at v5.4 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <linux/mm_types.h> 22#include <linux/page-flags.h> 23#include <asm/page.h> 24 25/* Free memory management - zoned buddy allocator. */ 26#ifndef CONFIG_FORCE_MAX_ZONEORDER 27#define MAX_ORDER 11 28#else 29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 30#endif 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 32 33/* 34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 35 * costly to service. That is between allocation orders which should 36 * coalesce naturally under reasonable reclaim pressure and those which 37 * will not. 38 */ 39#define PAGE_ALLOC_COSTLY_ORDER 3 40 41enum migratetype { 42 MIGRATE_UNMOVABLE, 43 MIGRATE_MOVABLE, 44 MIGRATE_RECLAIMABLE, 45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 47#ifdef CONFIG_CMA 48 /* 49 * MIGRATE_CMA migration type is designed to mimic the way 50 * ZONE_MOVABLE works. Only movable pages can be allocated 51 * from MIGRATE_CMA pageblocks and page allocator never 52 * implicitly change migration type of MIGRATE_CMA pageblock. 53 * 54 * The way to use it is to change migratetype of a range of 55 * pageblocks to MIGRATE_CMA which can be done by 56 * __free_pageblock_cma() function. What is important though 57 * is that a range of pageblocks must be aligned to 58 * MAX_ORDER_NR_PAGES should biggest page be bigger then 59 * a single pageblock. 60 */ 61 MIGRATE_CMA, 62#endif 63#ifdef CONFIG_MEMORY_ISOLATION 64 MIGRATE_ISOLATE, /* can't allocate from here */ 65#endif 66 MIGRATE_TYPES 67}; 68 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 70extern const char * const migratetype_names[MIGRATE_TYPES]; 71 72#ifdef CONFIG_CMA 73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 75#else 76# define is_migrate_cma(migratetype) false 77# define is_migrate_cma_page(_page) false 78#endif 79 80static inline bool is_migrate_movable(int mt) 81{ 82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 83} 84 85#define for_each_migratetype_order(order, type) \ 86 for (order = 0; order < MAX_ORDER; order++) \ 87 for (type = 0; type < MIGRATE_TYPES; type++) 88 89extern int page_group_by_mobility_disabled; 90 91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 93 94#define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 96 PB_migrate_end, MIGRATETYPE_MASK) 97 98struct free_area { 99 struct list_head free_list[MIGRATE_TYPES]; 100 unsigned long nr_free; 101}; 102 103/* Used for pages not on another list */ 104static inline void add_to_free_area(struct page *page, struct free_area *area, 105 int migratetype) 106{ 107 list_add(&page->lru, &area->free_list[migratetype]); 108 area->nr_free++; 109} 110 111/* Used for pages not on another list */ 112static inline void add_to_free_area_tail(struct page *page, struct free_area *area, 113 int migratetype) 114{ 115 list_add_tail(&page->lru, &area->free_list[migratetype]); 116 area->nr_free++; 117} 118 119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR 120/* Used to preserve page allocation order entropy */ 121void add_to_free_area_random(struct page *page, struct free_area *area, 122 int migratetype); 123#else 124static inline void add_to_free_area_random(struct page *page, 125 struct free_area *area, int migratetype) 126{ 127 add_to_free_area(page, area, migratetype); 128} 129#endif 130 131/* Used for pages which are on another list */ 132static inline void move_to_free_area(struct page *page, struct free_area *area, 133 int migratetype) 134{ 135 list_move(&page->lru, &area->free_list[migratetype]); 136} 137 138static inline struct page *get_page_from_free_area(struct free_area *area, 139 int migratetype) 140{ 141 return list_first_entry_or_null(&area->free_list[migratetype], 142 struct page, lru); 143} 144 145static inline void del_page_from_free_area(struct page *page, 146 struct free_area *area) 147{ 148 list_del(&page->lru); 149 __ClearPageBuddy(page); 150 set_page_private(page, 0); 151 area->nr_free--; 152} 153 154static inline bool free_area_empty(struct free_area *area, int migratetype) 155{ 156 return list_empty(&area->free_list[migratetype]); 157} 158 159struct pglist_data; 160 161/* 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel. 163 * So add a wild amount of padding here to ensure that they fall into separate 164 * cachelines. There are very few zone structures in the machine, so space 165 * consumption is not a concern here. 166 */ 167#if defined(CONFIG_SMP) 168struct zone_padding { 169 char x[0]; 170} ____cacheline_internodealigned_in_smp; 171#define ZONE_PADDING(name) struct zone_padding name; 172#else 173#define ZONE_PADDING(name) 174#endif 175 176#ifdef CONFIG_NUMA 177enum numa_stat_item { 178 NUMA_HIT, /* allocated in intended node */ 179 NUMA_MISS, /* allocated in non intended node */ 180 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 182 NUMA_LOCAL, /* allocation from local node */ 183 NUMA_OTHER, /* allocation from other node */ 184 NR_VM_NUMA_STAT_ITEMS 185}; 186#else 187#define NR_VM_NUMA_STAT_ITEMS 0 188#endif 189 190enum zone_stat_item { 191 /* First 128 byte cacheline (assuming 64 bit words) */ 192 NR_FREE_PAGES, 193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 195 NR_ZONE_ACTIVE_ANON, 196 NR_ZONE_INACTIVE_FILE, 197 NR_ZONE_ACTIVE_FILE, 198 NR_ZONE_UNEVICTABLE, 199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 201 NR_PAGETABLE, /* used for pagetables */ 202 NR_KERNEL_STACK_KB, /* measured in KiB */ 203 /* Second 128 byte cacheline */ 204 NR_BOUNCE, 205#if IS_ENABLED(CONFIG_ZSMALLOC) 206 NR_ZSPAGES, /* allocated in zsmalloc */ 207#endif 208 NR_FREE_CMA_PAGES, 209 NR_VM_ZONE_STAT_ITEMS }; 210 211enum node_stat_item { 212 NR_LRU_BASE, 