at v5.4 1688 lines 51 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/bug.h> 21#include <asm/page.h> 22 23extern pgd_t swapper_pg_dir[]; 24extern void paging_init(void); 25 26enum { 27 PG_DIRECT_MAP_4K = 0, 28 PG_DIRECT_MAP_1M, 29 PG_DIRECT_MAP_2G, 30 PG_DIRECT_MAP_MAX 31}; 32 33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 34 35static inline void update_page_count(int level, long count) 36{ 37 if (IS_ENABLED(CONFIG_PROC_FS)) 38 atomic_long_add(count, &direct_pages_count[level]); 39} 40 41struct seq_file; 42void arch_report_meminfo(struct seq_file *m); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, ptep) do { } while (0) 49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 50 51/* 52 * ZERO_PAGE is a global shared page that is always zero; used 53 * for zero-mapped memory areas etc.. 54 */ 55 56extern unsigned long empty_zero_page; 57extern unsigned long zero_page_mask; 58 59#define ZERO_PAGE(vaddr) \ 60 (virt_to_page((void *)(empty_zero_page + \ 61 (((unsigned long)(vaddr)) &zero_page_mask)))) 62#define __HAVE_COLOR_ZERO_PAGE 63 64/* TODO: s390 cannot support io_remap_pfn_range... */ 65 66#define FIRST_USER_ADDRESS 0UL 67 68#define pte_ERROR(e) \ 69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 70#define pmd_ERROR(e) \ 71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 72#define pud_ERROR(e) \ 73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 74#define p4d_ERROR(e) \ 75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e)) 76#define pgd_ERROR(e) \ 77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 78 79/* 80 * The vmalloc and module area will always be on the topmost area of the 81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 83 * modules will reside. That makes sure that inter module branches always 84 * happen without trampolines and in addition the placement within a 2GB frame 85 * is branch prediction unit friendly. 86 */ 87extern unsigned long VMALLOC_START; 88extern unsigned long VMALLOC_END; 89#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN) 90extern struct page *vmemmap; 91 92#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 93 94extern unsigned long MODULES_VADDR; 95extern unsigned long MODULES_END; 96#define MODULES_VADDR MODULES_VADDR 97#define MODULES_END MODULES_END 98#define MODULES_LEN (1UL << 31) 99 100static inline int is_module_addr(void *addr) 101{ 102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 103 if (addr < (void *)MODULES_VADDR) 104 return 0; 105 if (addr > (void *)MODULES_END) 106 return 0; 107 return 1; 108} 109 110/* 111 * A 64 bit pagetable entry of S390 has following format: 112 * | PFRA |0IPC| OS | 113 * 0000000000111111111122222222223333333333444444444455555555556666 114 * 0123456789012345678901234567890123456789012345678901234567890123 115 * 116 * I Page-Invalid Bit: Page is not available for address-translation 117 * P Page-Protection Bit: Store access not possible for page 118 * C Change-bit override: HW is not required to set change bit 119 * 120 * A 64 bit segmenttable entry of S390 has following format: 121 * | P-table origin | TT 122 * 0000000000111111111122222222223333333333444444444455555555556666 123 * 0123456789012345678901234567890123456789012345678901234567890123 124 * 125 * I Segment-Invalid Bit: Segment is not available for address-translation 126 * C Common-Segment Bit: Segment is not private (PoP 3-30) 127 * P Page-Protection Bit: Store access not possible for page 128 * TT Type 00 129 * 130 * A 64 bit region table entry of S390 has following format: 131 * | S-table origin | TF TTTL 132 * 0000000000111111111122222222223333333333444444444455555555556666 133 * 0123456789012345678901234567890123456789012345678901234567890123 134 * 135 * I Segment-Invalid Bit: Segment is not available for address-translation 136 * TT Type 01 137 * TF 138 * TL Table length 139 * 140 * The 64 bit regiontable origin of S390 has following format: 141 * | region table origon | DTTL 142 * 0000000000111111111122222222223333333333444444444455555555556666 143 * 0123456789012345678901234567890123456789012345678901234567890123 144 * 145 * X Space-Switch event: 146 * G Segment-Invalid Bit: 147 * P Private-Space Bit: 148 * S Storage-Alteration: 149 * R Real space 150 * TL Table-Length: 151 * 152 * A storage key has the following format: 153 * | ACC |F|R|C|0| 154 * 0 3 4 5 6 7 155 * ACC: access key 156 * F : fetch protection bit 157 * R : referenced bit 158 * C : changed bit 159 */ 160 161/* Hardware bits in the page table entry */ 162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 163#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 164#define _PAGE_INVALID 0x400 /* HW invalid bit */ 165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 166 167/* Software bits in the page table entry */ 168#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 169#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 171#define _PAGE_READ 0x010 /* SW pte read bit */ 172#define _PAGE_WRITE 0x020 /* SW pte write bit */ 173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 175 176#ifdef CONFIG_MEM_SOFT_DIRTY 177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 178#else 179#define _PAGE_SOFT_DIRTY 0x000 180#endif 181 182/* Set of bits not changed in pte_modify */ 183#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 185 186/* 187 * handle_pte_fault uses pte_present and pte_none to find out the pte type 188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 189 * distinguish present from not-present ptes. It is changed only with the page 190 * table lock held. 191 * 192 * The following table gives the different possible bit combinations for 193 * the pte hardware and software bits in the last 12 bits of a pte 194 * (. unassigned bit, x don't care, t swap type): 195 * 196 * 842100000000 197 * 000084210000 198 * 000000008421 199 * .IR.uswrdy.p 200 * empty .10.00000000 201 * swap .11..ttttt.0 202 * prot-none, clean, old .11.xx0000.1 203 * prot-none, clean, young .11.xx0001.1 204 * prot-none, dirty, old .11.xx0010.1 205 * prot-none, dirty, young .11.xx0011.1 206 * read-only, clean, old .11.xx0100.1 207 * read-only, clean, young .01.xx0101.1 208 * read-only, dirty, old .11.xx0110.1 209 * read-only, dirty, young .01.xx0111.1 210 * read-write, clean, old .11.xx1100.1 211 * read-write, clean, young .01.xx1101.1 212 * read-write, dirty, old .10.xx1110.1 213 * read-write, dirty, young .00.xx1111.1 214 * HW-bits: R read-only, I invalid 215 * SW-bits: p present, y young, d dirty, r read, w write, s