at v5.4 380 lines 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_SEGMENT_H 3#define _ASM_X86_SEGMENT_H 4 5#include <linux/const.h> 6#include <asm/alternative.h> 7 8/* 9 * Constructor for a conventional segment GDT (or LDT) entry. 10 * This is a macro so it can be used in initializers. 11 */ 12#define GDT_ENTRY(flags, base, limit) \ 13 ((((base) & _AC(0xff000000,ULL)) << (56-24)) | \ 14 (((flags) & _AC(0x0000f0ff,ULL)) << 40) | \ 15 (((limit) & _AC(0x000f0000,ULL)) << (48-16)) | \ 16 (((base) & _AC(0x00ffffff,ULL)) << 16) | \ 17 (((limit) & _AC(0x0000ffff,ULL)))) 18 19/* Simple and small GDT entries for booting only: */ 20 21#define GDT_ENTRY_BOOT_CS 2 22#define GDT_ENTRY_BOOT_DS 3 23#define GDT_ENTRY_BOOT_TSS 4 24#define __BOOT_CS (GDT_ENTRY_BOOT_CS*8) 25#define __BOOT_DS (GDT_ENTRY_BOOT_DS*8) 26#define __BOOT_TSS (GDT_ENTRY_BOOT_TSS*8) 27 28/* 29 * Bottom two bits of selector give the ring 30 * privilege level 31 */ 32#define SEGMENT_RPL_MASK 0x3 33 34/* User mode is privilege level 3: */ 35#define USER_RPL 0x3 36 37/* Bit 2 is Table Indicator (TI): selects between LDT or GDT */ 38#define SEGMENT_TI_MASK 0x4 39/* LDT segment has TI set ... */ 40#define SEGMENT_LDT 0x4 41/* ... GDT has it cleared */ 42#define SEGMENT_GDT 0x0 43 44#define GDT_ENTRY_INVALID_SEG 0 45 46#ifdef CONFIG_X86_32 47/* 48 * The layout of the per-CPU GDT under Linux: 49 * 50 * 0 - null <=== cacheline #1 51 * 1 - reserved 52 * 2 - reserved 53 * 3 - reserved 54 * 55 * 4 - unused <=== cacheline #2 56 * 5 - unused 57 * 58 * ------- start of TLS (Thread-Local Storage) segments: 59 * 60 * 6 - TLS segment #1 [ glibc's TLS segment ] 61 * 7 - TLS segment #2 [ Wine's %fs Win32 segment ] 62 * 8 - TLS segment #3 <=== cacheline #3 63 * 9 - reserved 64 * 10 - reserved 65 * 11 - reserved 66 * 67 * ------- start of kernel segments: 68 * 69 * 12 - kernel code segment <=== cacheline #4 70 * 13 - kernel data segment 71 * 14 - default user CS 72 * 15 - default user DS 73 * 16 - TSS <=== cacheline #5 74 * 17 - LDT 75 * 18 - PNPBIOS support (16->32 gate) 76 * 19 - PNPBIOS support 77 * 20 - PNPBIOS support <=== cacheline #6 78 * 21 - PNPBIOS support 79 * 22 - PNPBIOS support 80 * 23 - APM BIOS support 81 * 24 - APM BIOS support <=== cacheline #7 82 * 25 - APM BIOS support 83 * 84 * 26 - ESPFIX small SS 85 * 27 - per-cpu [ offset to per-cpu data area ] 86 * 28 - stack_canary-20 [ for stack protector ] <=== cacheline #8 87 * 29 - unused 88 * 30 - unused 89 * 31 - TSS for double fault handler 90 */ 91#define GDT_ENTRY_TLS_MIN 6 92#define GDT_ENTRY_TLS_MAX (GDT_ENTRY_TLS_MIN + GDT_ENTRY_TLS_ENTRIES - 1) 93 94#define GDT_ENTRY_KERNEL_CS 12 95#define GDT_ENTRY_KERNEL_DS 13 96#define GDT_ENTRY_DEFAULT_USER_CS 14 97#define GDT_ENTRY_DEFAULT_USER_DS 15 98#define GDT_ENTRY_TSS 16 99#define GDT_ENTRY_LDT 17 100#define GDT_ENTRY_PNPBIOS_CS32 18 101#define