at v5.4 33 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_GENERIC_PGTABLE_H 3#define _ASM_GENERIC_PGTABLE_H 4 5#include <linux/pfn.h> 6 7#ifndef __ASSEMBLY__ 8#ifdef CONFIG_MMU 9 10#include <linux/mm_types.h> 11#include <linux/bug.h> 12#include <linux/errno.h> 13 14#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 15 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 16#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 17#endif 18 19/* 20 * On almost all architectures and configurations, 0 can be used as the 21 * upper ceiling to free_pgtables(): on many architectures it has the same 22 * effect as using TASK_SIZE. However, there is one configuration which 23 * must impose a more careful limit, to avoid freeing kernel pgtables. 24 */ 25#ifndef USER_PGTABLES_CEILING 26#define USER_PGTABLES_CEILING 0UL 27#endif 28 29#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 30extern int ptep_set_access_flags(struct vm_area_struct *vma, 31 unsigned long address, pte_t *ptep, 32 pte_t entry, int dirty); 33#endif 34 35#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 36#ifdef CONFIG_TRANSPARENT_HUGEPAGE 37extern int pmdp_set_access_flags(struct vm_area_struct *vma, 38 unsigned long address, pmd_t *pmdp, 39 pmd_t entry, int dirty); 40extern int pudp_set_access_flags(struct vm_area_struct *vma, 41 unsigned long address, pud_t *pudp, 42 pud_t entry, int dirty); 43#else 44static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 45 unsigned long address, pmd_t *pmdp, 46 pmd_t entry, int dirty) 47{ 48 BUILD_BUG(); 49 return 0; 50} 51static inline int pudp_set_access_flags(struct vm_area_struct *vma, 52 unsigned long address, pud_t *pudp, 53 pud_t entry, int dirty) 54{ 55 BUILD_BUG(); 56 return 0; 57} 58#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 59#endif 60 61#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 62static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pte_t *ptep) 65{ 66 pte_t pte = *ptep; 67 int r = 1; 68 if (!pte_young(pte)) 69 r = 0; 70 else 71 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 72 return r; 73} 74#endif 75 76#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 77#ifdef CONFIG_TRANSPARENT_HUGEPAGE 78static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 79 unsigned long address, 80 pmd_t *pmdp) 81{ 82 pmd_t pmd = *pmdp; 83 int r = 1; 84 if (!pmd_young(pmd)) 85 r = 0; 86 else 87 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 88 return r; 89} 90#else 91static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 92 unsigned long address, 93 pmd_t *pmdp) 94{ 95 BUILD_BUG(); 96 return 0; 97} 98#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 99#endif 100 101#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 102int ptep_clear_flush_young(struct vm_area_struct *vma, 103 unsigned long address, pte_t *ptep); 104#endif 105 106#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 107#ifdef CONFIG_TRANSPARENT_HUGEPAGE 108extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 109 unsigned long address, pmd_t *pmdp); 110#else 111/* 112 * Despite relevant to THP only, this API is called from generic rmap code 113 * under PageTransHuge(), hence needs a dummy implementation for !THP 114 */ 115static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 116 unsigned long address, pmd_t *pmdp) 117{ 118 BUILD_BUG(); 119 return 0; 120} 121#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 122#endif 123 124#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 125static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 126 unsigned long address, 127 pte_t *ptep) 128{ 129 pte_t pte = *ptep; 130 pte_clear(mm, address, ptep); 131 return pte; 132} 133#endif 134 135#ifdef CONFIG_TRANSPARENT_HUGEPAGE 136#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 137static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 138 unsigned long address, 139 pmd_t *pmdp) 140{ 141 pmd_t pmd = *pmdp; 142 pmd_clear(pmdp); 143 return pmd; 144} 145#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 146#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 147static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 148 unsigned long address, 149 pud_t *pudp) 150{ 151 pud_t pud = *pudp; 152 153 pud_clear(pudp); 154 return pud; 155} 156#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 158 159#ifdef CONFIG_TRANSPARENT_HUGEPAGE 160#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 