special, 216 * u unused, l large 217 * 218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 221 */ 222 223/* Bits in the segment/region table address-space-control-element */ 224#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 225#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 226#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 227#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 228#define _ASCE_REAL_SPACE 0x20 /* real space control */ 229#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 230#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 231#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 232#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 233#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 234#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 235 236/* Bits in the region table entry */ 237#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 238#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 239#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 240#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 241#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 242#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 243#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 244#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 245#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 246#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 247 248#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 249#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 250#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 251#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 252#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 253#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 254 255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 256#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 257#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 258#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 259#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 260#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 261 262#ifdef CONFIG_MEM_SOFT_DIRTY 263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 264#else 265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 266#endif 267 268#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 269#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL 270 271/* Bits in the segment table entry */ 272#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 273#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL 274#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 275#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 276#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 277#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 278#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 279#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 280#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 281#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 282 283#define _SEGMENT_ENTRY (0) 284#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 285 286#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 287#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 288#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 289#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 290#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 291 292#ifdef CONFIG_MEM_SOFT_DIRTY 293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 294#else 295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 296#endif 297 298#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 299#define _PAGE_ENTRIES 256 /* number of page table entries */ 300 301#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 302#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 303 304#define _REGION1_SHIFT 53 305#define _REGION2_SHIFT 42 306#define _REGION3_SHIFT 31 307#define _SEGMENT_SHIFT 20 308 309#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 310#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 311#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 312#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 313#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 314 315#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 316#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 317#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 318#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 319 320#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 321#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 322#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 323#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 324 325#define PMD_SHIFT _SEGMENT_SHIFT 326#define PUD_SHIFT _REGION3_SHIFT 327#define P4D_SHIFT _REGION2_SHIFT 328#define PGDIR_SHIFT _REGION1_SHIFT 329 330#define PMD_SIZE _SEGMENT_SIZE 331#define PUD_SIZE _REGION3_SIZE 332#define P4D_SIZE _REGION2_SIZE 333#define PGDIR_SIZE _REGION1_SIZE 334 335#define PMD_MASK _SEGMENT_MASK 336#define PUD_MASK _REGION3_MASK 337#define P4D_MASK _REGION2_MASK 338#define PGDIR_MASK _REGION1_MASK 339 340#define PTRS_PER_PTE _PAGE_ENTRIES 341#define PTRS_PER_PMD _CRST_ENTRIES 342#define PTRS_PER_PUD _CRST_ENTRIES 343#define PTRS_PER_P4D _CRST_ENTRIES 344#define PTRS_PER_PGD _CRST_ENTRIES 345 346#define MAX_PTRS_PER_P4D PTRS_PER_P4D 347 348/* 349 * Segment table and region3 table entry encoding 350 * (R = read-only, I = invalid, y = young bit): 351 * dy..R...I...wr 352 * prot-none, clean, old 00..1...1...00 353 * prot-none, clean, young 01..1...1...00 354 * prot-none, dirty, old 10..1...1...00 355 * prot-none, dirty, young 11..1...1...00 356 * read-only, clean, old 00..1...1...01 357 * read-only, clean, young 01..1...0...01 358 * read-only, dirty, old 10..1...1...01 359 * read-only, dirty, young 11..1...0...01 360 * read-write, clean, old 00..1...1...11 361 * read-write, clean, young 01..1...0...11 362 * read-write, dirty, old 10..0...1...11 363 * read-write, dirty, young 11..0...0...11 364 * The segment table origin is used to distinguish empty (origin==0) from 365 * read-write, old segment table entries (origin!