at v5.4 91 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30 31struct mempolicy; 32struct anon_vma; 33struct anon_vma_chain; 34struct file_ra_state; 35struct user_struct; 36struct writeback_control; 37struct bdi_writeback; 38 39void init_mm_internals(void); 40 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42extern unsigned long max_mapnr; 43 44static inline void set_max_mapnr(unsigned long limit) 45{ 46 max_mapnr = limit; 47} 48#else 49static inline void set_max_mapnr(unsigned long limit) { } 50#endif 51 52extern atomic_long_t _totalram_pages; 53static inline unsigned long totalram_pages(void) 54{ 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56} 57 58static inline void totalram_pages_inc(void) 59{ 60 atomic_long_inc(&_totalram_pages); 61} 62 63static inline void totalram_pages_dec(void) 64{ 65 atomic_long_dec(&_totalram_pages); 66} 67 68static inline void totalram_pages_add(long count) 69{ 70 atomic_long_add(count, &_totalram_pages); 71} 72 73static inline void totalram_pages_set(long val) 74{ 75 atomic_long_set(&_totalram_pages, val); 76} 77 78extern void * high_memory; 79extern int page_cluster; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/pgtable.h> 100#include <asm/processor.h> 101 102/* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109#ifndef untagged_addr 110#define untagged_addr(addr) (addr) 111#endif 112 113#ifndef __pa_symbol 114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115#endif 116 117#ifndef page_to_virt 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119#endif 120 121#ifndef lm_alias 122#define lm_alias(x) __va(__pa_symbol(x)) 123#endif 124 125/* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132#ifndef mm_forbids_zeropage 133#define mm_forbids_zeropage(X) (0) 134#endif 135 136/* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142#if BITS_PER_LONG == 64 143/* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150static inline void __mm_zero_struct_page(struct page *page) 151{ 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175} 176#else 177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178#endif 179 180/* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196#define MAPCOUNT_ELF_CORE_MARGIN (5) 197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199extern int sysctl_max_map_count; 200 201extern unsigned long sysctl_user_reserve_kbytes; 202extern unsigned long sysctl_admin_reserve_kbytes; 203 204extern int sysctl_overcommit_memory; 205extern int sysctl_overcommit_ratio; 206extern unsigned long sysctl_overcommit_kbytes; 207 208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215/* to align the pointer to the (next) page boundary */ 216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223/* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234void vm_area_free(struct vm_area_struct *); 235 236#ifndef CONFIG_MMU 237extern struct rb_root nommu_region_tree; 238extern struct rw_semaphore nommu_region_sem; 239 240extern unsigned int kobjsize(const void *objp); 241#endif 242 243/* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247#define VM_NONE 0x00000000 248 249#define VM_READ 0x00000001 /* currently active flags */ 250#define VM_WRITE 0x00000002 251#define VM_EXEC 0x00000004 252#define VM_SHARED 0x00000008 253 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256#define VM_MAYWRITE 0x00000020 257#define VM_MAYEXEC 0x00000040 258#define VM_MAYSHARE 0x00000080 259 260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266#define VM_LOCKED 0x00002000 267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279#define VM_SYNC 0x00800000 /* Synchronous page faults */ 280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284#ifdef CONFIG_MEM_SOFT_DIRTY 285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286#else 287# define VM_SOFTDIRTY 0 288#endif 289 290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308#ifdef CONFIG_ARCH_HAS_PKEYS 309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314#ifdef CONFIG_PPC 315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316#else 317# define VM_PKEY_BIT4 0 318#endif 319#endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321#if defined(CONFIG_X86) 322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323#elif defined(CONFIG_PPC) 324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325#elif defined(CONFIG_PARISC) 326# define VM_GROWSUP VM_ARCH_1 327#elif defined(CONFIG_IA64) 328# define VM_GROWSUP VM_ARCH_1 329#elif defined(CONFIG_SPARC64) 330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331# define VM_ARCH_CLEAR VM_SPARC_ADI 332#elif !defined(CONFIG_MMU) 333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334#endif 335 336#if defined(CONFIG_X86_INTEL_MPX) 337/* MPX specific bounds table or bounds directory */ 338# define VM_MPX VM_HIGH_ARCH_4 339#else 340# define VM_MPX VM_NONE 341#endif 342 343#ifndef VM_GROWSUP 344# define VM_GROWSUP VM_NONE 345#endif 346 347/* Bits set in the VMA until the stack is in its final location */ 348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352#endif 353 354#ifdef CONFIG_STACK_GROWSUP 355#define VM_STACK VM_GROWSUP 356#else 357#define VM_STACK VM_GROWSDOWN 358#endif 359 360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362/* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368/* This mask defines which mm->def_flags a process can inherit its parent */ 369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371/* This mask is used to clear all the VMA flags used by mlock */ 372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374/* Arch-specific flags to clear when updating VM flags on protection change */ 375#ifndef VM_ARCH_CLEAR 376# define VM_ARCH_CLEAR VM_NONE 377#endif 378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380/* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384extern pgprot_t protection_map[16]; 385 386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391#define FAULT_FLAG_TRIED 0x20 /* Second try */ 392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396#define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407/* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453}; 454 455/* page entry size for vm->huge_fault() */ 456enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460}; 461 462/* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497#ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519#endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527}; 528 529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530{ 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537} 538 539static inline void vma_set_anonymous(struct vm_area_struct *vma) 540{ 541 vma->vm_ops = NULL; 542} 543 544static inline bool vma_is_anonymous(struct vm_area_struct *vma) 545{ 546 return !vma->vm_ops; 547} 548 549#ifdef CONFIG_SHMEM 550/* 551 * The vma_is_shmem is not inline because it is used only by slow 552 * paths in userfault. 553 */ 554bool vma_is_shmem(struct vm_area_struct *vma); 555#else 556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 557#endif 558 559int vma_is_stack_for_current(struct vm_area_struct *vma); 560 561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 563 564struct mmu_gather; 565struct inode; 566 567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 568static inline int pmd_devmap(pmd_t pmd) 569{ 570 return 0; 571} 572static inline int pud_devmap(pud_t pud) 573{ 574 return 0; 575} 576static inline int pgd_devmap(pgd_t pgd) 577{ 578 return 0; 579} 580#endif 581 582/* 583 * FIXME: take this include out, include page-flags.h in 584 * files which need it (119 of them) 585 */ 586#include <linux/page-flags.h> 587#include <linux/huge_mm.h> 588 589/* 590 * Methods to modify the page usage count. 591 * 592 * What counts for a page usage: 593 * - cache mapping (page->mapping) 594 * - private data (page->private) 595 * - page mapped in a task's page tables, each mapping 596 * is counted separately 597 * 598 * Also, many kernel routines increase the page count before a critical 599 * routine so they can be sure the page doesn't go away from under them. 600 */ 601 602/* 603 * Drop a ref, return true if the refcount fell to zero (the page has no users) 604 */ 605static inline int put_page_testzero(struct page *page) 606{ 607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 608 return page_ref_dec_and_test(page); 609} 610 611/* 612 * Try to grab a ref unless the page has a refcount of zero, return false if 613 * that is the case. 614 * This can be called when MMU is off so it must not access 615 * any of the virtual mappings. 616 */ 617static inline int get_page_unless_zero(struct page *page) 618{ 619 return page_ref_add_unless(page, 1, 0); 620} 621 622extern int page_is_ram(unsigned long pfn); 623 624enum { 625 REGION_INTERSECTS, 626 REGION_DISJOINT, 627 REGION_MIXED, 628}; 629 630int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 631 unsigned long desc); 632 633/* Support for virtually mapped pages */ 634struct page *vmalloc_to_page(const void *addr); 635unsigned long vmalloc_to_pfn(const void *addr); 636 637/* 638 * Determine if an address is within the vmalloc range 639 * 640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 641 * is no special casing required. 642 */ 643static inline bool is_vmalloc_addr(const void *x) 644{ 645#ifdef CONFIG_MMU 646 unsigned long addr = (unsigned long)x; 647 648 return addr >= VMALLOC_START && addr < VMALLOC_END; 649#else 650 return false; 651#endif 652} 653 654#ifndef is_ioremap_addr 655#define is_ioremap_addr(x) is_vmalloc_addr(x) 656#endif 657 658#ifdef CONFIG_MMU 659extern int is_vmalloc_or_module_addr(const void *x); 660#else 661static inline int is_vmalloc_or_module_addr(const void *x) 662{ 663 return 0; 664} 665#endif 666 667extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 668static inline void *kvmalloc(size_t size, gfp_t flags) 669{ 670 return kvmalloc_node(size, flags, NUMA_NO_NODE); 671} 672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 673{ 674 return kvmalloc_node(size, flags | __GFP_ZERO, node); 675} 676static inline void *kvzalloc(size_t size, gfp_t flags) 677{ 678 return kvmalloc(size, flags | __GFP_ZERO); 679} 680 681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 682{ 683 size_t bytes; 684 685 if (unlikely(check_mul_overflow(n, size, &bytes))) 686 return NULL; 687 688 return kvmalloc(bytes, flags); 689} 690 691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 692{ 693 return kvmalloc_array(n, size, flags | __GFP_ZERO); 694} 695 696extern void kvfree(const void *addr); 697 698static inline int compound_mapcount(struct page *page) 699{ 700 VM_BUG_ON_PAGE(!PageCompound(page), page); 701 page = compound_head(page); 702 return atomic_read(compound_mapcount_ptr(page)) + 1; 703} 704 705/* 706 * The atomic page->_mapcount, starts from -1: so that transitions 707 * both from it and to it can be tracked, using atomic_inc_and_test 708 * and atomic_add_negative(-1). 