6960
6961 lower = list_entry(*iter, struct netdev_adjacent, list);
6962
6963 if (&lower->list == &dev->adj_list.lower)
6964 return NULL;
6965
6966 *iter = lower->list.next;
6967
6968 return lower->private;
6969}
6970EXPORT_SYMBOL(netdev_lower_get_next_private);
6971
6972/**
6973 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6974 * lower neighbour list, RCU
6975 * variant
6976 * @dev: device
6977 * @iter: list_head ** of the current position
6978 *
6979 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6980 * list, starting from iter position. The caller must hold RCU read lock.
6981 */
6982void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6983 struct list_head **iter)
6984{
6985 struct netdev_adjacent *lower;
6986
6987 WARN_ON_ONCE(!rcu_read_lock_held());
6988
6989 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6990
6991 if (&lower->list == &dev->adj_list.lower)
6992 return NULL;
6993
6994 *iter = &lower->list;
6995
6996 return lower->private;
6997}
6998EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6999
7000/**
7001 * netdev_lower_get_next - Get the next device from the lower neighbour
7002 * list
7003 * @dev: device
7004 * @iter: list_head ** of the current position
7005 *
7006 * Gets the next netdev_adjacent from the dev's lower neighbour
7007 * list, starting from iter position. The caller must hold RTNL lock or
7008 * its own locking that guarantees that the neighbour lower
7009 * list will remain unchanged.
7010 */
7011void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7012{
7013 struct netdev_adjacent *lower;
7014
7015 lower = list_entry(*iter, struct netdev_adjacent, list);
7016
7017 if (&lower->list == &dev->adj_list.lower)
7018 return NULL;
7019
7020 *iter = lower->list.next;
7021
7022 return lower->dev;
7023}
7024EXPORT_SYMBOL(netdev_lower_get_next);
7025
7026static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7027 struct list_head **iter)
7028{
7029 struct netdev_adjacent *lower;
7030
7031 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7032
7033 if (&lower->list == &dev->adj_list.lower)
7034 return NULL;
7035
7036 *iter = &lower->list;
7037
7038 return lower->dev;
7039}
7040
7041static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7042 struct list_head **iter,
7043 bool *ignore)
7044{
7045 struct netdev_adjacent *lower;
7046
7047 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7048
7049 if (&lower->list == &dev->adj_list.lower)
7050 return NULL;
7051
7052 *iter = &lower->list;
7053 *ignore = lower->ignore;
7054
7055 return lower->dev;
7056}
7057
7058int netdev_walk_all_lower_dev(struct net_device *dev,
7059 int (*fn)(struct net_device *dev,
7060 void *data),
7061 void *data)
7062{
7063 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7064 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7065 int ret, cur = 0;
7066
7067 now = dev;
7068 iter = &dev->adj_list.lower;
7069
7070 while (1) {
7071 if (now != dev) {
7072 ret = fn(now, data);
7073 if (ret)
7074 return ret;
7075 }
7076
7077 next = NULL;
7078 while (1) {
7079 ldev = netdev_next_lower_dev(now, &iter);
7080 if (!ldev)
7081 break;
7082
7083 next = ldev;
7084 niter = &ldev->adj_list.lower;
7085 dev_stack[cur] = now;
7086 iter_stack[cur++] = iter;
7087 break;
7088 }
7089
7090 if (!next) {
7091 if (!cur)
7092 return 0;
7093 next = dev_stack[--cur];
7094 niter = iter_stack[cur];
7095 }
7096
7097 now = next;
7098 iter = niter;
7099 }
7100
7101 return 0;
7102}
7103EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7104
7105static int __netdev_walk_all_lower_dev(struct net_device *dev,
7106 int (*fn)(struct net_device *dev,
7107 void *data),
7108 void *data)
7109{
7110 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7111 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7112 int ret, cur = 0;
7113 bool ignore;
7114
7115 now = dev;
7116 iter = &dev->adj_list.lower;
7117
7118 while (1) {
7119 if (now != dev) {
7120 ret = fn(now, data);
7121 if (ret)
7122 return ret;
7123 }
7124
7125 next = NULL;
7126 while (1) {
7127 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7128 if (!ldev)
7129 break;
7130 if (ignore)
7131 continue;
7132
7133 next = ldev;
7134 niter = &ldev->adj_list.lower;
7135 dev_stack[cur] = now;
7136 iter_stack[cur++] = iter;
7137 break;
7138 }
7139
7140 if (!next) {
7141 if (!cur)
7142 return 0;
7143 next = dev_stack[--cur];
7144 niter = iter_stack[cur];
7145 }
7146
7147 now = next;
7148 iter = niter;
7149 }
7150
7151 return 0;
7152}
7153
7154static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7155 struct list_head **iter)
7156{
7157 struct netdev_adjacent *lower;
7158
7159 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7160 if (&lower->list == &dev->adj_list.lower)
7161 return NULL;
7162
7163 *iter = &lower->list;
7164
7165 return lower->dev;
7166}
7167
7168static u8 __netdev_upper_depth(struct net_device *dev)
7169{
7170 struct net_device *udev;
7171 struct list_head *iter;
7172 u8 max_depth = 0;
7173 bool ignore;
7174
7175 for (iter = &dev->adj_list.upper,
7176 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7177 udev;
7178 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7179 if (ignore)
7180 continue;
7181 if (max_depth < udev->upper_level)
7182 max_depth = udev->upper_level;
7183 }
7184
7185 return max_depth;
7186}
7187
7188static u8 __netdev_lower_depth(struct net_device *dev)
7189{
7190 struct net_device *ldev;
7191 struct list_head *iter;
7192 u8 max_depth = 0;
7193 bool ignore;
7194
7195 for (iter = &dev->adj_list.lower,
7196 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7197 ldev;
7198 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7199 if (ignore)
7200 continue;
7201 if (max_depth < ldev->lower_level)
7202 max_depth = ldev->lower_level;
7203 }
7204
7205 return max_depth;
7206}
7207
7208static int __netdev_update_upper_level(struct net_device *dev, void *data)
7209{
7210 dev->upper_level = __netdev_upper_depth(dev) + 1;
7211 return 0;
7212}
7213
7214static int __netdev_update_lower_level(struct net_device *dev, void *data)
7215{
7216 dev->lower_level = __netdev_lower_depth(dev) + 1;
7217 return 0;
7218}
7219
7220int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7221 int (*fn)(struct net_device *dev,
7222 void *data),
7223 void *data)
7224{
7225 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 int ret, cur = 0;
7228
7229 now = dev;
7230 iter = &dev->adj_list.lower;
7231
7232 while (1) {
7233 if (now != dev) {
7234 ret = fn(now, data);
7235 if (ret)
7236 return ret;
7237 }
7238
7239 next = NULL;
7240 while (1) {
7241 ldev = netdev_next_lower_dev_rcu(now, &iter);
7242 if (!ldev)
7243 break;
7244
7245 next = ldev;
7246 niter = &ldev->adj_list.lower;
7247 dev_stack[cur] = now;
7248 iter_stack[cur++] = iter;
7249 break;
7250 }
7251
7252 if (!next) {
7253 if (!cur)
7254 return 0;
7255 next = dev_stack[--cur];
7256 niter = iter_stack[cur];
7257 }
7258
7259 now = next;
7260 iter = niter;
7261 }
7262
7263 return 0;
7264}
7265EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7266
7267/**
7268 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7269 * lower neighbour list, RCU
7270 * variant
7271 * @dev: device
7272 *
7273 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7274 * list. The caller must hold RCU read lock.
7275 */
7276void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7277{
7278 struct netdev_adjacent *lower;
7279
7280 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7281 struct netdev_adjacent, list);
7282 if (lower)
7283 return lower->private;
7284 return NULL;
7285}
7286EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7287
7288/**
7289 * netdev_master_upper_dev_get_rcu - Get master upper device
7290 * @dev: device
7291 *
7292 * Find a master upper device and return pointer to it or NULL in case
7293 * it's not there. The caller must hold the RCU read lock.
7294 */
7295struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7296{
7297 struct netdev_adjacent *upper;
7298
7299 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7300 struct netdev_adjacent, list);
7301 if (upper && likely(upper->master))
7302 return upper->dev;
7303 return NULL;
7304}
7305EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7306
7307static int netdev_adjacent_sysfs_add(struct net_device *dev,
7308 struct net_device *adj_dev,
7309 struct list_head *dev_list)
7310{
7311 char linkname[IFNAMSIZ+7];
7312
7313 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7314 "upper_%s" : "lower_%s", adj_dev->name);
7315 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7316 linkname);
7317}
7318static void netdev_adjacent_sysfs_del(struct net_device *dev,
7319 char *name,
7320 struct list_head *dev_list)
7321{
7322 char linkname[IFNAMSIZ+7];
7323
7324 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7325 "upper_%s" : "lower_%s", name);
7326 sysfs_remove_link(&(dev->dev.kobj), linkname);
7327}
7328
7329static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7330 struct net_device *adj_dev,
7331 struct list_head *dev_list)
7332{
7333 return (dev_list == &dev->adj_list.upper ||
7334 dev_list == &dev->adj_list.lower) &&
7335 net_eq(dev_net(dev), dev_net(adj_dev));
7336}
7337
7338static int __netdev_adjacent_dev_insert(struct net_device *dev,
7339 struct net_device *adj_dev,
7340 struct list_head *dev_list,
7341 void *private, bool master)
7342{
7343 struct netdev_adjacent *adj;
7344 int ret;
7345
7346 adj = __netdev_find_adj(adj_dev, dev_list);
7347
7348 if (adj) {
7349 adj->ref_nr += 1;
7350 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7351 dev->name, adj_dev->name, adj->ref_nr);
7352
7353 return 0;
7354 }
7355
7356 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7357 if (!adj)
7358 return -ENOMEM;
7359
7360 adj->dev = adj_dev;
7361 adj->master = master;
7362 adj->ref_nr = 1;
7363 adj->private = private;
7364 adj->ignore = false;
7365 dev_hold(adj_dev);
7366
7367 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7368 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7369
7370 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7371 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7372 if (ret)
7373 goto free_adj;
7374 }
7375
7376 /* Ensure that master link is always the first item in list. */
7377 if (master) {
7378 ret = sysfs_create_link(&(dev->dev.kobj),
7379 &(adj_dev->dev.kobj), "master");
7380 if (ret)
7381 goto remove_symlinks;
7382
7383 list_add_rcu(&adj->list, dev_list);
7384 } else {
7385 list_add_tail_rcu(&adj->list, dev_list);
7386 }
7387
7388 return 0;
7389
7390remove_symlinks:
7391 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7392 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7393free_adj:
7394 kfree(adj);
7395 dev_put(adj_dev);
7396
7397 return ret;
7398}
7399
7400static void __netdev_adjacent_dev_remove(struct net_device *dev,
7401 struct net_device *adj_dev,
7402 u16 ref_nr,
7403 struct list_head *dev_list)
7404{
7405 struct netdev_adjacent *adj;
7406
7407 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7408 dev->name, adj_dev->name, ref_nr);
7409
7410 adj = __netdev_find_adj(adj_dev, dev_list);
7411
7412 if (!adj) {
7413 pr_err("Adjacency does not exist for device %s from %s\n",
7414 dev->name, adj_dev->name);
7415 WARN_ON(1);
7416 return;
7417 }
7418
7419 if (adj->ref_nr > ref_nr) {
7420 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7421 dev->name, adj_dev->name, ref_nr,
7422 adj->ref_nr - ref_nr);
7423 adj->ref_nr -= ref_nr;
7424 return;
7425 }
7426
7427 if (adj->master)
7428 sysfs_remove_link(&(dev->dev.kobj), "master");
7429
7430 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7431 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7432
7433 list_del_rcu(&adj->list);
7434 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7435 adj_dev->name, dev->name, adj_dev->name);
7436 dev_put(adj_dev);
7437 kfree_rcu(adj, rcu);
7438}
7439
7440static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7441 struct net_device *upper_dev,
7442 struct list_head *up_list,
7443 struct list_head *down_list,
7444 void *private, bool master)
7445{
7446 int ret;
7447
7448 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7449 private, master);
7450 if (ret)
7451 return ret;
7452
7453 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7454 private, false);
7455 if (ret) {
7456 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7457 return ret;
7458 }
7459
7460 return 0;
7461}
7462
7463static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7464 struct net_device *upper_dev,
7465 u16 ref_nr,
7466 struct list_head *up_list,
7467 struct list_head *down_list)
7468{
7469 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7470 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7471}
7472
7473static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7474 struct net_device *upper_dev,
7475 void *private, bool master)
7476{
7477 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7478 &dev->adj_list.upper,
7479 &upper_dev->adj_list.lower,
7480 private, master);
7481}
7482
7483static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7484 struct net_device *upper_dev)
7485{
7486 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7487 &dev->adj_list.upper,
7488 &upper_dev->adj_list.lower);
7489}
7490
7491static int __netdev_upper_dev_link(struct net_device *dev,
7492 struct net_device *upper_dev, bool master,
7493 void *upper_priv, void *upper_info,
7494 struct netlink_ext_ack *extack)
7495{
7496 struct netdev_notifier_changeupper_info changeupper_info = {
7497 .info = {
7498 .dev = dev,
7499 .extack = extack,
7500 },
7501 .upper_dev = upper_dev,
7502 .master = master,
7503 .linking = true,
7504 .upper_info = upper_info,
7505 };
7506 struct net_device *master_dev;
7507 int ret = 0;
7508
7509 ASSERT_RTNL();
7510
7511 if (dev == upper_dev)
7512 return -EBUSY;
7513
7514 /* To prevent loops, check if dev is not upper device to upper_dev. */
7515 if (__netdev_has_upper_dev(upper_dev, dev))
7516 return -EBUSY;
7517
7518 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7519 return -EMLINK;
7520
7521 if (!master) {
7522 if (__netdev_has_upper_dev(dev, upper_dev))
7523 return -EEXIST;
7524 } else {
7525 master_dev = __netdev_master_upper_dev_get(dev);
7526 if (master_dev)
7527 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7528 }
7529
7530 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7531 &changeupper_info.info);
7532 ret = notifier_to_errno(ret);
7533 if (ret)
7534 return ret;
7535
7536 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7537 master);
7538 if (ret)
7539 return ret;
7540
7541 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7542 &changeupper_info.info);
7543 ret = notifier_to_errno(ret);
7544 if (ret)
7545 goto rollback;
7546
7547 __netdev_update_upper_level(dev, NULL);
7548 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7549
7550 __netdev_update_lower_level(upper_dev, NULL);
7551 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7552 NULL);
7553
7554 return 0;
7555
7556rollback:
7557 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7558
7559 return ret;
7560}
7561
7562/**
7563 * netdev_upper_dev_link - Add a link to the upper device
7564 * @dev: device
7565 * @upper_dev: new upper device
7566 * @extack: netlink extended ack
7567 *
7568 * Adds a link to device which is upper to this one. The caller must hold
7569 * the RTNL lock. On a failure a negative errno code is returned.