=0) 366 * HW-bits: R read-only, I invalid 367 * SW-bits: y young, d dirty, r read, w write 368 */ 369 370/* Page status table bits for virtualization */ 371#define PGSTE_ACC_BITS 0xf000000000000000UL 372#define PGSTE_FP_BIT 0x0800000000000000UL 373#define PGSTE_PCL_BIT 0x0080000000000000UL 374#define PGSTE_HR_BIT 0x0040000000000000UL 375#define PGSTE_HC_BIT 0x0020000000000000UL 376#define PGSTE_GR_BIT 0x0004000000000000UL 377#define PGSTE_GC_BIT 0x0002000000000000UL 378#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 379#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 380#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 381 382/* Guest Page State used for virtualization */ 383#define _PGSTE_GPS_ZERO 0x0000000080000000UL 384#define _PGSTE_GPS_NODAT 0x0000000040000000UL 385#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 386#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 387#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 388#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 389#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 390 391/* 392 * A user page table pointer has the space-switch-event bit, the 393 * private-space-control bit and the storage-alteration-event-control 394 * bit set. A kernel page table pointer doesn't need them. 395 */ 396#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 397 _ASCE_ALT_EVENT) 398 399/* 400 * Page protection definitions. 401 */ 402#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 403#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 405#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 406 _PAGE_INVALID | _PAGE_PROTECT) 407#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 409#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 410 _PAGE_INVALID | _PAGE_PROTECT) 411 412#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 414#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 416#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 417 _PAGE_PROTECT | _PAGE_NOEXEC) 418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 419 _PAGE_YOUNG | _PAGE_DIRTY) 420 421/* 422 * On s390 the page table entry has an invalid bit and a read-only bit. 423 * Read permission implies execute permission and write permission 424 * implies read permission. 425 */ 426 /*xwr*/ 427#define __P000 PAGE_NONE 428#define __P001 PAGE_RO 429#define __P010 PAGE_RO 430#define __P011 PAGE_RO 431#define __P100 PAGE_RX 432#define __P101 PAGE_RX 433#define __P110 PAGE_RX 434#define __P111 PAGE_RX 435 436#define __S000 PAGE_NONE 437#define __S001 PAGE_RO 438#define __S010 PAGE_RW 439#define __S011 PAGE_RW 440#define __S100 PAGE_RX 441#define __S101 PAGE_RX 442#define __S110 PAGE_RWX 443#define __S111 PAGE_RWX 444 445/* 446 * Segment entry (large page) protection definitions. 447 */ 448#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 449 _SEGMENT_ENTRY_PROTECT) 450#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 451 _SEGMENT_ENTRY_READ | \ 452 _SEGMENT_ENTRY_NOEXEC) 453#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 454 _SEGMENT_ENTRY_READ) 455#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 456 _SEGMENT_ENTRY_WRITE | \ 457 _SEGMENT_ENTRY_NOEXEC) 458#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 459 _SEGMENT_ENTRY_WRITE) 460#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 461 _SEGMENT_ENTRY_LARGE | \ 462 _SEGMENT_ENTRY_READ | \ 463 _SEGMENT_ENTRY_WRITE | \ 464 _SEGMENT_ENTRY_YOUNG | \ 465 _SEGMENT_ENTRY_DIRTY | \ 466 _SEGMENT_ENTRY_NOEXEC) 467#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 468 _SEGMENT_ENTRY_LARGE | \ 469 _SEGMENT_ENTRY_READ | \ 470 _SEGMENT_ENTRY_YOUNG | \ 471 _SEGMENT_ENTRY_PROTECT | \ 472 _SEGMENT_ENTRY_NOEXEC) 473#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 474 _SEGMENT_ENTRY_LARGE | \ 475 _SEGMENT_ENTRY_READ | \ 476 _SEGMENT_ENTRY_WRITE | \ 477 _SEGMENT_ENTRY_YOUNG | \ 478 _SEGMENT_ENTRY_DIRTY) 479 480/* 481 * Region3 entry (large page) protection definitions. 482 */ 483 484#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 485 _REGION3_ENTRY_LARGE | \ 486 _REGION3_ENTRY_READ | \ 487 _REGION3_ENTRY_WRITE | \ 488 _REGION3_ENTRY_YOUNG | \ 489 _REGION3_ENTRY_DIRTY | \ 490 _REGION_ENTRY_NOEXEC) 491#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 492 _REGION3_ENTRY_LARGE | \ 493 _REGION3_ENTRY_READ | \ 494 _REGION3_ENTRY_YOUNG | \ 495 _REGION_ENTRY_PROTECT | \ 496 _REGION_ENTRY_NOEXEC) 497 498static inline bool mm_p4d_folded(struct mm_struct *mm) 499{ 500 return mm->context.asce_limit <= _REGION1_SIZE; 501} 502#define mm_p4d_folded(mm) mm_p4d_folded(mm) 503 504static inline bool mm_pud_folded(struct mm_struct *mm) 505{ 506 return mm->context.asce_limit <= _REGION2_SIZE; 507} 508#define mm_pud_folded(mm) mm_pud_folded(mm) 509 510static inline bool mm_pmd_folded(struct mm_struct *mm) 511{ 512 return mm->context.asce_limit <= _REGION3_SIZE; 513} 514#define mm_pmd_folded(mm) mm_pmd_folded(mm) 515 516static inline int mm_has_pgste(struct mm_struct *mm) 517{ 518#ifdef CONFIG_PGSTE 519 if (unlikely(mm->context.has_pgste)) 520 return 1; 521#endif 522 return 0; 523} 524 525static inline int mm_alloc_pgste(struct mm_struct *mm) 526{ 527#ifdef CONFIG_PGSTE 528 if (unlikely(mm->context.alloc_pgste)) 529 return 1; 530#endif 531 return 0; 532} 533 534/* 535 * In the case that a guest uses storage keys 536 * faults should no longer be backed by zero pages 537 */ 538#define mm_forbids_zeropage mm_has_pgste 539static inline int mm_uses_skeys(struct mm_struct *mm) 540{ 541#ifdef CONFIG_PGSTE 542 if (mm->context.uses_skeys) 543 return 1; 544#endif 545 return 0; 546} 547 548static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 549{ 550 register unsigned long reg2 asm("2") = old; 551 register unsigned long reg3 asm("3") = new; 552 unsigned long address = (unsigned long)ptr | 1; 553 554 asm volatile( 555 " csp %0,%3" 556 : "+d" (reg2), "+m" (*ptr) 557 : "d" (reg3), "d" (address) 558 : "cc"); 559} 560 561static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 562{ 563 register unsigned long reg2 asm("2") = old; 564 register unsigned long reg3 asm("3") = new; 565 unsigned long address = (unsigned long)ptr | 1; 566 567 asm volatile( 568 " .insn rre,0xb98a0000,%0,%3" 569 : "+d" (reg2), "+m" (*ptr) 570 : "d" (reg3), "d" (address) 571 : "cc"); 572} 573 574#define CRDTE_DTT_PAGE 0x00UL 575#define CRDTE_DTT_SEGMENT 0x10UL 576#define CRDTE_DTT_REGION3 0x14UL 577#define CRDTE_DTT_REGION2 0x18UL 578#define CRDTE_DTT_REGION1 0x1cUL 579 580static inline void crdte(unsigned long old, unsigned long new, 581 unsigned long table, unsigned long dtt, 582 unsigned long address, unsigned long asce) 583{ 584 register unsigned long reg2 asm("2") = old; 585 register unsigned long reg3 asm("3") = new; 586 register unsigned long reg4 asm("4") = table | dtt; 587 