709 */ 710static inline void page_mapcount_reset(struct page *page) 711{ 712 atomic_set(&(page)->_mapcount, -1); 713} 714 715int __page_mapcount(struct page *page); 716 717static inline int page_mapcount(struct page *page) 718{ 719 VM_BUG_ON_PAGE(PageSlab(page), page); 720 721 if (unlikely(PageCompound(page))) 722 return __page_mapcount(page); 723 return atomic_read(&page->_mapcount) + 1; 724} 725 726#ifdef CONFIG_TRANSPARENT_HUGEPAGE 727int total_mapcount(struct page *page); 728int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 729#else 730static inline int total_mapcount(struct page *page) 731{ 732 return page_mapcount(page); 733} 734static inline int page_trans_huge_mapcount(struct page *page, 735 int *total_mapcount) 736{ 737 int mapcount = page_mapcount(page); 738 if (total_mapcount) 739 *total_mapcount = mapcount; 740 return mapcount; 741} 742#endif 743 744static inline struct page *virt_to_head_page(const void *x) 745{ 746 struct page *page = virt_to_page(x); 747 748 return compound_head(page); 749} 750 751void __put_page(struct page *page); 752 753void put_pages_list(struct list_head *pages); 754 755void split_page(struct page *page, unsigned int order); 756 757/* 758 * Compound pages have a destructor function. Provide a 759 * prototype for that function and accessor functions. 760 * These are _only_ valid on the head of a compound page. 761 */ 762typedef void compound_page_dtor(struct page *); 763 764/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 765enum compound_dtor_id { 766 NULL_COMPOUND_DTOR, 767 COMPOUND_PAGE_DTOR, 768#ifdef CONFIG_HUGETLB_PAGE 769 HUGETLB_PAGE_DTOR, 770#endif 771#ifdef CONFIG_TRANSPARENT_HUGEPAGE 772 TRANSHUGE_PAGE_DTOR, 773#endif 774 NR_COMPOUND_DTORS, 775}; 776extern compound_page_dtor * const compound_page_dtors[]; 777 778static inline void set_compound_page_dtor(struct page *page, 779 enum compound_dtor_id compound_dtor) 780{ 781 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 782 page[1].compound_dtor = compound_dtor; 783} 784 785static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 786{ 787 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 788 return compound_page_dtors[page[1].compound_dtor]; 789} 790 791static inline unsigned int compound_order(struct page *page) 792{ 793 if (!PageHead(page)) 794 return 0; 795 return page[1].compound_order; 796} 797 798static inline void set_compound_order(struct page *page, unsigned int order) 799{ 800 page[1].compound_order = order; 801} 802 803/* Returns the number of pages in this potentially compound page. */ 804static inline unsigned long compound_nr(struct page *page) 805{ 806 return 1UL << compound_order(page); 807} 808 809/* Returns the number of bytes in this potentially compound page. */ 810static inline unsigned long page_size(struct page *page) 811{ 812 return PAGE_SIZE << compound_order(page); 813} 814 815/* Returns the number of bits needed for the number of bytes in a page */ 816static inline unsigned int page_shift(struct page *page) 817{ 818 return PAGE_SHIFT + compound_order(page); 819} 820 821void free_compound_page(struct page *page); 822 823#ifdef CONFIG_MMU 824/* 825 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 826 * servicing faults for write access. In the normal case, do always want 827 * pte_mkwrite. But get_user_pages can cause write faults for mappings 828 * that do not have writing enabled, when used by access_process_vm. 829 */ 830static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 831{ 832 if (likely(vma->vm_flags & VM_WRITE)) 833 pte = pte_mkwrite(pte); 834 return pte; 835} 836 837vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 838 struct page *page); 839vm_fault_t finish_fault(struct vm_fault *vmf); 840vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 841#endif 842 843/* 844 * Multiple processes may "see" the same page. E.g. for untouched 845 * mappings of /dev/null, all processes see the same page full of 846 * zeroes, and text pages of executables and shared libraries have 847 * only one copy in memory, at most, normally. 848 * 849 * For the non-reserved pages, page_count(page) denotes a reference count. 850 * page_count() == 0 means the page is free. page->lru is then used for 851 * freelist management in the buddy allocator. 852 * page_count() > 0 means the page has been allocated. 853 * 854 * Pages are allocated by the slab allocator in order to provide memory 855 * to kmalloc and kmem_cache_alloc. In this case, the management of the 856 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 857 * unless a particular usage is carefully commented. (the responsibility of 858 * freeing the kmalloc memory is the caller's, of course). 859 * 860 * A page may be used by anyone else who does a __get_free_page(). 861 * In this case, page_count still tracks the references, and should only 862 * be used through the normal accessor functions. The top bits of page->flags 863 * and page->virtual store page management information, but all other fields 864 * are unused and could be used privately, carefully. The management of this 865 * page is the responsibility of the one who allocated it, and those who have 866 * subsequently been given references to it. 867 * 868 * The other pages (we may call them "pagecache pages") are completely 869 * managed by the Linux memory manager: I/O, buffers, swapping etc. 870 * The following discussion applies only to them. 871 * 872 * A pagecache page contains an opaque `private' member, which belongs to the 873 * page's address_space. Usually, this is the address of a circular list of 874 * the page's disk buffers. PG_private must be set to tell the VM to call 875 * into the filesystem to release these pages. 876 * 877 * A page may belong to an inode's memory mapping. In this case, page->mapping 878 * is the pointer to the inode, and page->index is the file offset of the page, 879 * in units of PAGE_SIZE. 880 * 881 * If pagecache pages are not associated with an inode, they are said to be 882 * anonymous pages. These may become associated with the swapcache, and in that 883 * case PG_swapcache is set, and page->private is an offset into the swapcache. 884 * 885 * In either case (swapcache or inode backed), the pagecache itself holds one 886 * reference to the page. Setting PG_private should also increment the 887 * refcount. The each user mapping also has a reference to the page. 888 * 889 * The pagecache pages are stored in a per-mapping radix tree, which is 890 * rooted at mapping->i_pages, and indexed by offset. 891 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 892 * lists, we instead now tag pages as dirty/writeback in the radix tree. 893 * 894 * All pagecache pages may be subject to I/O: 895 * - inode pages may need to be read from disk, 896 * - inode pages which have been modified and are MAP_SHARED may need 897 * to be written back to the inode on disk, 898 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 899 * modified may need to be swapped out to swap space and (later) to be read 900 * back into memory. 901 */ 902 903/* 904 * The zone field is never updated after free_area_init_core() 905 * sets it, so none of the operations on it need to be atomic. 906 */ 907 908/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 909#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 910#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 911#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 912#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 913#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 914 915/* 916 * Define the bit shifts to access each section. For non-existent 917 * sections we define the shift as 0; that plus a 0 mask ensures 918 * the compiler will optimise away reference to them. 919 */ 920#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 921#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 922#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 923#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 924#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 925 926/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 927#ifdef NODE_NOT_IN_PAGE_FLAGS 928#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 929#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 930 SECTIONS_PGOFF : ZONES_PGOFF) 931#else 932#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 933#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 934 NODES_PGOFF : ZONES_PGOFF) 935#endif 936 937#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 938 939#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 940#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 941#endif 942 943#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 944#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 945#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 946#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 947#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 948#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 949 950static inline enum zone_type page_zonenum(const struct page *page) 951{ 952 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 953} 954 955#ifdef CONFIG_ZONE_DEVICE 956static inline bool is_zone_device_page(const struct page *page) 957{ 958 return page_zonenum(page) == ZONE_DEVICE; 959} 960extern void memmap_init_zone_device(struct zone *, unsigned long, 961 unsigned long, struct dev_pagemap *); 962#else 963static inline bool is_zone_device_page(const struct page *page) 964{ 965 return false; 966} 967#endif 968 969#ifdef CONFIG_DEV_PAGEMAP_OPS 970void __put_devmap_managed_page(struct page *page); 971DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 972static inline bool put_devmap_managed_page(struct page *page) 973{ 974 if (!static_branch_unlikely(&devmap_managed_key)) 975 return false; 976 if (!is_zone_device_page(page)) 977 return false; 978 switch (page->pgmap->type) { 979 case MEMORY_DEVICE_PRIVATE: 980 case MEMORY_DEVICE_FS_DAX: 981 __put_devmap_managed_page(page); 982 return true; 983 default: 984 break; 985 } 986 return false; 987} 988 989#else /* CONFIG_DEV_PAGEMAP_OPS */ 990static inline bool put_devmap_managed_page(struct page *page) 991{ 992 return false; 993} 994#endif /* CONFIG_DEV_PAGEMAP_OPS */ 995 996static inline bool is_device_private_page(const struct page *page) 997{ 998 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 999 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1000 is_zone_device_page(page) && 1001 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1002} 1003 1004static inline bool is_pci_p2pdma_page(const struct page *page) 1005{ 1006 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1007 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1008 is_zone_device_page(page) && 1009 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1010} 1011 1012/* 127: arbitrary random number, small enough to assemble well */ 1013#define page_ref_zero_or_close_to_overflow(page) \ 1014 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1015 1016static inline void get_page(struct page *page) 1017{ 1018 page = compound_head(page); 1019 /* 1020 * Getting a normal page or the head of a compound page 1021 * requires to already have an elevated page->_refcount. 