at v5.5-rc2 45 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <linux/mm_types.h> 22#include <linux/page-flags.h> 23#include <asm/page.h> 24 25/* Free memory management - zoned buddy allocator. */ 26#ifndef CONFIG_FORCE_MAX_ZONEORDER 27#define MAX_ORDER 11 28#else 29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30#endif 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33/* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39#define PAGE_ALLOC_COSTLY_ORDER 3 40 41enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47#ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62#endif 63#ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65#endif 66 MIGRATE_TYPES 67}; 68 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72#ifdef CONFIG_CMA 73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75#else 76# define is_migrate_cma(migratetype) false 77# define is_migrate_cma_page(_page) false 78#endif 79 80static inline bool is_migrate_movable(int mt) 81{ 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83} 84 85#define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89extern int page_group_by_mobility_disabled; 90 91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 93 94#define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 96 PB_migrate_end, MIGRATETYPE_MASK) 97 98struct free_area { 99 struct list_head free_list[MIGRATE_TYPES]; 100 unsigned long nr_free; 101}; 102 103/* Used for pages not on another list */ 104static inline void add_to_free_area(struct page *page, struct free_area *area, 105 int migratetype) 106{ 107 list_add(&page->lru, &area->free_list[migratetype]); 108 area->nr_free++; 109} 110 111/* Used for pages not on another list */ 112static inline void add_to_free_area_tail(struct page *page, struct free_area *area, 113 int migratetype) 114{ 115 list_add_tail(&page->lru, &area->free_list[migratetype]); 116 area->nr_free++; 117} 118 119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR 120/* Used to preserve page allocation order entropy */ 121void add_to_free_area_random(struct page *page, struct free_area *area, 122 int migratetype); 123#else 124static inline void add_to_free_area_random(struct page *page, 125 struct free_area *area, int migratetype) 126{ 127 add_to_free_area(page, area, migratetype); 128} 129#endif 130 131/* Used for pages which are on another list */ 132static inline void move_to_free_area(struct page *page, struct free_area *area, 133 int migratetype) 134{ 135 list_move(&page->lru, &area->free_list[migratetype]); 136} 137 138static inline struct page *get_page_from_free_area(struct free_area *area, 139 int migratetype) 140{ 141 return list_first_entry_or_null(&area->free_list[migratetype], 142 struct page, lru); 143} 144 145static inline void del_page_from_free_area(struct page *page, 146 struct free_area *area) 147{ 148 list_del(&page->lru); 149 __ClearPageBuddy(page); 150 set_page_private(page, 0); 151 area->nr_free--; 152} 153 154static inline bool free_area_empty(struct free_area *area, int migratetype) 155{ 156 return list_empty(&area->free_list[migratetype]); 157} 158 159struct pglist_data; 160 161/* 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 163 * So add a wild amount of padding here to ensure that they fall into separate 164 * cachelines. There are very few zone structures in the machine, so space 165 * consumption is not a concern here. 166 */ 167#if defined(CONFIG_SMP) 168struct zone_padding { 169 char x[0]; 170} ____cacheline_internodealigned_in_smp; 171#define ZONE_PADDING(name) struct zone_padding name; 172#else 173#define ZONE_PADDING(name) 174#endif 175 176#ifdef CONFIG_NUMA 177enum numa_stat_item { 178 NUMA_HIT, /* allocated in intended node */ 179 NUMA_MISS, /* allocated in non intended node */ 180 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 182 NUMA_LOCAL, /* allocation from local node */ 183 NUMA_OTHER, /* allocation from other node */ 184 NR_VM_NUMA_STAT_ITEMS 185}; 186#else 187#define NR_VM_NUMA_STAT_ITEMS 0 188#endif 189 190enum zone_stat_item { 191 /* First 128 byte cacheline (assuming 64 bit words) */ 192 NR_FREE_PAGES, 193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 195 NR_ZONE_ACTIVE_ANON, 196 NR_ZONE_INACTIVE_FILE, 197 NR_ZONE_ACTIVE_FILE, 198 NR_ZONE_UNEVICTABLE, 199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 201 NR_PAGETABLE, /* used for pagetables */ 202 NR_KERNEL_STACK_KB, /* measured in KiB */ 203 /* Second 128 byte cacheline */ 204 NR_BOUNCE, 205#if IS_ENABLED(CONFIG_ZSMALLOC) 206 NR_ZSPAGES, /* allocated in zsmalloc */ 207#endif 208 NR_FREE_CMA_PAGES, 209 NR_VM_ZONE_STAT_ITEMS }; 210 211enum node_stat_item { 212 NR_LRU_BASE, 213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 214 NR_ACTIVE_ANON, /* " " " " " */ 215 NR_INACTIVE_FILE, /* " " " " " */ 216 NR_ACTIVE_FILE, /* " " " " " */ 217 NR_UNEVICTABLE, /* " " " " " */ 218 NR_SLAB_RECLAIMABLE, /* Please do not reorder this item */ 219 NR_SLAB_UNRECLAIMABLE, /* and this one without looking at 220 * memcg_flush_percpu_vmstats() first. */ 221 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 222 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 223 WORKINGSET_NODES, 224 WORKINGSET_REFAULT, 225 WORKINGSET_ACTIVATE, 226 WORKINGSET_RESTORE, 227 WORKINGSET_NODERECLAIM, 228 NR_ANON_MAPPED, /* Mapped anonymous pages */ 229 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 230 only modified from process context */ 231 NR_FILE_PAGES, 232 NR_FILE_DIRTY, 233 NR_WRITEBACK, 234 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 235 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 236 NR_SHMEM_THPS, 