register unsigned long reg5 asm("5") = address; 588 589 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 590 : "+d" (reg2) 591 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 592 : "memory", "cc"); 593} 594 595/* 596 * pgd/p4d/pud/pmd/pte query functions 597 */ 598static inline int pgd_folded(pgd_t pgd) 599{ 600 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 601} 602 603static inline int pgd_present(pgd_t pgd) 604{ 605 if (pgd_folded(pgd)) 606 return 1; 607 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 608} 609 610static inline int pgd_none(pgd_t pgd) 611{ 612 if (pgd_folded(pgd)) 613 return 0; 614 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 615} 616 617static inline int pgd_bad(pgd_t pgd) 618{ 619 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 620 return 0; 621 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 622} 623 624static inline unsigned long pgd_pfn(pgd_t pgd) 625{ 626 unsigned long origin_mask; 627 628 origin_mask = _REGION_ENTRY_ORIGIN; 629 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 630} 631 632static inline int p4d_folded(p4d_t p4d) 633{ 634 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 635} 636 637static inline int p4d_present(p4d_t p4d) 638{ 639 if (p4d_folded(p4d)) 640 return 1; 641 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 642} 643 644static inline int p4d_none(p4d_t p4d) 645{ 646 if (p4d_folded(p4d)) 647 return 0; 648 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 649} 650 651static inline unsigned long p4d_pfn(p4d_t p4d) 652{ 653 unsigned long origin_mask; 654 655 origin_mask = _REGION_ENTRY_ORIGIN; 656 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 657} 658 659static inline int pud_folded(pud_t pud) 660{ 661 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 662} 663 664static inline int pud_present(pud_t pud) 665{ 666 if (pud_folded(pud)) 667 return 1; 668 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 669} 670 671static inline int pud_none(pud_t pud) 672{ 673 if (pud_folded(pud)) 674 return 0; 675 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 676} 677 678static inline int pud_large(pud_t pud) 679{ 680 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 681 return 0; 682 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 683} 684 685static inline unsigned long pud_pfn(pud_t pud) 686{ 687 unsigned long origin_mask; 688 689 origin_mask = _REGION_ENTRY_ORIGIN; 690 if (pud_large(pud)) 691 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 692 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 693} 694 695static inline int pmd_large(pmd_t pmd) 696{ 697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 698} 699 700static inline int pmd_bad(pmd_t pmd) 701{ 702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0) 703 return 1; 704 if (pmd_large(pmd)) 705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 707} 708 709static inline int pud_bad(pud_t pud) 710{ 711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 712 713 if (type > _REGION_ENTRY_TYPE_R3) 714 return 1; 715 if (type < _REGION_ENTRY_TYPE_R3) 716 return 0; 717 if (pud_large(pud)) 718 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0; 719 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 720} 721 722static inline int p4d_bad(p4d_t p4d) 723{ 724 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 725 726 if (type > _REGION_ENTRY_TYPE_R2) 727 return 1; 728 if (type < _REGION_ENTRY_TYPE_R2) 729 return 0; 730 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 731} 732 733static inline int pmd_present(pmd_t pmd) 734{ 735 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 736} 737 738static inline int pmd_none(pmd_t pmd) 739{ 740 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 741} 742 743static inline unsigned long pmd_pfn(pmd_t pmd) 744{ 745 unsigned long origin_mask; 746 747 origin_mask = _SEGMENT_ENTRY_ORIGIN; 748 if (pmd_large(pmd)) 749 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 750 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 751} 752 753#define pmd_write pmd_write 754static inline int pmd_write(pmd_t pmd) 755{ 756 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 757} 758 759static inline int pmd_dirty(pmd_t pmd) 760{ 761 int dirty = 1; 762 if (pmd_large(pmd)) 763 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 764 return dirty; 765} 766 767static inline int pmd_young(pmd_t pmd) 768{ 769 int young = 1; 770 if (pmd_large(pmd)) 771 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 772 return young; 773} 774 775static inline int pte_present(pte_t pte) 776{ 777 /* Bit pattern: (pte & 0x001) == 0x001 */ 778 return (pte_val(pte) & _PAGE_PRESENT) != 0; 779} 780 781static inline int pte_none(pte_t pte) 782{ 783 /* Bit pattern: pte == 0x400 */ 784 return pte_val(pte) == _PAGE_INVALID; 785} 786 787static inline int pte_swap(pte_t pte) 788{ 789 /* Bit pattern: (pte & 0x201) == 0x200 */ 790 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 791 == _PAGE_PROTECT; 792} 793 794static inline int pte_special(pte_t pte) 795{ 796 return (pte_val(pte) & _PAGE_SPECIAL); 797} 798 799#define __HAVE_ARCH_PTE_SAME 800static inline int pte_same(pte_t a, pte_t b) 801{ 802 return pte_val(a) == pte_val(b); 803} 804 805#ifdef CONFIG_NUMA_BALANCING 806static inline int pte_protnone(pte_t pte) 807{ 808 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 809} 810 811static inline int pmd_protnone(pmd_t pmd) 812{ 813 /* pmd_large(pmd) implies pmd_present(pmd) */ 814 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 815} 816#endif 817 818static inline int pte_soft_dirty(pte_t pte) 819{ 820 return pte_val(pte) & _PAGE_SOFT_DIRTY; 821} 822#define pte_swp_soft_dirty pte_soft_dirty 823 824static inline pte_t pte_mksoft_dirty(pte_t pte) 825{ 826 pte_val(pte) |= _PAGE_SOFT_DIRTY; 827 return pte; 828} 829#define pte_swp_mksoft_dirty pte_mksoft_dirty 830 831static inline pte_t pte_clear_soft_dirty(pte_t pte) 832{ 833 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 834 return pte; 835} 836#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 837 838static inline int pmd_soft_dirty(pmd_t pmd) 839{ 840 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 841} 842 843static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 844{ 845 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 846 return pmd; 847} 848 849static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 850{ 851 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 852 return pmd; 853} 854 