213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 214 NR_ACTIVE_ANON, /* " " " " " */ 215 NR_INACTIVE_FILE, /* " " " " " */ 216 NR_ACTIVE_FILE, /* " " " " " */ 217 NR_UNEVICTABLE, /* " " " " " */ 218 NR_SLAB_RECLAIMABLE, /* Please do not reorder this item */ 219 NR_SLAB_UNRECLAIMABLE, /* and this one without looking at 220 * memcg_flush_percpu_vmstats() first. */ 221 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 222 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 223 WORKINGSET_NODES, 224 WORKINGSET_REFAULT, 225 WORKINGSET_ACTIVATE, 226 WORKINGSET_RESTORE, 227 WORKINGSET_NODERECLAIM, 228 NR_ANON_MAPPED, /* Mapped anonymous pages */ 229 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 230 only modified from process context */ 231 NR_FILE_PAGES, 232 NR_FILE_DIRTY, 233 NR_WRITEBACK, 234 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 235 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 236 NR_SHMEM_THPS, 237 NR_SHMEM_PMDMAPPED, 238 NR_FILE_THPS, 239 NR_FILE_PMDMAPPED, 240 NR_ANON_THPS, 241 NR_UNSTABLE_NFS, /* NFS unstable pages */ 242 NR_VMSCAN_WRITE, 243 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 244 NR_DIRTIED, /* page dirtyings since bootup */ 245 NR_WRITTEN, /* page writings since bootup */ 246 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 247 NR_VM_NODE_STAT_ITEMS 248}; 249 250/* 251 * We do arithmetic on the LRU lists in various places in the code, 252 * so it is important to keep the active lists LRU_ACTIVE higher in 253 * the array than the corresponding inactive lists, and to keep 254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 255 * 256 * This has to be kept in sync with the statistics in zone_stat_item 257 * above and the descriptions in vmstat_text in mm/vmstat.c 258 */ 259#define LRU_BASE 0 260#define LRU_ACTIVE 1 261#define LRU_FILE 2 262 263enum lru_list { 264 LRU_INACTIVE_ANON = LRU_BASE, 265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 268 LRU_UNEVICTABLE, 269 NR_LRU_LISTS 270}; 271 272#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 273 274#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 275 276static inline int is_file_lru(enum lru_list lru) 277{ 278 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 279} 280 281static inline int is_active_lru(enum lru_list lru) 282{ 283 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 284} 285 286struct zone_reclaim_stat { 287 /* 288 * The pageout code in vmscan.c keeps track of how many of the 289 * mem/swap backed and file backed pages are referenced. 290 * The higher the rotated/scanned ratio, the more valuable 291 * that cache is. 292 * 293 * The anon LRU stats live in [0], file LRU stats in [1] 294 */ 295 unsigned long recent_rotated[2]; 296 unsigned long recent_scanned[2]; 297}; 298 299struct lruvec { 300 struct list_head lists[NR_LRU_LISTS]; 301 struct zone_reclaim_stat reclaim_stat; 302 /* Evictions & activations on the inactive file list */ 303 atomic_long_t inactive_age; 304 /* Refaults at the time of last reclaim cycle */ 305 unsigned long refaults; 306#ifdef CONFIG_MEMCG 307 struct pglist_data *pgdat; 308#endif 309}; 310 311/* Isolate unmapped file */ 312#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 313/* Isolate for asynchronous migration */ 314#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 315/* Isolate unevictable pages */ 316#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 317 318/* LRU Isolation modes. */ 319typedef unsigned __bitwise isolate_mode_t; 320 321enum zone_watermarks { 322 WMARK_MIN, 323 WMARK_LOW, 324 WMARK_HIGH, 325 NR_WMARK 326}; 327 328#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 329#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 330#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 331#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 332 333struct per_cpu_pages { 334 int count; /* number of pages in the list */ 335 int high; /* high watermark, emptying needed */ 336 int batch; /* chunk size for buddy add/remove */ 337 338 /* Lists of pages, one per migrate type stored on the pcp-lists */ 339 struct list_head lists[MIGRATE_PCPTYPES]; 340}; 341 342struct per_cpu_pageset { 343 struct per_cpu_pages pcp; 344#ifdef CONFIG_NUMA 345 s8 expire; 346 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS]; 347#endif 348#ifdef CONFIG_SMP 349 s8 stat_threshold; 350 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 351#endif 352}; 353 354struct per_cpu_nodestat { 355 s8 stat_threshold; 356 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 357}; 358 359#endif /* !__GENERATING_BOUNDS.H */ 360 361enum zone_type { 362#ifdef CONFIG_ZONE_DMA 363 /* 364 * ZONE_DMA is used when there are devices that are not able 365 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 366 * carve out the portion of memory that is needed for these devices. 367 * The range is arch specific. 368 * 369 * Some examples 370 * 371 * Architecture Limit 372 * --------------------------- 373 * parisc, ia64, sparc <4G 374 * s390, powerpc <2G 375 * arm Various 376 * alpha Unlimited or 0-16MB. 377 * 378 * i386, x86_64 and multiple other arches 379 * <16M. 380 */ 381 ZONE_DMA, 382#endif 383#ifdef CONFIG_ZONE_DMA32 384 /* 385 * x86_64 needs two ZONE_DMAs because it supports devices that are 386 * only able to do DMA to the lower 16M but also 32 bit devices that 387 * can only do DMA areas below 4G. 388 */ 389 ZONE_DMA32, 390#endif 391 /* 392 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 393 * performed on pages in ZONE_NORMAL if the DMA devices support 394 * transfers to all addressable memory. 