at v5.4-rc8 153 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31 32#include <linux/percpu.h> 33#include <linux/rculist.h> 34#include <linux/workqueue.h> 35#include <linux/dynamic_queue_limits.h> 36 37#include <linux/ethtool.h> 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43#include <net/xdp.h> 44 45#include <linux/netdev_features.h> 46#include <linux/neighbour.h> 47#include <uapi/linux/netdevice.h> 48#include <uapi/linux/if_bonding.h> 49#include <uapi/linux/pkt_cls.h> 50#include <linux/hashtable.h> 51 52struct netpoll_info; 53struct device; 54struct phy_device; 55struct dsa_port; 56 57struct sfp_bus; 58/* 802.11 specific */ 59struct wireless_dev; 60/* 802.15.4 specific */ 61struct wpan_dev; 62struct mpls_dev; 63/* UDP Tunnel offloads */ 64struct udp_tunnel_info; 65struct bpf_prog; 66struct xdp_buff; 67 68void netdev_set_default_ethtool_ops(struct net_device *dev, 69 const struct ethtool_ops *ops); 70 71/* Backlog congestion levels */ 72#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 73#define NET_RX_DROP 1 /* packet dropped */ 74 75/* 76 * Transmit return codes: transmit return codes originate from three different 77 * namespaces: 78 * 79 * - qdisc return codes 80 * - driver transmit return codes 81 * - errno values 82 * 83 * Drivers are allowed to return any one of those in their hard_start_xmit() 84 * function. Real network devices commonly used with qdiscs should only return 85 * the driver transmit return codes though - when qdiscs are used, the actual 86 * transmission happens asynchronously, so the value is not propagated to 87 * higher layers. Virtual network devices transmit synchronously; in this case 88 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 89 * others are propagated to higher layers. 90 */ 91 92/* qdisc ->enqueue() return codes. */ 93#define NET_XMIT_SUCCESS 0x00 94#define NET_XMIT_DROP 0x01 /* skb dropped */ 95#define NET_XMIT_CN 0x02 /* congestion notification */ 96#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 97 98/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 99 * indicates that the device will soon be dropping packets, or already drops 100 * some packets of the same priority; prompting us to send less aggressively. */ 101#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 102#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 103 104/* Driver transmit return codes */ 105#define NETDEV_TX_MASK 0xf0 106 107enum netdev_tx { 108 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 109 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 110 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 111}; 112typedef enum netdev_tx netdev_tx_t; 113 114/* 115 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 116 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 117 */ 118static inline bool dev_xmit_complete(int rc) 119{ 120 /* 121 * Positive cases with an skb consumed by a driver: 122 * - successful transmission (rc == NETDEV_TX_OK) 123 * - error while transmitting (rc < 0) 124 * - error while queueing to a different device (rc & NET_XMIT_MASK) 125 */ 126 if (likely(rc < NET_XMIT_MASK)) 127 return true; 128 129 return false; 130} 131 132/* 133 * Compute the worst-case header length according to the protocols 134 * used. 135 */ 136 137#if defined(CONFIG_HYPERV_NET) 138# define LL_MAX_HEADER 128 139#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 140# if defined(CONFIG_MAC80211_MESH) 141# define LL_MAX_HEADER 128 142# else 143# define LL_MAX_HEADER 96 144# endif 145#else 146# define LL_MAX_HEADER 32 147#endif 148 149#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 150 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 151#define MAX_HEADER LL_MAX_HEADER 152#else 153#define MAX_HEADER (LL_MAX_HEADER + 48) 154#endif 155 156/* 157 * Old network device statistics. Fields are native words 158 * (unsigned long) so they can be read and written atomically. 159 */ 160 161struct net_device_stats { 162 unsigned long rx_packets; 163 unsigned long tx_packets; 164 unsigned long rx_bytes; 165 unsigned long tx_bytes; 166 unsigned long rx_errors; 167 unsigned long tx_errors; 168 unsigned long rx_dropped; 169 unsigned long tx_dropped; 170 unsigned long multicast; 171 unsigned long collisions; 172 unsigned long rx_length_errors; 173 unsigned long rx_over_errors; 174 unsigned long rx_crc_errors; 175 unsigned long rx_frame_errors; 176 unsigned long rx_fifo_errors; 177 unsigned long rx_missed_errors; 178 unsigned long tx_aborted_errors; 179 unsigned long tx_carrier_errors; 180 unsigned long tx_fifo_errors; 181 unsigned long tx_heartbeat_errors; 182 unsigned long tx_window_errors; 183 unsigned long rx_compressed; 184 unsigned long tx_compressed; 185}; 186 187 188#include <linux/cache.h> 189#include <linux/skbuff.h> 190 191#ifdef CONFIG_RPS 192#include <linux/static_key.h> 193extern struct static_key_false rps_needed; 194extern struct static_key_false rfs_needed; 195#endif 196 197struct neighbour; 198struct neigh_parms; 199struct sk_buff; 200 201struct netdev_hw_addr { 202 struct list_head list; 203 unsigned char addr[MAX_ADDR_LEN]; 204 unsigned char type; 205#define NETDEV_HW_ADDR_T_LAN 1 206#define NETDEV_HW_ADDR_T_SAN 2 207#define NETDEV_HW_ADDR_T_SLAVE 3 208#define NETDEV_HW_ADDR_T_UNICAST 4 209#define NETDEV_HW_ADDR_T_MULTICAST 5 210 bool global_use; 211 int sync_cnt; 212 int refcount; 213 int synced; 214 struct rcu_head rcu_head; 215}; 216 217struct netdev_hw_addr_list { 218 struct list_head list; 219 int count; 220}; 221 222#define netdev_hw_addr_list_count(l) ((l)->count) 223#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 224#define netdev_hw_addr_list_for_each(ha, l) \ 225 list_for_each_entry(ha, &(l)->list, list) 226 227#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 228#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 229#define netdev_for_each_uc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 231 232#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 233#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 234#define netdev_for_each_mc_addr(ha, dev) \ 235 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 236 237struct hh_cache { 238 unsigned int hh_len; 239 seqlock_t hh_lock; 240 241 /* cached hardware header; allow for machine alignment needs. */ 242#define HH_DATA_MOD 16 243#define HH_DATA_OFF(__len) \ 244 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 245#define HH_DATA_ALIGN(__len) \ 246 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 247 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 248}; 249 250/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 251 * Alternative is: 252 * dev->hard_header_len ? (dev->hard_header_len + 253 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 254 * 255 * We could use other alignment values, but we must maintain the 256 * relationship HH alignment <= LL alignment. 257 */ 258#define LL_RESERVED_SPACE(dev) \ 259 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 260#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262 263struct header_ops { 264 int (*create) (struct sk_buff *skb, struct net_device *dev, 265 unsigned short type, const void *daddr, 266 const void *saddr, unsigned int len); 267 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 268 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 269 void (*cache_update)(struct hh_cache *hh, 270 const struct net_device *dev, 271 const unsigned char *haddr); 272 bool (*validate)(const char *ll_header, unsigned int len); 273 __be16 (*parse_protocol)(const struct sk_buff *skb); 274}; 275 276/* These flag bits are private to the generic network queueing 277 * layer; they may not be explicitly referenced by any other 278 * code. 279 */ 280 281enum netdev_state_t { 282 __LINK_STATE_START, 283 __LINK_STATE_PRESENT, 284 __LINK_STATE_NOCARRIER, 285 __LINK_STATE_LINKWATCH_PENDING, 286 __LINK_STATE_DORMANT, 287}; 288 289 290/* 291 * This structure holds boot-time configured netdevice settings. They 292 * are then used in the device probing. 293 */ 294struct netdev_boot_setup { 295 char name[IFNAMSIZ]; 296 struct ifmap map; 297}; 298#define NETDEV_BOOT_SETUP_MAX 8 299 300int __init netdev_boot_setup(char *str); 301 302struct gro_list { 303 struct list_head list; 304 int count; 305}; 306 307/* 308 * size of gro hash buckets, must less than bit number of 309 * napi_struct::gro_bitmask 310 */ 311#define GRO_HASH_BUCKETS 8 312 313/* 314 * Structure for NAPI scheduling similar to tasklet but with weighting 315 */ 316struct napi_struct { 317 /* The poll_list must only be managed by the entity which 318 * changes the state of the NAPI_STATE_SCHED bit. This means 319 * whoever atomically sets that bit can add this napi_struct 320 * to the per-CPU poll_list, and whoever clears that bit 321 * can remove from the list right before clearing the bit. 322 */ 323 struct list_head poll_list; 324 325 unsigned long state; 326 int weight; 327 unsigned long gro_bitmask; 328 int (*poll)(struct napi_struct *, int); 329#ifdef CONFIG_NETPOLL 330 int poll_owner; 331#endif 332 struct net_device *dev; 333 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 334 struct sk_buff *skb; 335 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 336 int rx_count; /* length of rx_list */ 337 struct hrtimer timer; 338 struct list_head dev_list; 339 struct hlist_node napi_hash_node; 340 unsigned int napi_id; 341}; 342 343enum { 344 NAPI_STATE_SCHED, /* Poll is scheduled */ 345 NAPI_STATE_MISSED, /* reschedule a napi */ 346 NAPI_STATE_DISABLE, /* Disable pending */ 347 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 348 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 349 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 350 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 351}; 352 353enum { 354 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 355 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 356 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 357 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 358 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED), 359 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 360 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 361}; 362 363enum gro_result { 364 GRO_MERGED, 365 GRO_MERGED_FREE, 366 GRO_HELD, 367 GRO_NORMAL, 368 GRO_DROP, 369 GRO_CONSUMED, 370}; 371typedef enum gro_result gro_result_t; 372 373/* 374 * enum rx_handler_result - Possible return values for rx_handlers. 