161static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 162 unsigned long address, pmd_t *pmdp, 163 int full) 164{ 165 return pmdp_huge_get_and_clear(mm, address, pmdp); 166} 167#endif 168 169#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 170static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 171 unsigned long address, pud_t *pudp, 172 int full) 173{ 174 return pudp_huge_get_and_clear(mm, address, pudp); 175} 176#endif 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178 179#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 180static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 181 unsigned long address, pte_t *ptep, 182 int full) 183{ 184 pte_t pte; 185 pte = ptep_get_and_clear(mm, address, ptep); 186 return pte; 187} 188#endif 189 190/* 191 * Some architectures may be able to avoid expensive synchronization 192 * primitives when modifications are made to PTE's which are already 193 * not present, or in the process of an address space destruction. 194 */ 195#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 196static inline void pte_clear_not_present_full(struct mm_struct *mm, 197 unsigned long address, 198 pte_t *ptep, 199 int full) 200{ 201 pte_clear(mm, address, ptep); 202} 203#endif 204 205#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 206extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 207 unsigned long address, 208 pte_t *ptep); 209#endif 210 211#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 212extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 213 unsigned long address, 214 pmd_t *pmdp); 215extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 216 unsigned long address, 217 pud_t *pudp); 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 221struct mm_struct; 222static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 223{ 224 pte_t old_pte = *ptep; 225 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 226} 227#endif 228 229#ifndef pte_savedwrite 230#define pte_savedwrite pte_write 231#endif 232 233#ifndef pte_mk_savedwrite 234#define pte_mk_savedwrite pte_mkwrite 235#endif 236 237#ifndef pte_clear_savedwrite 238#define pte_clear_savedwrite pte_wrprotect 239#endif 240 241#ifndef pmd_savedwrite 242#define pmd_savedwrite pmd_write 243#endif 244 245#ifndef pmd_mk_savedwrite 246#define pmd_mk_savedwrite pmd_mkwrite 247#endif 248 249#ifndef pmd_clear_savedwrite 250#define pmd_clear_savedwrite pmd_wrprotect 251#endif 252 253#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 254#ifdef CONFIG_TRANSPARENT_HUGEPAGE 255static inline void pmdp_set_wrprotect(struct mm_struct *mm, 256 unsigned long address, pmd_t *pmdp) 257{ 258 pmd_t old_pmd = *pmdp; 259 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 260} 261#else 262static inline void pmdp_set_wrprotect(struct mm_struct *mm, 263 unsigned long address, pmd_t *pmdp) 264{ 265 BUILD_BUG(); 266} 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 268#endif 269#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 271static inline void pudp_set_wrprotect(struct mm_struct *mm, 272 unsigned long address, pud_t *pudp) 273{ 274 pud_t old_pud = *pudp; 275 276 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 277} 278#else 279static inline void pudp_set_wrprotect(struct mm_struct *mm, 280 unsigned long address, pud_t *pudp) 281{ 282 BUILD_BUG(); 283} 284#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 285#endif 286 287#ifndef pmdp_collapse_flush 288#ifdef CONFIG_TRANSPARENT_HUGEPAGE 289extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 290 unsigned long address, pmd_t *pmdp); 291#else 292static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 293 unsigned long address, 294 pmd_t *pmdp) 295{ 296 BUILD_BUG(); 297 return *pmdp; 298} 299#define pmdp_collapse_flush pmdp_collapse_flush 300#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 301#endif 302 303#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 304extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 305 pgtable_t pgtable); 306#endif 307 308#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 309extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 310#endif 311 312#ifdef CONFIG_TRANSPARENT_HUGEPAGE 313/* 314 * This is an implementation of pmdp_establish() that is only suitable for an 315 * architecture that doesn't have hardware dirty/accessed bits. In this case we 316 * can't race with CPU