395 */ 396 ZONE_NORMAL, 397#ifdef CONFIG_HIGHMEM 398 /* 399 * A memory area that is only addressable by the kernel through 400 * mapping portions into its own address space. This is for example 401 * used by i386 to allow the kernel to address the memory beyond 402 * 900MB. The kernel will set up special mappings (page 403 * table entries on i386) for each page that the kernel needs to 404 * access. 405 */ 406 ZONE_HIGHMEM, 407#endif 408 ZONE_MOVABLE, 409#ifdef CONFIG_ZONE_DEVICE 410 ZONE_DEVICE, 411#endif 412 __MAX_NR_ZONES 413 414}; 415 416#ifndef __GENERATING_BOUNDS_H 417 418struct zone { 419 /* Read-mostly fields */ 420 421 /* zone watermarks, access with *_wmark_pages(zone) macros */ 422 unsigned long _watermark[NR_WMARK]; 423 unsigned long watermark_boost; 424 425 unsigned long nr_reserved_highatomic; 426 427 /* 428 * We don't know if the memory that we're going to allocate will be 429 * freeable or/and it will be released eventually, so to avoid totally 430 * wasting several GB of ram we must reserve some of the lower zone 431 * memory (otherwise we risk to run OOM on the lower zones despite 432 * there being tons of freeable ram on the higher zones). This array is 433 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 434 * changes. 435 */ 436 long lowmem_reserve[MAX_NR_ZONES]; 437 438#ifdef CONFIG_NUMA 439 int node; 440#endif 441 struct pglist_data *zone_pgdat; 442 struct per_cpu_pageset __percpu *pageset; 443 444#ifndef CONFIG_SPARSEMEM 445 /* 446 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 447 * In SPARSEMEM, this map is stored in struct mem_section 448 */ 449 unsigned long *pageblock_flags; 450#endif /* CONFIG_SPARSEMEM */ 451 452 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 453 unsigned long zone_start_pfn; 454 455 /* 456 * spanned_pages is the total pages spanned by the zone, including 457 * holes, which is calculated as: 458 * spanned_pages = zone_end_pfn - zone_start_pfn; 459 * 460 * present_pages is physical pages existing within the zone, which 461 * is calculated as: 462 * present_pages = spanned_pages - absent_pages(pages in holes); 463 * 464 * managed_pages is present pages managed by the buddy system, which 465 * is calculated as (reserved_pages includes pages allocated by the 466 * bootmem allocator): 467 * managed_pages = present_pages - reserved_pages; 468 * 469 * So present_pages may be used by memory hotplug or memory power 470 * management logic to figure out unmanaged pages by checking 471 * (present_pages - managed_pages). And managed_pages should be used 472 * by page allocator and vm scanner to calculate all kinds of watermarks 473 * and thresholds. 474 * 475 * Locking rules: 476 * 477 * zone_start_pfn and spanned_pages are protected by span_seqlock. 478 * It is a seqlock because it has to be read outside of zone->lock, 479 * and it is done in the main allocator path. But, it is written 480 * quite infrequently. 481 * 482 * The span_seq lock is declared along with zone->lock because it is 483 * frequently read in proximity to zone->lock. It's good to 484 * give them a chance of being in the same cacheline. 485 * 486 * Write access to present_pages at runtime should be protected by 487 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 488 * present_pages should get_online_mems() to get a stable value. 489 */ 490 atomic_long_t managed_pages; 491 unsigned long spanned_pages; 492 unsigned long present_pages; 493 494 const char *name; 495 496#ifdef CONFIG_MEMORY_ISOLATION 497 /* 498 * Number of isolated pageblock. It is used to solve incorrect 499 * freepage counting problem due to racy retrieving migratetype 500 * of pageblock. Protected by zone->lock. 501 */ 502 unsigned long nr_isolate_pageblock; 503#endif 504 505#ifdef CONFIG_MEMORY_HOTPLUG 506 /* see spanned/present_pages for more description */ 507 seqlock_t span_seqlock; 508#endif 509 510 int initialized; 511 512 /* Write-intensive fields used from the page allocator */ 513 ZONE_PADDING(_pad1_) 514 515 /* free areas of different sizes */ 516 struct free_area free_area[MAX_ORDER]; 517 518 /* zone flags, see below */ 519 unsigned long flags; 520 521 /* Primarily protects free_area */ 522 spinlock_t lock; 523 524 /* Write-intensive fields used by compaction and vmstats. */ 525 ZONE_PADDING(_pad2_) 526 527 /* 528 * When free pages are below this point, additional steps are taken 529 * when reading the number of free pages to avoid per-cpu counter 530 * drift allowing watermarks to be breached 531 */ 532 unsigned long percpu_drift_mark; 533 534#if defined CONFIG_COMPACTION || defined CONFIG_CMA 535 /* pfn where compaction free scanner should start */ 536 unsigned long compact_cached_free_pfn; 537 /* pfn where async and sync compaction migration scanner should start */ 538 unsigned long compact_cached_migrate_pfn[2]; 539 unsigned long compact_init_migrate_pfn; 540 unsigned long compact_init_free_pfn; 541#endif 542 543#ifdef CONFIG_COMPACTION 544 /* 545 * On compaction failure, 1<<compact_defer_shift compactions 546 * are skipped before trying again. The number attempted since 547 * last failure is tracked with compact_considered. 548 */ 549 unsigned int compact_considered; 550 unsigned int compact_defer_shift; 551 int compact_order_failed; 552#endif 553 554#if defined CONFIG_COMPACTION || defined CONFIG_CMA 555 /* Set to true when the PG_migrate_skip bits should be cleared */ 556 bool compact_blockskip_flush; 557#endif 558 559 bool contiguous; 560 561 ZONE_PADDING(_pad3_) 562 /* Zone statistics */ 563 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 564 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS]; 565} ____cacheline_internodealigned_in_smp; 566 567enum pgdat_flags { 568 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by 569 * a congested BDI 570 */ 571 PGDAT_DIRTY, /* reclaim scanning has recently found 572 * many dirty file pages at the tail 573 * of the LRU. 574 */ 575 PGDAT_WRITEBACK, /* reclaim scanning has recently found 576 * many pages under writeback 577 */ 578 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 579}; 580 581enum zone_flags { 582 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 583 * Cleared when kswapd is woken. 