1022 */ 1023 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1024 page_ref_inc(page); 1025} 1026 1027static inline __must_check bool try_get_page(struct page *page) 1028{ 1029 page = compound_head(page); 1030 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1031 return false; 1032 page_ref_inc(page); 1033 return true; 1034} 1035 1036static inline void put_page(struct page *page) 1037{ 1038 page = compound_head(page); 1039 1040 /* 1041 * For devmap managed pages we need to catch refcount transition from 1042 * 2 to 1, when refcount reach one it means the page is free and we 1043 * need to inform the device driver through callback. See 1044 * include/linux/memremap.h and HMM for details. 1045 */ 1046 if (put_devmap_managed_page(page)) 1047 return; 1048 1049 if (put_page_testzero(page)) 1050 __put_page(page); 1051} 1052 1053/** 1054 * put_user_page() - release a gup-pinned page 1055 * @page: pointer to page to be released 1056 * 1057 * Pages that were pinned via get_user_pages*() must be released via 1058 * either put_user_page(), or one of the put_user_pages*() routines 1059 * below. This is so that eventually, pages that are pinned via 1060 * get_user_pages*() can be separately tracked and uniquely handled. In 1061 * particular, interactions with RDMA and filesystems need special 1062 * handling. 1063 * 1064 * put_user_page() and put_page() are not interchangeable, despite this early 1065 * implementation that makes them look the same. put_user_page() calls must 1066 * be perfectly matched up with get_user_page() calls. 1067 */ 1068static inline void put_user_page(struct page *page) 1069{ 1070 put_page(page); 1071} 1072 1073void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1074 bool make_dirty); 1075 1076void put_user_pages(struct page **pages, unsigned long npages); 1077 1078#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1079#define SECTION_IN_PAGE_FLAGS 1080#endif 1081 1082/* 1083 * The identification function is mainly used by the buddy allocator for 1084 * determining if two pages could be buddies. We are not really identifying 1085 * the zone since we could be using the section number id if we do not have 1086 * node id available in page flags. 1087 * We only guarantee that it will return the same value for two combinable 1088 * pages in a zone. 1089 */ 1090static inline int page_zone_id(struct page *page) 1091{ 1092 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1093} 1094 1095#ifdef NODE_NOT_IN_PAGE_FLAGS 1096extern int page_to_nid(const struct page *page); 1097#else 1098static inline int page_to_nid(const struct page *page) 1099{ 1100 struct page *p = (struct page *)page; 1101 1102 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1103} 1104#endif 1105 1106#ifdef CONFIG_NUMA_BALANCING 1107static inline int cpu_pid_to_cpupid(int cpu, int pid) 1108{ 1109 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1110} 1111 1112static inline int cpupid_to_pid(int cpupid) 1113{ 1114 return cpupid & LAST__PID_MASK; 1115} 1116 1117static inline int cpupid_to_cpu(int cpupid) 1118{ 1119 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1120} 1121 1122static inline int cpupid_to_nid(int cpupid) 1123{ 1124 return cpu_to_node(cpupid_to_cpu(cpupid)); 1125} 1126 1127static inline bool cpupid_pid_unset(int cpupid) 1128{ 1129 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1130} 1131 1132static inline bool cpupid_cpu_unset(int cpupid) 1133{ 1134 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1135} 1136 1137static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1138{ 1139 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1140} 1141 1142#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1143#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1144static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1145{ 1146 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1147} 1148 1149static inline int page_cpupid_last(struct page *page) 1150{ 1151 return page->_last_cpupid; 1152} 1153static inline void page_cpupid_reset_last(struct page *page) 1154{ 1155 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1156} 1157#else 1158static inline int page_cpupid_last(struct page *page) 1159{ 1160 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1161} 1162 1163extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1164 1165static inline void page_cpupid_reset_last(struct page *page) 1166{ 1167 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1168} 1169#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1170#else /* !CONFIG_NUMA_BALANCING */ 1171static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1172{ 1173 return page_to_nid(page); /* XXX */ 1174} 1175 1176static inline int page_cpupid_last(struct page *page) 1177{ 1178 return page_to_nid(page); /* XXX */ 1179} 1180 1181static inline int cpupid_to_nid(int cpupid) 1182{ 1183 return -1; 1184} 1185 1186static inline int cpupid_to_pid(int cpupid) 1187{ 1188 return -1; 1189} 1190 1191static inline int cpupid_to_cpu(int cpupid) 1192{ 1193 return -1; 1194} 1195 1196static inline int cpu_pid_to_cpupid(int nid, int pid) 1197{ 1198 return -1; 1199} 1200 1201static inline bool cpupid_pid_unset(int cpupid) 1202{ 1203 return 1; 1204} 1205 1206static inline void page_cpupid_reset_last(struct page *page) 1207{ 1208} 1209 1210static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1211{ 1212 return false; 1213} 1214#endif /* CONFIG_NUMA_BALANCING */ 1215 1216#ifdef CONFIG_KASAN_SW_TAGS 1217static inline u8 page_kasan_tag(const struct page *page) 1218{ 1219 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1220} 1221 1222static inline void page_kasan_tag_set(struct page *page, u8 tag) 1223{ 1224 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1225 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1226} 1227 1228static inline void page_kasan_tag_reset(struct page *page) 1229{ 1230 page_kasan_tag_set(page, 0xff); 1231} 1232#else 1233static inline u8 page_kasan_tag(const struct page *page) 1234{ 1235 return 0xff; 1236} 1237 1238static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1239static inline void page_kasan_tag_reset(struct page *page) { } 1240#endif 1241 1242static inline struct zone *page_zone(const struct page *page) 1243{ 1244 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1245} 1246 1247static inline pg_data_t *page_pgdat(const struct page *page) 1248{ 1249 return NODE_DATA(page_to_nid(page)); 1250} 1251 1252#ifdef SECTION_IN_PAGE_FLAGS 1253static inline void set_page_section(struct page *page, unsigned long section) 1254{ 1255 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1256 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1257} 1258 1259static inline unsigned long page_to_section(const struct page *page) 1260{ 1261 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1262} 1263#endif 1264 1265static inline void set_page_zone(struct page *page, enum zone_type zone) 1266{ 1267 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1268 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1269} 1270 1271static inline void set_page_node(struct page *page, unsigned long node) 1272{ 1273 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1274 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1275} 1276 1277static inline void set_page_links(struct page *page, enum zone_type zone, 1278 unsigned long node, unsigned long pfn) 1279{ 1280 set_page_zone(page, zone); 1281 set_page_node(page, node); 1282#ifdef SECTION_IN_PAGE_FLAGS 1283 set_page_section(page, pfn_to_section_nr(pfn)); 1284#endif 1285} 1286 1287#ifdef CONFIG_MEMCG 1288static inline struct mem_cgroup *page_memcg(struct page *page) 1289{ 1290 return page->mem_cgroup; 1291} 1292static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1293{ 1294 WARN_ON_ONCE(!rcu_read_lock_held()); 1295 return READ_ONCE(page->mem_cgroup); 1296} 1297#else 1298static inline struct mem_cgroup *page_memcg(struct page *page) 1299{ 1300 return NULL; 1301} 1302static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1303{ 1304 WARN_ON_ONCE(!rcu_read_lock_held()); 1305 return NULL; 1306} 1307#endif 1308 1309/* 1310 * Some inline functions in vmstat.h depend on page_zone() 1311 */ 1312#include <linux/vmstat.h> 1313 1314static __always_inline void *lowmem_page_address(const struct page *page) 1315{ 1316 return page_to_virt(page); 1317} 1318 1319#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1320#define HASHED_PAGE_VIRTUAL 1321#endif 1322 1323#if defined(WANT_PAGE_VIRTUAL) 1324static inline void *page_address(const struct page *page) 1325{ 1326 return page->virtual; 1327} 1328static inline void set_page_address(struct page *page, void *address) 1329{ 1330 page->virtual = address; 1331} 1332#define page_address_init() do { } while(0) 1333#endif 1334 1335#if defined(HASHED_PAGE_VIRTUAL) 1336void *page_address(const struct page *page); 1337void set_page_address(struct page *page, void *virtual); 1338void page_address_init(void); 1339#endif 1340 1341#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1342#define page_address(page) lowmem_page_address(page) 1343#define set_page_address(page, address) do { } while(0) 1344#define page_address_init() do { } while(0) 1345#endif 1346 1347extern void *page_rmapping(struct page *page); 1348extern struct anon_vma *page_anon_vma(struct page *page); 1349extern struct address_space *page_mapping(struct page *page); 1350 1351extern struct address_space *__page_file_mapping(struct page *); 1352 1353static inline 1354struct address_space *page_file_mapping(struct page *page) 1355{ 1356 if (unlikely(PageSwapCache(page))) 1357 return __page_file_mapping(page); 1358 1359 return page->mapping; 1360} 1361 1362extern pgoff_t __page_file_index(struct page *page); 1363 1364/* 1365 * Return the pagecache index of the passed page. Regular pagecache pages 1366 * use ->index whereas swapcache pages use swp_offset(->private) 1367 */ 1368static inline pgoff_t page_index(struct page *page) 1369{ 1370 if (unlikely(PageSwapCache(page))) 1371 return __page_file_index(page); 1372 return page->index; 1373} 1374 1375bool page_mapped(struct page *page); 1376struct address_space *page_mapping(struct page *page); 1377struct address_space *page_mapping_file(struct page *page); 1378 1379/* 1380 * Return true only if the page has been allocated with 1381 * ALLOC_NO_WATERMARKS and the low watermark was not 1382 * met implying that the system is under some pressure. 