GDT_ENTRY_PNPBIOS_CS16 19 102#define GDT_ENTRY_PNPBIOS_DS 20 103#define GDT_ENTRY_PNPBIOS_TS1 21 104#define GDT_ENTRY_PNPBIOS_TS2 22 105#define GDT_ENTRY_APMBIOS_BASE 23 106 107#define GDT_ENTRY_ESPFIX_SS 26 108#define GDT_ENTRY_PERCPU 27 109#define GDT_ENTRY_STACK_CANARY 28 110 111#define GDT_ENTRY_DOUBLEFAULT_TSS 31 112 113/* 114 * Number of entries in the GDT table: 115 */ 116#define GDT_ENTRIES 32 117 118/* 119 * Segment selector values corresponding to the above entries: 120 */ 121 122#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) 123#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) 124#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) 125#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) 126#define __ESPFIX_SS (GDT_ENTRY_ESPFIX_SS*8) 127 128/* segment for calling fn: */ 129#define PNP_CS32 (GDT_ENTRY_PNPBIOS_CS32*8) 130/* code segment for BIOS: */ 131#define PNP_CS16 (GDT_ENTRY_PNPBIOS_CS16*8) 132 133/* "Is this PNP code selector (PNP_CS32 or PNP_CS16)?" */ 134#define SEGMENT_IS_PNP_CODE(x) (((x) & 0xf4) == PNP_CS32) 135 136/* data segment for BIOS: */ 137#define PNP_DS (GDT_ENTRY_PNPBIOS_DS*8) 138/* transfer data segment: */ 139#define PNP_TS1 (GDT_ENTRY_PNPBIOS_TS1*8) 140/* another data segment: */ 141#define PNP_TS2 (GDT_ENTRY_PNPBIOS_TS2*8) 142 143#ifdef CONFIG_SMP 144# define __KERNEL_PERCPU (GDT_ENTRY_PERCPU*8) 145#else 146# define __KERNEL_PERCPU 0 147#endif 148 149#ifdef CONFIG_STACKPROTECTOR 150# define __KERNEL_STACK_CANARY (GDT_ENTRY_STACK_CANARY*8) 151#else 152# define __KERNEL_STACK_CANARY 0 153#endif 154 155#else /* 64-bit: */ 156 157#include <asm/cache.h> 158 159#define GDT_ENTRY_KERNEL32_CS 1 160#define GDT_ENTRY_KERNEL_CS 2 161#define GDT_ENTRY_KERNEL_DS 3 162 163/* 164 * We cannot use the same code segment descriptor for user and kernel mode, 165 * not even in long flat mode, because of different DPL. 166 * 167 * GDT layout to get 64-bit SYSCALL/SYSRET support right. SYSRET hardcodes 168 * selectors: 169 * 170 * if returning to 32-bit userspace: cs = STAR.SYSRET_CS, 171 * if returning to 64-bit userspace: cs = STAR.SYSRET_CS+16, 172 * 173 * ss = STAR.SYSRET_CS+8 (in either case) 174 * 175 * thus USER_DS should be between 32-bit and 64-bit code selectors: 176 */ 177#define GDT_ENTRY_DEFAULT_USER32_CS 4 178#define GDT_ENTRY_DEFAULT_USER_DS 5 179#define GDT_ENTRY_DEFAULT_USER_CS 6 180 181/* Needs two entries */ 182#define GDT_ENTRY_TSS 8 183/* Needs two entries */ 184#define GDT_ENTRY_LDT 10 185 186#define GDT_ENTRY_TLS_MIN 12 187#define GDT_ENTRY_TLS_MAX 14 188 189#define GDT_ENTRY_CPUNODE 15 190 191/* 192 * Number of entries in the GDT table: 193 */ 194#define GDT_ENTRIES 16 195 196/* 197 * Segment selector values corresponding to the above entries: 198 * 199 * Note, selectors also need to have a correct RPL, 200 * expressed with the +3 value for user-space