584 */ 585}; 586 587static inline unsigned long zone_managed_pages(struct zone *zone) 588{ 589 return (unsigned long)atomic_long_read(&zone->managed_pages); 590} 591 592static inline unsigned long zone_end_pfn(const struct zone *zone) 593{ 594 return zone->zone_start_pfn + zone->spanned_pages; 595} 596 597static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 598{ 599 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 600} 601 602static inline bool zone_is_initialized(struct zone *zone) 603{ 604 return zone->initialized; 605} 606 607static inline bool zone_is_empty(struct zone *zone) 608{ 609 return zone->spanned_pages == 0; 610} 611 612/* 613 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 614 * intersection with the given zone 615 */ 616static inline bool zone_intersects(struct zone *zone, 617 unsigned long start_pfn, unsigned long nr_pages) 618{ 619 if (zone_is_empty(zone)) 620 return false; 621 if (start_pfn >= zone_end_pfn(zone) || 622 start_pfn + nr_pages <= zone->zone_start_pfn) 623 return false; 624 625 return true; 626} 627 628/* 629 * The "priority" of VM scanning is how much of the queues we will scan in one 630 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 631 * queues ("queue_length >> 12") during an aging round. 632 */ 633#define DEF_PRIORITY 12 634 635/* Maximum number of zones on a zonelist */ 636#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 637 638enum { 639 ZONELIST_FALLBACK, /* zonelist with fallback */ 640#ifdef CONFIG_NUMA 641 /* 642 * The NUMA zonelists are doubled because we need zonelists that 643 * restrict the allocations to a single node for __GFP_THISNODE. 644 */ 645 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 646#endif 647 MAX_ZONELISTS 648}; 649 650/* 651 * This struct contains information about a zone in a zonelist. It is stored 652 * here to avoid dereferences into large structures and lookups of tables 653 */ 654struct zoneref { 655 struct zone *zone; /* Pointer to actual zone */ 656 int zone_idx; /* zone_idx(zoneref->zone) */ 657}; 658 659/* 660 * One allocation request operates on a zonelist. A zonelist 661 * is a list of zones, the first one is the 'goal' of the 662 * allocation, the other zones are fallback zones, in decreasing 663 * priority. 664 * 665 * To speed the reading of the zonelist, the zonerefs contain the zone index 666 * of the entry being read. Helper functions to access information given 667 * a struct zoneref are 668 * 669 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 670 * zonelist_zone_idx() - Return the index of the zone for an entry 671 * zonelist_node_idx() - Return the index of the node for an entry 672 */ 673struct zonelist { 674 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 675}; 676 677#ifndef CONFIG_DISCONTIGMEM 678/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 679extern struct page *mem_map; 680#endif 681 682#ifdef CONFIG_TRANSPARENT_HUGEPAGE 683struct deferred_split { 684 spinlock_t split_queue_lock; 685 struct list_head split_queue; 686 unsigned long split_queue_len; 687}; 688#endif 689 690/* 691 * On NUMA machines, each NUMA node would have a pg_data_t to describe 692 * it's memory layout. On UMA machines there is a single pglist_data which 693 * describes the whole memory. 694 * 695 * Memory statistics and page replacement data structures are maintained on a 696 * per-zone basis. 697 */ 698struct bootmem_data; 699typedef struct pglist_data { 700 struct zone node_zones[MAX_NR_ZONES]; 701 struct zonelist node_zonelists[MAX_ZONELISTS]; 702 int nr_zones; 703#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 704 struct page *node_mem_map; 705#ifdef CONFIG_PAGE_EXTENSION 706 struct page_ext *node_page_ext; 707#endif 708#endif 709#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 710 /* 711 * Must be held any time you expect node_start_pfn, 712 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 713 * 714 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 715 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 716 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 717 * 718 * Nests above zone->lock and zone->span_seqlock 719 */ 720 spinlock_t node_size_lock; 721#endif 722 unsigned long node_start_pfn; 723 unsigned long node_present_pages; /* total number of physical pages */ 724 unsigned long node_spanned_pages; /* total size of physical page 725 range, including holes */ 726 int node_id; 727 wait_queue_head_t kswapd_wait; 728 wait_queue_head_t pfmemalloc_wait; 729 struct task_struct *kswapd; /* Protected by 730 mem_hotplug_begin/end() */ 731 int kswapd_order; 732 enum zone_type kswapd_classzone_idx; 733 734 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 735 736#ifdef CONFIG_COMPACTION 737 int kcompactd_max_order; 738 enum zone_type kcompactd_classzone_idx; 739 wait_queue_head_t kcompactd_wait; 740 struct task_struct *kcompactd; 741#endif 742 /* 743 * This is a per-node reserve of pages that are not available 744 * to userspace allocations. 745 */ 746 unsigned long totalreserve_pages; 747 748#ifdef CONFIG_NUMA 749 /* 750 * zone reclaim becomes active if more unmapped pages exist. 