237 NR_SHMEM_PMDMAPPED, 238 NR_FILE_THPS, 239 NR_FILE_PMDMAPPED, 240 NR_ANON_THPS, 241 NR_UNSTABLE_NFS, /* NFS unstable pages */ 242 NR_VMSCAN_WRITE, 243 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 244 NR_DIRTIED, /* page dirtyings since bootup */ 245 NR_WRITTEN, /* page writings since bootup */ 246 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 247 NR_VM_NODE_STAT_ITEMS 248}; 249 250/* 251 * We do arithmetic on the LRU lists in various places in the code, 252 * so it is important to keep the active lists LRU_ACTIVE higher in 253 * the array than the corresponding inactive lists, and to keep 254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 255 * 256 * This has to be kept in sync with the statistics in zone_stat_item 257 * above and the descriptions in vmstat_text in mm/vmstat.c 258 */ 259#define LRU_BASE 0 260#define LRU_ACTIVE 1 261#define LRU_FILE 2 262 263enum lru_list { 264 LRU_INACTIVE_ANON = LRU_BASE, 265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 268 LRU_UNEVICTABLE, 269 NR_LRU_LISTS 270}; 271 272#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 273 274#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 275 276static inline bool is_file_lru(enum lru_list lru) 277{ 278 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 279} 280 281static inline bool is_active_lru(enum lru_list lru) 282{ 283 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 284} 285 286struct zone_reclaim_stat { 287 /* 288 * The pageout code in vmscan.c keeps track of how many of the 289 * mem/swap backed and file backed pages are referenced. 290 * The higher the rotated/scanned ratio, the more valuable 291 * that cache is. 292 * 293 * The anon LRU stats live in [0], file LRU stats in [1] 294 */ 295 unsigned long recent_rotated[2]; 296 unsigned long recent_scanned[2]; 297}; 298 299enum lruvec_flags { 300 LRUVEC_CONGESTED, /* lruvec has many dirty pages 301 * backed by a congested BDI 302 */ 303}; 304 305struct lruvec { 306 struct list_head lists[NR_LRU_LISTS]; 307 struct zone_reclaim_stat reclaim_stat; 308 /* Evictions & activations on the inactive file list */ 309 atomic_long_t inactive_age; 310 /* Refaults at the time of last reclaim cycle */ 311 unsigned long refaults; 312 /* Various lruvec state flags (enum lruvec_flags) */ 313 unsigned long flags; 314#ifdef CONFIG_MEMCG 315 struct pglist_data *pgdat; 316#endif 317}; 318 319/* Isolate unmapped pages */ 320#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 321/* Isolate for asynchronous migration */ 322#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 323/* Isolate unevictable pages */ 324#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 325 326/* LRU Isolation modes. */ 327typedef unsigned __bitwise isolate_mode_t; 328 329enum zone_watermarks { 330 WMARK_MIN, 331 WMARK_LOW, 332 WMARK_HIGH, 333 NR_WMARK 334}; 335 336#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 337#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 338#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 339#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 340 341struct per_cpu_pages { 342 int count; /* number of pages in the list */ 343 int high; /* high watermark, emptying needed */ 344 int batch; /* chunk size for buddy add/remove */ 345 346 /* Lists of pages, one per migrate type stored on the pcp-lists */ 347 struct list_head lists[MIGRATE_PCPTYPES]; 348}; 349 350struct per_cpu_pageset { 351 struct per_cpu_pages pcp; 352#ifdef CONFIG_NUMA 353 s8 expire; 354 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 355#endif 356#ifdef CONFIG_SMP 357 s8 stat_threshold; 358 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 359#endif 360}; 361 362struct per_cpu_nodestat { 363 s8 stat_threshold; 364 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 365}; 366 367#endif /* !__GENERATING_BOUNDS.H */ 368 369enum zone_type { 370 /* 371 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 372 * to DMA to all of the addressable memory (ZONE_NORMAL). 373 * On architectures where this area covers the whole 32 bit address 374 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 375 * DMA addressing constraints. This distinction is important as a 32bit 376 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 377 * platforms may need both zones as they support peripherals with 378 * different DMA addressing limitations. 379 * 380 * Some examples: 381 * 382 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the 383 * rest of the lower 4G. 384 * 385 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on 386 * the specific device. 387 * 388 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the 389 * lower 4G. 390 * 391 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary 392 * depending on the specific device. 393 * 394 * - s390 uses ZONE_DMA fixed to the lower 2G. 395 * 396 * - ia64 and riscv only use ZONE_DMA32. 397 * 398 * - parisc uses neither. 399 */ 400#ifdef CONFIG_ZONE_DMA 401 ZONE_DMA, 402#endif 403#ifdef CONFIG_ZONE_DMA32 404 ZONE_DMA32, 405#endif 406 /* 407 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 408 * performed on pages in ZONE_NORMAL if the DMA devices support 409 * transfers to all addressable memory. 410 */ 411 ZONE_NORMAL, 412#ifdef CONFIG_HIGHMEM 413 /* 414 * A memory area that is only addressable by the kernel through 415 * mapping portions into its own address space. This is for example 416 * used by i386 to allow the kernel to address the memory beyond 417 * 900MB. The kernel will set up special mappings (page 418 * table entries on i386) for each page that the kernel needs to 419 * access. 