7570 * On success the reference counts are adjusted and the function
7571 * returns zero.
7572 */
7573int netdev_upper_dev_link(struct net_device *dev,
7574 struct net_device *upper_dev,
7575 struct netlink_ext_ack *extack)
7576{
7577 return __netdev_upper_dev_link(dev, upper_dev, false,
7578 NULL, NULL, extack);
7579}
7580EXPORT_SYMBOL(netdev_upper_dev_link);
7581
7582/**
7583 * netdev_master_upper_dev_link - Add a master link to the upper device
7584 * @dev: device
7585 * @upper_dev: new upper device
7586 * @upper_priv: upper device private
7587 * @upper_info: upper info to be passed down via notifier
7588 * @extack: netlink extended ack
7589 *
7590 * Adds a link to device which is upper to this one. In this case, only
7591 * one master upper device can be linked, although other non-master devices
7592 * might be linked as well. The caller must hold the RTNL lock.
7593 * On a failure a negative errno code is returned. On success the reference
7594 * counts are adjusted and the function returns zero.
7595 */
7596int netdev_master_upper_dev_link(struct net_device *dev,
7597 struct net_device *upper_dev,
7598 void *upper_priv, void *upper_info,
7599 struct netlink_ext_ack *extack)
7600{
7601 return __netdev_upper_dev_link(dev, upper_dev, true,
7602 upper_priv, upper_info, extack);
7603}
7604EXPORT_SYMBOL(netdev_master_upper_dev_link);
7605
7606/**
7607 * netdev_upper_dev_unlink - Removes a link to upper device
7608 * @dev: device
7609 * @upper_dev: new upper device
7610 *
7611 * Removes a link to device which is upper to this one. The caller must hold
7612 * the RTNL lock.
7613 */
7614void netdev_upper_dev_unlink(struct net_device *dev,
7615 struct net_device *upper_dev)
7616{
7617 struct netdev_notifier_changeupper_info changeupper_info = {
7618 .info = {
7619 .dev = dev,
7620 },
7621 .upper_dev = upper_dev,
7622 .linking = false,
7623 };
7624
7625 ASSERT_RTNL();
7626
7627 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7628
7629 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7630 &changeupper_info.info);
7631
7632 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7633
7634 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7635 &changeupper_info.info);
7636
7637 __netdev_update_upper_level(dev, NULL);
7638 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7639
7640 __netdev_update_lower_level(upper_dev, NULL);
7641 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7642 NULL);
7643}
7644EXPORT_SYMBOL(netdev_upper_dev_unlink);
7645
7646static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7647 struct net_device *lower_dev,
7648 bool val)
7649{
7650 struct netdev_adjacent *adj;
7651
7652 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7653 if (adj)
7654 adj->ignore = val;
7655
7656 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7657 if (adj)
7658 adj->ignore = val;
7659}
7660
7661static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7662 struct net_device *lower_dev)
7663{
7664 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7665}
7666
7667static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7668 struct net_device *lower_dev)
7669{
7670 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7671}
7672
7673int netdev_adjacent_change_prepare(struct net_device *old_dev,
7674 struct net_device *new_dev,
7675 struct net_device *dev,
7676 struct netlink_ext_ack *extack)
7677{
7678 int err;
7679
7680 if (!new_dev)
7681 return 0;
7682
7683 if (old_dev && new_dev != old_dev)
7684 netdev_adjacent_dev_disable(dev, old_dev);
7685
7686 err = netdev_upper_dev_link(new_dev, dev, extack);
7687 if (err) {
7688 if (old_dev && new_dev != old_dev)
7689 netdev_adjacent_dev_enable(dev, old_dev);
7690 return err;
7691 }
7692
7693 return 0;
7694}
7695EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7696
7697void netdev_adjacent_change_commit(struct net_device *old_dev,
7698 struct net_device *new_dev,
7699 struct net_device *dev)
7700{
7701 if (!new_dev || !old_dev)
7702 return;
7703
7704 if (new_dev == old_dev)
7705 return;
7706
7707 netdev_adjacent_dev_enable(dev, old_dev);
7708 netdev_upper_dev_unlink(old_dev, dev);
7709}
7710EXPORT_SYMBOL(netdev_adjacent_change_commit);
7711
7712void netdev_adjacent_change_abort(struct net_device *old_dev,
7713 struct net_device *new_dev,
7714 struct net_device *dev)
7715{
7716 if (!new_dev)
7717 return;
7718
7719 if (old_dev && new_dev != old_dev)
7720 netdev_adjacent_dev_enable(dev, old_dev);
7721
7722 netdev_upper_dev_unlink(new_dev, dev);
7723}
7724EXPORT_SYMBOL(netdev_adjacent_change_abort);
7725
7726/**
7727 * netdev_bonding_info_change - Dispatch event about slave change
7728 * @dev: device
7729 * @bonding_info: info to dispatch
7730 *
7731 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7732 * The caller must hold the RTNL lock.
7733 */
7734void netdev_bonding_info_change(struct net_device *dev,
7735 struct netdev_bonding_info *bonding_info)
7736{
7737 struct netdev_notifier_bonding_info info = {
7738 .info.dev = dev,
7739 };
7740
7741 memcpy(&info.bonding_info, bonding_info,
7742 sizeof(struct netdev_bonding_info));
7743 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7744 &info.info);
7745}
7746EXPORT_SYMBOL(netdev_bonding_info_change);
7747
7748static void netdev_adjacent_add_links(struct net_device *dev)
7749{
7750 struct netdev_adjacent *iter;
7751
7752 struct net *net = dev_net(dev);
7753
7754 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7755 if (!net_eq(net, dev_net(iter->dev)))
7756 continue;
7757 netdev_adjacent_sysfs_add(iter->dev, dev,
7758 &iter->dev->adj_list.lower);
7759 netdev_adjacent_sysfs_add(dev, iter->dev,
7760 &dev->adj_list.upper);
7761 }
7762
7763 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7764 if (!net_eq(net, dev_net(iter->dev)))
7765 continue;
7766 netdev_adjacent_sysfs_add(iter->dev, dev,
7767 &iter->dev->adj_list.upper);
7768 netdev_adjacent_sysfs_add(dev, iter->dev,
7769 &dev->adj_list.lower);
7770 }
7771}
7772
7773static void netdev_adjacent_del_links(struct net_device *dev)
7774{
7775 struct netdev_adjacent *iter;
7776
7777 struct net *net = dev_net(dev);
7778
7779 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7780 if (!net_eq(net, dev_net(iter->dev)))
7781 continue;
7782 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7783 &iter->dev->adj_list.lower);
7784 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7785 &dev->adj_list.upper);
7786 }
7787
7788 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7789 if (!net_eq(net, dev_net(iter->dev)))
7790 continue;
7791 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7792 &iter->dev->adj_list.upper);
7793 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7794 &dev->adj_list.lower);
7795 }
7796}
7797
7798void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7799{
7800 struct netdev_adjacent *iter;
7801
7802 struct net *net = dev_net(dev);
7803
7804 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7805 if (!net_eq(net, dev_net(iter->dev)))
7806 continue;
7807 netdev_adjacent_sysfs_del(iter->dev, oldname,
7808 &iter->dev->adj_list.lower);
7809 netdev_adjacent_sysfs_add(iter->dev, dev,
7810 &iter->dev->adj_list.lower);
7811 }
7812
7813 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7814 if (!net_eq(net, dev_net(iter->dev)))
7815 continue;
7816 netdev_adjacent_sysfs_del(iter->dev, oldname,
7817 &iter->dev->adj_list.upper);
7818 netdev_adjacent_sysfs_add(iter->dev, dev,
7819 &iter->dev->adj_list.upper);
7820 }
7821}
7822
7823void *netdev_lower_dev_get_private(struct net_device *dev,
7824 struct net_device *lower_dev)
7825{
7826 struct netdev_adjacent *lower;
7827
7828 if (!lower_dev)
7829 return NULL;
7830 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7831 if (!lower)
7832 return NULL;
7833
7834 return lower->private;
7835}
7836EXPORT_SYMBOL(netdev_lower_dev_get_private);
7837
7838
7839/**
7840 * netdev_lower_change - Dispatch event about lower device state change
7841 * @lower_dev: device
7842 * @lower_state_info: state to dispatch
7843 *
7844 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7845 * The caller must hold the RTNL lock.
7846 */
7847void netdev_lower_state_changed(struct net_device *lower_dev,
7848 void *lower_state_info)
7849{
7850 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7851 .info.dev = lower_dev,
7852 };
7853
7854 ASSERT_RTNL();
7855 changelowerstate_info.lower_state_info = lower_state_info;
7856 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7857 &changelowerstate_info.info);
7858}
7859EXPORT_SYMBOL(netdev_lower_state_changed);
7860
7861static void dev_change_rx_flags(struct net_device *dev, int flags)
7862{
7863 const struct net_device_ops *ops = dev->netdev_ops;
7864
7865 if (ops->ndo_change_rx_flags)
7866 ops->ndo_change_rx_flags(dev, flags);
7867}
7868
7869static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7870{
7871 unsigned int old_flags = dev->flags;
7872 kuid_t uid;
7873 kgid_t gid;
7874
7875 ASSERT_RTNL();
7876
7877 dev->flags |= IFF_PROMISC;
7878 dev->promiscuity += inc;
7879 if (dev->promiscuity == 0) {
7880 /*
7881 * Avoid overflow.
7882 * If inc causes overflow, untouch promisc and return error.
7883 */
7884 if (inc < 0)
7885 dev->flags &= ~IFF_PROMISC;
7886 else {
7887 dev->promiscuity -= inc;
7888 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7889 dev->name);
7890 return -EOVERFLOW;
7891 }
7892 }
7893 if (dev->flags != old_flags) {
7894 pr_info("device %s %s promiscuous mode\n",
7895 dev->name,
7896 dev->flags & IFF_PROMISC ? "entered" : "left");
7897 if (audit_enabled) {
7898 current_uid_gid(&uid, &gid);
7899 audit_log(audit_context(), GFP_ATOMIC,
7900 AUDIT_ANOM_PROMISCUOUS,
7901 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7902 dev->name, (dev->flags & IFF_PROMISC),
7903 (old_flags & IFF_PROMISC),
7904 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7905 from_kuid(&init_user_ns, uid),
7906 from_kgid(&init_user_ns, gid),
7907 audit_get_sessionid(current));
7908 }
7909
7910 dev_change_rx_flags(dev, IFF_PROMISC);
7911 }
7912 if (notify)
7913 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7914 return 0;
7915}
7916
7917/**
7918 * dev_set_promiscuity - update promiscuity count on a device
7919 * @dev: device
7920 * @inc: modifier
7921 *
7922 * Add or remove promiscuity from a device. While the count in the device
7923 * remains above zero the interface remains promiscuous. Once it hits zero
7924 * the device reverts back to normal filtering operation. A negative inc
7925 * value is used to drop promiscuity on the device.