751 */ 752 unsigned long min_unmapped_pages; 753 unsigned long min_slab_pages; 754#endif /* CONFIG_NUMA */ 755 756 /* Write-intensive fields used by page reclaim */ 757 ZONE_PADDING(_pad1_) 758 spinlock_t lru_lock; 759 760#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 761 /* 762 * If memory initialisation on large machines is deferred then this 763 * is the first PFN that needs to be initialised. 764 */ 765 unsigned long first_deferred_pfn; 766#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 767 768#ifdef CONFIG_TRANSPARENT_HUGEPAGE 769 struct deferred_split deferred_split_queue; 770#endif 771 772 /* Fields commonly accessed by the page reclaim scanner */ 773 struct lruvec lruvec; 774 775 unsigned long flags; 776 777 ZONE_PADDING(_pad2_) 778 779 /* Per-node vmstats */ 780 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 781 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 782} pg_data_t; 783 784#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 785#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 786#ifdef CONFIG_FLAT_NODE_MEM_MAP 787#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 788#else 789#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 790#endif 791#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 792 793#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 794#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 795 796static inline struct lruvec *node_lruvec(struct pglist_data *pgdat) 797{ 798 return &pgdat->lruvec; 799} 800 801static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 802{ 803 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 804} 805 806static inline bool pgdat_is_empty(pg_data_t *pgdat) 807{ 808 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 809} 810 811#include <linux/memory_hotplug.h> 812 813void build_all_zonelists(pg_data_t *pgdat); 814void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 815 enum zone_type classzone_idx); 816bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 817 int classzone_idx, unsigned int alloc_flags, 818 long free_pages); 819bool zone_watermark_ok(struct zone *z, unsigned int order, 820 unsigned long mark, int classzone_idx, 821 unsigned int alloc_flags); 822bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 823 unsigned long mark, int classzone_idx); 824enum memmap_context { 825 MEMMAP_EARLY, 826 MEMMAP_HOTPLUG, 827}; 828extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 829 unsigned long size); 830 831extern void lruvec_init(struct lruvec *lruvec); 832 833static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 834{ 835#ifdef CONFIG_MEMCG 836 return lruvec->pgdat; 837#else 838 return container_of(lruvec, struct pglist_data, lruvec); 839#endif 840} 841 842extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx); 843 844#ifdef CONFIG_HAVE_MEMORY_PRESENT 845void memory_present(int nid, unsigned long start, unsigned long end); 846#else 847static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 848#endif 849 850#if defined(CONFIG_SPARSEMEM) 851void memblocks_present(void); 852#else 853static inline void memblocks_present(void) {} 854#endif 855 856#ifdef CONFIG_HAVE_MEMORYLESS_NODES 857int local_memory_node(int node_id); 858#else 859static inline int local_memory_node(int node_id) { return node_id; }; 860#endif 861 862/* 863 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 864 */ 865#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 866 867/* 868 * Returns true if a zone has pages managed by the buddy allocator. 869 * All the reclaim decisions have to use this function rather than 870 * populated_zone(). If the whole zone is reserved then we can easily 871 * end up with populated_zone() && !managed_zone(). 872 */ 873static inline bool managed_zone(struct zone *zone) 874{ 875 return zone_managed_pages(zone); 876} 877 878/* Returns true if a zone has memory */ 879static inline bool populated_zone(struct zone *zone) 880{ 881 return zone->present_pages; 882} 883 884#ifdef CONFIG_NUMA 885static inline int zone_to_nid(struct zone *zone) 886{ 887 return zone->node; 888} 889 890static inline void zone_set_nid(struct zone *zone, int nid) 891{ 892 zone->node = nid; 893} 894#else 895static inline int zone_to_nid(struct zone *zone) 896{ 897 return 0; 898} 899 900static inline void zone_set_nid(struct zone *zone, int nid) {} 901#endif 902 903extern int movable_zone; 904 905#ifdef CONFIG_HIGHMEM 906static inline int zone_movable_is_highmem(void) 907{ 908#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 909 return movable_zone == ZONE_HIGHMEM; 910#else 911 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 912#endif 913} 914#endif 915 916static inline int is_highmem_idx(enum zone_type idx) 917{ 918#ifdef CONFIG_HIGHMEM 919 return (idx == ZONE_HIGHMEM || 920 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 921#else 922 return 0; 923#endif 924} 925 926/** 927 * is_highmem - helper function to quickly check if a struct zone is a 928 * highmem zone or not. This is an attempt to keep references 929 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 930 * @zone - pointer to struct zone variable 931 */ 932static inline int is_highmem(struct zone *zone) 933{ 934#ifdef CONFIG_HIGHMEM 935 return is_highmem_idx(zone_idx(zone)); 936#else 937 return 0; 938#endif 939} 940 941/* These two functions are used to setup the per zone pages min values */ 942struct ctl_table; 943int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 944 void __user *, size_t *, loff_t *); 945int watermark_boost_factor_sysctl_handler(struct ctl_table *, int, 946 void __user *, size_t *, loff_t *); 947int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, 948 void __user *, size_t *, loff_t *); 949extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 