420 */ 421 ZONE_HIGHMEM, 422#endif 423 ZONE_MOVABLE, 424#ifdef CONFIG_ZONE_DEVICE 425 ZONE_DEVICE, 426#endif 427 __MAX_NR_ZONES 428 429}; 430 431#ifndef __GENERATING_BOUNDS_H 432 433struct zone { 434 /* Read-mostly fields */ 435 436 /* zone watermarks, access with *_wmark_pages(zone) macros */ 437 unsigned long _watermark[NR_WMARK]; 438 unsigned long watermark_boost; 439 440 unsigned long nr_reserved_highatomic; 441 442 /* 443 * We don't know if the memory that we're going to allocate will be 444 * freeable or/and it will be released eventually, so to avoid totally 445 * wasting several GB of ram we must reserve some of the lower zone 446 * memory (otherwise we risk to run OOM on the lower zones despite 447 * there being tons of freeable ram on the higher zones). This array is 448 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 449 * changes. 450 */ 451 long lowmem_reserve[MAX_NR_ZONES]; 452 453#ifdef CONFIG_NUMA 454 int node; 455#endif 456 struct pglist_data *zone_pgdat; 457 struct per_cpu_pageset __percpu *pageset; 458 459#ifndef CONFIG_SPARSEMEM 460 /* 461 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 462 * In SPARSEMEM, this map is stored in struct mem_section 463 */ 464 unsigned long *pageblock_flags; 465#endif /* CONFIG_SPARSEMEM */ 466 467 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 468 unsigned long zone_start_pfn; 469 470 /* 471 * spanned_pages is the total pages spanned by the zone, including 472 * holes, which is calculated as: 473 * spanned_pages = zone_end_pfn - zone_start_pfn; 474 * 475 * present_pages is physical pages existing within the zone, which 476 * is calculated as: 477 * present_pages = spanned_pages - absent_pages(pages in holes); 478 * 479 * managed_pages is present pages managed by the buddy system, which 480 * is calculated as (reserved_pages includes pages allocated by the 481 * bootmem allocator): 482 * managed_pages = present_pages - reserved_pages; 483 * 484 * So present_pages may be used by memory hotplug or memory power 485 * management logic to figure out unmanaged pages by checking 486 * (present_pages - managed_pages). And managed_pages should be used 487 * by page allocator and vm scanner to calculate all kinds of watermarks 488 * and thresholds. 489 * 490 * Locking rules: 491 * 492 * zone_start_pfn and spanned_pages are protected by span_seqlock. 493 * It is a seqlock because it has to be read outside of zone->lock, 494 * and it is done in the main allocator path. But, it is written 495 * quite infrequently. 496 * 497 * The span_seq lock is declared along with zone->lock because it is 498 * frequently read in proximity to zone->lock. It's good to 499 * give them a chance of being in the same cacheline. 500 * 501 * Write access to present_pages at runtime should be protected by 502 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 503 * present_pages should get_online_mems() to get a stable value. 504 */ 505 atomic_long_t managed_pages; 506 unsigned long spanned_pages; 507 unsigned long present_pages; 508 509 const char *name; 510 511#ifdef CONFIG_MEMORY_ISOLATION 512 /* 513 * Number of isolated pageblock. It is used to solve incorrect 514 * freepage counting problem due to racy retrieving migratetype 515 * of pageblock. Protected by zone->lock. 516 */ 517 unsigned long nr_isolate_pageblock; 518#endif 519 520#ifdef CONFIG_MEMORY_HOTPLUG 521 /* see spanned/present_pages for more description */ 522 seqlock_t span_seqlock; 523#endif 524 525 int initialized; 526 527 /* Write-intensive fields used from the page allocator */ 528 ZONE_PADDING(_pad1_) 529 530 /* free areas of different sizes */ 531 struct free_area free_area[MAX_ORDER]; 532 533 /* zone flags, see below */ 534 unsigned long flags; 535 536 /* Primarily protects free_area */ 537 spinlock_t lock; 538 539 /* Write-intensive fields used by compaction and vmstats. */ 540 ZONE_PADDING(_pad2_) 541 542 /* 543 * When free pages are below this point, additional steps are taken 544 * when reading the number of free pages to avoid per-cpu counter 545 * drift allowing watermarks to be breached 546 */ 547 unsigned long percpu_drift_mark; 548 549#if defined CONFIG_COMPACTION || defined CONFIG_CMA 550 /* pfn where compaction free scanner should start */ 551 unsigned long compact_cached_free_pfn; 552 /* pfn where async and sync compaction migration scanner should start */ 553 unsigned long compact_cached_migrate_pfn[2]; 554 unsigned long compact_init_migrate_pfn; 555 unsigned long compact_init_free_pfn; 556#endif 557 558#ifdef CONFIG_COMPACTION 559 /* 560 * On compaction failure, 1<<compact_defer_shift compactions 561 * are skipped before trying again. The number attempted since 562 * last failure is tracked with compact_considered. 563 */ 564 unsigned int compact_considered; 565 unsigned int compact_defer_shift; 566 int compact_order_failed; 567#endif 568 569#if defined CONFIG_COMPACTION || defined CONFIG_CMA 570 /* Set to true when the PG_migrate_skip bits should be cleared */ 571 bool compact_blockskip_flush; 572#endif 573 574 bool contiguous; 575 576 ZONE_PADDING(_pad3_) 577 /* Zone statistics */ 578 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 579 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 580} ____cacheline_internodealigned_in_smp; 581 582enum pgdat_flags { 583 PGDAT_DIRTY, /* reclaim scanning has recently found 584 * many dirty file pages at the tail 585 * of the LRU. 586 */ 587 PGDAT_WRITEBACK, /* reclaim scanning has recently found 588 * many pages under writeback 589 */ 590 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 591}; 592 593enum zone_flags { 594 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 595 * Cleared when kswapd is woken. 