which sets these bits and non-atomic aproach is fine. 317 */ 318static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 319 unsigned long address, pmd_t *pmdp, pmd_t pmd) 320{ 321 pmd_t old_pmd = *pmdp; 322 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 323 return old_pmd; 324} 325#endif 326 327#ifndef __HAVE_ARCH_PMDP_INVALIDATE 328extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 329 pmd_t *pmdp); 330#endif 331 332#ifndef __HAVE_ARCH_PTE_SAME 333static inline int pte_same(pte_t pte_a, pte_t pte_b) 334{ 335 return pte_val(pte_a) == pte_val(pte_b); 336} 337#endif 338 339#ifndef __HAVE_ARCH_PTE_UNUSED 340/* 341 * Some architectures provide facilities to virtualization guests 342 * so that they can flag allocated pages as unused. This allows the 343 * host to transparently reclaim unused pages. This function returns 344 * whether the pte's page is unused. 345 */ 346static inline int pte_unused(pte_t pte) 347{ 348 return 0; 349} 350#endif 351 352#ifndef pte_access_permitted 353#define pte_access_permitted(pte, write) \ 354 (pte_present(pte) && (!(write) || pte_write(pte))) 355#endif 356 357#ifndef pmd_access_permitted 358#define pmd_access_permitted(pmd, write) \ 359 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 360#endif 361 362#ifndef pud_access_permitted 363#define pud_access_permitted(pud, write) \ 364 (pud_present(pud) && (!(write) || pud_write(pud))) 365#endif 366 367#ifndef p4d_access_permitted 368#define p4d_access_permitted(p4d, write) \ 369 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 370#endif 371 372#ifndef pgd_access_permitted 373#define pgd_access_permitted(pgd, write) \ 374 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 375#endif 376 377#ifndef __HAVE_ARCH_PMD_SAME 378static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 379{ 380 return pmd_val(pmd_a) == pmd_val(pmd_b); 381} 382 383static inline int pud_same(pud_t pud_a, pud_t pud_b) 384{ 385 return pud_val(pud_a) == pud_val(pud_b); 386} 387#endif 388 389#ifndef __HAVE_ARCH_P4D_SAME 390static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 391{ 392 return p4d_val(p4d_a) == p4d_val(p4d_b); 393} 394#endif 395 396#ifndef __HAVE_ARCH_PGD_SAME 397static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 398{ 399 return pgd_val(pgd_a) == pgd_val(pgd_b); 400} 401#endif 402 403/* 404 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 405 * TLB flush will be required as a result of the "set". For example, use 406 * in scenarios where it is known ahead of time that the routine is 407 * setting non-present entries, or re-setting an existing entry to the 408 * same value. Otherwise, use the typical "set" helpers and flush the 409 * TLB. 410 */ 411#define set_pte_safe(ptep, pte) \ 412({ \ 413 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 414 set_pte(ptep, pte); \ 415}) 416 417#define set_pmd_safe(pmdp, pmd) \ 418({ \ 419 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 420 set_pmd(pmdp, pmd); \ 421}) 422 423#define set_pud_safe(pudp, pud) \ 424({ \ 425 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 426 set_pud(pudp, pud); \ 427}) 428 429#define set_p4d_safe(p4dp, p4d) \ 430({ \ 431 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 432 set_p4d(p4dp, p4d); \ 433}) 434 435#define set_pgd_safe(pgdp, pgd) \ 436({ \ 437 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 438 set_pgd(pgdp, pgd); \ 439}) 440 441#ifndef __HAVE_ARCH_DO_SWAP_PAGE 442/* 443 * Some architectures support metadata associated with a page. When a 444 * page is being swapped out, this metadata must be saved so it can be 445 * restored when the page is swapped back in. SPARC M7 and newer 446 * processors support an ADI (Application Data Integrity) tag for the 447 * page as metadata for the page. arch_do_swap_page() can restore this 448 * metadata when a page is swapped back in. 449 */ 450static inline void arch_do_swap_page(struct mm_struct *mm, 451 struct vm_area_struct *vma, 452 unsigned long addr, 453 pte_t pte, pte_t oldpte) 454{ 455 456} 457#endif 458 459#ifndef __HAVE_ARCH_UNMAP_ONE 460/* 461 * Some architectures support metadata associated with a page. When a 462 * page is being swapped out, this metadata must be saved so it can be 463 * restored when the page is swapped back in. SPARC M7 and newer 464 * processors support an ADI (Application Data Integrity) tag for the 465 * page as metadata for the page. arch_unmap_one() can