7926 * Return 0 if successful or a negative errno code on error.
7927 */
7928int dev_set_promiscuity(struct net_device *dev, int inc)
7929{
7930 unsigned int old_flags = dev->flags;
7931 int err;
7932
7933 err = __dev_set_promiscuity(dev, inc, true);
7934 if (err < 0)
7935 return err;
7936 if (dev->flags != old_flags)
7937 dev_set_rx_mode(dev);
7938 return err;
7939}
7940EXPORT_SYMBOL(dev_set_promiscuity);
7941
7942static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7943{
7944 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7945
7946 ASSERT_RTNL();
7947
7948 dev->flags |= IFF_ALLMULTI;
7949 dev->allmulti += inc;
7950 if (dev->allmulti == 0) {
7951 /*
7952 * Avoid overflow.
7953 * If inc causes overflow, untouch allmulti and return error.
7954 */
7955 if (inc < 0)
7956 dev->flags &= ~IFF_ALLMULTI;
7957 else {
7958 dev->allmulti -= inc;
7959 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7960 dev->name);
7961 return -EOVERFLOW;
7962 }
7963 }
7964 if (dev->flags ^ old_flags) {
7965 dev_change_rx_flags(dev, IFF_ALLMULTI);
7966 dev_set_rx_mode(dev);
7967 if (notify)
7968 __dev_notify_flags(dev, old_flags,
7969 dev->gflags ^ old_gflags);
7970 }
7971 return 0;
7972}
7973
7974/**
7975 * dev_set_allmulti - update allmulti count on a device
7976 * @dev: device
7977 * @inc: modifier
7978 *
7979 * Add or remove reception of all multicast frames to a device. While the
7980 * count in the device remains above zero the interface remains listening
7981 * to all interfaces. Once it hits zero the device reverts back to normal
7982 * filtering operation. A negative @inc value is used to drop the counter
7983 * when releasing a resource needing all multicasts.
7984 * Return 0 if successful or a negative errno code on error.
7985 */
7986
7987int dev_set_allmulti(struct net_device *dev, int inc)
7988{
7989 return __dev_set_allmulti(dev, inc, true);
7990}
7991EXPORT_SYMBOL(dev_set_allmulti);
7992
7993/*
7994 * Upload unicast and multicast address lists to device and
7995 * configure RX filtering. When the device doesn't support unicast
7996 * filtering it is put in promiscuous mode while unicast addresses
7997 * are present.
7998 */
7999void __dev_set_rx_mode(struct net_device *dev)
8000{
8001 const struct net_device_ops *ops = dev->netdev_ops;
8002
8003 /* dev_open will call this function so the list will stay sane. */
8004 if (!(dev->flags&IFF_UP))
8005 return;
8006
8007 if (!netif_device_present(dev))
8008 return;
8009
8010 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8011 /* Unicast addresses changes may only happen under the rtnl,
8012 * therefore calling __dev_set_promiscuity here is safe.
8013 */
8014 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8015 __dev_set_promiscuity(dev, 1, false);
8016 dev->uc_promisc = true;
8017 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8018 __dev_set_promiscuity(dev, -1, false);
8019 dev->uc_promisc = false;
8020 }
8021 }
8022
8023 if (ops->ndo_set_rx_mode)
8024 ops->ndo_set_rx_mode(dev);
8025}
8026
8027void dev_set_rx_mode(struct net_device *dev)
8028{
8029 netif_addr_lock_bh(dev);
8030 __dev_set_rx_mode(dev);
8031 netif_addr_unlock_bh(dev);
8032}
8033
8034/**
8035 * dev_get_flags - get flags reported to userspace
8036 * @dev: device
8037 *
8038 * Get the combination of flag bits exported through APIs to userspace.
8039 */
8040unsigned int dev_get_flags(const struct net_device *dev)
8041{
8042 unsigned int flags;
8043
8044 flags = (dev->flags & ~(IFF_PROMISC |
8045 IFF_ALLMULTI |
8046 IFF_RUNNING |
8047 IFF_LOWER_UP |
8048 IFF_DORMANT)) |
8049 (dev->gflags & (IFF_PROMISC |
8050 IFF_ALLMULTI));
8051
8052 if (netif_running(dev)) {
8053 if (netif_oper_up(dev))
8054 flags |= IFF_RUNNING;
8055 if (netif_carrier_ok(dev))
8056 flags |= IFF_LOWER_UP;
8057 if (netif_dormant(dev))
8058 flags |= IFF_DORMANT;
8059 }
8060
8061 return flags;
8062}
8063EXPORT_SYMBOL(dev_get_flags);
8064
8065int __dev_change_flags(struct net_device *dev, unsigned int flags,
8066 struct netlink_ext_ack *extack)
8067{
8068 unsigned int old_flags = dev->flags;
8069 int ret;
8070
8071 ASSERT_RTNL();
8072
8073 /*
8074 * Set the flags on our device.
8075 */
8076
8077 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8078 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8079 IFF_AUTOMEDIA)) |
8080 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8081 IFF_ALLMULTI));
8082
8083 /*
8084 * Load in the correct multicast list now the flags have changed.
8085 */
8086
8087 if ((old_flags ^ flags) & IFF_MULTICAST)
8088 dev_change_rx_flags(dev, IFF_MULTICAST);
8089
8090 dev_set_rx_mode(dev);
8091
8092 /*
8093 * Have we downed the interface. We handle IFF_UP ourselves
8094 * according to user attempts to set it, rather than blindly
8095 * setting it.
8096 */
8097
8098 ret = 0;
8099 if ((old_flags ^ flags) & IFF_UP) {
8100 if (old_flags & IFF_UP)
8101 __dev_close(dev);
8102 else
8103 ret = __dev_open(dev, extack);
8104 }
8105
8106 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8107 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8108 unsigned int old_flags = dev->flags;
8109
8110 dev->gflags ^= IFF_PROMISC;
8111
8112 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8113 if (dev->flags != old_flags)
8114 dev_set_rx_mode(dev);
8115 }
8116
8117 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8118 * is important. Some (broken) drivers set IFF_PROMISC, when
8119 * IFF_ALLMULTI is requested not asking us and not reporting.
8120 */
8121 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8122 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8123
8124 dev->gflags ^= IFF_ALLMULTI;
8125 __dev_set_allmulti(dev, inc, false);
8126 }
8127
8128 return ret;
8129}
8130
8131void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8132 unsigned int gchanges)
8133{
8134 unsigned int changes = dev->flags ^ old_flags;
8135
8136 if (gchanges)
8137 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8138
8139 if (changes & IFF_UP) {
8140 if (dev->flags & IFF_UP)
8141 call_netdevice_notifiers(NETDEV_UP, dev);
8142 else
8143 call_netdevice_notifiers(NETDEV_DOWN, dev);
8144 }
8145
8146 if (dev->flags & IFF_UP &&
8147 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8148 struct netdev_notifier_change_info change_info = {
8149 .info = {
8150 .dev = dev,
8151 },
8152 .flags_changed = changes,
8153 };
8154
8155 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8156 }
8157}
8158
8159/**
8160 * dev_change_flags - change device settings
8161 * @dev: device
8162 * @flags: device state flags
8163 * @extack: netlink extended ack
8164 *
8165 * Change settings on device based state flags. The flags are
8166 * in the userspace exported format.
8167 */
8168int dev_change_flags(struct net_device *dev, unsigned int flags,
8169 struct netlink_ext_ack *extack)
8170{
8171 int ret;
8172 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8173
8174 ret = __dev_change_flags(dev, flags, extack);
8175 if (ret < 0)
8176 return ret;
8177
8178 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8179 __dev_notify_flags(dev, old_flags, changes);
8180 return ret;
8181}
8182EXPORT_SYMBOL(dev_change_flags);
8183
8184int __dev_set_mtu(struct net_device *dev, int new_mtu)
8185{
8186 const struct net_device_ops *ops = dev->netdev_ops;
8187
8188 if (ops->ndo_change_mtu)
8189 return ops->ndo_change_mtu(dev, new_mtu);
8190
8191 /* Pairs with all the lockless reads of dev->mtu in the stack */
8192 WRITE_ONCE(dev->mtu, new_mtu);
8193 return 0;
8194}
8195EXPORT_SYMBOL(__dev_set_mtu);
8196
8197/**
8198 * dev_set_mtu_ext - Change maximum transfer unit
8199 * @dev: device
8200 * @new_mtu: new transfer unit
8201 * @extack: netlink extended ack
8202 *
8203 * Change the maximum transfer size of the network device.
8204 */
8205int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8206 struct netlink_ext_ack *extack)
8207{
8208 int err, orig_mtu;
8209
8210 if (new_mtu == dev->mtu)
8211 return 0;
8212
8213 /* MTU must be positive, and in range */
8214 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8215 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8216 return -EINVAL;
8217 }
8218
8219 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8220 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8221 return -EINVAL;
8222 }
8223
8224 if (!netif_device_present(dev))
8225 return -ENODEV;
8226
8227 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8228 err = notifier_to_errno(err);
8229 if (err)
8230 return err;
8231
8232 orig_mtu = dev->mtu;
8233 err = __dev_set_mtu(dev, new_mtu);
8234
8235 if (!err) {
8236 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8237 orig_mtu);
8238 err = notifier_to_errno(err);
8239 if (err) {
8240 /* setting mtu back and notifying everyone again,
8241 * so that they have a chance to revert changes.