selectors: 201 */ 202#define __KERNEL32_CS (GDT_ENTRY_KERNEL32_CS*8) 203#define __KERNEL_CS (GDT_ENTRY_KERNEL_CS*8) 204#define __KERNEL_DS (GDT_ENTRY_KERNEL_DS*8) 205#define __USER32_CS (GDT_ENTRY_DEFAULT_USER32_CS*8 + 3) 206#define __USER_DS (GDT_ENTRY_DEFAULT_USER_DS*8 + 3) 207#define __USER32_DS __USER_DS 208#define __USER_CS (GDT_ENTRY_DEFAULT_USER_CS*8 + 3) 209#define __CPUNODE_SEG (GDT_ENTRY_CPUNODE*8 + 3) 210 211#endif 212 213#ifndef CONFIG_PARAVIRT_XXL 214# define get_kernel_rpl() 0 215#endif 216 217#define IDT_ENTRIES 256 218#define NUM_EXCEPTION_VECTORS 32 219 220/* Bitmask of exception vectors which push an error code on the stack: */ 221#define EXCEPTION_ERRCODE_MASK 0x00027d00 222 223#define GDT_SIZE (GDT_ENTRIES*8) 224#define GDT_ENTRY_TLS_ENTRIES 3 225#define TLS_SIZE (GDT_ENTRY_TLS_ENTRIES* 8) 226 227#ifdef CONFIG_X86_64 228 229/* Bit size and mask of CPU number stored in the per CPU data (and TSC_AUX) */ 230#define VDSO_CPUNODE_BITS 12 231#define VDSO_CPUNODE_MASK 0xfff 232 233#ifndef __ASSEMBLY__ 234 235/* Helper functions to store/load CPU and node numbers */ 236 237static inline unsigned long vdso_encode_cpunode(int cpu, unsigned long node) 238{ 239 return (node << VDSO_CPUNODE_BITS) | cpu; 240} 241 242static inline void vdso_read_cpunode(unsigned *cpu, unsigned *node) 243{ 244 unsigned int p; 245 246 /* 247 * Load CPU and node number from the GDT. LSL is faster than RDTSCP 248 * and works on all CPUs. This is volatile so that it orders 249 * correctly with respect to barrier() and to keep GCC from cleverly 250 * hoisting it out of the calling function. 251 * 252 * If RDPID is available, use it. 253 */ 254 alternative_io ("lsl %[seg],%[p]", 255 ".byte 0xf3,0x0f,0xc7,0xf8", /* RDPID %eax/rax */ 256 X86_FEATURE_RDPID, 257 [p] "=a" (p), [seg] "r" (__CPUNODE_SEG)); 258 259 if (cpu) 260 *cpu = (p & VDSO_CPUNODE_MASK); 261 if (node) 262 *node = (p >> VDSO_CPUNODE_BITS); 263} 264 265#endif /* !__ASSEMBLY__ */ 266#endif /* CONFIG_X86_64 */ 267 268#ifdef __KERNEL__ 269 270/* 271 * early_idt_handler_array is an array of entry points referenced in the 272 * early IDT. For simplicity, it's a real array with one entry point 273 * every nine bytes. That leaves room for an optional 'push $0' if the 274 * vector has no error code (two bytes), a 'push $vector_number' (two 275 * bytes), and a jump to the common entry code (up to five bytes). 276 */ 277#define EARLY_IDT_HANDLER_SIZE 9 278 279/* 280 * xen_early_idt_handler_array is for Xen pv guests: for each entry in 281 * early_idt_handler_array it contains a prequel in the form of 282 * pop %rcx; pop %r11; jmp early_idt_handler_array[i]; summing up to 283 * max 8 bytes. 