save this 466 * metadata on a swap-out of a page. 467 */ 468static inline int arch_unmap_one(struct mm_struct *mm, 469 struct vm_area_struct *vma, 470 unsigned long addr, 471 pte_t orig_pte) 472{ 473 return 0; 474} 475#endif 476 477#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 478#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 479#endif 480 481#ifndef __HAVE_ARCH_MOVE_PTE 482#define move_pte(pte, prot, old_addr, new_addr) (pte) 483#endif 484 485#ifndef pte_accessible 486# define pte_accessible(mm, pte) ((void)(pte), 1) 487#endif 488 489#ifndef flush_tlb_fix_spurious_fault 490#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 491#endif 492 493#ifndef pgprot_noncached 494#define pgprot_noncached(prot) (prot) 495#endif 496 497#ifndef pgprot_writecombine 498#define pgprot_writecombine pgprot_noncached 499#endif 500 501#ifndef pgprot_writethrough 502#define pgprot_writethrough pgprot_noncached 503#endif 504 505#ifndef pgprot_device 506#define pgprot_device pgprot_noncached 507#endif 508 509#ifndef pgprot_modify 510#define pgprot_modify pgprot_modify 511static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 512{ 513 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 514 newprot = pgprot_noncached(newprot); 515 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 516 newprot = pgprot_writecombine(newprot); 517 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 518 newprot = pgprot_device(newprot); 519 return newprot; 520} 521#endif 522 523/* 524 * When walking page tables, get the address of the next boundary, 525 * or the end address of the range if that comes earlier. Although no 526 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 527 */ 528 529#define pgd_addr_end(addr, end) \ 530({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 531 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 532}) 533 534#ifndef p4d_addr_end 535#define p4d_addr_end(addr, end) \ 536({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 537 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 538}) 539#endif 540 541#ifndef pud_addr_end 542#define pud_addr_end(addr, end) \ 543({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 544 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 545}) 546#endif 547 548#ifndef pmd_addr_end 549#define pmd_addr_end(addr, end) \ 550({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 551 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 552}) 553#endif 554 555/* 556 * When walking page tables, we usually want to skip any p?d_none entries; 557 * and any p?d_bad entries - reporting the error before resetting to none. 558 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 559 */ 560void pgd_clear_bad(pgd_t *); 561void p4d_clear_bad(p4d_t *); 562void pud_clear_bad(pud_t *); 563void pmd_clear_bad(pmd_t *); 564 565static inline int pgd_none_or_clear_bad(pgd_t *pgd) 566{ 567 if (pgd_none(*pgd)) 568 return 1; 569 if (unlikely(pgd_bad(*pgd))) { 570 pgd_clear_bad(pgd); 571 return 1; 572 } 573 return 0; 574} 575 576static inline int p4d_none_or_clear_bad(p4d_t *p4d) 577{ 578 if (p4d_none(*p4d)) 579 return 1; 580 if (unlikely(p4d_bad(*p4d))) { 581 p4d_clear_bad(p4d); 582 return 1; 583 } 584 return 0; 585} 586 587static inline int pud_none_or_clear_bad(pud_t *pud) 588{ 589 if (pud_none(*pud)) 590 return 1; 591 if (unlikely(pud_bad(*pud))) { 592 pud_clear_bad(pud); 593 return 1; 594 } 595 return 0; 596} 597 598static inline int pmd_none_or_clear_bad(pmd_t *pmd) 599{ 600 if (pmd_none(*pmd)) 601 return 1; 602 if (unlikely(pmd_bad(*pmd))) { 603 pmd_clear_bad(pmd); 604 return 1; 605 } 606 return 0; 607} 608 609static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 610 unsigned long addr, 611 pte_t *ptep) 612{ 613 /* 614 * Get the current pte state, but zero it out to make it 615 * non-present, preventing the hardware from asynchronously 616 * updating it. 617 */ 618 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 619} 620 621static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 622 unsigned long addr, 623 pte_t *ptep, pte_t pte) 624{ 625 /* 626 * The pte is non-present, so there's no hardware state to 627 * preserve. 