596 */ 597}; 598 599static inline unsigned long zone_managed_pages(struct zone *zone) 600{ 601 return (unsigned long)atomic_long_read(&zone->managed_pages); 602} 603 604static inline unsigned long zone_end_pfn(const struct zone *zone) 605{ 606 return zone->zone_start_pfn + zone->spanned_pages; 607} 608 609static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 610{ 611 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 612} 613 614static inline bool zone_is_initialized(struct zone *zone) 615{ 616 return zone->initialized; 617} 618 619static inline bool zone_is_empty(struct zone *zone) 620{ 621 return zone->spanned_pages == 0; 622} 623 624/* 625 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 626 * intersection with the given zone 627 */ 628static inline bool zone_intersects(struct zone *zone, 629 unsigned long start_pfn, unsigned long nr_pages) 630{ 631 if (zone_is_empty(zone)) 632 return false; 633 if (start_pfn >= zone_end_pfn(zone) || 634 start_pfn + nr_pages <= zone->zone_start_pfn) 635 return false; 636 637 return true; 638} 639 640/* 641 * The "priority" of VM scanning is how much of the queues we will scan in one 642 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 643 * queues ("queue_length >> 12") during an aging round. 644 */ 645#define DEF_PRIORITY 12 646 647/* Maximum number of zones on a zonelist */ 648#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 649 650enum { 651 ZONELIST_FALLBACK, /* zonelist with fallback */ 652#ifdef CONFIG_NUMA 653 /* 654 * The NUMA zonelists are doubled because we need zonelists that 655 * restrict the allocations to a single node for __GFP_THISNODE. 656 */ 657 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 658#endif 659 MAX_ZONELISTS 660}; 661 662/* 663 * This struct contains information about a zone in a zonelist. It is stored 664 * here to avoid dereferences into large structures and lookups of tables 665 */ 666struct zoneref { 667 struct zone *zone; /* Pointer to actual zone */ 668 int zone_idx; /* zone_idx(zoneref->zone) */ 669}; 670 671/* 672 * One allocation request operates on a zonelist. A zonelist 673 * is a list of zones, the first one is the 'goal' of the 674 * allocation, the other zones are fallback zones, in decreasing 675 * priority. 676 * 677 * To speed the reading of the zonelist, the zonerefs contain the zone index 678 * of the entry being read. Helper functions to access information given 679 * a struct zoneref are 680 * 681 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 682 * zonelist_zone_idx() - Return the index of the zone for an entry 683 * zonelist_node_idx() - Return the index of the node for an entry 684 */ 685struct zonelist { 686 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 687}; 688 689#ifndef CONFIG_DISCONTIGMEM 690/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 691extern struct page *mem_map; 692#endif 693 694#ifdef CONFIG_TRANSPARENT_HUGEPAGE 695struct deferred_split { 696 spinlock_t split_queue_lock; 697 struct list_head split_queue; 698 unsigned long split_queue_len; 699}; 700#endif 701 702/* 703 * On NUMA machines, each NUMA node would have a pg_data_t to describe 704 * it's memory layout. On UMA machines there is a single pglist_data which 705 * describes the whole memory. 706 * 707 * Memory statistics and page replacement data structures are maintained on a 708 * per-zone basis. 709 */ 710struct bootmem_data; 711typedef struct pglist_data { 712 struct zone node_zones[MAX_NR_ZONES]; 713 struct zonelist node_zonelists[MAX_ZONELISTS]; 714 int nr_zones; 715#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 716 struct page *node_mem_map; 717#ifdef CONFIG_PAGE_EXTENSION 718 struct page_ext *node_page_ext; 719#endif 720#endif 721#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 722 /* 723 * Must be held any time you expect node_start_pfn, 724 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 725 * 726 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 727 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 728 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 729 * 730 * Nests above zone->lock and zone->span_seqlock 731 */ 732 spinlock_t node_size_lock; 733#endif 734 unsigned long node_start_pfn; 735 unsigned long node_present_pages; /* total number of physical pages */ 736 unsigned long node_spanned_pages; /* total size of physical page 737 range, including holes */ 738 int node_id; 739 wait_queue_head_t kswapd_wait; 740 wait_queue_head_t pfmemalloc_wait; 741 struct task_struct *kswapd; /* Protected by 742 mem_hotplug_begin/end() */ 743 int kswapd_order; 744 enum zone_type kswapd_classzone_idx; 745 746 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 747 748#ifdef CONFIG_COMPACTION 749 int kcompactd_max_order; 750 enum zone_type kcompactd_classzone_idx; 751 wait_queue_head_t kcompactd_wait; 752 struct task_struct *kcompactd; 753#endif 754 /* 755 * This is a per-node reserve of pages that are not available 756 * to userspace allocations. 757 */ 758 unsigned long totalreserve_pages; 759 760#ifdef CONFIG_NUMA 761 /* 762 * zone reclaim becomes active if more unmapped pages exist. 763 */ 764 unsigned long min_unmapped_pages; 765 unsigned long min_slab_pages; 766#endif /* CONFIG_NUMA */ 767 768 /* Write-intensive fields used by page reclaim */ 769 ZONE_PADDING(_pad1_) 770 spinlock_t lru_lock; 771 772#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 773 /* 774 * If memory initialisation on large machines is deferred then this 775 * is the first PFN that needs to be initialised. 