375 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 376 * further. 377 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 378 * case skb->dev was changed by rx_handler. 379 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 380 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 381 * 382 * rx_handlers are functions called from inside __netif_receive_skb(), to do 383 * special processing of the skb, prior to delivery to protocol handlers. 384 * 385 * Currently, a net_device can only have a single rx_handler registered. Trying 386 * to register a second rx_handler will return -EBUSY. 387 * 388 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 389 * To unregister a rx_handler on a net_device, use 390 * netdev_rx_handler_unregister(). 391 * 392 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 393 * do with the skb. 394 * 395 * If the rx_handler consumed the skb in some way, it should return 396 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 397 * the skb to be delivered in some other way. 398 * 399 * If the rx_handler changed skb->dev, to divert the skb to another 400 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 401 * new device will be called if it exists. 402 * 403 * If the rx_handler decides the skb should be ignored, it should return 404 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 405 * are registered on exact device (ptype->dev == skb->dev). 406 * 407 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 408 * delivered, it should return RX_HANDLER_PASS. 409 * 410 * A device without a registered rx_handler will behave as if rx_handler 411 * returned RX_HANDLER_PASS. 412 */ 413 414enum rx_handler_result { 415 RX_HANDLER_CONSUMED, 416 RX_HANDLER_ANOTHER, 417 RX_HANDLER_EXACT, 418 RX_HANDLER_PASS, 419}; 420typedef enum rx_handler_result rx_handler_result_t; 421typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 422 423void __napi_schedule(struct napi_struct *n); 424void __napi_schedule_irqoff(struct napi_struct *n); 425 426static inline bool napi_disable_pending(struct napi_struct *n) 427{ 428 return test_bit(NAPI_STATE_DISABLE, &n->state); 429} 430 431bool napi_schedule_prep(struct napi_struct *n); 432 433/** 434 * napi_schedule - schedule NAPI poll 435 * @n: NAPI context 436 * 437 * Schedule NAPI poll routine to be called if it is not already 438 * running. 439 */ 440static inline void napi_schedule(struct napi_struct *n) 441{ 442 if (napi_schedule_prep(n)) 443 __napi_schedule(n); 444} 445 446/** 447 * napi_schedule_irqoff - schedule NAPI poll 448 * @n: NAPI context 449 * 450 * Variant of napi_schedule(), assuming hard irqs are masked. 451 */ 452static inline void napi_schedule_irqoff(struct napi_struct *n) 453{ 454 if (napi_schedule_prep(n)) 455 __napi_schedule_irqoff(n); 456} 457 458/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 459static inline bool napi_reschedule(struct napi_struct *napi) 460{ 461 if (napi_schedule_prep(napi)) { 462 __napi_schedule(napi); 463 return true; 464 } 465 return false; 466} 467 468bool napi_complete_done(struct napi_struct *n, int work_done); 469/** 470 * napi_complete - NAPI processing complete 471 * @n: NAPI context 472 * 473 * Mark NAPI processing as complete. 474 * Consider using napi_complete_done() instead. 475 * Return false if device should avoid rearming interrupts. 476 */ 477static inline bool napi_complete(struct napi_struct *n) 478{ 479 return napi_complete_done(n, 0); 480} 481 482/** 483 * napi_hash_del - remove a NAPI from global table 484 * @napi: NAPI context 485 * 486 * Warning: caller must observe RCU grace period 487 * before freeing memory containing @napi, if 488 * this function returns true. 489 * Note: core networking stack automatically calls it 490 * from netif_napi_del(). 491 * Drivers might want to call this helper to combine all 492 * the needed RCU grace periods into a single one. 493 */ 494bool napi_hash_del(struct napi_struct *napi); 495 496/** 497 * napi_disable - prevent NAPI from scheduling 498 * @n: NAPI context 499 * 500 * Stop NAPI from being scheduled on this context. 501 * Waits till any outstanding processing completes. 502 */ 503void napi_disable(struct napi_struct *n); 504 505/** 506 * napi_enable - enable NAPI scheduling 507 * @n: NAPI context 508 * 509 * Resume NAPI from being scheduled on this context. 510 * Must be paired with napi_disable. 511 */ 512static inline void napi_enable(struct napi_struct *n) 513{ 514 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 515 smp_mb__before_atomic(); 516 clear_bit(NAPI_STATE_SCHED, &n->state); 517 clear_bit(NAPI_STATE_NPSVC, &n->state); 518} 519 520/** 521 * napi_synchronize - wait until NAPI is not running 522 * @n: NAPI context 523 * 524 * Wait until NAPI is done being scheduled on this context. 525 * Waits till any outstanding processing completes but 526 * does not disable future activations. 527 */ 528static inline void napi_synchronize(const struct napi_struct *n) 529{ 530 if (IS_ENABLED(CONFIG_SMP)) 531 while (test_bit(NAPI_STATE_SCHED, &n->state)) 532 msleep(1); 533 else 534 barrier(); 535} 536 537/** 538 * napi_if_scheduled_mark_missed - if napi is running, set the 539 * NAPIF_STATE_MISSED 540 * @n: NAPI context 541 * 542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 543 * NAPI is scheduled. 544 **/ 545static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 546{ 547 unsigned long val, new; 548 549 do { 550 val = READ_ONCE(n->state); 551 if (val & NAPIF_STATE_DISABLE) 552 return true; 553 554 if (!(val & NAPIF_STATE_SCHED)) 555 return false; 556 557 new = val | NAPIF_STATE_MISSED; 558 } while (cmpxchg(&n->state, val, new) != val); 559 560 return true; 561} 562 563enum netdev_queue_state_t { 564 __QUEUE_STATE_DRV_XOFF, 565 __QUEUE_STATE_STACK_XOFF, 566 __QUEUE_STATE_FROZEN, 567}; 568 569#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 570#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 571#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 572 573#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 574#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 575 QUEUE_STATE_FROZEN) 576#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 577 QUEUE_STATE_FROZEN) 578 579/* 580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 581 * netif_tx_* functions below are used to manipulate this flag. The 582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 583 * queue independently. The netif_xmit_*stopped functions below are called 584 * to check if the queue has been stopped by the driver or stack (either 585 * of the XOFF bits are set in the state). Drivers should not need to call 586 * netif_xmit*stopped functions, they should only be using netif_tx_*. 587 */ 588 589struct netdev_queue { 590/* 591 * read-mostly part 592 */ 593 struct net_device *dev; 594 struct Qdisc __rcu *qdisc; 595 struct Qdisc *qdisc_sleeping; 596#ifdef CONFIG_SYSFS 597 struct kobject kobj; 598#endif 599#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 600 int numa_node; 601#endif 602 unsigned long tx_maxrate; 603 /* 604 * Number of TX timeouts for this queue 605 * (/sys/class/net/DEV/Q/trans_timeout) 606 */ 607 unsigned long trans_timeout; 608 609 /* Subordinate device that the queue has been assigned to */ 610 struct net_device *sb_dev; 611#ifdef CONFIG_XDP_SOCKETS 612 struct xdp_umem *umem; 613#endif 614/* 615 * write-mostly part 616 */ 617 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 618 int xmit_lock_owner; 619 /* 620 * Time (in jiffies) of last Tx 621 */ 622 unsigned long trans_start; 623 624 unsigned long state; 625 626#ifdef CONFIG_BQL 627 struct dql dql; 628#endif 629} ____cacheline_aligned_in_smp; 630 631extern int sysctl_fb_tunnels_only_for_init_net; 632extern int sysctl_devconf_inherit_init_net; 633 634static inline bool net_has_fallback_tunnels(const struct net *net) 635{ 636 return net == &init_net || 637 !IS_ENABLED(CONFIG_SYSCTL) || 638 !sysctl_fb_tunnels_only_for_init_net; 639} 640 641static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 642{ 643#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 644 return q->numa_node; 645#else 646 return NUMA_NO_NODE; 647#endif 648} 649 650static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 651{ 652#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 653 q->numa_node = node; 654#endif 655} 656 657#ifdef CONFIG_RPS 658/* 659 * This structure holds an RPS map which can be of variable length. The 660 * map is an array of CPUs. 661 */ 662struct rps_map { 663 unsigned int len; 664 struct rcu_head rcu; 665 u16 cpus[0]; 666}; 667#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 668 669/* 670 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 671 * tail pointer for that CPU's input queue at the time of last enqueue, and 672 * a hardware filter index. 673 */ 674struct rps_dev_flow { 675 u16 cpu; 676 u16 filter; 677 unsigned int last_qtail; 678}; 679#define RPS_NO_FILTER 0xffff 680 681/* 682 * The rps_dev_flow_table structure contains a table of flow mappings. 