855/* 856 * query functions pte_write/pte_dirty/pte_young only work if 857 * pte_present() is true. Undefined behaviour if not.. 858 */ 859static inline int pte_write(pte_t pte) 860{ 861 return (pte_val(pte) & _PAGE_WRITE) != 0; 862} 863 864static inline int pte_dirty(pte_t pte) 865{ 866 return (pte_val(pte) & _PAGE_DIRTY) != 0; 867} 868 869static inline int pte_young(pte_t pte) 870{ 871 return (pte_val(pte) & _PAGE_YOUNG) != 0; 872} 873 874#define __HAVE_ARCH_PTE_UNUSED 875static inline int pte_unused(pte_t pte) 876{ 877 return pte_val(pte) & _PAGE_UNUSED; 878} 879 880/* 881 * pgd/pmd/pte modification functions 882 */ 883 884static inline void pgd_clear(pgd_t *pgd) 885{ 886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY; 888} 889 890static inline void p4d_clear(p4d_t *p4d) 891{ 892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY; 894} 895 896static inline void pud_clear(pud_t *pud) 897{ 898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 899 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 900} 901 902static inline void pmd_clear(pmd_t *pmdp) 903{ 904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 905} 906 907static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 908{ 909 pte_val(*ptep) = _PAGE_INVALID; 910} 911 912/* 913 * The following pte modification functions only work if 914 * pte_present() is true. Undefined behaviour if not.. 915 */ 916static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 917{ 918 pte_val(pte) &= _PAGE_CHG_MASK; 919 pte_val(pte) |= pgprot_val(newprot); 920 /* 921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 922 * has the invalid bit set, clear it again for readable, young pages 923 */ 924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 925 pte_val(pte) &= ~_PAGE_INVALID; 926 /* 927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 928 * protection bit set, clear it again for writable, dirty pages 929 */ 930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 931 pte_val(pte) &= ~_PAGE_PROTECT; 932 return pte; 933} 934 935static inline pte_t pte_wrprotect(pte_t pte) 936{ 937 pte_val(pte) &= ~_PAGE_WRITE; 938 pte_val(pte) |= _PAGE_PROTECT; 939 return pte; 940} 941 942static inline pte_t pte_mkwrite(pte_t pte) 943{ 944 pte_val(pte) |= _PAGE_WRITE; 945 if (pte_val(pte) & _PAGE_DIRTY) 946 pte_val(pte) &= ~_PAGE_PROTECT; 947 return pte; 948} 949 950static inline pte_t pte_mkclean(pte_t pte) 951{ 952 pte_val(pte) &= ~_PAGE_DIRTY; 953 pte_val(pte) |= _PAGE_PROTECT; 954 return pte; 955} 956 957static inline pte_t pte_mkdirty(pte_t pte) 958{ 959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 960 if (pte_val(pte) & _PAGE_WRITE) 961 pte_val(pte) &= ~_PAGE_PROTECT; 962 return pte; 963} 964 965static inline pte_t pte_mkold(pte_t pte) 966{ 967 pte_val(pte) &= ~_PAGE_YOUNG; 968 pte_val(pte) |= _PAGE_INVALID; 969 return pte; 970} 971 972static inline pte_t pte_mkyoung(pte_t pte) 973{ 974 pte_val(pte) |= _PAGE_YOUNG; 975 if (pte_val(pte) & _PAGE_READ) 976 pte_val(pte) &= ~_PAGE_INVALID; 977 return pte; 978} 979 980static inline pte_t pte_mkspecial(pte_t pte) 981{ 982 pte_val(pte) |= _PAGE_SPECIAL; 983 return pte; 984} 985 986#ifdef CONFIG_HUGETLB_PAGE 987static inline pte_t pte_mkhuge(pte_t pte) 988{ 989 pte_val(pte) |= _PAGE_LARGE; 990 return pte; 991} 992#endif 993 994#define IPTE_GLOBAL 0 995#define IPTE_LOCAL 1 996 997#define IPTE_NODAT 0x400 998#define IPTE_GUEST_ASCE 0x800 999 1000static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1001 unsigned long opt, unsigned long asce, 1002 int local) 1003{ 1004 unsigned long pto = (unsigned long) ptep; 1005 1006 if (__builtin_constant_p(opt) && opt == 0) { 1007 /* Invalidation + TLB flush for the pte */ 1008 asm volatile( 1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]" 1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1011 [m4] "i" (local)); 1012 return; 1013 } 1014 1015 /* Invalidate ptes with options + TLB flush of the ptes */ 1016 opt = opt | (asce & _ASCE_ORIGIN); 1017 asm volatile( 1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1019 : [r2] "+a" (address), [r3] "+a" (opt) 1020 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1021} 1022 1023static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1024 pte_t *ptep, int local) 1025{ 1026 unsigned long pto = (unsigned long) ptep; 1027 1028 /* Invalidate a range of ptes + TLB flush of the ptes */ 1029 do { 1030 asm volatile( 1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1032 : [r2] "+a" (address), [r3] "+a" (nr) 1033 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1034 } while (nr != 255); 1035} 1036 1037/* 1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1039 * both clear the TLB for the unmapped pte. The reason is that 1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1041 * to modify an active pte. The sequence is 1042 * 1) ptep_get_and_clear 1043 * 2) set_pte_at 1044 * 3) flush_tlb_range 1045 * On s390 the tlb needs to get flushed with the modification of the pte 1046 * if the pte is active. The only way how this can be implemented is to 1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1048 * is a nop. 1049 */ 1050pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1051pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1052 1053#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1054static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1055 unsigned long addr, pte_t *ptep) 1056{ 1057 pte_t pte = *ptep; 1058 1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1060 return pte_young(pte); 1061} 1062 1063#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1064static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1065 unsigned long address, pte_t *ptep) 1066{ 1067 return ptep_test_and_clear_young(vma, address, ptep); 1068} 1069 1070#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1071static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1072 unsigned long addr, pte_t *ptep) 1073{ 1074 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1075} 1076 1077#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1078pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1079void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1080 pte_t *, pte_t, pte_t); 1081 1082#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1083static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1084 unsigned long addr, pte_t *ptep) 1085{ 1086 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1087} 1088 1089/* 1090 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1091 