8242 */
8243 __dev_set_mtu(dev, orig_mtu);
8244 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8245 new_mtu);
8246 }
8247 }
8248 return err;
8249}
8250
8251int dev_set_mtu(struct net_device *dev, int new_mtu)
8252{
8253 struct netlink_ext_ack extack;
8254 int err;
8255
8256 memset(&extack, 0, sizeof(extack));
8257 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8258 if (err && extack._msg)
8259 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8260 return err;
8261}
8262EXPORT_SYMBOL(dev_set_mtu);
8263
8264/**
8265 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8266 * @dev: device
8267 * @new_len: new tx queue length
8268 */
8269int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8270{
8271 unsigned int orig_len = dev->tx_queue_len;
8272 int res;
8273
8274 if (new_len != (unsigned int)new_len)
8275 return -ERANGE;
8276
8277 if (new_len != orig_len) {
8278 dev->tx_queue_len = new_len;
8279 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8280 res = notifier_to_errno(res);
8281 if (res)
8282 goto err_rollback;
8283 res = dev_qdisc_change_tx_queue_len(dev);
8284 if (res)
8285 goto err_rollback;
8286 }
8287
8288 return 0;
8289
8290err_rollback:
8291 netdev_err(dev, "refused to change device tx_queue_len\n");
8292 dev->tx_queue_len = orig_len;
8293 return res;
8294}
8295
8296/**
8297 * dev_set_group - Change group this device belongs to
8298 * @dev: device
8299 * @new_group: group this device should belong to
8300 */
8301void dev_set_group(struct net_device *dev, int new_group)
8302{
8303 dev->group = new_group;
8304}
8305EXPORT_SYMBOL(dev_set_group);
8306
8307/**
8308 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8309 * @dev: device
8310 * @addr: new address
8311 * @extack: netlink extended ack
8312 */
8313int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8314 struct netlink_ext_ack *extack)
8315{
8316 struct netdev_notifier_pre_changeaddr_info info = {
8317 .info.dev = dev,
8318 .info.extack = extack,
8319 .dev_addr = addr,
8320 };
8321 int rc;
8322
8323 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8324 return notifier_to_errno(rc);
8325}
8326EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8327
8328/**
8329 * dev_set_mac_address - Change Media Access Control Address
8330 * @dev: device
8331 * @sa: new address
8332 * @extack: netlink extended ack
8333 *
8334 * Change the hardware (MAC) address of the device
8335 */
8336int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8337 struct netlink_ext_ack *extack)
8338{
8339 const struct net_device_ops *ops = dev->netdev_ops;
8340 int err;
8341
8342 if (!ops->ndo_set_mac_address)
8343 return -EOPNOTSUPP;
8344 if (sa->sa_family != dev->type)
8345 return -EINVAL;
8346 if (!netif_device_present(dev))
8347 return -ENODEV;
8348 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8349 if (err)
8350 return err;
8351 err = ops->ndo_set_mac_address(dev, sa);
8352 if (err)
8353 return err;
8354 dev->addr_assign_type = NET_ADDR_SET;
8355 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8356 add_device_randomness(dev->dev_addr, dev->addr_len);
8357 return 0;
8358}
8359EXPORT_SYMBOL(dev_set_mac_address);
8360
8361/**
8362 * dev_change_carrier - Change device carrier
8363 * @dev: device
8364 * @new_carrier: new value
8365 *
8366 * Change device carrier
8367 */
8368int dev_change_carrier(struct net_device *dev, bool new_carrier)
8369{
8370 const struct net_device_ops *ops = dev->netdev_ops;
8371
8372 if (!ops->ndo_change_carrier)
8373 return -EOPNOTSUPP;
8374 if (!netif_device_present(dev))
8375 return -ENODEV;
8376 return ops->ndo_change_carrier(dev, new_carrier);
8377}
8378EXPORT_SYMBOL(dev_change_carrier);
8379
8380/**
8381 * dev_get_phys_port_id - Get device physical port ID
8382 * @dev: device
8383 * @ppid: port ID
8384 *
8385 * Get device physical port ID
8386 */
8387int dev_get_phys_port_id(struct net_device *dev,
8388 struct netdev_phys_item_id *ppid)
8389{
8390 const struct net_device_ops *ops = dev->netdev_ops;
8391
8392 if (!ops->ndo_get_phys_port_id)
8393 return -EOPNOTSUPP;
8394 return ops->ndo_get_phys_port_id(dev, ppid);
8395}
8396EXPORT_SYMBOL(dev_get_phys_port_id);
8397
8398/**
8399 * dev_get_phys_port_name - Get device physical port name
8400 * @dev: device
8401 * @name: port name
8402 * @len: limit of bytes to copy to name
8403 *
8404 * Get device physical port name
8405 */
8406int dev_get_phys_port_name(struct net_device *dev,
8407 char *name, size_t len)
8408{
8409 const struct net_device_ops *ops = dev->netdev_ops;
8410 int err;
8411
8412 if (ops->ndo_get_phys_port_name) {
8413 err = ops->ndo_get_phys_port_name(dev, name, len);
8414 if (err != -EOPNOTSUPP)
8415 return err;
8416 }
8417 return devlink_compat_phys_port_name_get(dev, name, len);
8418}
8419EXPORT_SYMBOL(dev_get_phys_port_name);
8420
8421/**
8422 * dev_get_port_parent_id - Get the device's port parent identifier
8423 * @dev: network device
8424 * @ppid: pointer to a storage for the port's parent identifier
8425 * @recurse: allow/disallow recursion to lower devices
8426 *
8427 * Get the devices's port parent identifier
8428 */
8429int dev_get_port_parent_id(struct net_device *dev,
8430 struct netdev_phys_item_id *ppid,
8431 bool recurse)
8432{
8433 const struct net_device_ops *ops = dev->netdev_ops;
8434 struct netdev_phys_item_id first = { };
8435 struct net_device *lower_dev;
8436 struct list_head *iter;
8437 int err;
8438
8439 if (ops->ndo_get_port_parent_id) {
8440 err = ops->ndo_get_port_parent_id(dev, ppid);
8441 if (err != -EOPNOTSUPP)
8442 return err;
8443 }
8444
8445 err = devlink_compat_switch_id_get(dev, ppid);
8446 if (!err || err != -EOPNOTSUPP)
8447 return err;
8448
8449 if (!recurse)
8450 return -EOPNOTSUPP;
8451
8452 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8453 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8454 if (err)
8455 break;
8456 if (!first.id_len)
8457 first = *ppid;
8458 else if (memcmp(&first, ppid, sizeof(*ppid)))
8459 return -ENODATA;
8460 }
8461
8462 return err;
8463}
8464EXPORT_SYMBOL(dev_get_port_parent_id);
8465
8466/**
8467 * netdev_port_same_parent_id - Indicate if two network devices have
8468 * the same port parent identifier
8469 * @a: first network device
8470 * @b: second network device
8471 */
8472bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8473{
8474 struct netdev_phys_item_id a_id = { };
8475 struct netdev_phys_item_id b_id = { };
8476
8477 if (dev_get_port_parent_id(a, &a_id, true) ||
8478 dev_get_port_parent_id(b, &b_id, true))
8479 return false;
8480
8481 return netdev_phys_item_id_same(&a_id, &b_id);
8482}
8483EXPORT_SYMBOL(netdev_port_same_parent_id);
8484
8485/**
8486 * dev_change_proto_down - update protocol port state information
8487 * @dev: device
8488 * @proto_down: new value
8489 *
8490 * This info can be used by switch drivers to set the phys state of the
8491 * port.
8492 */
8493int dev_change_proto_down(struct net_device *dev, bool proto_down)
8494{
8495 const struct net_device_ops *ops = dev->netdev_ops;
8496
8497 if (!ops->ndo_change_proto_down)
8498 return -EOPNOTSUPP;
8499 if (!netif_device_present(dev))
8500 return -ENODEV;
8501 return ops->ndo_change_proto_down(dev, proto_down);
8502}
8503EXPORT_SYMBOL(dev_change_proto_down);
8504
8505/**
8506 * dev_change_proto_down_generic - generic implementation for
8507 * ndo_change_proto_down that sets carrier according to
8508 * proto_down.
8509 *
8510 * @dev: device
8511 * @proto_down: new value
8512 */
8513int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8514{
8515 if (proto_down)
8516 netif_carrier_off(dev);
8517 else
8518 netif_carrier_on(dev);
8519 dev->proto_down = proto_down;
8520 return 0;
8521}
8522EXPORT_SYMBOL(dev_change_proto_down_generic);
8523
8524u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8525 enum bpf_netdev_command cmd)
8526{
8527 struct netdev_bpf xdp;
8528
8529 if (!bpf_op)
8530 return 0;
8531
8532 memset(&xdp, 0, sizeof(xdp));
8533 xdp.command = cmd;
8534
8535 /* Query must always succeed. */
8536 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8537
8538 return xdp.prog_id;
8539}
8540
8541static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8542 struct netlink_ext_ack *extack, u32 flags,
8543 struct bpf_prog *prog)
8544{
8545 struct netdev_bpf xdp;
8546
8547 memset(&xdp, 0, sizeof(xdp));
8548 if (flags & XDP_FLAGS_HW_MODE)
8549 xdp.command = XDP_SETUP_PROG_HW;
8550 else
8551 xdp.command = XDP_SETUP_PROG;
8552 xdp.extack = extack;
8553 xdp.flags = flags;
8554 xdp.prog = prog;
8555
8556 return bpf_op(dev, &xdp);
8557}
8558
8559static void dev_xdp_uninstall(struct net_device *dev)
8560{
8561 struct netdev_bpf xdp;
8562 bpf_op_t ndo_bpf;
8563
8564 /* Remove generic XDP */
8565 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8566
8567 /* Remove from the driver */
8568 ndo_bpf = dev->netdev_ops->ndo_bpf;
8569 if (!ndo_bpf)
8570 return;
8571
8572 memset(&xdp, 0, sizeof(xdp));
8573 xdp.command = XDP_QUERY_PROG;
8574 WARN_ON(ndo_bpf(dev, &xdp));
8575 if (xdp.prog_id)
8576 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8577 NULL));
8578
8579 /* Remove HW offload */
8580 memset(&xdp, 0, sizeof(xdp));
8581 xdp.command = XDP_QUERY_PROG_HW;
8582 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8583 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8584 NULL));
8585}
8586
8587/**
8588 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8589 * @dev: device
8590 * @extack: netlink extended ack
8591 * @fd: new program fd or negative value to clear
8592 * @flags: xdp-related flags
8593 *
8594 * Set or clear a bpf program for a device
8595 */
8596int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8597 int fd, u32 flags)
8598{
8599 const struct net_device_ops *ops = dev->netdev_ops;
8600 enum bpf_netdev_command query;
8601 struct bpf_prog *prog = NULL;
8602 bpf_op_t bpf_op, bpf_chk;
8603 bool offload;
8604 int err;
8605
8606 ASSERT_RTNL();
8607
8608 offload = flags & XDP_FLAGS_HW_MODE;
8609 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8610
8611 bpf_op = bpf_chk = ops->ndo_bpf;
8612 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8613 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8614 return -EOPNOTSUPP;
8615 }
8616 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8617 bpf_op = generic_xdp_install;
8618 if (bpf_op == bpf_chk)
8619 bpf_chk = generic_xdp_install;
8620
8621 if (fd >= 0) {
8622 u32 prog_id;
8623
8624 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8625 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8626 return -EEXIST;
8627 }
8628
8629 prog_id = __dev_xdp_query(dev, bpf_op, query);
8630 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8631 NL_SET_ERR_MSG(extack, "XDP program already attached");
8632 return -EBUSY;
8633 }
8634
8635 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8636 bpf_op == ops->ndo_bpf);
8637 if (IS_ERR(prog))
8638 return PTR_ERR(prog);
8639
8640 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8641 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8642 bpf_prog_put(prog);
8643 return -EINVAL;
8644 }
8645
8646 /* prog->aux->id may be 0 for orphaned device-bound progs */
8647 if (prog->aux->id && prog->aux->id == prog_id) {
8648 bpf_prog_put(prog);
8649 return 0;
8650 }
8651 } else {
8652 if (!__dev_xdp_query(dev, bpf_op, query))
8653 return 0;
8654 }
8655
8656 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8657 if (err < 0 && prog)
8658 bpf_prog_put(prog);
8659
8660 return err;
8661}
8662
8663/**
8664 * dev_new_index - allocate an ifindex
8665 * @net: the applicable net namespace
8666 *
8667 * Returns a suitable unique value for a new device interface
8668 * number. The caller must hold the rtnl semaphore or the
8669 * dev_base_lock to be sure it remains unique.
8670 */
8671static int dev_new_index(struct net *net)
8672{
8673 int ifindex = net->ifindex;
8674
8675 for (;;) {
8676 if (++ifindex <= 0)
8677 ifindex = 1;
8678 if (!__dev_get_by_index(net, ifindex))
8679 return net->ifindex = ifindex;
8680 }
8681}
8682
8683/* Delayed registration/unregisteration */
8684static LIST_HEAD(net_todo_list);
8685DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8686
8687static void net_set_todo(struct net_device *dev)
8688{
8689 list_add_tail(&dev->todo_list, &net_todo_list);
8690 dev_net(dev)->dev_unreg_count++;
8691}
8692
8693static void rollback_registered_many(struct list_head *head)
8694{
8695 struct net_device *dev, *tmp;
8696 LIST_HEAD(close_head);
8697
8698 BUG_ON(dev_boot_phase);
8699 ASSERT_RTNL();
8700
8701 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8702 /* Some devices call without registering
8703 * for initialization unwind. Remove those
8704 * devices and proceed with the remaining.
8705 */
8706 if (dev->reg_state == NETREG_UNINITIALIZED) {
8707 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8708 dev->name, dev);
8709
8710 WARN_ON(1);
8711 list_del(&dev->unreg_list);
8712 continue;
8713 }
8714 dev->dismantle = true;
8715 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8716 }
8717
8718 /* If device is running, close it first. */
8719 list_for_each_entry(dev, head, unreg_list)
8720 list_add_tail(&dev->close_list, &close_head);
8721 dev_close_many(&close_head, true);
8722
8723 list_for_each_entry(dev, head, unreg_list) {
8724 /* And unlink it from device chain. */
8725 unlist_netdevice(dev);
8726
8727 dev->reg_state = NETREG_UNREGISTERING;
8728 }
8729 flush_all_backlogs();
8730
8731 synchronize_net();
8732
8733 list_for_each_entry(dev, head, unreg_list) {
8734 struct sk_buff *skb = NULL;
8735
8736 /* Shutdown queueing discipline. */
8737 dev_shutdown(dev);
8738
8739 dev_xdp_uninstall(dev);
8740
8741 /* Notify protocols, that we are about to destroy
8742 * this device. They should clean all the things.