950int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 951 void __user *, size_t *, loff_t *); 952int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 953 void __user *, size_t *, loff_t *); 954int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 955 void __user *, size_t *, loff_t *); 956int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 957 void __user *, size_t *, loff_t *); 958 959extern int numa_zonelist_order_handler(struct ctl_table *, int, 960 void __user *, size_t *, loff_t *); 961extern char numa_zonelist_order[]; 962#define NUMA_ZONELIST_ORDER_LEN 16 963 964#ifndef CONFIG_NEED_MULTIPLE_NODES 965 966extern struct pglist_data contig_page_data; 967#define NODE_DATA(nid) (&contig_page_data) 968#define NODE_MEM_MAP(nid) mem_map 969 970#else /* CONFIG_NEED_MULTIPLE_NODES */ 971 972#include <asm/mmzone.h> 973 974#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 975 976extern struct pglist_data *first_online_pgdat(void); 977extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 978extern struct zone *next_zone(struct zone *zone); 979 980/** 981 * for_each_online_pgdat - helper macro to iterate over all online nodes 982 * @pgdat - pointer to a pg_data_t variable 983 */ 984#define for_each_online_pgdat(pgdat) \ 985 for (pgdat = first_online_pgdat(); \ 986 pgdat; \ 987 pgdat = next_online_pgdat(pgdat)) 988/** 989 * for_each_zone - helper macro to iterate over all memory zones 990 * @zone - pointer to struct zone variable 991 * 992 * The user only needs to declare the zone variable, for_each_zone 993 * fills it in. 994 */ 995#define for_each_zone(zone) \ 996 for (zone = (first_online_pgdat())->node_zones; \ 997 zone; \ 998 zone = next_zone(zone)) 999 1000#define for_each_populated_zone(zone) \ 1001 for (zone = (first_online_pgdat())->node_zones; \ 1002 zone; \ 1003 zone = next_zone(zone)) \ 1004 if (!populated_zone(zone)) \ 1005 ; /* do nothing */ \ 1006 else 1007 1008static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1009{ 1010 return zoneref->zone; 1011} 1012 1013static inline int zonelist_zone_idx(struct zoneref *zoneref) 1014{ 1015 return zoneref->zone_idx; 1016} 1017 1018static inline int zonelist_node_idx(struct zoneref *zoneref) 1019{ 1020 return zone_to_nid(zoneref->zone); 1021} 1022 1023struct zoneref *__next_zones_zonelist(struct zoneref *z, 1024 enum zone_type highest_zoneidx, 1025 nodemask_t *nodes); 1026 1027/** 1028 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1029 * @z - The cursor used as a starting point for the search 1030 * @highest_zoneidx - The zone index of the highest zone to return 1031 * @nodes - An optional nodemask to filter the zonelist with 1032 * 1033 * This function returns the next zone at or below a given zone index that is 1034 * within the allowed nodemask using a cursor as the starting point for the 1035 * search. The zoneref returned is a cursor that represents the current zone 1036 * being examined. It should be advanced by one before calling 1037 * next_zones_zonelist again. 1038 */ 1039static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1040 enum zone_type highest_zoneidx, 1041 nodemask_t *nodes) 1042{ 1043 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1044 return z; 1045 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1046} 1047 1048/** 1049 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1050 * @zonelist - The zonelist to search for a suitable zone 1051 * @highest_zoneidx - The zone index of the highest zone to return 1052 * @nodes - An optional nodemask to filter the zonelist with 1053 * @return - Zoneref pointer for the first suitable zone found (see below) 1054 * 1055 * This function returns the first zone at or below a given zone index that is 1056 * within the allowed nodemask. The zoneref returned is a cursor that can be 1057 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1058 * one before calling. 1059 * 1060 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1061 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1062 * update due to cpuset modification. 1063 */ 1064static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1065 enum zone_type highest_zoneidx, 1066 nodemask_t *nodes) 1067{ 1068 return next_zones_zonelist(zonelist->_zonerefs, 1069 highest_zoneidx, nodes); 1070} 1071 1072/** 1073 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1074 * @zone - The current zone in the iterator 1075 * @z - The current pointer within zonelist->zones being iterated 1076 * @zlist - The zonelist being iterated 1077 * @highidx - The zone index of the highest zone to return 1078 * @nodemask - Nodemask allowed by the allocator 1079 * 1080 * This iterator iterates though all zones at or below a given zone index and 1081 * within a given nodemask 1082 */ 1083#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1084 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1085 zone; \ 1086 z = next_zones_zonelist(++z, highidx, nodemask), \ 1087 zone = zonelist_zone(z)) 1088 1089#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1090 for (zone = z->zone; \ 1091 zone; \ 1092 z = next_zones_zonelist(++z, highidx, nodemask), \ 1093 zone = zonelist_zone(z)) 1094 1095 1096/** 1097 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1098 * @zone - The current zone in the iterator 1099 * @z - The current pointer within zonelist->zones being iterated 1100 * @zlist - The zonelist being iterated 1101 * @highidx - The zone index of the highest zone to return 1102 * 1103 * This iterator iterates though all zones at or below a given zone index. 