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1092 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1093 * cannot be accessed while the batched unmap is running. In this case 1094 * full==1 and a simple pte_clear is enough. See tlb.h. 1095 */ 1096#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1097static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1098 unsigned long addr, 1099 pte_t *ptep, int full) 1100{ 1101 if (full) { 1102 pte_t pte = *ptep; 1103 *ptep = __pte(_PAGE_INVALID); 1104 return pte; 1105 } 1106 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1107} 1108 1109#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1110static inline void ptep_set_wrprotect(struct mm_struct *mm, 1111 unsigned long addr, pte_t *ptep) 1112{ 1113 pte_t pte = *ptep; 1114 1115 if (pte_write(pte)) 1116 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1117} 1118 1119#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1120static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1121 unsigned long addr, pte_t *ptep, 1122 pte_t entry, int dirty) 1123{ 1124 if (pte_same(*ptep, entry)) 1125 return 0; 1126 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1127 return 1; 1128} 1129 1130/* 1131 * Additional functions to handle KVM guest page tables 1132 */ 1133void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1134 pte_t *ptep, pte_t entry); 1135void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1136void ptep_notify(struct mm_struct *mm, unsigned long addr, 1137 pte_t *ptep, unsigned long bits); 1138int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1139 pte_t *ptep, int prot, unsigned long bit); 1140void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1141 pte_t *ptep , int reset); 1142void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1143int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1144 pte_t *sptep, pte_t *tptep, pte_t pte); 1145void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1146 1147bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1148 pte_t *ptep); 1149int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1150 unsigned char key, bool nq); 1151int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1152 unsigned char key, unsigned char *oldkey, 1153 bool nq, bool mr, bool mc); 1154int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1155int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1156 unsigned char *key); 1157 1158int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1159 unsigned long bits, unsigned long value); 1160int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1161int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1162 unsigned long *oldpte, unsigned long *oldpgste); 1163void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1164void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1165void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1166void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1167 1168/* 1169 * Certain architectures need to do special things when PTEs 1170 * within a page table are directly modified. Thus, the following 1171 * hook is made available. 1172 */ 1173static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1174 pte_t *ptep, pte_t entry) 1175{ 1176 if (!MACHINE_HAS_NX) 1177 pte_val(entry) &= ~_PAGE_NOEXEC; 1178 if (pte_present(entry)) 1179 pte_val(entry) &= ~_PAGE_UNUSED; 1180 if (mm_has_pgste(mm)) 1181 ptep_set_pte_at(mm, addr, ptep, entry); 1182 else 1183 *ptep = entry; 1184} 1185 1186/* 1187 * Conversion functions: convert a page and protection to a page entry, 1188 * and a page entry and page directory to the page they refer to. 1189 */ 1190static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1191{ 1192 pte_t __pte; 1193 pte_val(__pte) = physpage + pgprot_val(pgprot); 1194 return pte_mkyoung(__pte); 1195} 1196 1197static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1198{ 1199 unsigned long physpage = page_to_phys(page); 1200 pte_t __pte = mk_pte_phys(physpage, pgprot); 1201 1202 if (pte_write(__pte) && PageDirty(page)) 1203 __pte = pte_mkdirty(__pte); 1204 return __pte; 1205} 1206 1207#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1208#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1209#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1210#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1211#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1212 1213#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1214#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1215#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN) 1216#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1217 1218/* 1219 * The pgd_offset function *always* adds the index for the top-level 1220 * region/segment table. This is done to get a sequence like the 1221 * following to work: 1222 * pgdp = pgd_offset(current->mm, addr); 1223 * pgd = READ_ONCE(*pgdp); 1224 * p4dp = p4d_offset(&pgd, addr); 1225 * ... 1226 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1227 * only add an index if they dereferenced the pointer. 1228 */ 1229static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1230{ 1231 unsigned long rste; 1232 unsigned int shift; 1233 1234 /* Get the first entry of the top level table */ 1235 rste = pgd_val(*pgd); 1236 /* Pick up the shift from the table type of the first entry */ 1237 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1238 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1239} 1240 1241#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1242#define pgd_offset_k(address) pgd_offset(&init_mm, address) 1243 1244static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1245{ 1246 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1247 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address); 1248 return (p4d_t *) pgd; 1249} 1250 1251static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 1252{ 1253 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1254 return (pud_t *) p4d_deref(*p4d) + pud_index(address); 1255 return (pud_t *) p4d; 1256} 1257 1258static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1259{ 1260 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1261 return (pmd_t *) pud_deref(*pud) + pmd_index(address); 1262 return (pmd_t *) pud; 1263} 1264 1265static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address) 1266{ 1267 return (pte_t *) pmd_deref(*pmd) + pte_index(address); 1268} 1269 1270#define pte_offset_kernel(pmd, address) pte_offset(pmd, address) 