1383 */ 1384static inline bool page_is_pfmemalloc(struct page *page) 1385{ 1386 /* 1387 * Page index cannot be this large so this must be 1388 * a pfmemalloc page. 1389 */ 1390 return page->index == -1UL; 1391} 1392 1393/* 1394 * Only to be called by the page allocator on a freshly allocated 1395 * page. 1396 */ 1397static inline void set_page_pfmemalloc(struct page *page) 1398{ 1399 page->index = -1UL; 1400} 1401 1402static inline void clear_page_pfmemalloc(struct page *page) 1403{ 1404 page->index = 0; 1405} 1406 1407/* 1408 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1409 */ 1410extern void pagefault_out_of_memory(void); 1411 1412#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1413 1414/* 1415 * Flags passed to show_mem() and show_free_areas() to suppress output in 1416 * various contexts. 1417 */ 1418#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1419 1420extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1421 1422#ifdef CONFIG_MMU 1423extern bool can_do_mlock(void); 1424#else 1425static inline bool can_do_mlock(void) { return false; } 1426#endif 1427extern int user_shm_lock(size_t, struct user_struct *); 1428extern void user_shm_unlock(size_t, struct user_struct *); 1429 1430/* 1431 * Parameter block passed down to zap_pte_range in exceptional cases. 1432 */ 1433struct zap_details { 1434 struct address_space *check_mapping; /* Check page->mapping if set */ 1435 pgoff_t first_index; /* Lowest page->index to unmap */ 1436 pgoff_t last_index; /* Highest page->index to unmap */ 1437}; 1438 1439struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1440 pte_t pte); 1441struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1442 pmd_t pmd); 1443 1444void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1445 unsigned long size); 1446void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1447 unsigned long size); 1448void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1449 unsigned long start, unsigned long end); 1450 1451struct mmu_notifier_range; 1452 1453void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1454 unsigned long end, unsigned long floor, unsigned long ceiling); 1455int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1456 struct vm_area_struct *vma); 1457int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1458 struct mmu_notifier_range *range, 1459 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1460int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1461 unsigned long *pfn); 1462int follow_phys(struct vm_area_struct *vma, unsigned long address, 1463 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1464int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1465 void *buf, int len, int write); 1466 1467extern void truncate_pagecache(struct inode *inode, loff_t new); 1468extern void truncate_setsize(struct inode *inode, loff_t newsize); 1469void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1470void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1471int truncate_inode_page(struct address_space *mapping, struct page *page); 1472int generic_error_remove_page(struct address_space *mapping, struct page *page); 1473int invalidate_inode_page(struct page *page); 1474 1475#ifdef CONFIG_MMU 1476extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1477 unsigned long address, unsigned int flags); 1478extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1479 unsigned long address, unsigned int fault_flags, 1480 bool *unlocked); 1481void unmap_mapping_pages(struct address_space *mapping, 1482 pgoff_t start, pgoff_t nr, bool even_cows); 1483void unmap_mapping_range(struct address_space *mapping, 1484 loff_t const holebegin, loff_t const holelen, int even_cows); 1485#else 1486static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1487 unsigned long address, unsigned int flags) 1488{ 1489 /* should never happen if there's no MMU */ 1490 BUG(); 1491 return VM_FAULT_SIGBUS; 1492} 1493static inline int fixup_user_fault(struct task_struct *tsk, 1494 struct mm_struct *mm, unsigned long address, 1495 unsigned int fault_flags, bool *unlocked) 1496{ 1497 /* should never happen if there's no MMU */ 1498 BUG(); 1499 return -EFAULT; 1500} 1501static inline void unmap_mapping_pages(struct address_space *mapping, 1502 pgoff_t start, pgoff_t nr, bool even_cows) { } 1503static inline void unmap_mapping_range(struct address_space *mapping, 1504 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1505#endif 1506 1507static inline void unmap_shared_mapping_range(struct address_space *mapping, 1508 loff_t const holebegin, loff_t const holelen) 1509{ 1510 unmap_mapping_range(mapping, holebegin, holelen, 0); 1511} 1512 1513extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1514 void *buf, int len, unsigned int gup_flags); 1515extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1516 void *buf, int len, unsigned int gup_flags); 1517extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1518 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1519 1520long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1521 unsigned long start, unsigned long nr_pages, 1522 unsigned int gup_flags, struct page **pages, 1523 struct vm_area_struct **vmas, int *locked); 1524long get_user_pages(unsigned long start, unsigned long nr_pages, 1525 unsigned int gup_flags, struct page **pages, 1526 struct vm_area_struct **vmas); 1527long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1528 unsigned int gup_flags, struct page **pages, int *locked); 1529long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1530 struct page **pages, unsigned int gup_flags); 1531 1532int get_user_pages_fast(unsigned long start, int nr_pages, 1533 unsigned int gup_flags, struct page **pages); 1534 1535int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1536int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1537 struct task_struct *task, bool bypass_rlim); 1538 1539/* Container for pinned pfns / pages */ 1540struct frame_vector { 1541 unsigned int nr_allocated; /* Number of frames we have space for */ 1542 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1543 bool got_ref; /* Did we pin pages by getting page ref? */ 1544 bool is_pfns; /* Does array contain pages or pfns? */ 1545 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1546 * pfns_vector_pages() or pfns_vector_pfns() 1547 * for access */ 1548}; 1549 1550struct frame_vector *frame_vector_create(unsigned int nr_frames); 1551void frame_vector_destroy(struct frame_vector *vec); 1552int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1553 unsigned int gup_flags, struct frame_vector *vec); 1554void put_vaddr_frames(struct frame_vector *vec); 1555int frame_vector_to_pages(struct frame_vector *vec); 1556void frame_vector_to_pfns(struct frame_vector *vec); 1557 1558static inline unsigned int frame_vector_count(struct frame_vector *vec) 1559{ 1560 return vec->nr_frames; 1561} 1562 1563static inline struct page **frame_vector_pages(struct frame_vector *vec) 1564{ 1565 if (vec->is_pfns) { 1566 int err = frame_vector_to_pages(vec); 1567 1568 if (err) 1569 return ERR_PTR(err); 1570 } 1571 return (struct page **)(vec->ptrs); 1572} 1573 1574static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1575{ 1576 if (!vec->is_pfns) 1577 frame_vector_to_pfns(vec); 1578 return (unsigned long *)(vec->ptrs); 1579} 1580 1581struct kvec; 1582int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1583 struct page **pages); 1584int get_kernel_page(unsigned long start, int write, struct page **pages); 1585struct page *get_dump_page(unsigned long addr); 1586 1587extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1588extern void do_invalidatepage(struct page *page, unsigned int offset, 1589 unsigned int length); 1590 1591void __set_page_dirty(struct page *, struct address_space *, int warn); 1592int __set_page_dirty_nobuffers(struct page *page); 1593int __set_page_dirty_no_writeback(struct page *page); 1594int redirty_page_for_writepage(struct writeback_control *wbc, 1595 struct page *page); 1596void account_page_dirtied(struct page *page, struct address_space *mapping); 1597void account_page_cleaned(struct page *page, struct address_space *mapping, 1598 struct bdi_writeback *wb); 1599int set_page_dirty(struct page *page); 1600int set_page_dirty_lock(struct page *page); 1601void __cancel_dirty_page(struct page *page); 1602static inline void cancel_dirty_page(struct page *page) 1603{ 1604 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1605 if (PageDirty(page)) 1606 __cancel_dirty_page(page); 1607} 1608int clear_page_dirty_for_io(struct page *page); 1609 1610int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1611 1612extern unsigned long move_page_tables(struct vm_area_struct *vma, 1613 unsigned long old_addr, struct vm_area_struct *new_vma, 1614 unsigned long new_addr, unsigned long len, 1615 bool need_rmap_locks); 1616extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1617 unsigned long end, pgprot_t newprot, 1618 int dirty_accountable, int prot_numa); 1619extern int mprotect_fixup(struct vm_area_struct *vma, 1620 struct vm_area_struct **pprev, unsigned long start, 1621 unsigned long end, unsigned long newflags); 1622 1623/* 1624 * doesn't attempt to fault and will return short. 