at v5.4 355 lines 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10#ifndef __ASM_MEMORY_H 11#define __ASM_MEMORY_H 12 13#include <linux/compiler.h> 14#include <linux/const.h> 15#include <linux/sizes.h> 16#include <linux/types.h> 17#include <asm/bug.h> 18#include <asm/page-def.h> 19 20/* 21 * Size of the PCI I/O space. This must remain a power of two so that 22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 23 */ 24#define PCI_IO_SIZE SZ_16M 25 26/* 27 * VMEMMAP_SIZE - allows the whole linear region to be covered by 28 * a struct page array 29 * 30 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 31 * needs to cover the memory region from the beginning of the 52-bit 32 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 33 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 34 * of the VMEMMAP where 52-bit support is not available in hardware. 35 */ 36#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \ 37 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)) 38 39/* 40 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 41 * start of the TTBR1 address space. 42 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 43 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 44 * VA_BITS - the maximum number of bits for virtual addresses. 45 */ 46#define VA_BITS (CONFIG_ARM64_VA_BITS) 47#define _PAGE_OFFSET(va) (-(UL(1) << (va))) 48#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 49#define KIMAGE_VADDR (MODULES_END) 50#define BPF_JIT_REGION_START (KASAN_SHADOW_END) 51#define BPF_JIT_REGION_SIZE (SZ_128M) 52#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 53#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 54#define MODULES_VADDR (BPF_JIT_REGION_END) 55#define MODULES_VSIZE (SZ_128M) 56#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M) 57#define PCI_IO_END (VMEMMAP_START - SZ_2M) 58#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 59#define FIXADDR_TOP (PCI_IO_START - SZ_2M) 60 61#if VA_BITS > 48 62#define VA_BITS_MIN (48) 63#else 64#define VA_BITS_MIN (VA_BITS) 65#endif 66 67#define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 68 69#define KERNEL_START _text 70#define KERNEL_END _end 71 72#ifdef CONFIG_ARM64_VA_BITS_52 73#define MAX_USER_VA_BITS 52 74#else 75#define MAX_USER_VA_BITS VA_BITS 76#endif 77 78/* 79 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 80 * address space for the shadow region respectively. They can bloat the stack 81 * significantly, so double the (minimum) stack size when they are in use. 82 */ 83#ifdef CONFIG_KASAN 84#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 85#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 86 + KASAN_SHADOW_OFFSET) 87#define KASAN_THREAD_SHIFT 1 88#else 89#define KASAN_THREAD_SHIFT 0 90#define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN)) 91#endif /* CONFIG_KASAN */ 92 93#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 94 95/* 96 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 97 * stacks are a multiple of page size. 98 */ 99#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 100#define THREAD_SHIFT PAGE_SHIFT 101#else 102#define THREAD_SHIFT MIN_THREAD_SHIFT 103#endif 104 105#if THREAD_SHIFT >= PAGE_SHIFT 106#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 107#endif 108 109#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 110 111/* 112 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 113 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 114 * assembly. 115 */ 116#ifdef CONFIG_VMAP_STACK 117#define THREAD_ALIGN (2 * THREAD_SIZE) 118#else 119#define THREAD_ALIGN THREAD_SIZE 120#endif 121 122#define IRQ_STACK_SIZE THREAD_SIZE 123 124#define OVERFLOW_STACK_SIZE SZ_4K 125 126/* 127 * Alignment of kernel segments (e.g. .text, .data). 128 */ 129#if defined(CONFIG_DEBUG_ALIGN_RODATA) 130/* 131 * 4 KB granule: 1 level 2 entry 132 * 16 KB granule: 128 level 3 entries, with contiguous bit 133 * 64 KB granule: 32 level 3 entries, with contiguous bit 134 */ 135#define SEGMENT_ALIGN SZ_2M 136#else 137/* 138 * 4 KB granule: 16 level 3 entries, with contiguous bit 139 * 16 KB granule: 4 level 3 entries, without contiguous bit 140 * 64 KB granule: 1 level 3 entry 141 */ 142#define SEGMENT_ALIGN SZ_64K 143#endif 144 145/* 146 * Memory types available. 147 */ 148#define MT_DEVICE_nGnRnE 0 149#define MT_DEVICE_nGnRE 1 150#define MT_DEVICE_GRE 2 151#define MT_NORMAL_NC 3 152#define MT_NORMAL 4 153#define MT_NORMAL_WT 5 154 155/* 156 * Memory types for Stage-2 translation 157 */ 158#define MT_S2_NORMAL 0xf 159#define MT_S2_DEVICE_nGnRE 0x1 160 161/* 162 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 163 * Stage-2 enforces Normal-WB and Device-nGnRE 164 */ 165#define MT_S2_FWB_NORMAL 6 166#define MT_S2_FWB_DEVICE_nGnRE 1 167 168#ifdef CONFIG_ARM64_4K_PAGES 169#define IOREMAP_MAX_ORDER (PUD_SHIFT) 170#else 171#define IOREMAP_MAX_ORDER (PMD_SHIFT) 172#endif 173 174#ifndef __ASSEMBLY__ 175extern u64 vabits_actual; 176#define PAGE_END (_PAGE_END(vabits_actual)) 177 178#include <linux/bitops.h> 179#include <linux/mmdebug.h> 180 181extern s64 physvirt_offset; 182extern s64 memstart_addr; 183/* PHYS_OFFSET - the physical address of the start of memory. */ 184#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 185 186/* the virtual base of the kernel image (minus TEXT_OFFSET) */ 187extern u64 kimage_vaddr; 188 189/* the offset between the kernel virtual and physical mappings */ 190extern u64 kimage_voffset; 191 192static inline unsigned long kaslr_offset(void) 193{ 194 return kimage_vaddr - KIMAGE_VADDR; 195} 196 197/* 198 * Allow all memory at the discovery stage. We will clip it later. 