628 */ 629 set_pte_at(vma->vm_mm, addr, ptep, pte); 630} 631 632#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 633/* 634 * Start a pte protection read-modify-write transaction, which 635 * protects against asynchronous hardware modifications to the pte. 636 * The intention is not to prevent the hardware from making pte 637 * updates, but to prevent any updates it may make from being lost. 638 * 639 * This does not protect against other software modifications of the 640 * pte; the appropriate pte lock must be held over the transation. 641 * 642 * Note that this interface is intended to be batchable, meaning that 643 * ptep_modify_prot_commit may not actually update the pte, but merely 644 * queue the update to be done at some later time. The update must be 645 * actually committed before the pte lock is released, however. 646 */ 647static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 648 unsigned long addr, 649 pte_t *ptep) 650{ 651 return __ptep_modify_prot_start(vma, addr, ptep); 652} 653 654/* 655 * Commit an update to a pte, leaving any hardware-controlled bits in 656 * the PTE unmodified. 657 */ 658static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 659 unsigned long addr, 660 pte_t *ptep, pte_t old_pte, pte_t pte) 661{ 662 __ptep_modify_prot_commit(vma, addr, ptep, pte); 663} 664#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 665#endif /* CONFIG_MMU */ 666 667/* 668 * No-op macros that just return the current protection value. Defined here 669 * because these macros can be used used even if CONFIG_MMU is not defined. 670 */ 671#ifndef pgprot_encrypted 672#define pgprot_encrypted(prot) (prot) 673#endif 674 675#ifndef pgprot_decrypted 676#define pgprot_decrypted(prot) (prot) 677#endif 678 679/* 680 * A facility to provide lazy MMU batching. This allows PTE updates and 681 * page invalidations to be delayed until a call to leave lazy MMU mode 682 * is issued. Some architectures may benefit from doing this, and it is 683 * beneficial for both shadow and direct mode hypervisors, which may batch 684 * the PTE updates which happen during this window. Note that using this 685 * interface requires that read hazards be removed from the code. A read 686 * hazard could result in the direct mode hypervisor case, since the actual 687 * write to the page tables may not yet have taken place, so reads though 688 * a raw PTE pointer after it has been modified are not guaranteed to be 689 * up to date. This mode can only be entered and left under the protection of 690 * the page table locks for all page tables which may be modified. In the UP 691 * case, this is required so that preemption is disabled, and in the SMP case, 692 * it must synchronize the delayed page table writes properly on other CPUs. 693 */ 694#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 695#define arch_enter_lazy_mmu_mode() do {} while (0) 696#define arch_leave_lazy_mmu_mode() do {} while (0) 697#define arch_flush_lazy_mmu_mode() do {} while (0) 698#endif 699 700/* 701 * A facility to provide batching of the reload of page tables and 702 * other process state with the actual context switch code for 703 * paravirtualized guests. By convention, only one of the batched 704 * update (lazy) modes (CPU, MMU) should be active at any given time, 705 * entry should never be nested, and entry and exits should always be 706 * paired. This is for sanity of maintaining and reasoning about the 707 * kernel code. In this case, the exit (end of the context switch) is 708 * in architecture-specific code, and so doesn't need a generic 709 * definition. 710 */ 711#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 712#define arch_start_context_switch(prev) do {} while (0) 713#endif 714 715#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 716#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 717static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 718{ 719 return pmd; 720} 721 722static inline int pmd_swp_soft_dirty(pmd_t pmd) 723{ 724 return 0; 725} 726 727static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 728{ 729 return pmd; 730} 731#endif 732#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 733static inline int pte_soft_dirty(pte_t pte) 734{ 735 return 0; 736} 737 738static inline int pmd_soft_dirty(pmd_t pmd) 739{ 740 return 0; 741} 742 743static inline pte_t pte_mksoft_dirty(pte_t pte) 744{ 745 return pte; 746} 747 748static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 749{ 750 return pmd; 751} 752 753static inline pte_t pte_clear_soft_dirty(pte_t pte) 754{ 755 return pte; 756} 757 758static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 759{ 760 return