1625 */ 1626int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1627 struct page **pages); 1628/* 1629 * per-process(per-mm_struct) statistics. 1630 */ 1631static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1632{ 1633 long val = atomic_long_read(&mm->rss_stat.count[member]); 1634 1635#ifdef SPLIT_RSS_COUNTING 1636 /* 1637 * counter is updated in asynchronous manner and may go to minus. 1638 * But it's never be expected number for users. 1639 */ 1640 if (val < 0) 1641 val = 0; 1642#endif 1643 return (unsigned long)val; 1644} 1645 1646static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1647{ 1648 atomic_long_add(value, &mm->rss_stat.count[member]); 1649} 1650 1651static inline void inc_mm_counter(struct mm_struct *mm, int member) 1652{ 1653 atomic_long_inc(&mm->rss_stat.count[member]); 1654} 1655 1656static inline void dec_mm_counter(struct mm_struct *mm, int member) 1657{ 1658 atomic_long_dec(&mm->rss_stat.count[member]); 1659} 1660 1661/* Optimized variant when page is already known not to be PageAnon */ 1662static inline int mm_counter_file(struct page *page) 1663{ 1664 if (PageSwapBacked(page)) 1665 return MM_SHMEMPAGES; 1666 return MM_FILEPAGES; 1667} 1668 1669static inline int mm_counter(struct page *page) 1670{ 1671 if (PageAnon(page)) 1672 return MM_ANONPAGES; 1673 return mm_counter_file(page); 1674} 1675 1676static inline unsigned long get_mm_rss(struct mm_struct *mm) 1677{ 1678 return get_mm_counter(mm, MM_FILEPAGES) + 1679 get_mm_counter(mm, MM_ANONPAGES) + 1680 get_mm_counter(mm, MM_SHMEMPAGES); 1681} 1682 1683static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1684{ 1685 return max(mm->hiwater_rss, get_mm_rss(mm)); 1686} 1687 1688static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1689{ 1690 return max(mm->hiwater_vm, mm->total_vm); 1691} 1692 1693static inline void update_hiwater_rss(struct mm_struct *mm) 1694{ 1695 unsigned long _rss = get_mm_rss(mm); 1696 1697 if ((mm)->hiwater_rss < _rss) 1698 (mm)->hiwater_rss = _rss; 1699} 1700 1701static inline void update_hiwater_vm(struct mm_struct *mm) 1702{ 1703 if (mm->hiwater_vm < mm->total_vm) 1704 mm->hiwater_vm = mm->total_vm; 1705} 1706 1707static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1708{ 1709 mm->hiwater_rss = get_mm_rss(mm); 1710} 1711 1712static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1713 struct mm_struct *mm) 1714{ 1715 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1716 1717 if (*maxrss < hiwater_rss) 1718 *maxrss = hiwater_rss; 1719} 1720 1721#if defined(SPLIT_RSS_COUNTING) 1722void sync_mm_rss(struct mm_struct *mm); 1723#else 1724static inline void sync_mm_rss(struct mm_struct *mm) 1725{ 1726} 1727#endif 1728 1729#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1730static inline int pte_devmap(pte_t pte) 1731{ 1732 return 0; 1733} 1734#endif 1735 1736int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1737 1738extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1739 spinlock_t **ptl); 1740static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1741 spinlock_t **ptl) 1742{ 1743 pte_t *ptep; 1744 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1745 return ptep; 1746} 1747 1748#ifdef __PAGETABLE_P4D_FOLDED 1749static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1750 unsigned long address) 1751{ 1752 return 0; 1753} 1754#else 1755int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1756#endif 1757 1758#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1759static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1760 unsigned long address) 1761{ 1762 return 0; 1763} 1764static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1765static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1766 1767#else 1768int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1769 1770static inline void mm_inc_nr_puds(struct mm_struct *mm) 1771{ 1772 if (mm_pud_folded(mm)) 1773 return; 1774 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1775} 1776 1777static inline void mm_dec_nr_puds(struct mm_struct *mm) 1778{ 1779 if (mm_pud_folded(mm)) 1780 return; 1781 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1782} 1783#endif 1784 1785#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1786static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1787 unsigned long address) 1788{ 1789 return 0; 1790} 1791 1792static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1793static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1794 1795#else 1796int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1797 1798static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1799{ 1800 if (mm_pmd_folded(mm)) 1801 return; 1802 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1803} 1804 1805static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1806{ 1807 if (mm_pmd_folded(mm)) 1808 return; 1809 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1810} 1811#endif 1812 1813#ifdef CONFIG_MMU 1814static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1815{ 1816 atomic_long_set(&mm->pgtables_bytes, 0); 1817} 1818 1819static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1820{ 1821 return atomic_long_read(&mm->pgtables_bytes); 1822} 1823 1824static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1825{ 1826 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1827} 1828 1829static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1830{ 1831 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1832} 1833#else 1834 1835static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1836static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1837{ 1838 return 0; 1839} 1840 1841static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1842static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1843#endif 1844 1845int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1846int __pte_alloc_kernel(pmd_t *pmd); 1847 1848/* 1849 * The following ifdef needed to get the 4level-fixup.h header to work. 1850 * Remove it when 4level-fixup.h has been removed. 1851 */ 1852#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1853 1854#ifndef __ARCH_HAS_5LEVEL_HACK 1855static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1856 unsigned long address) 1857{ 1858 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1859 NULL : p4d_offset(pgd, address); 1860} 1861 1862static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1863 unsigned long address) 1864{ 1865 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1866 NULL : pud_offset(p4d, address); 1867} 1868#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1869 1870static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1871{ 1872 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1873 NULL: pmd_offset(pud, address); 1874} 1875#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1876 1877#if USE_SPLIT_PTE_PTLOCKS 1878#if ALLOC_SPLIT_PTLOCKS 1879void __init ptlock_cache_init(void); 1880extern bool ptlock_alloc(struct page *page); 1881extern void ptlock_free(struct page *page); 1882 1883static inline spinlock_t *ptlock_ptr(struct page *page) 1884{ 1885 return page->ptl; 1886} 1887#else /* ALLOC_SPLIT_PTLOCKS */ 1888static inline void ptlock_cache_init(void) 1889{ 1890} 1891 1892static inline bool ptlock_alloc(struct page *page) 1893{ 1894 return true; 1895} 1896 1897static inline void ptlock_free(struct page *page) 1898{ 1899} 1900 1901static inline spinlock_t *ptlock_ptr(struct page *page) 1902{ 1903 return &page->ptl; 1904} 1905#endif /* ALLOC_SPLIT_PTLOCKS */ 1906 1907static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1908{ 1909 return ptlock_ptr(pmd_page(*pmd)); 1910} 1911 1912static inline bool ptlock_init(struct page *page) 1913{ 1914 /* 1915 * prep_new_page() initialize page->private (and therefore page->ptl) 1916 * with 0. Make sure nobody took it in use in between. 1917 * 1918 * It can happen if arch try to use slab for page table allocation: 1919 * slab code uses page->slab_cache, which share storage with page->ptl. 1920 */ 1921 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1922 if (!ptlock_alloc(page)) 1923 return false; 1924 spin_lock_init(ptlock_ptr(page)); 1925 return true; 1926} 1927 1928#else /* !USE_SPLIT_PTE_PTLOCKS */ 1929/* 1930 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1931 */ 1932static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1933{ 1934 return &mm->page_table_lock; 1935} 1936static inline void ptlock_cache_init(void) {} 1937static inline bool ptlock_init(struct page *page) { return true; } 1938static inline void ptlock_free(struct page *page) {} 1939#endif /* USE_SPLIT_PTE_PTLOCKS */ 1940 1941static inline void pgtable_init(void) 1942{ 1943 ptlock_cache_init(); 1944 pgtable_cache_init(); 1945} 1946 1947static inline bool pgtable_pte_page_ctor(struct page *page) 1948{ 1949 if (!ptlock_init(page)) 1950 return false; 1951 __SetPageTable(page); 1952 inc_zone_page_state(page, NR_PAGETABLE); 1953 return true; 1954} 1955 1956static inline void pgtable_pte_page_dtor(struct page *page) 1957{ 1958 ptlock_free(page); 1959 __ClearPageTable(page); 1960 dec_zone_page_state(page, NR_PAGETABLE); 1961} 1962 1963#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1964({ \ 1965 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1966 pte_t *__pte = pte_offset_map(pmd, address); \ 1967 *(ptlp) = __ptl; \ 1968 spin_lock(__ptl); \ 1969 __pte; \ 1970}) 1971 1972#define pte_unmap_unlock(pte, ptl) do { \ 1973 spin_unlock(ptl); \ 1974 pte_unmap(pte); \ 1975} while (0) 1976 1977#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 1978 1979#define pte_alloc_map(mm, pmd, address) \ 1980 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 1981 1982#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1983 (pte_alloc(mm, pmd) ? \ 1984 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1985 1986#define pte_alloc_kernel(pmd, address) \ 1987 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 1988 NULL: pte_offset_kernel(pmd, address)) 1989 1990#if USE_SPLIT_PMD_PTLOCKS 1991 1992static struct page *pmd_to_page(pmd_t *pmd) 1993{ 