199 */ 200#define MIN_MEMBLOCK_ADDR 0 201#define MAX_MEMBLOCK_ADDR U64_MAX 202 203/* 204 * PFNs are used to describe any physical page; this means 205 * PFN 0 == physical address 0. 206 * 207 * This is the PFN of the first RAM page in the kernel 208 * direct-mapped view. We assume this is the first page 209 * of RAM in the mem_map as well. 210 */ 211#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 212 213/* 214 * When dealing with data aborts, watchpoints, or instruction traps we may end 215 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 216 * pass on to access_ok(), for instance. 217 */ 218#define __untagged_addr(addr) \ 219 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 220 221#define untagged_addr(addr) ({ \ 222 u64 __addr = (__force u64)addr; \ 223 __addr &= __untagged_addr(__addr); \ 224 (__force __typeof__(addr))__addr; \ 225}) 226 227#ifdef CONFIG_KASAN_SW_TAGS 228#define __tag_shifted(tag) ((u64)(tag) << 56) 229#define __tag_reset(addr) __untagged_addr(addr) 230#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 231#else 232#define __tag_shifted(tag) 0UL 233#define __tag_reset(addr) (addr) 234#define __tag_get(addr) 0 235#endif /* CONFIG_KASAN_SW_TAGS */ 236 237static inline const void *__tag_set(const void *addr, u8 tag) 238{ 239 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 240 return (const void *)(__addr | __tag_shifted(tag)); 241} 242 243/* 244 * Physical vs virtual RAM address space conversion. These are 245 * private definitions which should NOT be used outside memory.h 246 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 247 */ 248 249 250/* 251 * The linear kernel range starts at the bottom of the virtual address 252 * space. Testing the top bit for the start of the region is a 253 * sufficient check and avoids having to worry about the tag. 254 */ 255#define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1))) 256 257#define __lm_to_phys(addr) (((addr) + physvirt_offset)) 258#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 259 260#define __virt_to_phys_nodebug(x) ({ \ 261 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 262 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 263}) 264 265#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 266 267#ifdef CONFIG_DEBUG_VIRTUAL 268extern phys_addr_t __virt_to_phys(unsigned long x); 269extern phys_addr_t __phys_addr_symbol(unsigned long x); 270#else 271#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 272#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 273#endif /* CONFIG_DEBUG_VIRTUAL */ 274 275#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset)) 276#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 277 278/* 279 * Convert a page to/from a physical address 280 */ 281#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 282#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 283 284/* 285 * Note: Drivers should NOT use these. They are the wrong 286 * translation for translating DMA addresses. Use the driver 287 * DMA support - see dma-mapping.h. 288 */ 289#define virt_to_phys virt_to_phys 290static inline phys_addr_t virt_to_phys(const volatile void *x) 291{ 292 return __virt_to_phys((unsigned long)(x)); 293} 294 295#define phys_to_virt phys_to_virt 296static inline void *phys_to_virt(phys_addr_t x) 297{ 298 return (void *)(__phys_to_virt(x)); 299} 300 301/* 302 * Drivers should NOT use these either. 303 */ 304#define __pa(x) __virt_to_phys((unsigned long)(x)) 305#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 306#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 307#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 308#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 309#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 310#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 311 312/* 313 * virt_to_page(x) convert a _valid_ virtual address to struct page * 314 * virt_addr_valid(x) indicates whether a virtual address is valid 315 */ 316#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 317 318#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL) 319#define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 320#else 321#define page_to_virt(x) ({ \ 322 __typeof__(x) __page = x; \ 323 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 324 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 325 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 326}) 327 328#define virt_to_page(x) ({ \ 329 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 330 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 331 (struct page *)__addr; \ 332}) 333#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */ 334 335#define virt_addr_valid(addr) ({ \ 336 __typeof__(addr) __addr = addr; \ 337 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \ 338}) 339 340#endif /* !ASSEMBLY */ 341 342/* 343 * Given that the GIC architecture permits ITS implementations that can only be 344 * configured with a LPI table address once, GICv3 systems with many CPUs may 345 * end up reserving a lot of different regions after a kexec for their LPI 346 * tables (one per CPU), as we are forced to reuse the same memory after kexec 347 * (and thus reserve it persistently with EFI beforehand) 348 */ 349#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 350# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 351#endif 352 353#include <asm-generic/memory_model.h> 354 355#endif /* __ASM_MEMORY_H */