683 */ 684struct rps_dev_flow_table { 685 unsigned int mask; 686 struct rcu_head rcu; 687 struct rps_dev_flow flows[0]; 688}; 689#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 690 ((_num) * sizeof(struct rps_dev_flow))) 691 692/* 693 * The rps_sock_flow_table contains mappings of flows to the last CPU 694 * on which they were processed by the application (set in recvmsg). 695 * Each entry is a 32bit value. Upper part is the high-order bits 696 * of flow hash, lower part is CPU number. 697 * rps_cpu_mask is used to partition the space, depending on number of 698 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 699 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 700 * meaning we use 32-6=26 bits for the hash. 701 */ 702struct rps_sock_flow_table { 703 u32 mask; 704 705 u32 ents[0] ____cacheline_aligned_in_smp; 706}; 707#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 708 709#define RPS_NO_CPU 0xffff 710 711extern u32 rps_cpu_mask; 712extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 713 714static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 715 u32 hash) 716{ 717 if (table && hash) { 718 unsigned int index = hash & table->mask; 719 u32 val = hash & ~rps_cpu_mask; 720 721 /* We only give a hint, preemption can change CPU under us */ 722 val |= raw_smp_processor_id(); 723 724 if (table->ents[index] != val) 725 table->ents[index] = val; 726 } 727} 728 729#ifdef CONFIG_RFS_ACCEL 730bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 731 u16 filter_id); 732#endif 733#endif /* CONFIG_RPS */ 734 735/* This structure contains an instance of an RX queue. */ 736struct netdev_rx_queue { 737#ifdef CONFIG_RPS 738 struct rps_map __rcu *rps_map; 739 struct rps_dev_flow_table __rcu *rps_flow_table; 740#endif 741 struct kobject kobj; 742 struct net_device *dev; 743 struct xdp_rxq_info xdp_rxq; 744#ifdef CONFIG_XDP_SOCKETS 745 struct xdp_umem *umem; 746#endif 747} ____cacheline_aligned_in_smp; 748 749/* 750 * RX queue sysfs structures and functions. 751 */ 752struct rx_queue_attribute { 753 struct attribute attr; 754 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 755 ssize_t (*store)(struct netdev_rx_queue *queue, 756 const char *buf, size_t len); 757}; 758 759#ifdef CONFIG_XPS 760/* 761 * This structure holds an XPS map which can be of variable length. The 762 * map is an array of queues. 763 */ 764struct xps_map { 765 unsigned int len; 766 unsigned int alloc_len; 767 struct rcu_head rcu; 768 u16 queues[0]; 769}; 770#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 771#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 772 - sizeof(struct xps_map)) / sizeof(u16)) 773 774/* 775 * This structure holds all XPS maps for device. Maps are indexed by CPU. 776 */ 777struct xps_dev_maps { 778 struct rcu_head rcu; 779 struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */ 780}; 781 782#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 783 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 784 785#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 786 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 787 788#endif /* CONFIG_XPS */ 789 790#define TC_MAX_QUEUE 16 791#define TC_BITMASK 15 792/* HW offloaded queuing disciplines txq count and offset maps */ 793struct netdev_tc_txq { 794 u16 count; 795 u16 offset; 796}; 797 798#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 799/* 800 * This structure is to hold information about the device 801 * configured to run FCoE protocol stack. 802 */ 803struct netdev_fcoe_hbainfo { 804 char manufacturer[64]; 805 char serial_number[64]; 806 char hardware_version[64]; 807 char driver_version[64]; 808 char optionrom_version[64]; 809 char firmware_version[64]; 810 char model[256]; 811 char model_description[256]; 812}; 813#endif 814 815#define MAX_PHYS_ITEM_ID_LEN 32 816 817/* This structure holds a unique identifier to identify some 818 * physical item (port for example) used by a netdevice. 819 */ 820struct netdev_phys_item_id { 821 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 822 unsigned char id_len; 823}; 824 825static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 826 struct netdev_phys_item_id *b) 827{ 828 return a->id_len == b->id_len && 829 memcmp(a->id, b->id, a->id_len) == 0; 830} 831 832typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 833 struct sk_buff *skb, 834 struct net_device *sb_dev); 835 836enum tc_setup_type { 837 TC_SETUP_QDISC_MQPRIO, 838 TC_SETUP_CLSU32, 839 TC_SETUP_CLSFLOWER, 840 TC_SETUP_CLSMATCHALL, 841 TC_SETUP_CLSBPF, 842 TC_SETUP_BLOCK, 843 TC_SETUP_QDISC_CBS, 844 TC_SETUP_QDISC_RED, 845 TC_SETUP_QDISC_PRIO, 846 TC_SETUP_QDISC_MQ, 847 TC_SETUP_QDISC_ETF, 848 TC_SETUP_ROOT_QDISC, 849 TC_SETUP_QDISC_GRED, 850 TC_SETUP_QDISC_TAPRIO, 851}; 852 853/* These structures hold the attributes of bpf state that are being passed 854 * to the netdevice through the bpf op. 855 */ 856enum bpf_netdev_command { 857 /* Set or clear a bpf program used in the earliest stages of packet 858 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 859 * is responsible for calling bpf_prog_put on any old progs that are 860 * stored. In case of error, the callee need not release the new prog 861 * reference, but on success it takes ownership and must bpf_prog_put 862 * when it is no longer used. 863 */ 864 XDP_SETUP_PROG, 865 XDP_SETUP_PROG_HW, 866 XDP_QUERY_PROG, 867 XDP_QUERY_PROG_HW, 868 /* BPF program for offload callbacks, invoked at program load time. */ 869 BPF_OFFLOAD_MAP_ALLOC, 870 BPF_OFFLOAD_MAP_FREE, 871 XDP_SETUP_XSK_UMEM, 872}; 873 874struct bpf_prog_offload_ops; 875struct netlink_ext_ack; 876struct xdp_umem; 877 878struct netdev_bpf { 879 enum bpf_netdev_command command; 880 union { 881 /* XDP_SETUP_PROG */ 882 struct { 883 u32 flags; 884 struct bpf_prog *prog; 885 struct netlink_ext_ack *extack; 886 }; 887 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */ 888 struct { 889 u32 prog_id; 890 /* flags with which program was installed */ 891 u32 prog_flags; 892 }; 893 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 894 struct { 895 struct bpf_offloaded_map *offmap; 896 }; 897 /* XDP_SETUP_XSK_UMEM */ 898 struct { 899 struct xdp_umem *umem; 900 u16 queue_id; 901 } xsk; 902 }; 903}; 904 905/* Flags for ndo_xsk_wakeup. */ 906#define XDP_WAKEUP_RX (1 << 0) 907#define XDP_WAKEUP_TX (1 << 1) 908 909#ifdef CONFIG_XFRM_OFFLOAD 910struct xfrmdev_ops { 911 int (*xdo_dev_state_add) (struct xfrm_state *x); 912 void (*xdo_dev_state_delete) (struct xfrm_state *x); 913 void (*xdo_dev_state_free) (struct xfrm_state *x); 914 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 915 struct xfrm_state *x); 916 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 917}; 918#endif 919 920struct dev_ifalias { 921 struct rcu_head rcuhead; 922 char ifalias[]; 923}; 924 925struct devlink; 926struct tlsdev_ops; 927 928 929/* 930 * This structure defines the management hooks for network devices. 931 * The following hooks can be defined; unless noted otherwise, they are 932 * optional and can be filled with a null pointer. 933 * 934 * int (*ndo_init)(struct net_device *dev); 935 * This function is called once when a network device is registered. 936 * The network device can use this for any late stage initialization 937 * or semantic validation. It can fail with an error code which will 938 * be propagated back to register_netdev. 939 * 940 * void (*ndo_uninit)(struct net_device *dev); 941 * This function is called when device is unregistered or when registration 942 * fails. It is not called if init fails. 943 * 944 * int (*ndo_open)(struct net_device *dev); 945 * This function is called when a network device transitions to the up 946 * state. 947 * 948 * int (*ndo_stop)(struct net_device *dev); 949 * This function is called when a network device transitions to the down 950 * state. 951 * 952 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 953 * struct net_device *dev); 954 * Called when a packet needs to be transmitted. 955 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 956 * the queue before that can happen; it's for obsolete devices and weird 957 * corner cases, but the stack really does a non-trivial amount 958 * of useless work if you return NETDEV_TX_BUSY. 959 * Required; cannot be NULL. 960 * 961 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 962 * struct net_device *dev 963 * netdev_features_t features); 964 * Called by core transmit path to determine if device is capable of 965 * performing offload operations on a given packet. This is to give 966 * the device an opportunity to implement any restrictions that cannot 967 * be otherwise expressed by feature flags. The check is called with 968 * the set of features that the stack has calculated and it returns 969 * those the driver believes to be appropriate. 970 * 971 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 972 * struct net_device *sb_dev); 973 * Called to decide which queue to use when device supports multiple 974 * transmit queues. 975 * 976 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 977 * This function is called to allow device receiver to make 978 * changes to configuration when multicast or promiscuous is enabled. 979 * 980 * void (*ndo_set_rx_mode)(struct net_device *dev); 981 * This function is called device changes address list filtering. 982 * If driver handles unicast address filtering, it should set 983 * IFF_UNICAST_FLT in its priv_flags. 984 * 985 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 986 * This function is called when the Media Access Control address 987 * needs to be changed. If this interface is not defined, the 988 * MAC address can not be changed. 989 * 990 * int (*ndo_validate_addr)(struct net_device *dev); 991 * Test if Media Access Control address is valid for the device. 