pmd; 761} 762 763static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 764{ 765 return pte; 766} 767 768static inline int pte_swp_soft_dirty(pte_t pte) 769{ 770 return 0; 771} 772 773static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 774{ 775 return pte; 776} 777 778static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 779{ 780 return pmd; 781} 782 783static inline int pmd_swp_soft_dirty(pmd_t pmd) 784{ 785 return 0; 786} 787 788static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 789{ 790 return pmd; 791} 792#endif 793 794#ifndef __HAVE_PFNMAP_TRACKING 795/* 796 * Interfaces that can be used by architecture code to keep track of 797 * memory type of pfn mappings specified by the remap_pfn_range, 798 * vmf_insert_pfn. 799 */ 800 801/* 802 * track_pfn_remap is called when a _new_ pfn mapping is being established 803 * by remap_pfn_range() for physical range indicated by pfn and size. 804 */ 805static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 806 unsigned long pfn, unsigned long addr, 807 unsigned long size) 808{ 809 return 0; 810} 811 812/* 813 * track_pfn_insert is called when a _new_ single pfn is established 814 * by vmf_insert_pfn(). 815 */ 816static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 817 pfn_t pfn) 818{ 819} 820 821/* 822 * track_pfn_copy is called when vma that is covering the pfnmap gets 823 * copied through copy_page_range(). 824 */ 825static inline int track_pfn_copy(struct vm_area_struct *vma) 826{ 827 return 0; 828} 829 830/* 831 * untrack_pfn is called while unmapping a pfnmap for a region. 832 * untrack can be called for a specific region indicated by pfn and size or 833 * can be for the entire vma (in which case pfn, size are zero). 834 */ 835static inline void untrack_pfn(struct vm_area_struct *vma, 836 unsigned long pfn, unsigned long size) 837{ 838} 839 840/* 841 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 842 */ 843static inline void untrack_pfn_moved(struct vm_area_struct *vma) 844{ 845} 846#else 847extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 848 unsigned long pfn, unsigned long addr, 849 unsigned long size); 850extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 851 pfn_t pfn); 852extern int track_pfn_copy(struct vm_area_struct *vma); 853extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 854 unsigned long size); 855extern void untrack_pfn_moved(struct vm_area_struct *vma); 856#endif 857 858#ifdef __HAVE_COLOR_ZERO_PAGE 859static inline int is_zero_pfn(unsigned long pfn) 860{ 861 extern unsigned long zero_pfn; 862 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 863 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 864} 865 866#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 867 868#else 869static inline int is_zero_pfn(unsigned long pfn) 870{ 871 extern unsigned long zero_pfn; 872 return pfn == zero_pfn; 873} 874 875static inline unsigned long my_zero_pfn(unsigned long addr) 876{ 877 extern unsigned long zero_pfn; 878 return zero_pfn; 879} 880#endif 881 882#ifdef CONFIG_MMU 883 884#ifndef CONFIG_TRANSPARENT_HUGEPAGE 885static inline int pmd_trans_huge(pmd_t pmd) 886{ 887 return 0; 888} 889#ifndef pmd_write 890static inline int pmd_write(pmd_t pmd) 891{ 892 BUG(); 893 return 0; 894} 895#endif /* pmd_write */ 896#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 897 898#ifndef pud_write 899static inline int pud_write(pud_t pud) 900{ 901 BUG(); 902 return 0; 903} 904#endif /* pud_write */ 905 906#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 907 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 908 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 909static inline int pud_trans_huge(pud_t pud) 910{ 911 return 0; 912} 913#endif 914 915#ifndef pmd_read_atomic 916static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 917{ 918 /* 919 * Depend on compiler for an atomic pmd read. NOTE: this is 920 * only going to work, if the pmdval_t isn't larger than 921 * an unsigned long. 922 */ 923 return *pmdp; 924} 925#endif 926 927#ifndef arch_needs_pgtable_deposit 928#define arch_needs_pgtable_deposit() (false) 929#endif 930/* 931 * This function is meant to be used by sites walking pagetables with 932 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 933 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 934 * into a null pmd and the transhuge page fault can convert a null pmd 935 * into an hugepmd or into a regular pmd (if the hugepage allocation 936 * fails). While holding the mmap_sem in read mode the pmd becomes 937 * stable and stops changing under us only if it's not null and not a 938 * transhuge pmd. When those races occurs and this function makes a 939 * difference vs the standard pmd_none_or_clear_bad, the result is 940 * undefined so behaving like if the pmd was none is safe (because it 941 * can return none anyway). The compiler level barrier() is critically 942 * important to compute the two checks atomically on the same pmdval. 