8743 */
8744 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8745
8746 if (!dev->rtnl_link_ops ||
8747 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8748 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8749 GFP_KERNEL, NULL, 0);
8750
8751 /*
8752 * Flush the unicast and multicast chains
8753 */
8754 dev_uc_flush(dev);
8755 dev_mc_flush(dev);
8756
8757 netdev_name_node_alt_flush(dev);
8758 netdev_name_node_free(dev->name_node);
8759
8760 if (dev->netdev_ops->ndo_uninit)
8761 dev->netdev_ops->ndo_uninit(dev);
8762
8763 if (skb)
8764 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8765
8766 /* Notifier chain MUST detach us all upper devices. */
8767 WARN_ON(netdev_has_any_upper_dev(dev));
8768 WARN_ON(netdev_has_any_lower_dev(dev));
8769
8770 /* Remove entries from kobject tree */
8771 netdev_unregister_kobject(dev);
8772#ifdef CONFIG_XPS
8773 /* Remove XPS queueing entries */
8774 netif_reset_xps_queues_gt(dev, 0);
8775#endif
8776 }
8777
8778 synchronize_net();
8779
8780 list_for_each_entry(dev, head, unreg_list)
8781 dev_put(dev);
8782}
8783
8784static void rollback_registered(struct net_device *dev)
8785{
8786 LIST_HEAD(single);
8787
8788 list_add(&dev->unreg_list, &single);
8789 rollback_registered_many(&single);
8790 list_del(&single);
8791}
8792
8793static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8794 struct net_device *upper, netdev_features_t features)
8795{
8796 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8797 netdev_features_t feature;
8798 int feature_bit;
8799
8800 for_each_netdev_feature(upper_disables, feature_bit) {
8801 feature = __NETIF_F_BIT(feature_bit);
8802 if (!(upper->wanted_features & feature)
8803 && (features & feature)) {
8804 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8805 &feature, upper->name);
8806 features &= ~feature;
8807 }
8808 }
8809
8810 return features;
8811}
8812
8813static void netdev_sync_lower_features(struct net_device *upper,
8814 struct net_device *lower, netdev_features_t features)
8815{
8816 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8817 netdev_features_t feature;
8818 int feature_bit;
8819
8820 for_each_netdev_feature(upper_disables, feature_bit) {
8821 feature = __NETIF_F_BIT(feature_bit);
8822 if (!(features & feature) && (lower->features & feature)) {
8823 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8824 &feature, lower->name);
8825 lower->wanted_features &= ~feature;
8826 netdev_update_features(lower);
8827
8828 if (unlikely(lower->features & feature))
8829 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8830 &feature, lower->name);
8831 }
8832 }
8833}
8834
8835static netdev_features_t netdev_fix_features(struct net_device *dev,
8836 netdev_features_t features)
8837{
8838 /* Fix illegal checksum combinations */
8839 if ((features & NETIF_F_HW_CSUM) &&
8840 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8841 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8842 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8843 }
8844
8845 /* TSO requires that SG is present as well. */
8846 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8847 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8848 features &= ~NETIF_F_ALL_TSO;
8849 }
8850
8851 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8852 !(features & NETIF_F_IP_CSUM)) {
8853 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8854 features &= ~NETIF_F_TSO;
8855 features &= ~NETIF_F_TSO_ECN;
8856 }
8857
8858 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8859 !(features & NETIF_F_IPV6_CSUM)) {
8860 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8861 features &= ~NETIF_F_TSO6;
8862 }
8863
8864 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8865 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8866 features &= ~NETIF_F_TSO_MANGLEID;
8867
8868 /* TSO ECN requires that TSO is present as well. */
8869 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8870 features &= ~NETIF_F_TSO_ECN;
8871
8872 /* Software GSO depends on SG. */
8873 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8874 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8875 features &= ~NETIF_F_GSO;
8876 }
8877
8878 /* GSO partial features require GSO partial be set */
8879 if ((features & dev->gso_partial_features) &&
8880 !(features & NETIF_F_GSO_PARTIAL)) {
8881 netdev_dbg(dev,
8882 "Dropping partially supported GSO features since no GSO partial.\n");
8883 features &= ~dev->gso_partial_features;
8884 }
8885
8886 if (!(features & NETIF_F_RXCSUM)) {
8887 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8888 * successfully merged by hardware must also have the
8889 * checksum verified by hardware. If the user does not
8890 * want to enable RXCSUM, logically, we should disable GRO_HW.
8891 */
8892 if (features & NETIF_F_GRO_HW) {
8893 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8894 features &= ~NETIF_F_GRO_HW;
8895 }
8896 }
8897
8898 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8899 if (features & NETIF_F_RXFCS) {
8900 if (features & NETIF_F_LRO) {
8901 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8902 features &= ~NETIF_F_LRO;
8903 }
8904
8905 if (features & NETIF_F_GRO_HW) {
8906 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8907 features &= ~NETIF_F_GRO_HW;
8908 }
8909 }
8910
8911 return features;
8912}
8913
8914int __netdev_update_features(struct net_device *dev)
8915{
8916 struct net_device *upper, *lower;
8917 netdev_features_t features;
8918 struct list_head *iter;
8919 int err = -1;
8920
8921 ASSERT_RTNL();
8922
8923 features = netdev_get_wanted_features(dev);
8924
8925 if (dev->netdev_ops->ndo_fix_features)
8926 features = dev->netdev_ops->ndo_fix_features(dev, features);
8927
8928 /* driver might be less strict about feature dependencies */
8929 features = netdev_fix_features(dev, features);
8930
8931 /* some features can't be enabled if they're off an an upper device */
8932 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8933 features = netdev_sync_upper_features(dev, upper, features);
8934
8935 if (dev->features == features)
8936 goto sync_lower;
8937
8938 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8939 &dev->features, &features);
8940
8941 if (dev->netdev_ops->ndo_set_features)
8942 err = dev->netdev_ops->ndo_set_features(dev, features);
8943 else
8944 err = 0;
8945
8946 if (unlikely(err < 0)) {
8947 netdev_err(dev,
8948 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8949 err, &features, &dev->features);
8950 /* return non-0 since some features might have changed and
8951 * it's better to fire a spurious notification than miss it
8952 */
8953 return -1;
8954 }
8955
8956sync_lower:
8957 /* some features must be disabled on lower devices when disabled
8958 * on an upper device (think: bonding master or bridge)
8959 */
8960 netdev_for_each_lower_dev(dev, lower, iter)
8961 netdev_sync_lower_features(dev, lower, features);
8962
8963 if (!err) {
8964 netdev_features_t diff = features ^ dev->features;
8965
8966 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8967 /* udp_tunnel_{get,drop}_rx_info both need
8968 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8969 * device, or they won't do anything.
8970 * Thus we need to update dev->features
8971 * *before* calling udp_tunnel_get_rx_info,
8972 * but *after* calling udp_tunnel_drop_rx_info.
8973 */
8974 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8975 dev->features = features;
8976 udp_tunnel_get_rx_info(dev);
8977 } else {
8978 udp_tunnel_drop_rx_info(dev);
8979 }
8980 }
8981
8982 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8983 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8984 dev->features = features;
8985 err |= vlan_get_rx_ctag_filter_info(dev);
8986 } else {
8987 vlan_drop_rx_ctag_filter_info(dev);
8988 }
8989 }
8990
8991 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8992 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8993 dev->features = features;
8994 err |= vlan_get_rx_stag_filter_info(dev);
8995 } else {
8996 vlan_drop_rx_stag_filter_info(dev);
8997 }
8998 }
8999
9000 dev->features = features;
9001 }
9002
9003 return err < 0 ? 0 : 1;
9004}
9005
9006/**
9007 * netdev_update_features - recalculate device features
9008 * @dev: the device to check
9009 *
9010 * Recalculate dev->features set and send notifications if it
9011 * has changed. Should be called after driver or hardware dependent
9012 * conditions might have changed that influence the features.
9013 */
9014void netdev_update_features(struct net_device *dev)
9015{
9016 if (__netdev_update_features(dev))
9017 netdev_features_change(dev);
9018}
9019EXPORT_SYMBOL(netdev_update_features);
9020
9021/**
9022 * netdev_change_features - recalculate device features
9023 * @dev: the device to check
9024 *
9025 * Recalculate dev->features set and send notifications even
9026 * if they have not changed. Should be called instead of
9027 * netdev_update_features() if also dev->vlan_features might
9028 * have changed to allow the changes to be propagated to stacked
9029 * VLAN devices.
9030 */
9031void netdev_change_features(struct net_device *dev)
9032{
9033 __netdev_update_features(dev);
9034 netdev_features_change(dev);
9035}
9036EXPORT_SYMBOL(netdev_change_features);
9037
9038/**
9039 * netif_stacked_transfer_operstate - transfer operstate
9040 * @rootdev: the root or lower level device to transfer state from
9041 * @dev: the device to transfer operstate to
9042 *
9043 * Transfer operational state from root to device. This is normally
9044 * called when a stacking relationship exists between the root
9045 * device and the device(a leaf device).
9046 */
9047void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9048 struct net_device *dev)
9049{
9050 if (rootdev->operstate == IF_OPER_DORMANT)
9051 netif_dormant_on(dev);
9052 else
9053 netif_dormant_off(dev);
9054
9055 if (netif_carrier_ok(rootdev))
9056 netif_carrier_on(dev);
9057 else
9058 netif_carrier_off(dev);
9059}
9060EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9061
9062static int netif_alloc_rx_queues(struct net_device *dev)
9063{
9064 unsigned int i, count = dev->num_rx_queues;
9065 struct netdev_rx_queue *rx;
9066 size_t sz = count * sizeof(*rx);
9067 int err = 0;
9068
9069 BUG_ON(count < 1);
9070
9071 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9072 if (!rx)
9073 return -ENOMEM;
9074
9075 dev->_rx = rx;
9076
9077 for (i = 0; i < count; i++) {
9078 rx[i].dev = dev;
9079
9080 /* XDP RX-queue setup */
9081 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9082 if (err < 0)
9083 goto err_rxq_info;
9084 }
9085 return 0;
9086
9087err_rxq_info:
9088 /* Rollback successful reg's and free other resources */
9089 while (i--)
9090 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9091 kvfree(dev->_rx);
9092 dev->_rx = NULL;
9093 return err;
9094}
9095
9096static void netif_free_rx_queues(struct net_device *dev)
9097{
9098 unsigned int i, count = dev->num_rx_queues;
9099
9100 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9101 if (!dev->_rx)
9102 return;
9103
9104 for (i = 0; i < count; i++)
9105 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9106
9107 kvfree(dev->_rx);
9108}
9109
9110static void netdev_init_one_queue(struct net_device *dev,
9111 struct netdev_queue *queue, void *_unused)
9112{
9113 /* Initialize queue lock */
9114 spin_lock_init(&queue->_xmit_lock);
9115 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9116 queue->xmit_lock_owner = -1;
9117 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9118 queue->dev = dev;
9119#ifdef CONFIG_BQL
9120 dql_init(&queue->dql, HZ);
9121#endif
9122}
9123
9124static void netif_free_tx_queues(struct net_device *dev)
9125{
9126 kvfree(dev->_tx);
9127}
9128
9129static int netif_alloc_netdev_queues(struct net_device *dev)
9130{
9131 unsigned int count = dev->num_tx_queues;
9132 struct netdev_queue *tx;
9133 size_t sz = count * sizeof(*tx);
9134
9135 if (count < 1 || count > 0xffff)
9136 return -EINVAL;
9137
9138 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9139 if (!tx)
9140 return -ENOMEM;
9141
9142 dev->_tx = tx;
9143
9144 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9145 spin_lock_init(&dev->tx_global_lock);
9146
9147 return 0;
9148}
9149
9150void netif_tx_stop_all_queues(struct net_device *dev)
9151{
9152 unsigned int i;
9153
9154 for (i = 0; i < dev->num_tx_queues; i++) {
9155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9156
9157 netif_tx_stop_queue(txq);
9158 }
9159}
9160EXPORT_SYMBOL(netif_tx_stop_all_queues);
9161
9162static void netdev_register_lockdep_key(struct net_device *dev)
9163{
9164 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9165 lockdep_register_key(&dev->qdisc_running_key);
9166 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9167 lockdep_register_key(&dev->addr_list_lock_key);
9168}
9169
9170static void netdev_unregister_lockdep_key(struct net_device *dev)
9171{
9172 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9173 lockdep_unregister_key(&dev->qdisc_running_key);
9174 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9175 lockdep_unregister_key(&dev->addr_list_lock_key);
9176}
9177
9178void netdev_update_lockdep_key(struct net_device *dev)
9179{
9180 struct netdev_queue *queue;
9181 int i;
9182
9183 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9184 lockdep_unregister_key(&dev->addr_list_lock_key);
9185
9186 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9187 lockdep_register_key(&dev->addr_list_lock_key);
9188
9189 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9190 for (i = 0; i < dev->num_tx_queues; i++) {
9191 queue = netdev_get_tx_queue(dev, i);
9192
9193 lockdep_set_class(&queue->_xmit_lock,
9194 &dev->qdisc_xmit_lock_key);
9195 }
9196}
9197EXPORT_SYMBOL(netdev_update_lockdep_key);
9198
9199/**
9200 * register_netdevice - register a network device
9201 * @dev: device to register
9202 *
9203 * Take a completed network device structure and add it to the kernel
9204 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9205 * chain. 0 is returned on success. A negative errno code is returned
9206 * on a failure to set up the device, or if the name is a duplicate.
9207 *
9208 * Callers must hold the rtnl semaphore. You may want
9209 * register_netdev() instead of this.
9210 *
9211 * BUGS:
9212 * The locking appears insufficient to guarantee two parallel registers
9213 * will not get the same name.