992 * 993 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 994 * Called when a user requests an ioctl which can't be handled by 995 * the generic interface code. If not defined ioctls return 996 * not supported error code. 997 * 998 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 999 * Used to set network devices bus interface parameters. This interface 1000 * is retained for legacy reasons; new devices should use the bus 1001 * interface (PCI) for low level management. 1002 * 1003 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1004 * Called when a user wants to change the Maximum Transfer Unit 1005 * of a device. 1006 * 1007 * void (*ndo_tx_timeout)(struct net_device *dev); 1008 * Callback used when the transmitter has not made any progress 1009 * for dev->watchdog ticks. 1010 * 1011 * void (*ndo_get_stats64)(struct net_device *dev, 1012 * struct rtnl_link_stats64 *storage); 1013 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1014 * Called when a user wants to get the network device usage 1015 * statistics. Drivers must do one of the following: 1016 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1017 * rtnl_link_stats64 structure passed by the caller. 1018 * 2. Define @ndo_get_stats to update a net_device_stats structure 1019 * (which should normally be dev->stats) and return a pointer to 1020 * it. The structure may be changed asynchronously only if each 1021 * field is written atomically. 1022 * 3. Update dev->stats asynchronously and atomically, and define 1023 * neither operation. 1024 * 1025 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1026 * Return true if this device supports offload stats of this attr_id. 1027 * 1028 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1029 * void *attr_data) 1030 * Get statistics for offload operations by attr_id. Write it into the 1031 * attr_data pointer. 1032 * 1033 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1034 * If device supports VLAN filtering this function is called when a 1035 * VLAN id is registered. 1036 * 1037 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1038 * If device supports VLAN filtering this function is called when a 1039 * VLAN id is unregistered. 1040 * 1041 * void (*ndo_poll_controller)(struct net_device *dev); 1042 * 1043 * SR-IOV management functions. 1044 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1045 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1046 * u8 qos, __be16 proto); 1047 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1048 * int max_tx_rate); 1049 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1050 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1051 * int (*ndo_get_vf_config)(struct net_device *dev, 1052 * int vf, struct ifla_vf_info *ivf); 1053 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1054 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1055 * struct nlattr *port[]); 1056 * 1057 * Enable or disable the VF ability to query its RSS Redirection Table and 1058 * Hash Key. This is needed since on some devices VF share this information 1059 * with PF and querying it may introduce a theoretical security risk. 1060 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1061 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1062 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1063 * void *type_data); 1064 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1065 * This is always called from the stack with the rtnl lock held and netif 1066 * tx queues stopped. This allows the netdevice to perform queue 1067 * management safely. 1068 * 1069 * Fiber Channel over Ethernet (FCoE) offload functions. 1070 * int (*ndo_fcoe_enable)(struct net_device *dev); 1071 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1072 * so the underlying device can perform whatever needed configuration or 1073 * initialization to support acceleration of FCoE traffic. 1074 * 1075 * int (*ndo_fcoe_disable)(struct net_device *dev); 1076 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1077 * so the underlying device can perform whatever needed clean-ups to 1078 * stop supporting acceleration of FCoE traffic. 1079 * 1080 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1081 * struct scatterlist *sgl, unsigned int sgc); 1082 * Called when the FCoE Initiator wants to initialize an I/O that 1083 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1084 * perform necessary setup and returns 1 to indicate the device is set up 1085 * successfully to perform DDP on this I/O, otherwise this returns 0. 1086 * 1087 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1088 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1089 * indicated by the FC exchange id 'xid', so the underlying device can 1090 * clean up and reuse resources for later DDP requests. 1091 * 1092 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1093 * struct scatterlist *sgl, unsigned int sgc); 1094 * Called when the FCoE Target wants to initialize an I/O that 1095 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1096 * perform necessary setup and returns 1 to indicate the device is set up 1097 * successfully to perform DDP on this I/O, otherwise this returns 0. 1098 * 1099 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1100 * struct netdev_fcoe_hbainfo *hbainfo); 1101 * Called when the FCoE Protocol stack wants information on the underlying 1102 * device. This information is utilized by the FCoE protocol stack to 1103 * register attributes with Fiber Channel management service as per the 1104 * FC-GS Fabric Device Management Information(FDMI) specification. 1105 * 1106 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1107 * Called when the underlying device wants to override default World Wide 1108 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1109 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1110 * protocol stack to use. 1111 * 1112 * RFS acceleration. 1113 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1114 * u16 rxq_index, u32 flow_id); 1115 * Set hardware filter for RFS. rxq_index is the target queue index; 1116 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1117 * Return the filter ID on success, or a negative error code. 1118 * 1119 * Slave management functions (for bridge, bonding, etc). 1120 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1121 * Called to make another netdev an underling. 1122 * 1123 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1124 * Called to release previously enslaved netdev. 1125 * 1126 * Feature/offload setting functions. 1127 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1128 * netdev_features_t features); 1129 * Adjusts the requested feature flags according to device-specific 1130 * constraints, and returns the resulting flags. Must not modify 1131 * the device state. 1132 * 1133 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1134 * Called to update device configuration to new features. Passed 1135 * feature set might be less than what was returned by ndo_fix_features()). 1136 * Must return >0 or -errno if it changed dev->features itself. 1137 * 1138 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1139 * struct net_device *dev, 1140 * const unsigned char *addr, u16 vid, u16 flags, 1141 * struct netlink_ext_ack *extack); 1142 * Adds an FDB entry to dev for addr. 1143 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1144 * struct net_device *dev, 1145 * const unsigned char *addr, u16 vid) 1146 * Deletes the FDB entry from dev coresponding to addr. 1147 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1148 * struct net_device *dev, struct net_device *filter_dev, 1149 * int *idx) 1150 * Used to add FDB entries to dump requests. Implementers should add 1151 * entries to skb and update idx with the number of entries. 1152 * 1153 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1154 * u16 flags, struct netlink_ext_ack *extack) 1155 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1156 * struct net_device *dev, u32 filter_mask, 1157 * int nlflags) 1158 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1159 * u16 flags); 1160 * 1161 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1162 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1163 * which do not represent real hardware may define this to allow their 1164 * userspace components to manage their virtual carrier state. Devices 1165 * that determine carrier state from physical hardware properties (eg 1166 * network cables) or protocol-dependent mechanisms (eg 1167 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1168 * 1169 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1170 * struct netdev_phys_item_id *ppid); 1171 * Called to get ID of physical port of this device. If driver does 1172 * not implement this, it is assumed that the hw is not able to have 1173 * multiple net devices on single physical port. 1174 * 1175 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1176 * struct netdev_phys_item_id *ppid) 1177 * Called to get the parent ID of the physical port of this device. 1178 * 1179 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1180 * struct udp_tunnel_info *ti); 1181 * Called by UDP tunnel to notify a driver about the UDP port and socket 1182 * address family that a UDP tunnel is listnening to. It is called only 1183 * when a new port starts listening. The operation is protected by the 1184 * RTNL. 1185 * 1186 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1187 * struct udp_tunnel_info *ti); 1188 * Called by UDP tunnel to notify the driver about a UDP port and socket 1189 * address family that the UDP tunnel is not listening to anymore. The 1190 * operation is protected by the RTNL. 1191 * 1192 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1193 * struct net_device *dev) 1194 * Called by upper layer devices to accelerate switching or other 1195 * station functionality into hardware. 