1994 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1995 return virt_to_page((void *)((unsigned long) pmd & mask)); 1996} 1997 1998static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1999{ 2000 return ptlock_ptr(pmd_to_page(pmd)); 2001} 2002 2003static inline bool pgtable_pmd_page_ctor(struct page *page) 2004{ 2005#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2006 page->pmd_huge_pte = NULL; 2007#endif 2008 return ptlock_init(page); 2009} 2010 2011static inline void pgtable_pmd_page_dtor(struct page *page) 2012{ 2013#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2014 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2015#endif 2016 ptlock_free(page); 2017} 2018 2019#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2020 2021#else 2022 2023static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2024{ 2025 return &mm->page_table_lock; 2026} 2027 2028static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2029static inline void pgtable_pmd_page_dtor(struct page *page) {} 2030 2031#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2032 2033#endif 2034 2035static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2036{ 2037 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2038 spin_lock(ptl); 2039 return ptl; 2040} 2041 2042/* 2043 * No scalability reason to split PUD locks yet, but follow the same pattern 2044 * as the PMD locks to make it easier if we decide to. The VM should not be 2045 * considered ready to switch to split PUD locks yet; there may be places 2046 * which need to be converted from page_table_lock. 2047 */ 2048static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2049{ 2050 return &mm->page_table_lock; 2051} 2052 2053static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2054{ 2055 spinlock_t *ptl = pud_lockptr(mm, pud); 2056 2057 spin_lock(ptl); 2058 return ptl; 2059} 2060 2061extern void __init pagecache_init(void); 2062extern void free_area_init(unsigned long * zones_size); 2063extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2064 unsigned long zone_start_pfn, unsigned long *zholes_size); 2065extern void free_initmem(void); 2066 2067/* 2068 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2069 * into the buddy system. The freed pages will be poisoned with pattern 2070 * "poison" if it's within range [0, UCHAR_MAX]. 2071 * Return pages freed into the buddy system. 2072 */ 2073extern unsigned long free_reserved_area(void *start, void *end, 2074 int poison, const char *s); 2075 2076#ifdef CONFIG_HIGHMEM 2077/* 2078 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2079 * and totalram_pages. 2080 */ 2081extern void free_highmem_page(struct page *page); 2082#endif 2083 2084extern void adjust_managed_page_count(struct page *page, long count); 2085extern void mem_init_print_info(const char *str); 2086 2087extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2088 2089/* Free the reserved page into the buddy system, so it gets managed. */ 2090static inline void __free_reserved_page(struct page *page) 2091{ 2092 ClearPageReserved(page); 2093 init_page_count(page); 2094 __free_page(page); 2095} 2096 2097static inline void free_reserved_page(struct page *page) 2098{ 2099 __free_reserved_page(page); 2100 adjust_managed_page_count(page, 1); 2101} 2102 2103static inline void mark_page_reserved(struct page *page) 2104{ 2105 SetPageReserved(page); 2106 adjust_managed_page_count(page, -1); 2107} 2108 2109/* 2110 * Default method to free all the __init memory into the buddy system. 2111 * The freed pages will be poisoned with pattern "poison" if it's within 2112 * range [0, UCHAR_MAX]. 2113 * Return pages freed into the buddy system. 2114 */ 2115static inline unsigned long free_initmem_default(int poison) 2116{ 2117 extern char __init_begin[], __init_end[]; 2118 2119 return free_reserved_area(&__init_begin, &__init_end, 2120 poison, "unused kernel"); 2121} 2122 2123static inline unsigned long get_num_physpages(void) 2124{ 2125 int nid; 2126 unsigned long phys_pages = 0; 2127 2128 for_each_online_node(nid) 2129 phys_pages += node_present_pages(nid); 2130 2131 return phys_pages; 2132} 2133 2134#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2135/* 2136 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2137 * zones, allocate the backing mem_map and account for memory holes in a more 2138 * architecture independent manner. This is a substitute for creating the 2139 * zone_sizes[] and zholes_size[] arrays and passing them to 2140 * free_area_init_node() 2141 * 2142 * An architecture is expected to register range of page frames backed by 2143 * physical memory with memblock_add[_node]() before calling 2144 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2145 * usage, an architecture is expected to do something like 2146 * 2147 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2148 * max_highmem_pfn}; 2149 * for_each_valid_physical_page_range() 2150 * memblock_add_node(base, size, nid) 2151 * free_area_init_nodes(max_zone_pfns); 2152 * 2153 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2154 * registered physical page range. Similarly 2155 * sparse_memory_present_with_active_regions() calls memory_present() for 2156 * each range when SPARSEMEM is enabled. 2157 * 2158 * See mm/page_alloc.c for more information on each function exposed by 2159 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2160 */ 2161extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2162unsigned long node_map_pfn_alignment(void); 2163unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2164 unsigned long end_pfn); 2165extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2166 unsigned long end_pfn); 2167extern void get_pfn_range_for_nid(unsigned int nid, 2168 unsigned long *start_pfn, unsigned long *end_pfn); 2169extern unsigned long find_min_pfn_with_active_regions(void); 2170extern void free_bootmem_with_active_regions(int nid, 2171 unsigned long max_low_pfn); 2172extern void sparse_memory_present_with_active_regions(int nid); 2173 2174#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2175 2176#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2177 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2178static inline int __early_pfn_to_nid(unsigned long pfn, 2179 struct mminit_pfnnid_cache *state) 2180{ 2181 return 0; 2182} 2183#else 2184/* please see mm/page_alloc.c */ 2185extern int __meminit early_pfn_to_nid(unsigned long pfn); 2186/* there is a per-arch backend function. */ 2187extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2188 struct mminit_pfnnid_cache *state); 2189#endif 2190 2191#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2192void zero_resv_unavail(void); 2193#else 2194static inline void zero_resv_unavail(void) {} 2195#endif 2196 2197extern void set_dma_reserve(unsigned long new_dma_reserve); 2198extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2199 enum memmap_context, struct vmem_altmap *); 2200extern void setup_per_zone_wmarks(void); 2201extern int __meminit init_per_zone_wmark_min(void); 2202extern void mem_init(void); 2203extern void __init mmap_init(void); 2204extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2205extern long si_mem_available(void); 2206extern void si_meminfo(struct sysinfo * val); 2207extern void si_meminfo_node(struct sysinfo *val, int nid); 2208#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2209extern unsigned long arch_reserved_kernel_pages(void); 2210#endif 2211 2212extern __printf(3, 4) 2213void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2214 2215extern void setup_per_cpu_pageset(void); 2216 2217extern void zone_pcp_update(struct zone *zone); 2218extern void zone_pcp_reset(struct zone *zone); 2219 2220/* page_alloc.c */ 2221extern int min_free_kbytes; 2222extern int watermark_boost_factor; 2223extern int watermark_scale_factor; 2224 2225/* nommu.c */ 2226extern atomic_long_t mmap_pages_allocated; 2227extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2228 2229/* interval_tree.c */ 2230void vma_interval_tree_insert(struct vm_area_struct *node, 2231 struct rb_root_cached *root); 2232void vma_interval_tree_insert_after(struct vm_area_struct *node, 2233 struct vm_area_struct *prev, 2234 struct rb_root_cached *root); 2235void vma_interval_tree_remove(struct vm_area_struct *node, 2236 struct rb_root_cached *root); 2237struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2238 unsigned long start, unsigned long last); 2239struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2240 unsigned long start, unsigned long last); 2241 2242#define vma_interval_tree_foreach(vma, root, start, last) \ 2243 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2244 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2245 2246void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2247 struct rb_root_cached *root); 2248void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2249 struct rb_root_cached *root); 2250struct anon_vma_chain * 2251anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2252 unsigned long start, unsigned long last); 2253struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2254 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2255#ifdef CONFIG_DEBUG_VM_RB 2256void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2257#endif 2258 2259#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2260 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2261 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2262 2263/* mmap.c */ 2264extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2265extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2266 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2267 struct vm_area_struct *expand); 2268static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2269 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2270{ 2271 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2272} 2273extern struct vm_area_struct *vma_merge(struct mm_struct *, 2274 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2275 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2276 struct mempolicy *, struct vm_userfaultfd_ctx); 2277extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2278extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2279 unsigned long addr, int new_below); 2280extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2281 unsigned long addr, int new_below); 