1271#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1272 1273static inline void pte_unmap(pte_t *pte) { } 1274 1275static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1276{ 1277 return end <= current->mm->context.asce_limit; 1278} 1279#define gup_fast_permitted gup_fast_permitted 1280 1281#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1282#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1283#define pte_page(x) pfn_to_page(pte_pfn(x)) 1284 1285#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1286#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1287#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1288#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1289 1290static inline pmd_t pmd_wrprotect(pmd_t pmd) 1291{ 1292 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1293 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1294 return pmd; 1295} 1296 1297static inline pmd_t pmd_mkwrite(pmd_t pmd) 1298{ 1299 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1300 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1301 return pmd; 1302 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1303 return pmd; 1304} 1305 1306static inline pmd_t pmd_mkclean(pmd_t pmd) 1307{ 1308 if (pmd_large(pmd)) { 1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1310 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1311 } 1312 return pmd; 1313} 1314 1315static inline pmd_t pmd_mkdirty(pmd_t pmd) 1316{ 1317 if (pmd_large(pmd)) { 1318 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | 1319 _SEGMENT_ENTRY_SOFT_DIRTY; 1320 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1321 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1322 } 1323 return pmd; 1324} 1325 1326static inline pud_t pud_wrprotect(pud_t pud) 1327{ 1328 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1329 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1330 return pud; 1331} 1332 1333static inline pud_t pud_mkwrite(pud_t pud) 1334{ 1335 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1336 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY)) 1337 return pud; 1338 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1339 return pud; 1340} 1341 1342static inline pud_t pud_mkclean(pud_t pud) 1343{ 1344 if (pud_large(pud)) { 1345 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1346 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1347 } 1348 return pud; 1349} 1350 1351static inline pud_t pud_mkdirty(pud_t pud) 1352{ 1353 if (pud_large(pud)) { 1354 pud_val(pud) |= _REGION3_ENTRY_DIRTY | 1355 _REGION3_ENTRY_SOFT_DIRTY; 1356 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1357 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1358 } 1359 return pud; 1360} 1361 1362#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1363static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1364{ 1365 /* 1366 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1367 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1368 */ 1369 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1370 return pgprot_val(SEGMENT_NONE); 1371 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1372 return pgprot_val(SEGMENT_RO); 1373 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1374 return pgprot_val(SEGMENT_RX); 1375 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1376 return pgprot_val(SEGMENT_RW); 1377 return pgprot_val(SEGMENT_RWX); 1378} 1379 1380static inline pmd_t pmd_mkyoung(pmd_t pmd) 1381{ 1382 if (pmd_large(pmd)) { 1383 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1384 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1385 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1386 } 1387 return pmd; 1388} 1389 1390static inline pmd_t pmd_mkold(pmd_t pmd) 1391{ 1392 if (pmd_large(pmd)) { 1393 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1394 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1395 } 1396 return pmd; 1397} 1398 1399static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1400{ 1401 if (pmd_large(pmd)) { 1402 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1403 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1404 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1405 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1406 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1407 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1408 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1409 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1410 return pmd; 1411 } 1412 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; 1413 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1414 return pmd; 1415} 1416 1417static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1418{ 1419 pmd_t __pmd; 1420 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1421 return __pmd; 1422} 1423 1424#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1425 1426static inline void __pmdp_csp(pmd_t *pmdp) 1427{ 1428 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1429 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1430} 1431 1432#define IDTE_GLOBAL 0 1433#define IDTE_LOCAL 1 1434 1435#define IDTE_PTOA 0x0800 1436#define IDTE_NODAT 0x1000 1437#define IDTE_GUEST_ASCE 0x2000 1438 1439static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1440 unsigned long opt, unsigned long asce, 1441 int local) 1442{ 1443 unsigned long sto; 1444 1445 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t); 1446 if (__builtin_constant_p(opt) && opt == 0) { 1447 /* flush without guest asce */ 1448 asm volatile( 1449 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1450 : "+m" (*pmdp) 1451 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1452 [m4] "i" (local) 1453 : "cc" ); 1454 } else { 1455 /* flush with guest asce */ 1456 asm volatile( 1457 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1458 : "+m" (*pmdp) 1459 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1460 [r3] "a" (asce), [m4] "i" (local) 1461 : "cc" ); 1462 } 1463} 1464 1465static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1466 unsigned long opt, unsigned long asce, 1467 int local) 1468{ 1469 unsigned long r3o; 1470 1471 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t); 1472 r3o |= _ASCE_TYPE_REGION3; 1473 if (__builtin_constant_p(opt) && opt == 0) { 1474 /* flush without guest asce */ 1475 asm volatile( 1476 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1477 : "+m" (*pudp) 1478 