'pdev is the lowerdev 1196 * to use for the offload and 'dev' is the net device that will 1197 * back the offload. Returns a pointer to the private structure 1198 * the upper layer will maintain. 1199 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1200 * Called by upper layer device to delete the station created 1201 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1202 * the station and priv is the structure returned by the add 1203 * operation. 1204 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1205 * int queue_index, u32 maxrate); 1206 * Called when a user wants to set a max-rate limitation of specific 1207 * TX queue. 1208 * int (*ndo_get_iflink)(const struct net_device *dev); 1209 * Called to get the iflink value of this device. 1210 * void (*ndo_change_proto_down)(struct net_device *dev, 1211 * bool proto_down); 1212 * This function is used to pass protocol port error state information 1213 * to the switch driver. The switch driver can react to the proto_down 1214 * by doing a phys down on the associated switch port. 1215 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1216 * This function is used to get egress tunnel information for given skb. 1217 * This is useful for retrieving outer tunnel header parameters while 1218 * sampling packet. 1219 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1220 * This function is used to specify the headroom that the skb must 1221 * consider when allocation skb during packet reception. Setting 1222 * appropriate rx headroom value allows avoiding skb head copy on 1223 * forward. Setting a negative value resets the rx headroom to the 1224 * default value. 1225 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1226 * This function is used to set or query state related to XDP on the 1227 * netdevice and manage BPF offload. See definition of 1228 * enum bpf_netdev_command for details. 1229 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1230 * u32 flags); 1231 * This function is used to submit @n XDP packets for transmit on a 1232 * netdevice. Returns number of frames successfully transmitted, frames 1233 * that got dropped are freed/returned via xdp_return_frame(). 1234 * Returns negative number, means general error invoking ndo, meaning 1235 * no frames were xmit'ed and core-caller will free all frames. 1236 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1237 * This function is used to wake up the softirq, ksoftirqd or kthread 1238 * responsible for sending and/or receiving packets on a specific 1239 * queue id bound to an AF_XDP socket. The flags field specifies if 1240 * only RX, only Tx, or both should be woken up using the flags 1241 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1242 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev); 1243 * Get devlink port instance associated with a given netdev. 1244 * Called with a reference on the netdevice and devlink locks only, 1245 * rtnl_lock is not held. 1246 */ 1247struct net_device_ops { 1248 int (*ndo_init)(struct net_device *dev); 1249 void (*ndo_uninit)(struct net_device *dev); 1250 int (*ndo_open)(struct net_device *dev); 1251 int (*ndo_stop)(struct net_device *dev); 1252 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1253 struct net_device *dev); 1254 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1255 struct net_device *dev, 1256 netdev_features_t features); 1257 u16 (*ndo_select_queue)(struct net_device *dev, 1258 struct sk_buff *skb, 1259 struct net_device *sb_dev); 1260 void (*ndo_change_rx_flags)(struct net_device *dev, 1261 int flags); 1262 void (*ndo_set_rx_mode)(struct net_device *dev); 1263 int (*ndo_set_mac_address)(struct net_device *dev, 1264 void *addr); 1265 int (*ndo_validate_addr)(struct net_device *dev); 1266 int (*ndo_do_ioctl)(struct net_device *dev, 1267 struct ifreq *ifr, int cmd); 1268 int (*ndo_set_config)(struct net_device *dev, 1269 struct ifmap *map); 1270 int (*ndo_change_mtu)(struct net_device *dev, 1271 int new_mtu); 1272 int (*ndo_neigh_setup)(struct net_device *dev, 1273 struct neigh_parms *); 1274 void (*ndo_tx_timeout) (struct net_device *dev); 1275 1276 void (*ndo_get_stats64)(struct net_device *dev, 1277 struct rtnl_link_stats64 *storage); 1278 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1279 int (*ndo_get_offload_stats)(int attr_id, 1280 const struct net_device *dev, 1281 void *attr_data); 1282 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1283 1284 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1285 __be16 proto, u16 vid); 1286 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1287 __be16 proto, u16 vid); 1288#ifdef CONFIG_NET_POLL_CONTROLLER 1289 void (*ndo_poll_controller)(struct net_device *dev); 1290 int (*ndo_netpoll_setup)(struct net_device *dev, 1291 struct netpoll_info *info); 1292 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1293#endif 1294 int (*ndo_set_vf_mac)(struct net_device *dev, 1295 int queue, u8 *mac); 1296 int (*ndo_set_vf_vlan)(struct net_device *dev, 1297 int queue, u16 vlan, 1298 u8 qos, __be16 proto); 1299 int (*ndo_set_vf_rate)(struct net_device *dev, 1300 int vf, int min_tx_rate, 1301 int max_tx_rate); 1302 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1303 int vf, bool setting); 1304 int (*ndo_set_vf_trust)(struct net_device *dev, 1305 int vf, bool setting); 1306 int (*ndo_get_vf_config)(struct net_device *dev, 1307 int vf, 1308 struct ifla_vf_info *ivf); 1309 int (*ndo_set_vf_link_state)(struct net_device *dev, 1310 int vf, int link_state); 1311 int (*ndo_get_vf_stats)(struct net_device *dev, 1312 int vf, 1313 struct ifla_vf_stats 1314 *vf_stats); 1315 int (*ndo_set_vf_port)(struct net_device *dev, 1316 int vf, 1317 struct nlattr *port[]); 1318 int (*ndo_get_vf_port)(struct net_device *dev, 1319 int vf, struct sk_buff *skb); 1320 int (*ndo_set_vf_guid)(struct net_device *dev, 1321 int vf, u64 guid, 1322 int guid_type); 1323 int (*ndo_set_vf_rss_query_en)( 1324 struct net_device *dev, 1325 int vf, bool setting); 1326 int (*ndo_setup_tc)(struct net_device *dev, 1327 enum tc_setup_type type, 1328 void *type_data); 1329#if IS_ENABLED(CONFIG_FCOE) 1330 int (*ndo_fcoe_enable)(struct net_device *dev); 1331 int (*ndo_fcoe_disable)(struct net_device *dev); 1332 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1333 u16 xid, 1334 struct scatterlist *sgl, 1335 unsigned int sgc); 1336 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1337 u16 xid); 1338 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1339 u16 xid, 1340 struct scatterlist *sgl, 1341 unsigned int sgc); 1342 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1343 struct netdev_fcoe_hbainfo *hbainfo); 1344#endif 1345 1346#if IS_ENABLED(CONFIG_LIBFCOE) 1347#define NETDEV_FCOE_WWNN 0 1348#define NETDEV_FCOE_WWPN 1 1349 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1350 u64 *wwn, int type); 1351#endif 1352 1353#ifdef CONFIG_RFS_ACCEL 1354 int (*ndo_rx_flow_steer)(struct net_device *dev, 1355 const struct sk_buff *skb, 1356 u16 rxq_index, 1357 u32 flow_id); 1358#endif 1359 int (*ndo_add_slave)(struct net_device *dev, 1360 struct net_device *slave_dev, 1361 struct netlink_ext_ack *extack); 1362 int (*ndo_del_slave)(struct net_device *dev, 1363 struct net_device *slave_dev); 1364 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1365 netdev_features_t features); 1366 int (*ndo_set_features)(struct net_device *dev, 1367 netdev_features_t features); 1368 int (*ndo_neigh_construct)(struct net_device *dev, 1369 struct neighbour *n); 1370 void (*ndo_neigh_destroy)(struct net_device *dev, 1371 struct neighbour *n); 1372 1373 int (*ndo_fdb_add)(struct ndmsg *ndm, 1374 struct nlattr *tb[], 1375 struct net_device *dev, 1376 const unsigned char *addr, 1377 u16 vid, 1378 u16 flags, 1379 struct netlink_ext_ack *extack); 1380 int (*ndo_fdb_del)(struct ndmsg *ndm, 1381 struct nlattr *tb[], 1382 struct net_device *dev, 1383 const unsigned char *addr, 1384 u16 vid); 1385 int (*ndo_fdb_dump)(struct sk_buff *skb, 1386 struct netlink_callback *cb, 1387 struct net_device *dev, 1388 struct net_device *filter_dev, 1389 int *idx); 1390 int (*ndo_fdb_get)(struct sk_buff *skb, 1391 struct nlattr *tb[], 1392 struct net_device *dev, 1393 const unsigned char *addr, 1394 u16 vid, u32 portid, u32 seq, 1395 struct netlink_ext_ack *extack); 1396 int (*ndo_bridge_setlink)(struct net_device *dev, 1397 struct nlmsghdr *nlh, 1398 u16 flags, 1399 struct netlink_ext_ack *extack); 1400 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1401 u32 pid, u32 seq, 1402 struct net_device *dev, 1403 u32 filter_mask, 1404 int nlflags); 1405 int (*ndo_bridge_dellink)(struct net_device *dev, 1406 struct nlmsghdr *nlh, 1407 u16 flags); 1408 int (*ndo_change_carrier)(struct net_device *dev, 1409 bool new_carrier); 1410 int (*ndo_get_phys_port_id)(struct net_device *dev, 1411 struct netdev_phys_item_id *ppid); 1412 int (*ndo_get_port_parent_id)(struct net_device *dev, 1413 struct netdev_phys_item_id *ppid); 1414 int (*ndo_get_phys_port_name)(struct net_device *dev, 1415 char *name, size_t len); 1416 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1417 struct udp_tunnel_info *ti); 1418 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1419 struct udp_tunnel_info *ti); 1420 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1421 struct net_device *dev); 1422 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1423 void *priv); 1424 1425 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1426 int queue_index, 1427 u32 maxrate); 1428 int (*ndo_get_iflink)(const struct net_device *dev); 1429 int (*ndo_change_proto_down)(struct net_device *dev, 1430 bool proto_down); 1431 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1432 struct sk_buff *skb); 1433 void (*ndo_set_rx_headroom)(struct net_device *dev, 1434 int needed_headroom); 1435 int (*ndo_bpf)(struct net_device *dev, 1436 struct netdev_bpf *bpf); 1437 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1438 struct xdp_frame **xdp, 1439 u32 flags); 1440 int (*ndo_xsk_wakeup)(struct net_device *dev, 1441 u32 queue_id, u32 flags); 1442 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev); 1443}; 1444 1445/** 1446 * enum net_device_priv_flags - &struct net_device priv_flags 1447 * 1448 * These are the &struct net_device, they are only set internally 1449 * by drivers and used in the kernel. These flags are invisible to 1450 * userspace; this means that the order of these flags can change 1451 * during any kernel release. 