776 */ 777 unsigned long first_deferred_pfn; 778#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 779 780#ifdef CONFIG_TRANSPARENT_HUGEPAGE 781 struct deferred_split deferred_split_queue; 782#endif 783 784 /* Fields commonly accessed by the page reclaim scanner */ 785 786 /* 787 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 788 * 789 * Use mem_cgroup_lruvec() to look up lruvecs. 790 */ 791 struct lruvec __lruvec; 792 793 unsigned long flags; 794 795 ZONE_PADDING(_pad2_) 796 797 /* Per-node vmstats */ 798 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 799 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 800} pg_data_t; 801 802#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 803#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 804#ifdef CONFIG_FLAT_NODE_MEM_MAP 805#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 806#else 807#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 808#endif 809#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 810 811#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 812#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 813 814static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 815{ 816 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 817} 818 819static inline bool pgdat_is_empty(pg_data_t *pgdat) 820{ 821 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 822} 823 824#include <linux/memory_hotplug.h> 825 826void build_all_zonelists(pg_data_t *pgdat); 827void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 828 enum zone_type classzone_idx); 829bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 830 int classzone_idx, unsigned int alloc_flags, 831 long free_pages); 832bool zone_watermark_ok(struct zone *z, unsigned int order, 833 unsigned long mark, int classzone_idx, 834 unsigned int alloc_flags); 835bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 836 unsigned long mark, int classzone_idx); 837enum memmap_context { 838 MEMMAP_EARLY, 839 MEMMAP_HOTPLUG, 840}; 841extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 842 unsigned long size); 843 844extern void lruvec_init(struct lruvec *lruvec); 845 846static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 847{ 848#ifdef CONFIG_MEMCG 849 return lruvec->pgdat; 850#else 851 return container_of(lruvec, struct pglist_data, __lruvec); 852#endif 853} 854 855extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 856 857#ifdef CONFIG_HAVE_MEMORY_PRESENT 858void memory_present(int nid, unsigned long start, unsigned long end); 859#else 860static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 861#endif 862 863#if defined(CONFIG_SPARSEMEM) 864void memblocks_present(void); 865#else 866static inline void memblocks_present(void) {} 867#endif 868 869#ifdef CONFIG_HAVE_MEMORYLESS_NODES 870int local_memory_node(int node_id); 871#else 872static inline int local_memory_node(int node_id) { return node_id; }; 873#endif 874 875/* 876 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 877 */ 878#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 879 880/* 881 * Returns true if a zone has pages managed by the buddy allocator. 882 * All the reclaim decisions have to use this function rather than 883 * populated_zone(). If the whole zone is reserved then we can easily 884 * end up with populated_zone() && !managed_zone(). 885 */ 886static inline bool managed_zone(struct zone *zone) 887{ 888 return zone_managed_pages(zone); 889} 890 891/* Returns true if a zone has memory */ 892static inline bool populated_zone(struct zone *zone) 893{ 894 return zone->present_pages; 895} 896 897#ifdef CONFIG_NUMA 898static inline int zone_to_nid(struct zone *zone) 899{ 900 return zone->node; 901} 902 903static inline void zone_set_nid(struct zone *zone, int nid) 904{ 905 zone->node = nid; 906} 907#else 908static inline int zone_to_nid(struct zone *zone) 909{ 910 return 0; 911} 912 913static inline void zone_set_nid(struct zone *zone, int nid) {} 914#endif 915 916extern int movable_zone; 917 918#ifdef CONFIG_HIGHMEM 919static inline int zone_movable_is_highmem(void) 920{ 921#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 922 return movable_zone == ZONE_HIGHMEM; 923#else 924 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 925#endif 926} 927#endif 928 929static inline int is_highmem_idx(enum zone_type idx) 930{ 931#ifdef CONFIG_HIGHMEM 932 return (idx == ZONE_HIGHMEM || 933 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 934#else 935 return 0; 936#endif 937} 938 939/** 940 * is_highmem - helper function to quickly check if a struct zone is a 941 * highmem zone or not. This is an attempt to keep references 942 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 943 * @zone - pointer to struct zone variable 944 */ 945static inline int is_highmem(struct zone *zone) 946{ 947#ifdef CONFIG_HIGHMEM 948 return is_highmem_idx(zone_idx(zone)); 949#else 950 return 0; 951#endif 952} 953 954/* These two functions are used to setup the per zone pages min values */ 955struct ctl_table; 956int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 957 void __user *, size_t *, loff_t *); 958int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, 959 void __user *, size_t *, loff_t *); 960int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 961 void __user *, size_t *, loff_t *); 962extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 963int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 964 void __user *, size_t *, loff_t *); 965int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 966 void __user *, size_t *, loff_t *); 967int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 968 void __user *, size_t *, loff_t *); 969int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 970 void __user *, size_t *, loff_t *); 971 972extern int numa_zonelist_order_handler(struct ctl_table *, int, 973 void __user *, size_t *, loff_t *); 974extern char numa_zonelist_order[]; 975#define NUMA_ZONELIST_ORDER_LEN 16 976 977#ifndef CONFIG_NEED_MULTIPLE_NODES 978 979extern struct pglist_data contig_page_data; 980#define NODE_DATA(nid) (&contig_page_data) 981#define NODE_MEM_MAP(nid) mem_map 982 983#else /* CONFIG_NEED_MULTIPLE_NODES */ 984 985#include <asm/mmzone.h> 986 987#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 988 989extern struct pglist_data *first_online_pgdat(void); 990extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 991extern struct zone *next_zone(struct zone *zone); 992 993/** 994 * for_each_online_pgdat - helper macro to iterate over all online nodes 995 * @pgdat - pointer to a pg_data_t variable 996 */ 997#define for_each_online_pgdat(pgdat) \ 998 for (pgdat = first_online_pgdat(); \ 999 pgdat; \ 1000 pgdat = next_online_pgdat(pgdat)) 1001/** 1002 * for_each_zone - helper macro to iterate over all memory zones 1003 * @zone - pointer to struct zone variable 1004 * 1005 * The user only needs to declare the zone variable, for_each_zone 1006 * fills it in. 1007 */ 1008#define for_each_zone(zone) \ 1009 for (zone = (first_online_pgdat())->node_zones; \ 1010 zone; \ 1011 zone = next_zone(zone)) 1012 1013#define for_each_populated_zone(zone) \ 1014 for (zone = (first_online_pgdat())->node_zones; \ 1015 zone; \ 1016 zone = next_zone(zone)) \ 1017 if (!populated_zone(zone)) \ 1018 ; /* do nothing */ \ 1019 else 1020 1021static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1022{ 1023 return zoneref->zone; 1024} 1025 1026static inline int zonelist_zone_idx(struct zoneref *zoneref) 1027{ 1028 return zoneref->zone_idx; 1029} 1030 1031static inline int zonelist_node_idx(struct zoneref *zoneref) 1032{ 1033 return zone_to_nid(zoneref->zone); 1034} 1035 1036struct zoneref *__next_zones_zonelist(struct zoneref *z, 1037 enum zone_type highest_zoneidx, 1038 nodemask_t *nodes); 1039 1040/** 1041 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1042 * @z - The cursor used as a starting point for the search 1043 * @highest_zoneidx - The zone index of the highest zone to return 1044 * @nodes - An optional nodemask to filter the zonelist with 1045 * 1046 * This function returns the next zone at or below a given zone index that is 1047 * within the allowed nodemask using a cursor as the starting point for the 1048 * search. The zoneref returned is a cursor that represents the current zone 1049 * being examined. It should be advanced by one before calling 1050 * next_zones_zonelist again. 1051 */ 1052static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1053 enum zone_type highest_zoneidx, 1054 nodemask_t *nodes) 1055{ 1056 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1057 return z; 1058 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1059} 1060 1061/** 1062 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1063 * @zonelist - The zonelist to search for a suitable zone 1064 * @highest_zoneidx - The zone index of the highest zone to return 1065 * @nodes - An optional nodemask to filter the zonelist with 1066 * @return - Zoneref pointer for the first suitable zone found (see below) 1067 * 1068 * This function returns the first zone at or below a given zone index that is 1069 * within the allowed nodemask. The zoneref returned is a cursor that can be 1070 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1071 * one before calling. 1072 * 1073 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1074 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1075 * update due to cpuset modification. 1076 */ 1077static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1078 enum zone_type highest_zoneidx, 1079 nodemask_t *nodes) 1080{ 1081 return next_zones_zonelist(zonelist->_zonerefs, 1082 highest_zoneidx, nodes); 1083} 1084 1085/** 1086 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1087 * @zone - The current zone in the iterator 1088 * @z - The current pointer within zonelist->_zonerefs being iterated 1089 * @zlist - The zonelist being iterated 1090 * @highidx - The zone index of the highest zone to return 1091 * @nodemask - Nodemask allowed by the allocator 1092 * 1093 * This iterator iterates though all zones at or below a given zone index and 1094 * within a given nodemask 1095 */ 1096#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1097 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1098 zone; \ 1099 z = next_zones_zonelist(++z, highidx, nodemask), \ 1100 zone = zonelist_zone(z)) 1101 1102#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1103 for (zone = z->zone; \ 1104 zone; \ 1105 z = next_zones_zonelist(++z, highidx, nodemask), \ 1106 zone = zonelist_zone(z)) 1107 1108 1109/** 1110 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1111 * @zone - The current zone in the iterator 1112 * @z - The current pointer within zonelist->zones being iterated 1113 * @zlist - The zonelist being iterated 1114 * @highidx - The zone index of the highest zone to return 1115 * 1116 * This iterator iterates though all zones at or below a given zone index. 