1104 */ 1105#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1106 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1107 1108#ifdef CONFIG_SPARSEMEM 1109#include <asm/sparsemem.h> 1110#endif 1111 1112#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1113 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1114static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1115{ 1116 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA)); 1117 return 0; 1118} 1119#endif 1120 1121#ifdef CONFIG_FLATMEM 1122#define pfn_to_nid(pfn) (0) 1123#endif 1124 1125#ifdef CONFIG_SPARSEMEM 1126 1127/* 1128 * SECTION_SHIFT #bits space required to store a section # 1129 * 1130 * PA_SECTION_SHIFT physical address to/from section number 1131 * PFN_SECTION_SHIFT pfn to/from section number 1132 */ 1133#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1134#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1135 1136#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1137 1138#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1139#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1140 1141#define SECTION_BLOCKFLAGS_BITS \ 1142 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1143 1144#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1145#error Allocator MAX_ORDER exceeds SECTION_SIZE 1146#endif 1147 1148static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1149{ 1150 return pfn >> PFN_SECTION_SHIFT; 1151} 1152static inline unsigned long section_nr_to_pfn(unsigned long sec) 1153{ 1154 return sec << PFN_SECTION_SHIFT; 1155} 1156 1157#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1158#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1159 1160#define SUBSECTION_SHIFT 21 1161 1162#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1163#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1164#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1165 1166#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1167#error Subsection size exceeds section size 1168#else 1169#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1170#endif 1171 1172#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1173#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1174 1175struct mem_section_usage { 1176 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1177 /* See declaration of similar field in struct zone */ 1178 unsigned long pageblock_flags[0]; 1179}; 1180 1181void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1182 1183struct page; 1184struct page_ext; 1185struct mem_section { 1186 /* 1187 * This is, logically, a pointer to an array of struct 1188 * pages. However, it is stored with some other magic. 1189 * (see sparse.c::sparse_init_one_section()) 1190 * 1191 * Additionally during early boot we encode node id of 1192 * the location of the section here to guide allocation. 1193 * (see sparse.c::memory_present()) 1194 * 1195 * Making it a UL at least makes someone do a cast 1196 * before using it wrong. 1197 */ 1198 unsigned long section_mem_map; 1199 1200 struct mem_section_usage *usage; 1201#ifdef CONFIG_PAGE_EXTENSION 1202 /* 1203 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1204 * section. (see page_ext.h about this.) 1205 */ 1206 struct page_ext *page_ext; 1207 unsigned long pad; 1208#endif 1209 /* 1210 * WARNING: mem_section must be a power-of-2 in size for the 1211 * calculation and use of SECTION_ROOT_MASK to make sense. 1212 */ 1213}; 1214 1215#ifdef CONFIG_SPARSEMEM_EXTREME 1216#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1217#else 1218#define SECTIONS_PER_ROOT 1 1219#endif 1220 1221#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1222#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1223#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1224 1225#ifdef CONFIG_SPARSEMEM_EXTREME 1226extern struct mem_section **mem_section; 1227#else 1228extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1229#endif 1230 1231static inline unsigned long *section_to_usemap(struct mem_section *ms) 1232{ 1233 return ms->usage->pageblock_flags; 1234} 1235 1236static inline struct mem_section *__nr_to_section(unsigned long nr) 1237{ 1238#ifdef CONFIG_SPARSEMEM_EXTREME 1239 if (!mem_section) 1240 return NULL; 1241#endif 1242 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1243 return NULL; 1244 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1245} 1246extern unsigned long __section_nr(struct mem_section *ms); 1247extern size_t mem_section_usage_size(void); 1248 1249/* 1250 * We use the lower bits of the mem_map pointer to store 1251 * a little bit of information. The pointer is calculated 1252 * as mem_map - section_nr_to_pfn(pnum). The result is 1253 * aligned to the minimum alignment of the two values: 1254 * 1. All mem_map arrays are page-aligned. 1255 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1256 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1257 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1258 * worst combination is powerpc with 256k pages, 1259 * which results in PFN_SECTION_SHIFT equal 6. 1260 * To sum it up, at least 6 bits are available. 