1452 * 1453 * You should have a pretty good reason to be extending these flags. 1454 * 1455 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1456 * @IFF_EBRIDGE: Ethernet bridging device 1457 * @IFF_BONDING: bonding master or slave 1458 * @IFF_ISATAP: ISATAP interface (RFC4214) 1459 * @IFF_WAN_HDLC: WAN HDLC device 1460 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1461 * release skb->dst 1462 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1463 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1464 * @IFF_MACVLAN_PORT: device used as macvlan port 1465 * @IFF_BRIDGE_PORT: device used as bridge port 1466 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1467 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1468 * @IFF_UNICAST_FLT: Supports unicast filtering 1469 * @IFF_TEAM_PORT: device used as team port 1470 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1471 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1472 * change when it's running 1473 * @IFF_MACVLAN: Macvlan device 1474 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1475 * underlying stacked devices 1476 * @IFF_L3MDEV_MASTER: device is an L3 master device 1477 * @IFF_NO_QUEUE: device can run without qdisc attached 1478 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1479 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1480 * @IFF_TEAM: device is a team device 1481 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1482 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1483 * entity (i.e. the master device for bridged veth) 1484 * @IFF_MACSEC: device is a MACsec device 1485 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1486 * @IFF_FAILOVER: device is a failover master device 1487 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1488 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1489 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running 1490 */ 1491enum netdev_priv_flags { 1492 IFF_802_1Q_VLAN = 1<<0, 1493 IFF_EBRIDGE = 1<<1, 1494 IFF_BONDING = 1<<2, 1495 IFF_ISATAP = 1<<3, 1496 IFF_WAN_HDLC = 1<<4, 1497 IFF_XMIT_DST_RELEASE = 1<<5, 1498 IFF_DONT_BRIDGE = 1<<6, 1499 IFF_DISABLE_NETPOLL = 1<<7, 1500 IFF_MACVLAN_PORT = 1<<8, 1501 IFF_BRIDGE_PORT = 1<<9, 1502 IFF_OVS_DATAPATH = 1<<10, 1503 IFF_TX_SKB_SHARING = 1<<11, 1504 IFF_UNICAST_FLT = 1<<12, 1505 IFF_TEAM_PORT = 1<<13, 1506 IFF_SUPP_NOFCS = 1<<14, 1507 IFF_LIVE_ADDR_CHANGE = 1<<15, 1508 IFF_MACVLAN = 1<<16, 1509 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1510 IFF_L3MDEV_MASTER = 1<<18, 1511 IFF_NO_QUEUE = 1<<19, 1512 IFF_OPENVSWITCH = 1<<20, 1513 IFF_L3MDEV_SLAVE = 1<<21, 1514 IFF_TEAM = 1<<22, 1515 IFF_RXFH_CONFIGURED = 1<<23, 1516 IFF_PHONY_HEADROOM = 1<<24, 1517 IFF_MACSEC = 1<<25, 1518 IFF_NO_RX_HANDLER = 1<<26, 1519 IFF_FAILOVER = 1<<27, 1520 IFF_FAILOVER_SLAVE = 1<<28, 1521 IFF_L3MDEV_RX_HANDLER = 1<<29, 1522 IFF_LIVE_RENAME_OK = 1<<30, 1523}; 1524 1525#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1526#define IFF_EBRIDGE IFF_EBRIDGE 1527#define IFF_BONDING IFF_BONDING 1528#define IFF_ISATAP IFF_ISATAP 1529#define IFF_WAN_HDLC IFF_WAN_HDLC 1530#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1531#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1532#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1533#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1534#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1535#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1536#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1537#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1538#define IFF_TEAM_PORT IFF_TEAM_PORT 1539#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1540#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1541#define IFF_MACVLAN IFF_MACVLAN 1542#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1543#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1544#define IFF_NO_QUEUE IFF_NO_QUEUE 1545#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1546#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1547#define IFF_TEAM IFF_TEAM 1548#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1549#define IFF_MACSEC IFF_MACSEC 1550#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1551#define IFF_FAILOVER IFF_FAILOVER 1552#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1553#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1554#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK 1555 1556/** 1557 * struct net_device - The DEVICE structure. 1558 * 1559 * Actually, this whole structure is a big mistake. It mixes I/O 1560 * data with strictly "high-level" data, and it has to know about 1561 * almost every data structure used in the INET module. 1562 * 1563 * @name: This is the first field of the "visible" part of this structure 1564 * (i.e. as seen by users in the "Space.c" file). It is the name 1565 * of the interface. 1566 * 1567 * @name_hlist: Device name hash chain, please keep it close to name[] 1568 * @ifalias: SNMP alias 1569 * @mem_end: Shared memory end 1570 * @mem_start: Shared memory start 1571 * @base_addr: Device I/O address 1572 * @irq: Device IRQ number 1573 * 1574 * @state: Generic network queuing layer state, see netdev_state_t 1575 * @dev_list: The global list of network devices 1576 * @napi_list: List entry used for polling NAPI devices 1577 * @unreg_list: List entry when we are unregistering the 1578 * device; see the function unregister_netdev 1579 * @close_list: List entry used when we are closing the device 1580 * @ptype_all: Device-specific packet handlers for all protocols 1581 * @ptype_specific: Device-specific, protocol-specific packet handlers 1582 * 1583 * @adj_list: Directly linked devices, like slaves for bonding 1584 * @features: Currently active device features 1585 * @hw_features: User-changeable features 1586 * 1587 * @wanted_features: User-requested features 1588 * @vlan_features: Mask of features inheritable by VLAN devices 1589 * 1590 * @hw_enc_features: Mask of features inherited by encapsulating devices 1591 * This field indicates what encapsulation 1592 * offloads the hardware is capable of doing, 1593 * and drivers will need to set them appropriately. 1594 * 1595 * @mpls_features: Mask of features inheritable by MPLS 1596 * 1597 * @ifindex: interface index 1598 * @group: The group the device belongs to 1599 * 1600 * @stats: Statistics struct, which was left as a legacy, use 1601 * rtnl_link_stats64 instead 1602 * 1603 * @rx_dropped: Dropped packets by core network, 1604 * do not use this in drivers 1605 * @tx_dropped: Dropped packets by core network, 1606 * do not use this in drivers 1607 * @rx_nohandler: nohandler dropped packets by core network on 1608 * inactive devices, do not use this in drivers 1609 * @carrier_up_count: Number of times the carrier has been up 1610 * @carrier_down_count: Number of times the carrier has been down 1611 * 1612 * @wireless_handlers: List of functions to handle Wireless Extensions, 1613 * instead of ioctl, 1614 * see <net/iw_handler.h> for details. 1615 * @wireless_data: Instance data managed by the core of wireless extensions 1616 * 1617 * @netdev_ops: Includes several pointers to callbacks, 1618 * if one wants to override the ndo_*() functions 1619 * @ethtool_ops: Management operations 1620 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1621 * discovery handling. Necessary for e.g. 6LoWPAN. 1622 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1623 * of Layer 2 headers. 1624 * 1625 * @flags: Interface flags (a la BSD) 1626 * @priv_flags: Like 'flags' but invisible to userspace, 1627 * see if.h for the definitions 1628 * @gflags: Global flags ( kept as legacy ) 1629 * @padded: How much padding added by alloc_netdev() 1630 * @operstate: RFC2863 operstate 1631 * @link_mode: Mapping policy to operstate 1632 * @if_port: Selectable AUI, TP, ... 1633 * @dma: DMA channel 1634 * @mtu: Interface MTU value 1635 * @min_mtu: Interface Minimum MTU value 1636 * @max_mtu: Interface Maximum MTU value 1637 * @type: Interface hardware type 1638 * @hard_header_len: Maximum hardware header length. 1639 * @min_header_len: Minimum hardware header length 1640 * 1641 * @needed_headroom: Extra headroom the hardware may need, but not in all 1642 * cases can this be guaranteed 1643 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1644 * cases can this be guaranteed. Some cases also use 1645 * LL_MAX_HEADER instead to allocate the skb 1646 * 1647 * interface address info: 1648 * 1649 * @perm_addr: Permanent hw address 1650 * @addr_assign_type: Hw address assignment type 1651 * @addr_len: Hardware address length 1652 * @upper_level: Maximum depth level of upper devices. 1653 * @lower_level: Maximum depth level of lower devices. 