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1479 [m4] "i" (local) 1480 : "cc"); 1481 } else { 1482 /* flush with guest asce */ 1483 asm volatile( 1484 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1485 : "+m" (*pudp) 1486 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1487 [r3] "a" (asce), [m4] "i" (local) 1488 : "cc" ); 1489 } 1490} 1491 1492pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1493pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1494pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1495 1496#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1497 1498#define __HAVE_ARCH_PGTABLE_DEPOSIT 1499void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1500 pgtable_t pgtable); 1501 1502#define __HAVE_ARCH_PGTABLE_WITHDRAW 1503pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1504 1505#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1506static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1507 unsigned long addr, pmd_t *pmdp, 1508 pmd_t entry, int dirty) 1509{ 1510 VM_BUG_ON(addr & ~HPAGE_MASK); 1511 1512 entry = pmd_mkyoung(entry); 1513 if (dirty) 1514 entry = pmd_mkdirty(entry); 1515 if (pmd_val(*pmdp) == pmd_val(entry)) 1516 return 0; 1517 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1518 return 1; 1519} 1520 1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1523 unsigned long addr, pmd_t *pmdp) 1524{ 1525 pmd_t pmd = *pmdp; 1526 1527 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1528 return pmd_young(pmd); 1529} 1530 1531#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1532static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1533 unsigned long addr, pmd_t *pmdp) 1534{ 1535 VM_BUG_ON(addr & ~HPAGE_MASK); 1536 return pmdp_test_and_clear_young(vma, addr, pmdp); 1537} 1538 1539static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1540 pmd_t *pmdp, pmd_t entry) 1541{ 1542 if (!MACHINE_HAS_NX) 1543 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC; 1544 *pmdp = entry; 1545} 1546 1547static inline pmd_t pmd_mkhuge(pmd_t pmd) 1548{ 1549 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1550 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1551 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1552 return pmd; 1553} 1554 1555#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1556static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1557 unsigned long addr, pmd_t *pmdp) 1558{ 1559 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1560} 1561 1562#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1563static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1564 unsigned long addr, 1565 pmd_t *pmdp, int full) 1566{ 1567 if (full) { 1568 pmd_t pmd = *pmdp; 1569 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY); 1570 return pmd; 1571 } 1572 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1573} 1574 1575#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1576static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1577 unsigned long addr, pmd_t *pmdp) 1578{ 1579 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1580} 1581 1582#define __HAVE_ARCH_PMDP_INVALIDATE 1583static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1584 unsigned long addr, pmd_t *pmdp) 1585{ 1586 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1587 1588 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1589} 1590 1591#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1592static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1593 unsigned long addr, pmd_t *pmdp) 1594{ 1595 pmd_t pmd = *pmdp; 1596 1597 if (pmd_write(pmd)) 1598 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1599} 1600 1601static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1602 unsigned long address, 1603 pmd_t *pmdp) 1604{ 1605 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1606} 1607#define pmdp_collapse_flush pmdp_collapse_flush 1608 1609#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1610#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1611 1612static inline int pmd_trans_huge(pmd_t pmd) 1613{ 1614 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1615} 1616 1617#define has_transparent_hugepage has_transparent_hugepage 1618static inline int has_transparent_hugepage(void) 1619{ 1620 return MACHINE_HAS_EDAT1 ? 1 : 0; 1621} 1622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1623 1624/* 1625 * 64 bit swap entry format: 1626 * A page-table entry has some bits we have to treat in a special way. 1627 * Bits 52 and bit 55 have to be zero, otherwise a specification 1628 * exception will occur instead of a page translation exception. The 1629 * specification exception has the bad habit not to store necessary 1630 * information in the lowcore. 1631 * Bits 54 and 63 are used to indicate the page type. 1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1635 * for the offset. 1636 * | offset |01100|type |00| 1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1639 */ 1640 1641#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1642#define __SWP_OFFSET_SHIFT 12 1643#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1644#define __SWP_TYPE_SHIFT 2 1645 1646static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1647{ 1648 pte_t pte; 1649 1650 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1651 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1652 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1653 return pte; 1654} 1655 1656static inline unsigned long __swp_type(swp_entry_t entry) 1657{ 1658 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1659} 1660 1661static inline unsigned long __swp_offset(swp_entry_t entry) 1662{ 1663 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1664} 1665 1666static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1667{ 1668 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1669} 1670 1671#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1672#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1673 1674#define kern_addr_valid(addr) (1) 1675 1676extern int vmem_add_mapping(unsigned long start, unsigned long size); 1677extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1678extern int s390_enable_sie(void); 1679extern int s390_enable_skey(void); 1680extern void s390_reset_cmma(struct mm_struct *mm); 1681 1682/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1683#define HAVE_ARCH_UNMAPPED_AREA 1684#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1685 1686#include <asm-generic/pgtable.h> 1687 1688#endif /* _S390_PAGE_H */