284 */ 285#define XEN_EARLY_IDT_HANDLER_SIZE 8 286 287#ifndef __ASSEMBLY__ 288 289extern const char early_idt_handler_array[NUM_EXCEPTION_VECTORS][EARLY_IDT_HANDLER_SIZE]; 290extern void early_ignore_irq(void); 291 292#if defined(CONFIG_X86_64) && defined(CONFIG_XEN_PV) 293extern const char xen_early_idt_handler_array[NUM_EXCEPTION_VECTORS][XEN_EARLY_IDT_HANDLER_SIZE]; 294#endif 295 296/* 297 * Load a segment. Fall back on loading the zero segment if something goes 298 * wrong. This variant assumes that loading zero fully clears the segment. 299 * This is always the case on Intel CPUs and, even on 64-bit AMD CPUs, any 300 * failure to fully clear the cached descriptor is only observable for 301 * FS and GS. 302 */ 303#define __loadsegment_simple(seg, value) \ 304do { \ 305 unsigned short __val = (value); \ 306 \ 307 asm volatile(" \n" \ 308 "1: movl %k0,%%" #seg " \n" \ 309 \ 310 ".section .fixup,\"ax\" \n" \ 311 "2: xorl %k0,%k0 \n" \ 312 " jmp 1b \n" \ 313 ".previous \n" \ 314 \ 315 _ASM_EXTABLE(1b, 2b) \ 316 \ 317 : "+r" (__val) : : "memory"); \ 318} while (0) 319 320#define __loadsegment_ss(value) __loadsegment_simple(ss, (value)) 321#define __loadsegment_ds(value) __loadsegment_simple(ds, (value)) 322#define __loadsegment_es(value) __loadsegment_simple(es, (value)) 323 324#ifdef CONFIG_X86_32 325 326/* 327 * On 32-bit systems, the hidden parts of FS and GS are unobservable if 328 * the selector is NULL, so there's no funny business here. 329 */ 330#define __loadsegment_fs(value) __loadsegment_simple(fs, (value)) 331#define __loadsegment_gs(value) __loadsegment_simple(gs, (value)) 332 333#else 334 335static inline void __loadsegment_fs(unsigned short value) 336{ 337 asm volatile(" \n" 338 "1: movw %0, %%fs \n" 339 "2: \n" 340 341 _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_clear_fs) 342 343 : : "rm" (value) : "memory"); 344} 345 346/* __loadsegment_gs is intentionally undefined. Use load_gs_index instead. */ 347 348#endif 349 350#define loadsegment(seg, value) __loadsegment_ ## seg (value) 351 352/* 353 * Save a segment register away: 354 */ 355#define savesegment(seg, value) \ 356 asm("mov %%" #seg ",%0":"=r" (value) : : "memory") 357 358/* 359 * x86-32 user GS accessors: 360 */ 361#ifdef CONFIG_X86_32 362# ifdef CONFIG_X86_32_LAZY_GS 363# define get_user_gs(regs) (u16)({ unsigned long v; savesegment(gs, v); v; }) 364# define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v)) 365# define task_user_gs(tsk) ((tsk)->thread.gs) 366# define lazy_save_gs(v) savesegment(gs, (v)) 367# define lazy_load_gs(v) loadsegment(gs, (v)) 368# else /* X86_32_LAZY_GS */ 369# define get_user_gs(regs) (u16)((regs)->gs) 370# define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0) 371# define task_user_gs(tsk) (task_pt_regs(tsk)->gs) 372# define lazy_save_gs(v) do { } while (0) 373# define lazy_load_gs(v) do { } while (0) 374# endif /* X86_32_LAZY_GS */ 375#endif /* X86_32 */ 376 377#endif /* !__ASSEMBLY__ */ 378#endif /* __KERNEL__ */ 379 380#endif /* _ASM_X86_SEGMENT_H */