1654 * @neigh_priv_len: Used in neigh_alloc() 1655 * @dev_id: Used to differentiate devices that share 1656 * the same link layer address 1657 * @dev_port: Used to differentiate devices that share 1658 * the same function 1659 * @addr_list_lock: XXX: need comments on this one 1660 * @uc_promisc: Counter that indicates promiscuous mode 1661 * has been enabled due to the need to listen to 1662 * additional unicast addresses in a device that 1663 * does not implement ndo_set_rx_mode() 1664 * @uc: unicast mac addresses 1665 * @mc: multicast mac addresses 1666 * @dev_addrs: list of device hw addresses 1667 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1668 * @promiscuity: Number of times the NIC is told to work in 1669 * promiscuous mode; if it becomes 0 the NIC will 1670 * exit promiscuous mode 1671 * @allmulti: Counter, enables or disables allmulticast mode 1672 * 1673 * @vlan_info: VLAN info 1674 * @dsa_ptr: dsa specific data 1675 * @tipc_ptr: TIPC specific data 1676 * @atalk_ptr: AppleTalk link 1677 * @ip_ptr: IPv4 specific data 1678 * @dn_ptr: DECnet specific data 1679 * @ip6_ptr: IPv6 specific data 1680 * @ax25_ptr: AX.25 specific data 1681 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1682 * 1683 * @dev_addr: Hw address (before bcast, 1684 * because most packets are unicast) 1685 * 1686 * @_rx: Array of RX queues 1687 * @num_rx_queues: Number of RX queues 1688 * allocated at register_netdev() time 1689 * @real_num_rx_queues: Number of RX queues currently active in device 1690 * 1691 * @rx_handler: handler for received packets 1692 * @rx_handler_data: XXX: need comments on this one 1693 * @miniq_ingress: ingress/clsact qdisc specific data for 1694 * ingress processing 1695 * @ingress_queue: XXX: need comments on this one 1696 * @broadcast: hw bcast address 1697 * 1698 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1699 * indexed by RX queue number. Assigned by driver. 1700 * This must only be set if the ndo_rx_flow_steer 1701 * operation is defined 1702 * @index_hlist: Device index hash chain 1703 * 1704 * @_tx: Array of TX queues 1705 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1706 * @real_num_tx_queues: Number of TX queues currently active in device 1707 * @qdisc: Root qdisc from userspace point of view 1708 * @tx_queue_len: Max frames per queue allowed 1709 * @tx_global_lock: XXX: need comments on this one 1710 * 1711 * @xps_maps: XXX: need comments on this one 1712 * @miniq_egress: clsact qdisc specific data for 1713 * egress processing 1714 * @watchdog_timeo: Represents the timeout that is used by 1715 * the watchdog (see dev_watchdog()) 1716 * @watchdog_timer: List of timers 1717 * 1718 * @pcpu_refcnt: Number of references to this device 1719 * @todo_list: Delayed register/unregister 1720 * @link_watch_list: XXX: need comments on this one 1721 * 1722 * @reg_state: Register/unregister state machine 1723 * @dismantle: Device is going to be freed 1724 * @rtnl_link_state: This enum represents the phases of creating 1725 * a new link 1726 * 1727 * @needs_free_netdev: Should unregister perform free_netdev? 1728 * @priv_destructor: Called from unregister 1729 * @npinfo: XXX: need comments on this one 1730 * @nd_net: Network namespace this network device is inside 1731 * 1732 * @ml_priv: Mid-layer private 1733 * @lstats: Loopback statistics 1734 * @tstats: Tunnel statistics 1735 * @dstats: Dummy statistics 1736 * @vstats: Virtual ethernet statistics 1737 * 1738 * @garp_port: GARP 1739 * @mrp_port: MRP 1740 * 1741 * @dev: Class/net/name entry 1742 * @sysfs_groups: Space for optional device, statistics and wireless 1743 * sysfs groups 1744 * 1745 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1746 * @rtnl_link_ops: Rtnl_link_ops 1747 * 1748 * @gso_max_size: Maximum size of generic segmentation offload 1749 * @gso_max_segs: Maximum number of segments that can be passed to the 1750 * NIC for GSO 1751 * 1752 * @dcbnl_ops: Data Center Bridging netlink ops 1753 * @num_tc: Number of traffic classes in the net device 1754 * @tc_to_txq: XXX: need comments on this one 1755 * @prio_tc_map: XXX: need comments on this one 1756 * 1757 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1758 * 1759 * @priomap: XXX: need comments on this one 1760 * @phydev: Physical device may attach itself 1761 * for hardware timestamping 1762 * @sfp_bus: attached &struct sfp_bus structure. 1763 * @qdisc_tx_busylock_key: lockdep class annotating Qdisc->busylock 1764 spinlock 1765 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1766 * @qdisc_xmit_lock_key: lockdep class annotating 1767 * netdev_queue->_xmit_lock spinlock 1768 * @addr_list_lock_key: lockdep class annotating 1769 * net_device->addr_list_lock spinlock 1770 * 1771 * @proto_down: protocol port state information can be sent to the 1772 * switch driver and used to set the phys state of the 1773 * switch port. 1774 * 1775 * @wol_enabled: Wake-on-LAN is enabled 1776 * 1777 * FIXME: cleanup struct net_device such that network protocol info 1778 * moves out. 1779 */ 1780 1781struct net_device { 1782 char name[IFNAMSIZ]; 1783 struct hlist_node name_hlist; 1784 struct dev_ifalias __rcu *ifalias; 1785 /* 1786 * I/O specific fields 1787 * FIXME: Merge these and struct ifmap into one 1788 */ 1789 unsigned long mem_end; 1790 unsigned long mem_start; 1791 unsigned long base_addr; 1792 int irq; 1793 1794 /* 1795 * Some hardware also needs these fields (state,dev_list, 1796 * napi_list,unreg_list,close_list) but they are not 1797 * part of the usual set specified in Space.c. 1798 */ 1799 1800 unsigned long state; 1801 1802 struct list_head dev_list; 1803 struct list_head napi_list; 1804 struct list_head unreg_list; 1805 struct list_head close_list; 1806 struct list_head ptype_all; 1807 struct list_head ptype_specific; 1808 1809 struct { 1810 struct list_head upper; 1811 struct list_head lower; 1812 } adj_list; 1813 1814 netdev_features_t features; 1815 netdev_features_t hw_features; 1816 netdev_features_t wanted_features; 1817 netdev_features_t vlan_features; 1818 netdev_features_t hw_enc_features; 1819 netdev_features_t mpls_features; 1820 netdev_features_t gso_partial_features; 1821 1822 int ifindex; 1823 int group; 1824 1825 struct net_device_stats stats; 1826 1827 atomic_long_t rx_dropped; 1828 atomic_long_t tx_dropped; 1829 atomic_long_t rx_nohandler; 1830 1831 /* Stats to monitor link on/off, flapping */ 1832 atomic_t carrier_up_count; 1833 atomic_t carrier_down_count; 1834 1835#ifdef CONFIG_WIRELESS_EXT 1836 const struct iw_handler_def *wireless_handlers; 1837 struct iw_public_data *wireless_data; 1838#endif 1839 const struct net_device_ops *netdev_ops; 1840 const struct ethtool_ops *ethtool_ops; 1841#ifdef CONFIG_NET_L3_MASTER_DEV 1842 const struct l3mdev_ops *l3mdev_ops; 1843#endif 1844#if IS_ENABLED(CONFIG_IPV6) 1845 const struct ndisc_ops *ndisc_ops; 1846#endif 1847 1848#ifdef CONFIG_XFRM_OFFLOAD 1849 const struct xfrmdev_ops *xfrmdev_ops; 1850#endif 1851 1852#if IS_ENABLED(CONFIG_TLS_DEVICE) 1853 const struct tlsdev_ops *tlsdev_ops; 1854#endif 1855 1856 const struct header_ops *header_ops; 1857 1858 unsigned int flags; 1859 unsigned int priv_flags; 1860 1861 unsigned short gflags; 1862 unsigned short padded; 1863 1864 unsigned char operstate; 1865 unsigned char link_mode; 1866 1867 unsigned char if_port; 1868 unsigned char dma; 1869 1870 unsigned int mtu; 1871 unsigned int min_mtu; 1872 unsigned int max_mtu; 1873 unsigned short type; 1874 unsigned short hard_header_len; 1875 unsigned char min_header_len; 1876 1877 unsigned short needed_headroom; 1878 unsigned short needed_tailroom; 1879 1880 /* Interface address info. */ 1881 unsigned char perm_addr[MAX_ADDR_LEN]; 1882 unsigned char addr_assign_type; 1883 unsigned char addr_len; 1884 unsigned char upper_level; 1885 unsigned char lower_level; 1886 unsigned short neigh_priv_len; 1887 unsigned short dev_id; 1888 unsigned short dev_port; 1889 spinlock_t addr_list_lock; 1890 unsigned char name_assign_type; 1891 bool uc_promisc; 1892 struct netdev_hw_addr_list uc; 1893 struct netdev_hw_addr_list mc; 1894 struct netdev_hw_addr_list dev_addrs; 1895 1896#ifdef CONFIG_SYSFS 1897 struct kset *queues_kset; 1898#endif 1899 unsigned int promiscuity; 1900 unsigned int allmulti; 1901 1902 1903 /* Protocol-specific pointers */ 1904 1905#if IS_ENABLED(CONFIG_VLAN_8021Q) 1906 struct vlan_info __rcu *vlan_info; 1907#endif 1908#if IS_ENABLED(CONFIG_NET_DSA) 1909 struct dsa_port *dsa_ptr; 1910#endif 1911#if IS_ENABLED(CONFIG_TIPC) 1912 struct tipc_bearer __rcu *tipc_ptr; 1913#endif 1914#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK) 1915 void *atalk_ptr; 1916#endif 1917 struct in_device __rcu *ip_ptr; 1918#if IS_ENABLED(CONFIG_DECNET) 1919 struct dn_dev __rcu *dn_ptr; 1920#endif 1921 struct inet6_dev __rcu *ip6_ptr; 1922#if IS_ENABLED(CONFIG_AX25) 1923 void *ax25_ptr; 1924#endif 1925 struct wireless_dev *ieee80211_ptr; 1926 struct wpan_dev *ieee802154_ptr; 1927#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1928 struct mpls_dev __rcu *mpls_ptr; 1929#endif 1930 1931/* 1932 * Cache lines mostly used on receive path (including eth_type_trans()) 1933 */ 1934 /* Interface address info used in eth_type_trans() */ 1935 unsigned char *dev_addr; 1936 1937 struct netdev_rx_queue *_rx; 1938 unsigned int num_rx_queues; 1939 unsigned int real_num_rx_queues; 1940 1941 struct bpf_prog __rcu *xdp_prog; 1942 unsigned long gro_flush_timeout; 1943 rx_handler_func_t __rcu *rx_handler; 1944 void __rcu *rx_handler_data; 1945 1946#ifdef CONFIG_NET_CLS_ACT 1947 struct mini_Qdisc __rcu *miniq_ingress; 1948#endif 1949 struct netdev_queue __rcu *ingress_queue; 1950#ifdef CONFIG_NETFILTER_INGRESS 1951 struct nf_hook_entries __rcu *nf_hooks_ingress; 1952#endif 1953 1954 unsigned char broadcast[MAX_ADDR_LEN]; 1955#ifdef CONFIG_RFS_ACCEL 1956 struct