9214 */
9215
9216int register_netdevice(struct net_device *dev)
9217{
9218 int ret;
9219 struct net *net = dev_net(dev);
9220
9221 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9222 NETDEV_FEATURE_COUNT);
9223 BUG_ON(dev_boot_phase);
9224 ASSERT_RTNL();
9225
9226 might_sleep();
9227
9228 /* When net_device's are persistent, this will be fatal. */
9229 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9230 BUG_ON(!net);
9231
9232 spin_lock_init(&dev->addr_list_lock);
9233 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9234
9235 ret = dev_get_valid_name(net, dev, dev->name);
9236 if (ret < 0)
9237 goto out;
9238
9239 ret = -ENOMEM;
9240 dev->name_node = netdev_name_node_head_alloc(dev);
9241 if (!dev->name_node)
9242 goto out;
9243
9244 /* Init, if this function is available */
9245 if (dev->netdev_ops->ndo_init) {
9246 ret = dev->netdev_ops->ndo_init(dev);
9247 if (ret) {
9248 if (ret > 0)
9249 ret = -EIO;
9250 goto err_free_name;
9251 }
9252 }
9253
9254 if (((dev->hw_features | dev->features) &
9255 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9256 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9257 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9258 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9259 ret = -EINVAL;
9260 goto err_uninit;
9261 }
9262
9263 ret = -EBUSY;
9264 if (!dev->ifindex)
9265 dev->ifindex = dev_new_index(net);
9266 else if (__dev_get_by_index(net, dev->ifindex))
9267 goto err_uninit;
9268
9269 /* Transfer changeable features to wanted_features and enable
9270 * software offloads (GSO and GRO).
9271 */
9272 dev->hw_features |= NETIF_F_SOFT_FEATURES;
9273 dev->features |= NETIF_F_SOFT_FEATURES;
9274
9275 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9276 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9277 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9278 }
9279
9280 dev->wanted_features = dev->features & dev->hw_features;
9281
9282 if (!(dev->flags & IFF_LOOPBACK))
9283 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9284
9285 /* If IPv4 TCP segmentation offload is supported we should also
9286 * allow the device to enable segmenting the frame with the option
9287 * of ignoring a static IP ID value. This doesn't enable the
9288 * feature itself but allows the user to enable it later.
9289 */
9290 if (dev->hw_features & NETIF_F_TSO)
9291 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9292 if (dev->vlan_features & NETIF_F_TSO)
9293 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9294 if (dev->mpls_features & NETIF_F_TSO)
9295 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9296 if (dev->hw_enc_features & NETIF_F_TSO)
9297 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9298
9299 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9300 */
9301 dev->vlan_features |= NETIF_F_HIGHDMA;
9302
9303 /* Make NETIF_F_SG inheritable to tunnel devices.
9304 */
9305 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9306
9307 /* Make NETIF_F_SG inheritable to MPLS.
9308 */
9309 dev->mpls_features |= NETIF_F_SG;
9310
9311 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9312 ret = notifier_to_errno(ret);
9313 if (ret)
9314 goto err_uninit;
9315
9316 ret = netdev_register_kobject(dev);
9317 if (ret)
9318 goto err_uninit;
9319 dev->reg_state = NETREG_REGISTERED;
9320
9321 __netdev_update_features(dev);
9322
9323 /*
9324 * Default initial state at registry is that the
9325 * device is present.
9326 */
9327
9328 set_bit(__LINK_STATE_PRESENT, &dev->state);
9329
9330 linkwatch_init_dev(dev);
9331
9332 dev_init_scheduler(dev);
9333 dev_hold(dev);
9334 list_netdevice(dev);
9335 add_device_randomness(dev->dev_addr, dev->addr_len);
9336
9337 /* If the device has permanent device address, driver should
9338 * set dev_addr and also addr_assign_type should be set to
9339 * NET_ADDR_PERM (default value).
9340 */
9341 if (dev->addr_assign_type == NET_ADDR_PERM)
9342 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9343
9344 /* Notify protocols, that a new device appeared. */
9345 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9346 ret = notifier_to_errno(ret);
9347 if (ret) {
9348 rollback_registered(dev);
9349 rcu_barrier();
9350
9351 dev->reg_state = NETREG_UNREGISTERED;
9352 }
9353 /*
9354 * Prevent userspace races by waiting until the network
9355 * device is fully setup before sending notifications.
9356 */
9357 if (!dev->rtnl_link_ops ||
9358 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9359 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9360
9361out:
9362 return ret;
9363
9364err_uninit:
9365 if (dev->netdev_ops->ndo_uninit)
9366 dev->netdev_ops->ndo_uninit(dev);
9367 if (dev->priv_destructor)
9368 dev->priv_destructor(dev);
9369err_free_name:
9370 netdev_name_node_free(dev->name_node);
9371 goto out;
9372}
9373EXPORT_SYMBOL(register_netdevice);
9374
9375/**
9376 * init_dummy_netdev - init a dummy network device for NAPI
9377 * @dev: device to init
9378 *
9379 * This takes a network device structure and initialize the minimum
9380 * amount of fields so it can be used to schedule NAPI polls without
9381 * registering a full blown interface. This is to be used by drivers
9382 * that need to tie several hardware interfaces to a single NAPI
9383 * poll scheduler due to HW limitations.
9384 */
9385int init_dummy_netdev(struct net_device *dev)
9386{
9387 /* Clear everything. Note we don't initialize spinlocks
9388 * are they aren't supposed to be taken by any of the
9389 * NAPI code and this dummy netdev is supposed to be
9390 * only ever used for NAPI polls
9391 */
9392 memset(dev, 0, sizeof(struct net_device));
9393
9394 /* make sure we BUG if trying to hit standard
9395 * register/unregister code path
9396 */
9397 dev->reg_state = NETREG_DUMMY;
9398
9399 /* NAPI wants this */
9400 INIT_LIST_HEAD(&dev->napi_list);
9401
9402 /* a dummy interface is started by default */
9403 set_bit(__LINK_STATE_PRESENT, &dev->state);
9404 set_bit(__LINK_STATE_START, &dev->state);
9405
9406 /* napi_busy_loop stats accounting wants this */
9407 dev_net_set(dev, &init_net);
9408
9409 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9410 * because users of this 'device' dont need to change
9411 * its refcount.
9412 */
9413
9414 return 0;
9415}
9416EXPORT_SYMBOL_GPL(init_dummy_netdev);
9417
9418
9419/**
9420 * register_netdev - register a network device
9421 * @dev: device to register
9422 *
9423 * Take a completed network device structure and add it to the kernel
9424 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9425 * chain. 0 is returned on success. A negative errno code is returned
9426 * on a failure to set up the device, or if the name is a duplicate.
9427 *
9428 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9429 * and expands the device name if you passed a format string to
9430 * alloc_netdev.
9431 */
9432int register_netdev(struct net_device *dev)
9433{
9434 int err;
9435
9436 if (rtnl_lock_killable())
9437 return -EINTR;
9438 err = register_netdevice(dev);
9439 rtnl_unlock();
9440 return err;
9441}
9442EXPORT_SYMBOL(register_netdev);
9443
9444int netdev_refcnt_read(const struct net_device *dev)
9445{
9446 int i, refcnt = 0;
9447
9448 for_each_possible_cpu(i)
9449 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9450 return refcnt;
9451}
9452EXPORT_SYMBOL(netdev_refcnt_read);
9453
9454/**
9455 * netdev_wait_allrefs - wait until all references are gone.
9456 * @dev: target net_device
9457 *
9458 * This is called when unregistering network devices.
9459 *
9460 * Any protocol or device that holds a reference should register
9461 * for netdevice notification, and cleanup and put back the
9462 * reference if they receive an UNREGISTER event.
9463 * We can get stuck here if buggy protocols don't correctly
9464 * call dev_put.
9465 */
9466static void netdev_wait_allrefs(struct net_device *dev)
9467{
9468 unsigned long rebroadcast_time, warning_time;
9469 int refcnt;
9470
9471 linkwatch_forget_dev(dev);
9472
9473 rebroadcast_time = warning_time = jiffies;
9474 refcnt = netdev_refcnt_read(dev);
9475
9476 while (refcnt != 0) {
9477 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9478 rtnl_lock();
9479
9480 /* Rebroadcast unregister notification */
9481 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9482
9483 __rtnl_unlock();
9484 rcu_barrier();
9485 rtnl_lock();
9486
9487 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9488 &dev->state)) {
9489 /* We must not have linkwatch events
9490 * pending on unregister. If this
9491 * happens, we simply run the queue
9492 * unscheduled, resulting in a noop
9493 * for this device.
9494 */
9495 linkwatch_run_queue();
9496 }
9497
9498 __rtnl_unlock();
9499
9500 rebroadcast_time = jiffies;
9501 }
9502
9503 msleep(250);
9504
9505 refcnt = netdev_refcnt_read(dev);
9506
9507 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9508 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9509 dev->name, refcnt);
9510 warning_time = jiffies;
9511 }
9512 }
9513}
9514
9515/* The sequence is:
9516 *
9517 * rtnl_lock();
9518 * ...
9519 * register_netdevice(x1);
9520 * register_netdevice(x2);
9521 * ...
9522 * unregister_netdevice(y1);
9523 * unregister_netdevice(y2);
9524 * ...
9525 * rtnl_unlock();
9526 * free_netdev(y1);
9527 * free_netdev(y2);
9528 *
9529 * We are invoked by rtnl_unlock().
9530 * This allows us to deal with problems:
9531 * 1) We can delete sysfs objects which invoke hotplug
9532 * without deadlocking with linkwatch via keventd.
9533 * 2) Since we run with the RTNL semaphore not held, we can sleep
9534 * safely in order to wait for the netdev refcnt to drop to zero.
9535 *
9536 * We must not return until all unregister events added during
9537 * the interval the lock was held have been completed.
9538 */
9539void netdev_run_todo(void)
9540{
9541 struct list_head list;
9542
9543 /* Snapshot list, allow later requests */
9544 list_replace_init(&net_todo_list, &list);
9545
9546 __rtnl_unlock();
9547
9548
9549 /* Wait for rcu callbacks to finish before next phase */
9550 if (!list_empty(&list))
9551 rcu_barrier();
9552
9553 while (!list_empty(&list)) {
9554 struct net_device *dev
9555 = list_first_entry(&list, struct net_device, todo_list);
9556 list_del(&dev->todo_list);
9557
9558 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9559 pr_err("network todo '%s' but state %d\n",
9560 dev->name, dev->reg_state);
9561 dump_stack();
9562 continue;
9563 }
9564
9565 dev->reg_state = NETREG_UNREGISTERED;
9566
9567 netdev_wait_allrefs(dev);
9568
9569 /* paranoia */
9570 BUG_ON(netdev_refcnt_read(dev));
9571 BUG_ON(!list_empty(&dev->ptype_all));
9572 BUG_ON(!list_empty(&dev->ptype_specific));
9573 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9574 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9575#if IS_ENABLED(CONFIG_DECNET)
9576 WARN_ON(dev->dn_ptr);
9577#endif
9578 if (dev->priv_destructor)
9579 dev->priv_destructor(dev);
9580 if (dev->needs_free_netdev)
9581 free_netdev(dev);
9582
9583 /* Report a network device has been unregistered */
9584 rtnl_lock();
9585 dev_net(dev)->dev_unreg_count--;
9586 __rtnl_unlock();
9587 wake_up(&netdev_unregistering_wq);
9588
9589 /* Free network device */
9590 kobject_put(&dev->dev.kobj);
9591 }
9592}
9593
9594/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9595 * all the same fields in the same order as net_device_stats, with only
9596 * the type differing, but rtnl_link_stats64 may have additional fields
9597 * at the end for newer counters.
9598 */
9599void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9600 const struct net_device_stats *netdev_stats)
9601{
9602#if BITS_PER_LONG == 64
9603 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9604 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9605 /* zero out counters that only exist in rtnl_link_stats64 */
9606 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9607 sizeof(*stats64) - sizeof(*netdev_stats));
9608#else
9609 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9610 const unsigned long *src = (const unsigned long *)netdev_stats;
9611 u64 *dst = (u64 *)stats64;
9612
9613 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9614 for (i = 0; i < n; i++)
9615 dst[i] = src[i];
9616 /* zero out counters that only exist in rtnl_link_stats64 */
9617 memset((char *)stats64 + n * sizeof(u64), 0,
9618 sizeof(*stats64) - n * sizeof(u64));
9619#endif
9620}
9621EXPORT_SYMBOL(netdev_stats_to_stats64);
9622
9623/**
9624 * dev_get_stats - get network device statistics
9625 * @dev: device to get statistics from
9626 * @storage: place to store stats
9627 *
9628 * Get network statistics from device. Return @storage.
9629 * The device driver may provide its own method by setting
9630 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9631 * otherwise the internal statistics structure is used.