2282extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2283extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2284 struct rb_node **, struct rb_node *); 2285extern void unlink_file_vma(struct vm_area_struct *); 2286extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2287 unsigned long addr, unsigned long len, pgoff_t pgoff, 2288 bool *need_rmap_locks); 2289extern void exit_mmap(struct mm_struct *); 2290 2291static inline int check_data_rlimit(unsigned long rlim, 2292 unsigned long new, 2293 unsigned long start, 2294 unsigned long end_data, 2295 unsigned long start_data) 2296{ 2297 if (rlim < RLIM_INFINITY) { 2298 if (((new - start) + (end_data - start_data)) > rlim) 2299 return -ENOSPC; 2300 } 2301 2302 return 0; 2303} 2304 2305extern int mm_take_all_locks(struct mm_struct *mm); 2306extern void mm_drop_all_locks(struct mm_struct *mm); 2307 2308extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2309extern struct file *get_mm_exe_file(struct mm_struct *mm); 2310extern struct file *get_task_exe_file(struct task_struct *task); 2311 2312extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2313extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2314 2315extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2316 const struct vm_special_mapping *sm); 2317extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2318 unsigned long addr, unsigned long len, 2319 unsigned long flags, 2320 const struct vm_special_mapping *spec); 2321/* This is an obsolete alternative to _install_special_mapping. */ 2322extern int install_special_mapping(struct mm_struct *mm, 2323 unsigned long addr, unsigned long len, 2324 unsigned long flags, struct page **pages); 2325 2326unsigned long randomize_stack_top(unsigned long stack_top); 2327 2328extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2329 2330extern unsigned long mmap_region(struct file *file, unsigned long addr, 2331 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2332 struct list_head *uf); 2333extern unsigned long do_mmap(struct file *file, unsigned long addr, 2334 unsigned long len, unsigned long prot, unsigned long flags, 2335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2336 struct list_head *uf); 2337extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2338 struct list_head *uf, bool downgrade); 2339extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2340 struct list_head *uf); 2341 2342static inline unsigned long 2343do_mmap_pgoff(struct file *file, unsigned long addr, 2344 unsigned long len, unsigned long prot, unsigned long flags, 2345 unsigned long pgoff, unsigned long *populate, 2346 struct list_head *uf) 2347{ 2348 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2349} 2350 2351#ifdef CONFIG_MMU 2352extern int __mm_populate(unsigned long addr, unsigned long len, 2353 int ignore_errors); 2354static inline void mm_populate(unsigned long addr, unsigned long len) 2355{ 2356 /* Ignore errors */ 2357 (void) __mm_populate(addr, len, 1); 2358} 2359#else 2360static inline void mm_populate(unsigned long addr, unsigned long len) {} 2361#endif 2362 2363/* These take the mm semaphore themselves */ 2364extern int __must_check vm_brk(unsigned long, unsigned long); 2365extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2366extern int vm_munmap(unsigned long, size_t); 2367extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2368 unsigned long, unsigned long, 2369 unsigned long, unsigned long); 2370 2371struct vm_unmapped_area_info { 2372#define VM_UNMAPPED_AREA_TOPDOWN 1 2373 unsigned long flags; 2374 unsigned long length; 2375 unsigned long low_limit; 2376 unsigned long high_limit; 2377 unsigned long align_mask; 2378 unsigned long align_offset; 2379}; 2380 2381extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2382extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2383 2384/* 2385 * Search for an unmapped address range. 2386 * 2387 * We are looking for a range that: 2388 * - does not intersect with any VMA; 2389 * - is contained within the [low_limit, high_limit) interval; 2390 * - is at least the desired size. 2391 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2392 */ 2393static inline unsigned long 2394vm_unmapped_area(struct vm_unmapped_area_info *info) 2395{ 2396 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2397 return unmapped_area_topdown(info); 2398 else 2399 return unmapped_area(info); 2400} 2401 2402/* truncate.c */ 2403extern void truncate_inode_pages(struct address_space *, loff_t); 2404extern void truncate_inode_pages_range(struct address_space *, 2405 loff_t lstart, loff_t lend); 2406extern void truncate_inode_pages_final(struct address_space *); 2407 2408/* generic vm_area_ops exported for stackable file systems */ 2409extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2410extern void filemap_map_pages(struct vm_fault *vmf, 2411 pgoff_t start_pgoff, pgoff_t end_pgoff); 2412extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2413 2414/* mm/page-writeback.c */ 2415int __must_check write_one_page(struct page *page); 2416void task_dirty_inc(struct task_struct *tsk); 2417 2418/* readahead.c */ 2419#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2420 2421int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2422 pgoff_t offset, unsigned long nr_to_read); 2423 2424void page_cache_sync_readahead(struct address_space *mapping, 2425 struct file_ra_state *ra, 2426 struct file *filp, 2427 pgoff_t offset, 2428 unsigned long size); 2429 2430void page_cache_async_readahead(struct address_space *mapping, 2431 struct file_ra_state *ra, 2432 struct file *filp, 2433 struct page *pg, 2434 pgoff_t offset, 2435 unsigned long size); 2436 2437extern unsigned long stack_guard_gap; 2438/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2439extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2440 2441/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2442extern int expand_downwards(struct vm_area_struct *vma, 2443 unsigned long address); 2444#if VM_GROWSUP 2445extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2446#else 2447 #define expand_upwards(vma, address) (0) 2448#endif 2449 2450/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2451extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2452extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2453 struct vm_area_struct **pprev); 2454 2455/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2456 NULL if none. Assume start_addr < end_addr. */ 2457static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2458{ 2459 struct vm_area_struct * vma = find_vma(mm,start_addr); 2460 2461 if (vma && end_addr <= vma->vm_start) 2462 vma = NULL; 2463 return vma; 2464} 2465 2466static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2467{ 2468 unsigned long vm_start = vma->vm_start; 2469 2470 if (vma->vm_flags & VM_GROWSDOWN) { 2471 vm_start -= stack_guard_gap; 2472 if (vm_start > vma->vm_start) 2473 vm_start = 0; 2474 } 2475 return vm_start; 2476} 2477 2478static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2479{ 2480 unsigned long vm_end = vma->vm_end; 2481 2482 if (vma->vm_flags & VM_GROWSUP) { 2483 vm_end += stack_guard_gap; 2484 if (vm_end < vma->vm_end) 2485 vm_end = -PAGE_SIZE; 2486 } 2487 return vm_end; 2488} 2489 2490static inline unsigned long vma_pages(struct vm_area_struct *vma) 2491{ 2492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2493} 2494 2495/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2496static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2497 unsigned long vm_start, unsigned long vm_end) 2498{ 2499 struct vm_area_struct *vma = find_vma(mm, vm_start); 2500 2501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2502 vma = NULL; 2503 2504 return vma; 2505} 2506 2507static inline bool range_in_vma(struct vm_area_struct *vma, 2508 unsigned long start, unsigned long end) 2509{ 2510 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2511} 2512 2513#ifdef CONFIG_MMU 2514pgprot_t vm_get_page_prot(unsigned long vm_flags); 2515void vma_set_page_prot(struct vm_area_struct *vma); 2516#else 2517static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2518{ 2519 return __pgprot(0); 2520} 2521static inline void vma_set_page_prot(struct vm_area_struct *vma) 2522{ 2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2524} 2525#endif 2526 2527#ifdef CONFIG_NUMA_BALANCING 2528unsigned long change_prot_numa(struct vm_area_struct *vma, 2529 unsigned long start, unsigned long end); 2530#endif 2531 2532struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2533int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2534 unsigned long pfn, unsigned long size, pgprot_t); 2535int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2536int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2537 unsigned long num); 2538int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2539 unsigned long num); 2540vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2541 unsigned long pfn); 2542vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2543 unsigned long pfn, pgprot_t pgprot); 2544vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2545 pfn_t pfn); 2546vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2547 unsigned long addr, pfn_t pfn); 2548int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2549 2550static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2551 unsigned long addr, struct page *page) 2552{ 2553 int err = vm_insert_page(vma, addr, page); 2554 2555 if (err == -ENOMEM) 2556 return VM_FAULT_OOM; 2557 if (err < 0 && err != -EBUSY) 2558 return VM_FAULT_SIGBUS; 2559 2560 return VM_FAULT_NOPAGE; 2561} 2562 2563static inline vm_fault_t vmf_error(int err) 2564{ 2565 if (err == -ENOMEM) 2566 return VM_FAULT_OOM; 2567 return VM_FAULT_SIGBUS; 2568} 2569 2570struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2571 unsigned int foll_flags); 2572 2573#define FOLL_WRITE 0x01 /* check pte is writable */ 2574#define FOLL_TOUCH 0x02 /* mark page accessed */ 2575#define FOLL_GET 0x04 /* do get_page on page */ 2576#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2577#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2578#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2579 * and return without waiting upon it */ 2580#define FOLL_POPULATE 0x40 /* fault in page */ 2581#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2582#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2583#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2584#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2585#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2586#define FOLL_MLOCK 0x1000 /* lock present pages */ 2587#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2588#define FOLL_COW 0x4000 /* internal GUP flag */ 2589#define FOLL_ANON 0x8000 /* don't do file mappings */ 2590#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2591#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2592 2593/* 2594 * NOTE on FOLL_LONGTERM: 2595 * 2596 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2597 * period _often_ under userspace control. This is contrasted with 2598 * iov_iter_get_pages() where usages which are transient. 