1117 */ 1118#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1119 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1120 1121#ifdef CONFIG_SPARSEMEM 1122#include <asm/sparsemem.h> 1123#endif 1124 1125#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1126 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1127static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1128{ 1129 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1130 return 0; 1131} 1132#endif 1133 1134#ifdef CONFIG_FLATMEM 1135#define pfn_to_nid(pfn) (0) 1136#endif 1137 1138#ifdef CONFIG_SPARSEMEM 1139 1140/* 1141 * SECTION_SHIFT #bits space required to store a section # 1142 * 1143 * PA_SECTION_SHIFT physical address to/from section number 1144 * PFN_SECTION_SHIFT pfn to/from section number 1145 */ 1146#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1147#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1148 1149#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1150 1151#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1152#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1153 1154#define SECTION_BLOCKFLAGS_BITS \ 1155 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1156 1157#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1158#error Allocator MAX_ORDER exceeds SECTION_SIZE 1159#endif 1160 1161static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1162{ 1163 return pfn >> PFN_SECTION_SHIFT; 1164} 1165static inline unsigned long section_nr_to_pfn(unsigned long sec) 1166{ 1167 return sec << PFN_SECTION_SHIFT; 1168} 1169 1170#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1171#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1172 1173#define SUBSECTION_SHIFT 21 1174 1175#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1176#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1177#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1178 1179#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1180#error Subsection size exceeds section size 1181#else 1182#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1183#endif 1184 1185#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1186#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1187 1188struct mem_section_usage { 1189 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1190 /* See declaration of similar field in struct zone */ 1191 unsigned long pageblock_flags[0]; 1192}; 1193 1194void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1195 1196struct page; 1197struct page_ext; 1198struct mem_section { 1199 /* 1200 * This is, logically, a pointer to an array of struct 1201 * pages. However, it is stored with some other magic. 1202 * (see sparse.c::sparse_init_one_section()) 1203 * 1204 * Additionally during early boot we encode node id of 1205 * the location of the section here to guide allocation. 1206 * (see sparse.c::memory_present()) 1207 * 1208 * Making it a UL at least makes someone do a cast 1209 * before using it wrong. 1210 */ 1211 unsigned long section_mem_map; 1212 1213 struct mem_section_usage *usage; 1214#ifdef CONFIG_PAGE_EXTENSION 1215 /* 1216 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1217 * section. (see page_ext.h about this.) 1218 */ 1219 struct page_ext *page_ext; 1220 unsigned long pad; 1221#endif 1222 /* 1223 * WARNING: mem_section must be a power-of-2 in size for the 1224 * calculation and use of SECTION_ROOT_MASK to make sense. 1225 */ 1226}; 1227 1228#ifdef CONFIG_SPARSEMEM_EXTREME 1229#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1230#else 1231#define SECTIONS_PER_ROOT 1 1232#endif 1233 1234#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1235#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1236#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1237 1238#ifdef CONFIG_SPARSEMEM_EXTREME 1239extern struct mem_section **mem_section; 1240#else 1241extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1242#endif 1243 1244static inline unsigned long *section_to_usemap(struct mem_section *ms) 1245{ 1246 return ms->usage->pageblock_flags; 1247} 1248 1249static inline struct mem_section *__nr_to_section(unsigned long nr) 1250{ 1251#ifdef CONFIG_SPARSEMEM_EXTREME 1252 if (!mem_section) 1253 return NULL; 1254#endif 1255 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1256 return NULL; 1257 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1258} 1259extern unsigned long __section_nr(struct mem_section *ms); 1260extern size_t mem_section_usage_size(void); 1261 1262/* 1263 * We use the lower bits of the mem_map pointer to store 1264 * a little bit of information. The pointer is calculated 1265 * as mem_map - section_nr_to_pfn(pnum). The result is 1266 * aligned to the minimum alignment of the two values: 1267 * 1. All mem_map arrays are page-aligned. 1268 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1269 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1270 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1271 * worst combination is powerpc with 256k pages, 1272 * which results in PFN_SECTION_SHIFT equal 6. 1273 * To sum it up, at least 6 bits are available. 