9632 */
9633struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9634 struct rtnl_link_stats64 *storage)
9635{
9636 const struct net_device_ops *ops = dev->netdev_ops;
9637
9638 if (ops->ndo_get_stats64) {
9639 memset(storage, 0, sizeof(*storage));
9640 ops->ndo_get_stats64(dev, storage);
9641 } else if (ops->ndo_get_stats) {
9642 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9643 } else {
9644 netdev_stats_to_stats64(storage, &dev->stats);
9645 }
9646 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9647 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9648 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9649 return storage;
9650}
9651EXPORT_SYMBOL(dev_get_stats);
9652
9653struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9654{
9655 struct netdev_queue *queue = dev_ingress_queue(dev);
9656
9657#ifdef CONFIG_NET_CLS_ACT
9658 if (queue)
9659 return queue;
9660 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9661 if (!queue)
9662 return NULL;
9663 netdev_init_one_queue(dev, queue, NULL);
9664 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9665 queue->qdisc_sleeping = &noop_qdisc;
9666 rcu_assign_pointer(dev->ingress_queue, queue);
9667#endif
9668 return queue;
9669}
9670
9671static const struct ethtool_ops default_ethtool_ops;
9672
9673void netdev_set_default_ethtool_ops(struct net_device *dev,
9674 const struct ethtool_ops *ops)
9675{
9676 if (dev->ethtool_ops == &default_ethtool_ops)
9677 dev->ethtool_ops = ops;
9678}
9679EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9680
9681void netdev_freemem(struct net_device *dev)
9682{
9683 char *addr = (char *)dev - dev->padded;
9684
9685 kvfree(addr);
9686}
9687
9688/**
9689 * alloc_netdev_mqs - allocate network device
9690 * @sizeof_priv: size of private data to allocate space for
9691 * @name: device name format string
9692 * @name_assign_type: origin of device name
9693 * @setup: callback to initialize device
9694 * @txqs: the number of TX subqueues to allocate
9695 * @rxqs: the number of RX subqueues to allocate
9696 *
9697 * Allocates a struct net_device with private data area for driver use
9698 * and performs basic initialization. Also allocates subqueue structs
9699 * for each queue on the device.
9700 */
9701struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9702 unsigned char name_assign_type,
9703 void (*setup)(struct net_device *),
9704 unsigned int txqs, unsigned int rxqs)
9705{
9706 struct net_device *dev;
9707 unsigned int alloc_size;
9708 struct net_device *p;
9709
9710 BUG_ON(strlen(name) >= sizeof(dev->name));
9711
9712 if (txqs < 1) {
9713 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9714 return NULL;
9715 }
9716
9717 if (rxqs < 1) {
9718 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9719 return NULL;
9720 }
9721
9722 alloc_size = sizeof(struct net_device);
9723 if (sizeof_priv) {
9724 /* ensure 32-byte alignment of private area */
9725 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9726 alloc_size += sizeof_priv;
9727 }
9728 /* ensure 32-byte alignment of whole construct */
9729 alloc_size += NETDEV_ALIGN - 1;
9730
9731 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9732 if (!p)
9733 return NULL;
9734
9735 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9736 dev->padded = (char *)dev - (char *)p;
9737
9738 dev->pcpu_refcnt = alloc_percpu(int);
9739 if (!dev->pcpu_refcnt)
9740 goto free_dev;
9741
9742 if (dev_addr_init(dev))
9743 goto free_pcpu;
9744
9745 dev_mc_init(dev);
9746 dev_uc_init(dev);
9747
9748 dev_net_set(dev, &init_net);
9749
9750 netdev_register_lockdep_key(dev);
9751
9752 dev->gso_max_size = GSO_MAX_SIZE;
9753 dev->gso_max_segs = GSO_MAX_SEGS;
9754 dev->upper_level = 1;
9755 dev->lower_level = 1;
9756
9757 INIT_LIST_HEAD(&dev->napi_list);
9758 INIT_LIST_HEAD(&dev->unreg_list);
9759 INIT_LIST_HEAD(&dev->close_list);
9760 INIT_LIST_HEAD(&dev->link_watch_list);
9761 INIT_LIST_HEAD(&dev->adj_list.upper);
9762 INIT_LIST_HEAD(&dev->adj_list.lower);
9763 INIT_LIST_HEAD(&dev->ptype_all);
9764 INIT_LIST_HEAD(&dev->ptype_specific);
9765#ifdef CONFIG_NET_SCHED
9766 hash_init(dev->qdisc_hash);
9767#endif
9768 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9769 setup(dev);
9770
9771 if (!dev->tx_queue_len) {
9772 dev->priv_flags |= IFF_NO_QUEUE;
9773 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9774 }
9775
9776 dev->num_tx_queues = txqs;
9777 dev->real_num_tx_queues = txqs;
9778 if (netif_alloc_netdev_queues(dev))
9779 goto free_all;
9780
9781 dev->num_rx_queues = rxqs;
9782 dev->real_num_rx_queues = rxqs;
9783 if (netif_alloc_rx_queues(dev))
9784 goto free_all;
9785
9786 strcpy(dev->name, name);
9787 dev->name_assign_type = name_assign_type;
9788 dev->group = INIT_NETDEV_GROUP;
9789 if (!dev->ethtool_ops)
9790 dev->ethtool_ops = &default_ethtool_ops;
9791
9792 nf_hook_ingress_init(dev);
9793
9794 return dev;
9795
9796free_all:
9797 free_netdev(dev);
9798 return NULL;
9799
9800free_pcpu:
9801 free_percpu(dev->pcpu_refcnt);
9802free_dev:
9803 netdev_freemem(dev);
9804 return NULL;
9805}
9806EXPORT_SYMBOL(alloc_netdev_mqs);
9807
9808/**
9809 * free_netdev - free network device
9810 * @dev: device
9811 *
9812 * This function does the last stage of destroying an allocated device
9813 * interface. The reference to the device object is released. If this
9814 * is the last reference then it will be freed.Must be called in process
9815 * context.
9816 */
9817void free_netdev(struct net_device *dev)
9818{
9819 struct napi_struct *p, *n;
9820
9821 might_sleep();
9822 netif_free_tx_queues(dev);
9823 netif_free_rx_queues(dev);
9824
9825 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9826
9827 /* Flush device addresses */
9828 dev_addr_flush(dev);
9829
9830 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9831 netif_napi_del(p);
9832
9833 free_percpu(dev->pcpu_refcnt);
9834 dev->pcpu_refcnt = NULL;
9835
9836 netdev_unregister_lockdep_key(dev);
9837
9838 /* Compatibility with error handling in drivers */
9839 if (dev->reg_state == NETREG_UNINITIALIZED) {
9840 netdev_freemem(dev);
9841 return;
9842 }
9843
9844 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9845 dev->reg_state = NETREG_RELEASED;
9846
9847 /* will free via device release */
9848 put_device(&dev->dev);
9849}
9850EXPORT_SYMBOL(free_netdev);
9851
9852/**
9853 * synchronize_net - Synchronize with packet receive processing
9854 *
9855 * Wait for packets currently being received to be done.
9856 * Does not block later packets from starting.
9857 */
9858void synchronize_net(void)
9859{
9860 might_sleep();
9861 if (rtnl_is_locked())
9862 synchronize_rcu_expedited();
9863 else
9864 synchronize_rcu();
9865}
9866EXPORT_SYMBOL(synchronize_net);
9867
9868/**
9869 * unregister_netdevice_queue - remove device from the kernel
9870 * @dev: device
9871 * @head: list
9872 *
9873 * This function shuts down a device interface and removes it
9874 * from the kernel tables.
9875 * If head not NULL, device is queued to be unregistered later.
9876 *
9877 * Callers must hold the rtnl semaphore. You may want
9878 * unregister_netdev() instead of this.
9879 */
9880
9881void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9882{
9883 ASSERT_RTNL();
9884
9885 if (head) {
9886 list_move_tail(&dev->unreg_list, head);
9887 } else {
9888 rollback_registered(dev);
9889 /* Finish processing unregister after unlock */
9890 net_set_todo(dev);
9891 }
9892}
9893EXPORT_SYMBOL(unregister_netdevice_queue);
9894
9895/**
9896 * unregister_netdevice_many - unregister many devices
9897 * @head: list of devices
9898 *
9899 * Note: As most callers use a stack allocated list_head,
9900 * we force a list_del() to make sure stack wont be corrupted later.
9901 */
9902void unregister_netdevice_many(struct list_head *head)
9903{
9904 struct net_device *dev;
9905
9906 if (!list_empty(head)) {
9907 rollback_registered_many(head);
9908 list_for_each_entry(dev, head, unreg_list)
9909 net_set_todo(dev);
9910 list_del(head);
9911 }
9912}
9913EXPORT_SYMBOL(unregister_netdevice_many);
9914
9915/**
9916 * unregister_netdev - remove device from the kernel
9917 * @dev: device
9918 *
9919 * This function shuts down a device interface and removes it
9920 * from the kernel tables.
9921 *
9922 * This is just a wrapper for unregister_netdevice that takes
9923 * the rtnl semaphore. In general you want to use this and not
9924 * unregister_netdevice.
9925 */
9926void unregister_netdev(struct net_device *dev)
9927{
9928 rtnl_lock();
9929 unregister_netdevice(dev);
9930 rtnl_unlock();
9931}
9932EXPORT_SYMBOL(unregister_netdev);
9933
9934/**
9935 * dev_change_net_namespace - move device to different nethost namespace
9936 * @dev: device
9937 * @net: network namespace
9938 * @pat: If not NULL name pattern to try if the current device name
9939 * is already taken in the destination network namespace.
9940 *
9941 * This function shuts down a device interface and moves it
9942 * to a new network namespace. On success 0 is returned, on
9943 * a failure a netagive errno code is returned.
9944 *
9945 * Callers must hold the rtnl semaphore.
9946 */
9947
9948int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9949{
9950 int err, new_nsid, new_ifindex;
9951
9952 ASSERT_RTNL();
9953
9954 /* Don't allow namespace local devices to be moved. */
9955 err = -EINVAL;
9956 if (dev->features & NETIF_F_NETNS_LOCAL)
9957 goto out;
9958
9959 /* Ensure the device has been registrered */
9960 if (dev->reg_state != NETREG_REGISTERED)
9961 goto out;
9962
9963 /* Get out if there is nothing todo */
9964 err = 0;
9965 if (net_eq(dev_net(dev), net))
9966 goto out;
9967
9968 /* Pick the destination device name, and ensure
9969 * we can use it in the destination network namespace.
9970 */
9971 err = -EEXIST;
9972 if (__dev_get_by_name(net, dev->name)) {
9973 /* We get here if we can't use the current device name */
9974 if (!pat)
9975 goto out;
9976 err = dev_get_valid_name(net, dev, pat);
9977 if (err < 0)
9978 goto out;
9979 }
9980
9981 /*
9982 * And now a mini version of register_netdevice unregister_netdevice.
9983 */
9984
9985 /* If device is running close it first. */
9986 dev_close(dev);
9987
9988 /* And unlink it from device chain */
9989 unlist_netdevice(dev);
9990
9991 synchronize_net();
9992
9993 /* Shutdown queueing discipline. */
9994 dev_shutdown(dev);
9995
9996 /* Notify protocols, that we are about to destroy
9997 * this device. They should clean all the things.
9998 *
9999 * Note that dev->reg_state stays at NETREG_REGISTERED.
10000 * This is wanted because this way 8021q and macvlan know
10001 * the device is just moving and can keep their slaves up.
10002 */
10003 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10004 rcu_barrier();
10005
10006 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10007 /* If there is an ifindex conflict assign a new one */
10008 if (__dev_get_by_index(net, dev->ifindex))
10009 new_ifindex = dev_new_index(net);
10010 else
10011 new_ifindex = dev->ifindex;
10012
10013 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10014 new_ifindex);
10015
10016 /*
10017 * Flush the unicast and multicast chains
10018 */
10019 dev_uc_flush(dev);
10020 dev_mc_flush(dev);
10021
10022 /* Send a netdev-removed uevent to the old namespace */
10023 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10024 netdev_adjacent_del_links(dev);
10025
10026 /* Actually switch the network namespace */
10027 dev_net_set(dev, net);
10028 dev->ifindex = new_ifindex;
10029
10030 /* Send a netdev-add uevent to the new namespace */
10031 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10032 netdev_adjacent_add_links(dev);
10033
10034 /* Fixup kobjects */
10035 err = device_rename(&dev->dev, dev->name);
10036 WARN_ON(err);
10037
10038 /* Add the device back in the hashes */
10039 list_netdevice(dev);
10040
10041 /* Notify protocols, that a new device appeared. */
10042 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10043
10044 /*
10045 * Prevent userspace races by waiting until the network
10046 * device is fully setup before sending notifications.