943 * 944 * For 32bit kernels with a 64bit large pmd_t this automatically takes 945 * care of reading the pmd atomically to avoid SMP race conditions 946 * against pmd_populate() when the mmap_sem is hold for reading by the 947 * caller (a special atomic read not done by "gcc" as in the generic 948 * version above, is also needed when THP is disabled because the page 949 * fault can populate the pmd from under us). 950 */ 951static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 952{ 953 pmd_t pmdval = pmd_read_atomic(pmd); 954 /* 955 * The barrier will stabilize the pmdval in a register or on 956 * the stack so that it will stop changing under the code. 957 * 958 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 959 * pmd_read_atomic is allowed to return a not atomic pmdval 960 * (for example pointing to an hugepage that has never been 961 * mapped in the pmd). The below checks will only care about 962 * the low part of the pmd with 32bit PAE x86 anyway, with the 963 * exception of pmd_none(). So the important thing is that if 964 * the low part of the pmd is found null, the high part will 965 * be also null or the pmd_none() check below would be 966 * confused. 967 */ 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE 969 barrier(); 970#endif 971 /* 972 * !pmd_present() checks for pmd migration entries 973 * 974 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 975 * But using that requires moving current function and pmd_trans_unstable() 976 * to linux/swapops.h to resovle dependency, which is too much code move. 977 * 978 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 979 * because !pmd_present() pages can only be under migration not swapped 980 * out. 981 * 982 * pmd_none() is preseved for future condition checks on pmd migration 983 * entries and not confusing with this function name, although it is 984 * redundant with !pmd_present(). 985 */ 986 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 987 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 988 return 1; 989 if (unlikely(pmd_bad(pmdval))) { 990 pmd_clear_bad(pmd); 991 return 1; 992 } 993 return 0; 994} 995 996/* 997 * This is a noop if Transparent Hugepage Support is not built into 998 * the kernel. Otherwise it is equivalent to 999 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1000 * places that already verified the pmd is not none and they want to 1001 * walk ptes while holding the mmap sem in read mode (write mode don't 1002 * need this). If THP is not enabled, the pmd can't go away under the 1003 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1004 * run a pmd_trans_unstable before walking the ptes after 1005 * split_huge_pmd returns (because it may have run when the pmd become 1006 * null, but then a page fault can map in a THP and not a regular page). 1007 */ 1008static inline int pmd_trans_unstable(pmd_t *pmd) 1009{ 1010#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1011 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1012#else 1013 return 0; 1014#endif 1015} 1016 1017#ifndef CONFIG_NUMA_BALANCING 1018/* 1019 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1020 * the only case the kernel cares is for NUMA balancing and is only ever set 1021 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1022 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 1023 * is the responsibility of the caller to distinguish between PROT_NONE 1024 * protections and NUMA hinting fault protections. 1025 */ 1026static inline int pte_protnone(pte_t pte) 1027{ 1028 return 0; 1029} 1030 1031static inline int pmd_protnone(pmd_t pmd) 1032{ 1033 return 0; 1034} 1035#endif /* CONFIG_NUMA_BALANCING */ 1036 1037#endif /* CONFIG_MMU */ 1038 1039#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1040 1041#ifndef __PAGETABLE_P4D_FOLDED 1042int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1043int p4d_clear_huge(p4d_t *p4d); 1044#else 1045static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1046{ 1047 return 0; 1048} 1049static inline int p4d_clear_huge(p4d_t *p4d) 1050{ 1051 return 0; 1052} 1053#endif /* !