1274 */ 1275#define SECTION_MARKED_PRESENT (1UL<<0) 1276#define SECTION_HAS_MEM_MAP (1UL<<1) 1277#define SECTION_IS_ONLINE (1UL<<2) 1278#define SECTION_IS_EARLY (1UL<<3) 1279#define SECTION_MAP_LAST_BIT (1UL<<4) 1280#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1281#define SECTION_NID_SHIFT 3 1282 1283static inline struct page *__section_mem_map_addr(struct mem_section *section) 1284{ 1285 unsigned long map = section->section_mem_map; 1286 map &= SECTION_MAP_MASK; 1287 return (struct page *)map; 1288} 1289 1290static inline int present_section(struct mem_section *section) 1291{ 1292 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1293} 1294 1295static inline int present_section_nr(unsigned long nr) 1296{ 1297 return present_section(__nr_to_section(nr)); 1298} 1299 1300static inline int valid_section(struct mem_section *section) 1301{ 1302 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1303} 1304 1305static inline int early_section(struct mem_section *section) 1306{ 1307 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1308} 1309 1310static inline int valid_section_nr(unsigned long nr) 1311{ 1312 return valid_section(__nr_to_section(nr)); 1313} 1314 1315static inline int online_section(struct mem_section *section) 1316{ 1317 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1318} 1319 1320static inline int online_section_nr(unsigned long nr) 1321{ 1322 return online_section(__nr_to_section(nr)); 1323} 1324 1325#ifdef CONFIG_MEMORY_HOTPLUG 1326void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1327#ifdef CONFIG_MEMORY_HOTREMOVE 1328void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1329#endif 1330#endif 1331 1332static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1333{ 1334 return __nr_to_section(pfn_to_section_nr(pfn)); 1335} 1336 1337extern unsigned long __highest_present_section_nr; 1338 1339static inline int subsection_map_index(unsigned long pfn) 1340{ 1341 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1342} 1343 1344#ifdef CONFIG_SPARSEMEM_VMEMMAP 1345static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1346{ 1347 int idx = subsection_map_index(pfn); 1348 1349 return test_bit(idx, ms->usage->subsection_map); 1350} 1351#else 1352static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1353{ 1354 return 1; 1355} 1356#endif 1357 1358#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1359static inline int pfn_valid(unsigned long pfn) 1360{ 1361 struct mem_section *ms; 1362 1363 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1364 return 0; 1365 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1366 if (!valid_section(ms)) 1367 return 0; 1368 /* 1369 * Traditionally early sections always returned pfn_valid() for 1370 * the entire section-sized span. 1371 */ 1372 return early_section(ms) || pfn_section_valid(ms, pfn); 1373} 1374#endif 1375 1376static inline int pfn_present(unsigned long pfn) 1377{ 1378 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1379 return 0; 1380 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1381} 1382 1383/* 1384 * These are _only_ used during initialisation, therefore they 1385 * can use __initdata ... They could have names to indicate 1386 * this restriction. 1387 */ 1388#ifdef CONFIG_NUMA 1389#define pfn_to_nid(pfn) \ 1390({ \ 1391 unsigned long __pfn_to_nid_pfn = (pfn); \ 1392 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1393}) 1394#else 1395#define pfn_to_nid(pfn) (0) 1396#endif 1397 1398#define early_pfn_valid(pfn) pfn_valid(pfn) 1399void sparse_init(void); 1400#else 1401#define sparse_init() do {} while (0) 1402#define sparse_index_init(_sec, _nid) do {} while (0) 1403#define pfn_present pfn_valid 1404#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1405#endif /* CONFIG_SPARSEMEM */ 1406 1407/* 1408 * During memory init memblocks map pfns to nids. The search is expensive and 1409 * this caches recent lookups. The implementation of __early_pfn_to_nid 1410 * may treat start/end as pfns or sections. 1411 */ 1412struct mminit_pfnnid_cache { 1413 unsigned long last_start; 1414 unsigned long last_end; 1415 int last_nid; 1416}; 1417 1418#ifndef early_pfn_valid 1419#define early_pfn_valid(pfn) (1) 1420#endif 1421 1422void memory_present(int nid, unsigned long start, unsigned long end); 1423 1424/* 1425 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1426 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1427 * pfn_valid_within() should be used in this case; we optimise this away 1428 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1429 */ 1430#ifdef CONFIG_HOLES_IN_ZONE 1431#define pfn_valid_within(pfn) pfn_valid(pfn) 1432#else 1433#define pfn_valid_within(pfn) (1) 1434#endif 1435 1436#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1437/* 1438 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1439 * associated with it or not. This means that a struct page exists for this 1440 * pfn. The caller cannot assume the page is fully initialized in general. 1441 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1442 * will ensure the struct page is fully online and initialized. Special pages 1443 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1444 * 1445 * In FLATMEM, it is expected that holes always have valid memmap as long as 1446 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1447 * that a valid section has a memmap for the entire section. 1448 * 1449 * However, an ARM, and maybe other embedded architectures in the future 1450 * free memmap backing holes to save memory on the assumption the memmap is 1451 * never used. The page_zone linkages are then broken even though pfn_valid() 1452 * returns true. A walker of the full memmap must then do this additional 1453 * check to ensure the memmap they are looking at is sane by making sure 1454 * the zone and PFN linkages are still valid. This is expensive, but walkers 1455 * of the full memmap are extremely rare. 1456 */ 1457bool memmap_valid_within(unsigned long pfn, 1458 struct page *page, struct zone *zone); 1459#else 1460static inline bool memmap_valid_within(unsigned long pfn, 1461 struct page *page, struct zone *zone) 1462{ 1463 return true; 1464} 1465#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1466 1467#endif /* !__GENERATING_BOUNDS.H */ 1468#endif /* !__ASSEMBLY__ */ 1469#endif /* _LINUX_MMZONE_H */