2599 * 2600 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2601 * lifetime enforced by the filesystem and we need guarantees that longterm 2602 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2603 * the filesystem. Ideas for this coordination include revoking the longterm 2604 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2605 * added after the problem with filesystems was found FS DAX VMAs are 2606 * specifically failed. Filesystem pages are still subject to bugs and use of 2607 * FOLL_LONGTERM should be avoided on those pages. 2608 * 2609 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2610 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2611 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2612 * is due to an incompatibility with the FS DAX check and 2613 * FAULT_FLAG_ALLOW_RETRY 2614 * 2615 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2616 * that region. And so CMA attempts to migrate the page before pinning when 2617 * FOLL_LONGTERM is specified. 2618 */ 2619 2620static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2621{ 2622 if (vm_fault & VM_FAULT_OOM) 2623 return -ENOMEM; 2624 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2625 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2626 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2627 return -EFAULT; 2628 return 0; 2629} 2630 2631typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2632extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2633 unsigned long size, pte_fn_t fn, void *data); 2634 2635 2636#ifdef CONFIG_PAGE_POISONING 2637extern bool page_poisoning_enabled(void); 2638extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2639#else 2640static inline bool page_poisoning_enabled(void) { return false; } 2641static inline void kernel_poison_pages(struct page *page, int numpages, 2642 int enable) { } 2643#endif 2644 2645#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2646DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2647#else 2648DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2649#endif 2650static inline bool want_init_on_alloc(gfp_t flags) 2651{ 2652 if (static_branch_unlikely(&init_on_alloc) && 2653 !page_poisoning_enabled()) 2654 return true; 2655 return flags & __GFP_ZERO; 2656} 2657 2658#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2659DECLARE_STATIC_KEY_TRUE(init_on_free); 2660#else 2661DECLARE_STATIC_KEY_FALSE(init_on_free); 2662#endif 2663static inline bool want_init_on_free(void) 2664{ 2665 return static_branch_unlikely(&init_on_free) && 2666 !page_poisoning_enabled(); 2667} 2668 2669#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 2670DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 2671#else 2672DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2673#endif 2674 2675static inline bool debug_pagealloc_enabled(void) 2676{ 2677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2678 return false; 2679 2680 return static_branch_unlikely(&_debug_pagealloc_enabled); 2681} 2682 2683#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2684extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2685 2686static inline void 2687kernel_map_pages(struct page *page, int numpages, int enable) 2688{ 2689 __kernel_map_pages(page, numpages, enable); 2690} 2691#ifdef CONFIG_HIBERNATION 2692extern bool kernel_page_present(struct page *page); 2693#endif /* CONFIG_HIBERNATION */ 2694#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2695static inline void 2696kernel_map_pages(struct page *page, int numpages, int enable) {} 2697#ifdef CONFIG_HIBERNATION 2698static inline bool kernel_page_present(struct page *page) { return true; } 2699#endif /* CONFIG_HIBERNATION */ 2700#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2701 2702#ifdef __HAVE_ARCH_GATE_AREA 2703extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2704extern int in_gate_area_no_mm(unsigned long addr); 2705extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2706#else 2707static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2708{ 2709 return NULL; 2710} 2711static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2712static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2713{ 2714 return 0; 2715} 2716#endif /* __HAVE_ARCH_GATE_AREA */ 2717 2718extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2719 2720#ifdef CONFIG_SYSCTL 2721extern int sysctl_drop_caches; 2722int drop_caches_sysctl_handler(struct ctl_table *, int, 2723 void __user *, size_t *, loff_t *); 2724#endif 2725 2726void drop_slab(void); 2727void drop_slab_node(int nid); 2728 2729#ifndef CONFIG_MMU 2730#define randomize_va_space 0 2731#else 2732extern int randomize_va_space; 2733#endif 2734 2735const char * arch_vma_name(struct vm_area_struct *vma); 2736#ifdef CONFIG_MMU 2737void print_vma_addr(char *prefix, unsigned long rip); 2738#else 2739static inline void print_vma_addr(char *prefix, unsigned long rip) 2740{ 2741} 2742#endif 2743 2744void *sparse_buffer_alloc(unsigned long size); 2745struct page * __populate_section_memmap(unsigned long pfn, 2746 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2747pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2748p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2749pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2750pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2751pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2752void *vmemmap_alloc_block(unsigned long size, int node); 2753struct vmem_altmap; 2754void *vmemmap_alloc_block_buf(unsigned long size, int node); 2755void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2756void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2757int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2758 int node); 2759int vmemmap_populate(unsigned long start, unsigned long end, int node, 2760 struct vmem_altmap *altmap); 2761void vmemmap_populate_print_last(void); 2762#ifdef CONFIG_MEMORY_HOTPLUG 2763void vmemmap_free(unsigned long start, unsigned long end, 2764 struct vmem_altmap *altmap); 2765#endif 2766void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2767 unsigned long nr_pages); 2768 2769enum mf_flags { 2770 MF_COUNT_INCREASED = 1 << 0, 2771 MF_ACTION_REQUIRED = 1 << 1, 2772 MF_MUST_KILL = 1 << 2, 2773 MF_SOFT_OFFLINE = 1 << 3, 2774}; 2775extern int memory_failure(unsigned long pfn, int flags); 2776extern void memory_failure_queue(unsigned long pfn, int flags); 2777extern int unpoison_memory(unsigned long pfn); 2778extern int get_hwpoison_page(struct page *page); 2779#define put_hwpoison_page(page) put_page(page) 2780extern int sysctl_memory_failure_early_kill; 2781extern int sysctl_memory_failure_recovery; 2782extern void shake_page(struct page *p, int access); 2783extern atomic_long_t num_poisoned_pages __read_mostly; 2784extern int soft_offline_page(struct page *page, int flags); 2785 2786 2787/* 2788 * Error handlers for various types of pages. 2789 */ 2790enum mf_result { 2791 MF_IGNORED, /* Error: cannot be handled */ 2792 MF_FAILED, /* Error: handling failed */ 2793 MF_DELAYED, /* Will be handled later */ 2794 MF_RECOVERED, /* Successfully recovered */ 2795}; 2796 2797enum mf_action_page_type { 2798 MF_MSG_KERNEL, 2799 MF_MSG_KERNEL_HIGH_ORDER, 2800 MF_MSG_SLAB, 2801 MF_MSG_DIFFERENT_COMPOUND, 2802 MF_MSG_POISONED_HUGE, 2803 MF_MSG_HUGE, 2804 MF_MSG_FREE_HUGE, 2805 MF_MSG_NON_PMD_HUGE, 2806 MF_MSG_UNMAP_FAILED, 2807 MF_MSG_DIRTY_SWAPCACHE, 2808 MF_MSG_CLEAN_SWAPCACHE, 2809 MF_MSG_DIRTY_MLOCKED_LRU, 2810 MF_MSG_CLEAN_MLOCKED_LRU, 2811 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2812 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2813 MF_MSG_DIRTY_LRU, 2814 MF_MSG_CLEAN_LRU, 2815 MF_MSG_TRUNCATED_LRU, 2816 MF_MSG_BUDDY, 2817 MF_MSG_BUDDY_2ND, 2818 MF_MSG_DAX, 2819 MF_MSG_UNKNOWN, 2820}; 2821 2822#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2823extern void clear_huge_page(struct page *page, 2824 unsigned long addr_hint, 2825 unsigned int pages_per_huge_page); 2826extern void copy_user_huge_page(struct page *dst, struct page *src, 2827 unsigned long addr_hint, 2828 struct vm_area_struct *vma, 2829 unsigned int pages_per_huge_page); 2830extern long copy_huge_page_from_user(struct page *dst_page, 2831 const void __user *usr_src, 2832 unsigned int pages_per_huge_page, 2833 bool allow_pagefault); 2834#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2835 2836#ifdef CONFIG_DEBUG_PAGEALLOC 2837extern unsigned int _debug_guardpage_minorder; 2838DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2839 2840static inline unsigned int debug_guardpage_minorder(void) 2841{ 2842 return _debug_guardpage_minorder; 2843} 2844 2845static inline bool debug_guardpage_enabled(void) 2846{ 2847 return static_branch_unlikely(&_debug_guardpage_enabled); 2848} 2849 2850static inline bool page_is_guard(struct page *page) 2851{ 2852 if (!debug_guardpage_enabled()) 2853 return false; 2854 2855 return PageGuard(page); 2856} 2857#else 2858static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2859static inline bool debug_guardpage_enabled(void) { return false; } 2860static inline bool page_is_guard(struct page *page) { return false; } 2861#endif /* CONFIG_DEBUG_PAGEALLOC */ 2862 2863#if MAX_NUMNODES > 1 2864void __init setup_nr_node_ids(void); 2865#else 2866static inline void setup_nr_node_ids(void) {} 2867#endif 2868 2869extern int memcmp_pages(struct page *page1, struct page *page2); 2870 2871static inline int pages_identical(struct page *page1, struct page *page2) 2872{ 2873 return !memcmp_pages(page1, page2); 2874} 2875 2876#endif /* __KERNEL__ */ 2877#endif /* _LINUX_MM_H */