10047 */
10048 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10049
10050 synchronize_net();
10051 err = 0;
10052out:
10053 return err;
10054}
10055EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10056
10057static int dev_cpu_dead(unsigned int oldcpu)
10058{
10059 struct sk_buff **list_skb;
10060 struct sk_buff *skb;
10061 unsigned int cpu;
10062 struct softnet_data *sd, *oldsd, *remsd = NULL;
10063
10064 local_irq_disable();
10065 cpu = smp_processor_id();
10066 sd = &per_cpu(softnet_data, cpu);
10067 oldsd = &per_cpu(softnet_data, oldcpu);
10068
10069 /* Find end of our completion_queue. */
10070 list_skb = &sd->completion_queue;
10071 while (*list_skb)
10072 list_skb = &(*list_skb)->next;
10073 /* Append completion queue from offline CPU. */
10074 *list_skb = oldsd->completion_queue;
10075 oldsd->completion_queue = NULL;
10076
10077 /* Append output queue from offline CPU. */
10078 if (oldsd->output_queue) {
10079 *sd->output_queue_tailp = oldsd->output_queue;
10080 sd->output_queue_tailp = oldsd->output_queue_tailp;
10081 oldsd->output_queue = NULL;
10082 oldsd->output_queue_tailp = &oldsd->output_queue;
10083 }
10084 /* Append NAPI poll list from offline CPU, with one exception :
10085 * process_backlog() must be called by cpu owning percpu backlog.
10086 * We properly handle process_queue & input_pkt_queue later.
10087 */
10088 while (!list_empty(&oldsd->poll_list)) {
10089 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10090 struct napi_struct,
10091 poll_list);
10092
10093 list_del_init(&napi->poll_list);
10094 if (napi->poll == process_backlog)
10095 napi->state = 0;
10096 else
10097 ____napi_schedule(sd, napi);
10098 }
10099
10100 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10101 local_irq_enable();
10102
10103#ifdef CONFIG_RPS
10104 remsd = oldsd->rps_ipi_list;
10105 oldsd->rps_ipi_list = NULL;
10106#endif
10107 /* send out pending IPI's on offline CPU */
10108 net_rps_send_ipi(remsd);
10109
10110 /* Process offline CPU's input_pkt_queue */
10111 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10112 netif_rx_ni(skb);
10113 input_queue_head_incr(oldsd);
10114 }
10115 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10116 netif_rx_ni(skb);
10117 input_queue_head_incr(oldsd);
10118 }
10119
10120 return 0;
10121}
10122
10123/**
10124 * netdev_increment_features - increment feature set by one
10125 * @all: current feature set
10126 * @one: new feature set
10127 * @mask: mask feature set
10128 *
10129 * Computes a new feature set after adding a device with feature set
10130 * @one to the master device with current feature set @all. Will not
10131 * enable anything that is off in @mask. Returns the new feature set.
10132 */
10133netdev_features_t netdev_increment_features(netdev_features_t all,
10134 netdev_features_t one, netdev_features_t mask)
10135{
10136 if (mask & NETIF_F_HW_CSUM)
10137 mask |= NETIF_F_CSUM_MASK;
10138 mask |= NETIF_F_VLAN_CHALLENGED;
10139
10140 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10141 all &= one | ~NETIF_F_ALL_FOR_ALL;
10142
10143 /* If one device supports hw checksumming, set for all. */
10144 if (all & NETIF_F_HW_CSUM)
10145 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10146
10147 return all;
10148}
10149EXPORT_SYMBOL(netdev_increment_features);
10150
10151static struct hlist_head * __net_init netdev_create_hash(void)
10152{
10153 int i;
10154 struct hlist_head *hash;
10155
10156 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10157 if (hash != NULL)
10158 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10159 INIT_HLIST_HEAD(&hash[i]);
10160
10161 return hash;
10162}
10163
10164/* Initialize per network namespace state */
10165static int __net_init netdev_init(struct net *net)
10166{
10167 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10168 8 * sizeof_field(struct napi_struct, gro_bitmask));
10169
10170 if (net != &init_net)
10171 INIT_LIST_HEAD(&net->dev_base_head);
10172
10173 net->dev_name_head = netdev_create_hash();
10174 if (net->dev_name_head == NULL)
10175 goto err_name;
10176
10177 net->dev_index_head = netdev_create_hash();
10178 if (net->dev_index_head == NULL)
10179 goto err_idx;
10180
10181 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10182
10183 return 0;
10184
10185err_idx:
10186 kfree(net->dev_name_head);
10187err_name:
10188 return -ENOMEM;
10189}
10190
10191/**
10192 * netdev_drivername - network driver for the device
10193 * @dev: network device
10194 *
10195 * Determine network driver for device.
10196 */
10197const char *netdev_drivername(const struct net_device *dev)
10198{
10199 const struct device_driver *driver;
10200 const struct device *parent;
10201 const char *empty = "";
10202
10203 parent = dev->dev.parent;
10204 if (!parent)
10205 return empty;
10206
10207 driver = parent->driver;
10208 if (driver && driver->name)
10209 return driver->name;
10210 return empty;
10211}
10212
10213static void __netdev_printk(const char *level, const struct net_device *dev,
10214 struct va_format *vaf)
10215{
10216 if (dev && dev->dev.parent) {
10217 dev_printk_emit(level[1] - '0',
10218 dev->dev.parent,
10219 "%s %s %s%s: %pV",
10220 dev_driver_string(dev->dev.parent),
10221 dev_name(dev->dev.parent),
10222 netdev_name(dev), netdev_reg_state(dev),
10223 vaf);
10224 } else if (dev) {
10225 printk("%s%s%s: %pV",
10226 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10227 } else {
10228 printk("%s(NULL net_device): %pV", level, vaf);
10229 }
10230}
10231
10232void netdev_printk(const char *level, const struct net_device *dev,
10233 const char *format, ...)
10234{
10235 struct va_format vaf;
10236 va_list args;
10237
10238 va_start(args, format);
10239
10240 vaf.fmt = format;
10241 vaf.va = &args;
10242
10243 __netdev_printk(level, dev, &vaf);
10244
10245 va_end(args);
10246}
10247EXPORT_SYMBOL(netdev_printk);
10248
10249#define define_netdev_printk_level(func, level) \
10250void func(const struct net_device *dev, const char *fmt, ...) \
10251{ \
10252 struct va_format vaf; \
10253 va_list args; \
10254 \
10255 va_start(args, fmt); \
10256 \
10257 vaf.fmt = fmt; \
10258 vaf.va = &args; \
10259 \
10260 __netdev_printk(level, dev, &vaf); \
10261 \
10262 va_end(args); \
10263} \
10264EXPORT_SYMBOL(func);
10265
10266define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10267define_netdev_printk_level(netdev_alert, KERN_ALERT);
10268define_netdev_printk_level(netdev_crit, KERN_CRIT);
10269define_netdev_printk_level(netdev_err, KERN_ERR);
10270define_netdev_printk_level(netdev_warn, KERN_WARNING);
10271define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10272define_netdev_printk_level(netdev_info, KERN_INFO);
10273
10274static void __net_exit netdev_exit(struct net *net)
10275{
10276 kfree(net->dev_name_head);
10277 kfree(net->dev_index_head);
10278 if (net != &init_net)
10279 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10280}
10281
10282static struct pernet_operations __net_initdata netdev_net_ops = {
10283 .init = netdev_init,
10284 .exit = netdev_exit,
10285};
10286
10287static void __net_exit default_device_exit(struct net *net)
10288{
10289 struct net_device *dev, *aux;
10290 /*
10291 * Push all migratable network devices back to the
10292 * initial network namespace
10293 */
10294 rtnl_lock();
10295 for_each_netdev_safe(net, dev, aux) {
10296 int err;
10297 char fb_name[IFNAMSIZ];
10298
10299 /* Ignore unmoveable devices (i.e. loopback) */
10300 if (dev->features & NETIF_F_NETNS_LOCAL)
10301 continue;
10302
10303 /* Leave virtual devices for the generic cleanup */
10304 if (dev->rtnl_link_ops)
10305 continue;
10306
10307 /* Push remaining network devices to init_net */
10308 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10309 if (__dev_get_by_name(&init_net, fb_name))
10310 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10311 err = dev_change_net_namespace(dev, &init_net, fb_name);
10312 if (err) {
10313 pr_emerg("%s: failed to move %s to init_net: %d\n",
10314 __func__, dev->name, err);
10315 BUG();
10316 }
10317 }
10318 rtnl_unlock();
10319}
10320
10321static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10322{
10323 /* Return with the rtnl_lock held when there are no network
10324 * devices unregistering in any network namespace in net_list.
10325 */
10326 struct net *net;
10327 bool unregistering;
10328 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10329
10330 add_wait_queue(&netdev_unregistering_wq, &wait);
10331 for (;;) {
10332 unregistering = false;
10333 rtnl_lock();
10334 list_for_each_entry(net, net_list, exit_list) {
10335 if (net->dev_unreg_count > 0) {
10336 unregistering = true;
10337 break;
10338 }
10339 }
10340 if (!unregistering)
10341 break;
10342 __rtnl_unlock();
10343
10344 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10345 }
10346 remove_wait_queue(&netdev_unregistering_wq, &wait);
10347}
10348
10349static void __net_exit default_device_exit_batch(struct list_head *net_list)
10350{
10351 /* At exit all network devices most be removed from a network
10352 * namespace. Do this in the reverse order of registration.
10353 * Do this across as many network namespaces as possible to
10354 * improve batching efficiency.
10355 */
10356 struct net_device *dev;
10357 struct net *net;
10358 LIST_HEAD(dev_kill_list);
10359
10360 /* To prevent network device cleanup code from dereferencing
10361 * loopback devices or network devices that have been freed
10362 * wait here for all pending unregistrations to complete,
10363 * before unregistring the loopback device and allowing the
10364 * network namespace be freed.
10365 *
10366 * The netdev todo list containing all network devices
10367 * unregistrations that happen in default_device_exit_batch
10368 * will run in the rtnl_unlock() at the end of
10369 * default_device_exit_batch.
10370 */
10371 rtnl_lock_unregistering(net_list);
10372 list_for_each_entry(net, net_list, exit_list) {
10373 for_each_netdev_reverse(net, dev) {
10374 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10375 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10376 else
10377 unregister_netdevice_queue(dev, &dev_kill_list);
10378 }
10379 }
10380 unregister_netdevice_many(&dev_kill_list);
10381 rtnl_unlock();
10382}
10383
10384static struct pernet_operations __net_initdata default_device_ops = {
10385 .exit = default_device_exit,
10386 .exit_batch = default_device_exit_batch,
10387};
10388
10389/*
10390 * Initialize the DEV module. At boot time this walks the device list and
10391 * unhooks any devices that fail to initialise (normally hardware not
10392 * present) and leaves us with a valid list of present and active devices.
10393 *
10394 */
10395
10396/*
10397 * This is called single threaded during boot, so no need
10398 * to take the rtnl semaphore.
10399 */
10400static int __init net_dev_init(void)
10401{
10402 int i, rc = -ENOMEM;
10403
10404 BUG_ON(!dev_boot_phase);
10405
10406 if (dev_proc_init())
10407 goto out;
10408
10409 if (netdev_kobject_init())
10410 goto out;
10411
10412 INIT_LIST_HEAD(&ptype_all);
10413 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10414 INIT_LIST_HEAD(&ptype_base[i]);
10415
10416 INIT_LIST_HEAD(&offload_base);
10417
10418 if (register_pernet_subsys(&netdev_net_ops))
10419 goto out;
10420
10421 /*
10422 * Initialise the packet receive queues.
10423 */
10424
10425 for_each_possible_cpu(i) {
10426 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10427 struct softnet_data *sd = &per_cpu(softnet_data, i);
10428
10429 INIT_WORK(flush, flush_backlog);
10430
10431 skb_queue_head_init(&sd->input_pkt_queue);
10432 skb_queue_head_init(&sd->process_queue);
10433#ifdef CONFIG_XFRM_OFFLOAD
10434 skb_queue_head_init(&sd->xfrm_backlog);
10435#endif
10436 INIT_LIST_HEAD(&sd->poll_list);
10437 sd->output_queue_tailp = &sd->output_queue;
10438#ifdef CONFIG_RPS
10439 sd->csd.func = rps_trigger_softirq;
10440 sd->csd.info = sd;
10441 sd->cpu = i;
10442#endif
10443
10444 init_gro_hash(&sd->backlog);
10445 sd->backlog.poll = process_backlog;
10446 sd->backlog.weight = weight_p;
10447 }
10448
10449 dev_boot_phase = 0;
10450
10451 /* The loopback device is special if any other network devices
10452 * is present in a network namespace the loopback device must
10453 * be present. Since we now dynamically allocate and free the
10454 * loopback device ensure this invariant is maintained by
10455 * keeping the loopback device as the first device on the
10456 * list of network devices. Ensuring the loopback devices
10457 * is the first device that appears and the last network device
10458 * that disappears.
10459 */
10460 if (register_pernet_device(&loopback_net_ops))
10461 goto out;
10462
10463 if (register_pernet_device(&default_device_ops))
10464 goto out;
10465
10466 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10467 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10468
10469 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10470 NULL, dev_cpu_dead);
10471 WARN_ON(rc < 0);
10472 rc = 0;
10473out:
10474 return rc;
10475}
10476
10477subsys_initcall(net_dev_init);