1261 */ 1262#define SECTION_MARKED_PRESENT (1UL<<0) 1263#define SECTION_HAS_MEM_MAP (1UL<<1) 1264#define SECTION_IS_ONLINE (1UL<<2) 1265#define SECTION_IS_EARLY (1UL<<3) 1266#define SECTION_MAP_LAST_BIT (1UL<<4) 1267#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1268#define SECTION_NID_SHIFT 3 1269 1270static inline struct page *__section_mem_map_addr(struct mem_section *section) 1271{ 1272 unsigned long map = section->section_mem_map; 1273 map &= SECTION_MAP_MASK; 1274 return (struct page *)map; 1275} 1276 1277static inline int present_section(struct mem_section *section) 1278{ 1279 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1280} 1281 1282static inline int present_section_nr(unsigned long nr) 1283{ 1284 return present_section(__nr_to_section(nr)); 1285} 1286 1287static inline int valid_section(struct mem_section *section) 1288{ 1289 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1290} 1291 1292static inline int early_section(struct mem_section *section) 1293{ 1294 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1295} 1296 1297static inline int valid_section_nr(unsigned long nr) 1298{ 1299 return valid_section(__nr_to_section(nr)); 1300} 1301 1302static inline int online_section(struct mem_section *section) 1303{ 1304 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1305} 1306 1307static inline int online_section_nr(unsigned long nr) 1308{ 1309 return online_section(__nr_to_section(nr)); 1310} 1311 1312#ifdef CONFIG_MEMORY_HOTPLUG 1313void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1314#ifdef CONFIG_MEMORY_HOTREMOVE 1315void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1316#endif 1317#endif 1318 1319static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1320{ 1321 return __nr_to_section(pfn_to_section_nr(pfn)); 1322} 1323 1324extern unsigned long __highest_present_section_nr; 1325 1326static inline int subsection_map_index(unsigned long pfn) 1327{ 1328 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1329} 1330 1331#ifdef CONFIG_SPARSEMEM_VMEMMAP 1332static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1333{ 1334 int idx = subsection_map_index(pfn); 1335 1336 return test_bit(idx, ms->usage->subsection_map); 1337} 1338#else 1339static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1340{ 1341 return 1; 1342} 1343#endif 1344 1345#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1346static inline int pfn_valid(unsigned long pfn) 1347{ 1348 struct mem_section *ms; 1349 1350 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1351 return 0; 1352 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1353 if (!valid_section(ms)) 1354 return 0; 1355 /* 1356 * Traditionally early sections always returned pfn_valid() for 1357 * the entire section-sized span. 1358 */ 1359 return early_section(ms) || pfn_section_valid(ms, pfn); 1360} 1361#endif 1362 1363static inline int pfn_present(unsigned long pfn) 1364{ 1365 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1366 return 0; 1367 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1368} 1369 1370/* 1371 * These are _only_ used during initialisation, therefore they 1372 * can use __initdata ... They could have names to indicate 1373 * this restriction. 1374 */ 1375#ifdef CONFIG_NUMA 1376#define pfn_to_nid(pfn) \ 1377({ \ 1378 unsigned long __pfn_to_nid_pfn = (pfn); \ 1379 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1380}) 1381#else 1382#define pfn_to_nid(pfn) (0) 1383#endif 1384 1385#define early_pfn_valid(pfn) pfn_valid(pfn) 1386void sparse_init(void); 1387#else 1388#define sparse_init() do {} while (0) 1389#define sparse_index_init(_sec, _nid) do {} while (0) 1390#define pfn_present pfn_valid 1391#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1392#endif /* CONFIG_SPARSEMEM */ 1393 1394/* 1395 * During memory init memblocks map pfns to nids. The search is expensive and 1396 * this caches recent lookups. The implementation of __early_pfn_to_nid 1397 * may treat start/end as pfns or sections. 1398 */ 1399struct mminit_pfnnid_cache { 1400 unsigned long last_start; 1401 unsigned long last_end; 1402 int last_nid; 1403}; 1404 1405#ifndef early_pfn_valid 1406#define early_pfn_valid(pfn) (1) 1407#endif 1408 1409void memory_present(int nid, unsigned long start, unsigned long end); 1410 1411/* 1412 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1413 * need to check pfn validity within that MAX_ORDER_NR_PAGES block. 1414 * pfn_valid_within() should be used in this case; we optimise this away 1415 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1416 */ 1417#ifdef CONFIG_HOLES_IN_ZONE 1418#define pfn_valid_within(pfn) pfn_valid(pfn) 1419#else 1420#define pfn_valid_within(pfn) (1) 1421#endif 1422 1423#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1424/* 1425 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1426 * associated with it or not. This means that a struct page exists for this 1427 * pfn. The caller cannot assume the page is fully initialized in general. 1428 * Hotplugable pages might not have been onlined yet. pfn_to_online_page() 1429 * will ensure the struct page is fully online and initialized. Special pages 1430 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly. 1431 * 1432 * In FLATMEM, it is expected that holes always have valid memmap as long as 1433 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed 1434 * that a valid section has a memmap for the entire section. 1435 * 1436 * However, an ARM, and maybe other embedded architectures in the future 1437 * free memmap backing holes to save memory on the assumption the memmap is 1438 * never used. The page_zone linkages are then broken even though pfn_valid() 1439 * returns true. A walker of the full memmap must then do this additional 1440 * check to ensure the memmap they are looking at is sane by making sure 1441 * the zone and PFN linkages are still valid. This is expensive, but walkers 1442 * of the full memmap are extremely rare. 1443 */ 1444bool memmap_valid_within(unsigned long pfn, 1445 struct page *page, struct zone *zone); 1446#else 1447static inline bool memmap_valid_within(unsigned long pfn, 1448 struct page *page, struct zone *zone) 1449{ 1450 return true; 1451} 1452#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1453 1454#endif /* !__GENERATING_BOUNDS.H */ 1455#endif /* !__ASSEMBLY__ */ 1456#endif /* _LINUX_MMZONE_H */