__PAGETABLE_P4D_FOLDED */ 1054 1055int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1056int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1057int pud_clear_huge(pud_t *pud); 1058int pmd_clear_huge(pmd_t *pmd); 1059int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1060int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1061int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1062#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1063static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1064{ 1065 return 0; 1066} 1067static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1068{ 1069 return 0; 1070} 1071static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1072{ 1073 return 0; 1074} 1075static inline int p4d_clear_huge(p4d_t *p4d) 1076{ 1077 return 0; 1078} 1079static inline int pud_clear_huge(pud_t *pud) 1080{ 1081 return 0; 1082} 1083static inline int pmd_clear_huge(pmd_t *pmd) 1084{ 1085 return 0; 1086} 1087static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1088{ 1089 return 0; 1090} 1091static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1092{ 1093 return 0; 1094} 1095static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1096{ 1097 return 0; 1098} 1099#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1100 1101#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1102#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1103/* 1104 * ARCHes with special requirements for evicting THP backing TLB entries can 1105 * implement this. Otherwise also, it can help optimize normal TLB flush in 1106 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 1107 * entire TLB TLB if flush span is greater than a threshold, which will 1108 * likely be true for a single huge page. Thus a single thp flush will 1109 * invalidate the entire TLB which is not desitable. 1110 * e.g. see arch/arc: flush_pmd_tlb_range 1111 */ 1112#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1113#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1114#else 1115#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1116#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1117#endif 1118#endif 1119 1120struct file; 1121int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1122 unsigned long size, pgprot_t *vma_prot); 1123 1124#ifndef CONFIG_X86_ESPFIX64 1125static inline void init_espfix_bsp(void) { } 1126#endif 1127 1128extern void __init pgtable_cache_init(void); 1129 1130#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1131static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1132{ 1133 return true; 1134} 1135 1136static inline bool arch_has_pfn_modify_check(void) 1137{ 1138 return false; 1139} 1140#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1141 1142/* 1143 * Architecture PAGE_KERNEL_* fallbacks 1144 * 1145 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1146 * because they really don't support them, or the port needs to be updated to 1147 * reflect the required functionality. Below are a set of relatively safe 1148 * fallbacks, as best effort, which we can count on in lieu of the architectures 1149 * not defining them on their own yet. 1150 */ 1151 1152#ifndef PAGE_KERNEL_RO 1153# define PAGE_KERNEL_RO PAGE_KERNEL 1154#endif 1155 1156#ifndef PAGE_KERNEL_EXEC 1157# define PAGE_KERNEL_EXEC PAGE_KERNEL 1158#endif 1159 1160#endif /* !__ASSEMBLY__ */ 1161 1162#ifndef io_remap_pfn_range 1163#define io_remap_pfn_range remap_pfn_range 1164#endif 1165 1166#ifndef has_transparent_hugepage 1167#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1168#define has_transparent_hugepage() 1 1169#else 1170#define has_transparent_hugepage() 0 1171#endif 1172#endif 1173 1174/* 1175 * On some architectures it depends on the mm if the p4d/pud or pmd 1176 * layer of the page table hierarchy is folded or not. 1177 */ 1178#ifndef mm_p4d_folded 1179#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1180#endif 1181 1182#ifndef mm_pud_folded 1183#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1184#endif 1185 1186#ifndef mm_pmd_folded 1187#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1188#endif 1189 1190#endif /* _ASM_GENERIC_PGTABLE_H */