cpu_rmap *rx_cpu_rmap; 1957#endif 1958 struct hlist_node index_hlist; 1959 1960/* 1961 * Cache lines mostly used on transmit path 1962 */ 1963 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1964 unsigned int num_tx_queues; 1965 unsigned int real_num_tx_queues; 1966 struct Qdisc *qdisc; 1967#ifdef CONFIG_NET_SCHED 1968 DECLARE_HASHTABLE (qdisc_hash, 4); 1969#endif 1970 unsigned int tx_queue_len; 1971 spinlock_t tx_global_lock; 1972 int watchdog_timeo; 1973 1974#ifdef CONFIG_XPS 1975 struct xps_dev_maps __rcu *xps_cpus_map; 1976 struct xps_dev_maps __rcu *xps_rxqs_map; 1977#endif 1978#ifdef CONFIG_NET_CLS_ACT 1979 struct mini_Qdisc __rcu *miniq_egress; 1980#endif 1981 1982 /* These may be needed for future network-power-down code. */ 1983 struct timer_list watchdog_timer; 1984 1985 int __percpu *pcpu_refcnt; 1986 struct list_head todo_list; 1987 1988 struct list_head link_watch_list; 1989 1990 enum { NETREG_UNINITIALIZED=0, 1991 NETREG_REGISTERED, /* completed register_netdevice */ 1992 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1993 NETREG_UNREGISTERED, /* completed unregister todo */ 1994 NETREG_RELEASED, /* called free_netdev */ 1995 NETREG_DUMMY, /* dummy device for NAPI poll */ 1996 } reg_state:8; 1997 1998 bool dismantle; 1999 2000 enum { 2001 RTNL_LINK_INITIALIZED, 2002 RTNL_LINK_INITIALIZING, 2003 } rtnl_link_state:16; 2004 2005 bool needs_free_netdev; 2006 void (*priv_destructor)(struct net_device *dev); 2007 2008#ifdef CONFIG_NETPOLL 2009 struct netpoll_info __rcu *npinfo; 2010#endif 2011 2012 possible_net_t nd_net; 2013 2014 /* mid-layer private */ 2015 union { 2016 void *ml_priv; 2017 struct pcpu_lstats __percpu *lstats; 2018 struct pcpu_sw_netstats __percpu *tstats; 2019 struct pcpu_dstats __percpu *dstats; 2020 }; 2021 2022#if IS_ENABLED(CONFIG_GARP) 2023 struct garp_port __rcu *garp_port; 2024#endif 2025#if IS_ENABLED(CONFIG_MRP) 2026 struct mrp_port __rcu *mrp_port; 2027#endif 2028 2029 struct device dev; 2030 const struct attribute_group *sysfs_groups[4]; 2031 const struct attribute_group *sysfs_rx_queue_group; 2032 2033 const struct rtnl_link_ops *rtnl_link_ops; 2034 2035 /* for setting kernel sock attribute on TCP connection setup */ 2036#define GSO_MAX_SIZE 65536 2037 unsigned int gso_max_size; 2038#define GSO_MAX_SEGS 65535 2039 u16 gso_max_segs; 2040 2041#ifdef CONFIG_DCB 2042 const struct dcbnl_rtnl_ops *dcbnl_ops; 2043#endif 2044 s16 num_tc; 2045 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2046 u8 prio_tc_map[TC_BITMASK + 1]; 2047 2048#if IS_ENABLED(CONFIG_FCOE) 2049 unsigned int fcoe_ddp_xid; 2050#endif 2051#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2052 struct netprio_map __rcu *priomap; 2053#endif 2054 struct phy_device *phydev; 2055 struct sfp_bus *sfp_bus; 2056 struct lock_class_key qdisc_tx_busylock_key; 2057 struct lock_class_key qdisc_running_key; 2058 struct lock_class_key qdisc_xmit_lock_key; 2059 struct lock_class_key addr_list_lock_key; 2060 bool proto_down; 2061 unsigned wol_enabled:1; 2062}; 2063#define to_net_dev(d) container_of(d, struct net_device, dev) 2064 2065static inline bool netif_elide_gro(const struct net_device *dev) 2066{ 2067 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2068 return true; 2069 return false; 2070} 2071 2072#define NETDEV_ALIGN 32 2073 2074static inline 2075int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2076{ 2077 return dev->prio_tc_map[prio & TC_BITMASK]; 2078} 2079 2080static inline 2081int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2082{ 2083 if (tc >= dev->num_tc) 2084 return -EINVAL; 2085 2086 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2087 return 0; 2088} 2089 2090int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2091void netdev_reset_tc(struct net_device *dev); 2092int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2093int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2094 2095static inline 2096int netdev_get_num_tc(struct net_device *dev) 2097{ 2098 return dev->num_tc; 2099} 2100 2101void netdev_unbind_sb_channel(struct net_device *dev, 2102 struct net_device *sb_dev); 2103int netdev_bind_sb_channel_queue(struct net_device *dev, 2104 struct net_device *sb_dev, 2105 u8 tc, u16 count, u16 offset); 2106int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2107static inline int netdev_get_sb_channel(struct net_device *dev) 2108{ 2109 return max_t(int, -dev->num_tc, 0); 2110} 2111 2112static inline 2113struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2114 unsigned int index) 2115{ 2116 return &dev->_tx[index]; 2117} 2118 2119static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2120 const struct sk_buff *skb) 2121{ 2122 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2123} 2124 2125static inline void netdev_for_each_tx_queue(struct net_device *dev, 2126 void (*f)(struct net_device *, 2127 struct netdev_queue *, 2128 void *), 2129 void *arg) 2130{ 2131 unsigned int i; 2132 2133 for (i = 0; i < dev->num_tx_queues; i++) 2134 f(dev, &dev->_tx[i], arg); 2135} 2136 2137u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2138 struct net_device *sb_dev); 2139struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2140 struct sk_buff *skb, 2141 struct net_device *sb_dev); 2142 2143/* returns the headroom that the master device needs to take in account 2144 * when forwarding to this dev 2145 */ 2146static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2147{ 2148 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2149} 2150 2151static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2152{ 2153 if (dev->netdev_ops->ndo_set_rx_headroom) 2154 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2155} 2156 2157/* set the device rx headroom to the dev's default */ 2158static inline void netdev_reset_rx_headroom(struct net_device *dev) 2159{ 2160 netdev_set_rx_headroom(dev, -1); 2161} 2162 2163/* 2164 * Net namespace inlines 2165 */ 2166static inline 2167struct net *dev_net(const struct net_device *dev) 2168{ 2169 return read_pnet(&dev->nd_net); 2170} 2171 2172static inline 2173void dev_net_set(struct net_device *dev, struct net *net) 2174{ 2175 write_pnet(&dev->nd_net, net); 2176} 2177 2178/** 2179 * netdev_priv - access network device private data 2180 * @dev: network device 2181 * 2182 * Get network device private data 2183 */ 2184static inline void *netdev_priv(const struct net_device *dev) 2185{ 2186 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2187} 2188 2189/* Set the sysfs physical device reference for the network logical device 2190 * if set prior to registration will cause a symlink during initialization. 2191 */ 2192#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2193 2194/* Set the sysfs device type for the network logical device to allow 2195 * fine-grained identification of different network device types. For 2196 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2197 */ 2198#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2199 2200/* Default NAPI poll() weight 2201 * Device drivers are strongly advised to not use bigger value 2202 */ 2203#define NAPI_POLL_WEIGHT 64 2204 2205/** 2206 * netif_napi_add - initialize a NAPI context 2207 * @dev: network device 2208 * @napi: NAPI context 2209 * @poll: polling function 2210 * @weight: default weight 2211 * 2212 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2213 * *any* of the other NAPI-related functions. 2214 */ 2215void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2216 int (*poll)(struct napi_struct *, int), int weight); 2217 2218/** 2219 * netif_tx_napi_add - initialize a NAPI context 2220 * @dev: network device 2221 * @napi: NAPI context 2222 * @poll: polling function 2223 * @weight: default weight 2224 * 2225 * This variant of netif_napi_add() should be used from drivers using NAPI 2226 * to exclusively poll a TX queue. 2227 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2228 */ 2229static inline void netif_tx_napi_add(struct net_device *dev, 2230 struct napi_struct *napi, 2231 int (*poll)(struct napi_struct *, int), 2232 int weight) 2233{ 2234 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2235 netif_napi_add(dev, napi, poll, weight); 2236} 2237 2238/** 2239 * netif_napi_del - remove a NAPI context 2240 * @napi: NAPI context 2241 * 2242 * netif_napi_del() removes a NAPI context from the network device NAPI list 2243 */ 2244void netif_napi_del(struct napi_struct *napi); 2245 2246struct napi_gro_cb { 2247 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2248 void *frag0; 2249 2250 /* Length of frag0. */ 2251 unsigned int frag0_len; 2252 2253 /* This indicates where we are processing relative to skb->data. */ 2254 int data_offset; 2255 2256 /* This is non-zero if the packet cannot be merged with the new skb. */ 2257 u16 flush; 2258 2259 /* Save the IP ID here and check when we get to the transport layer */ 2260 u16 flush_id; 2261 2262 /* Number of segments aggregated. */ 2263 u16 count; 2264 2265 /* Start offset for remote checksum offload */ 2266 u16 gro_remcsum_start; 2267 2268 /* jiffies when first packet was created/queued */ 2269 unsigned long age; 2270 2271 /* Used in ipv6_gro_receive() and foo-over-udp */ 2272 u16 proto; 2273 2274 /* This is non-zero if the packet may be of the same flow. */ 2275 u8 same_flow:1; 2276 2277 /* Used in tunnel GRO receive */ 2278 u8 encap_mark:1; 2279 2280 /* GRO checksum is valid */ 2281 u8 csum_valid:1; 2282 2283 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2284 u8 csum_cnt:3; 2285 2286 /* Free the skb? */ 2287 u8 free:2; 2288#define NAPI_GRO_FREE 1 2289#define NAPI_GRO_FREE_STOLEN_HEAD 2 2290 2291 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2292 u8 is_ipv6:1; 2293 2294 /* Used in GRE, set in fou/gue_gro_receive */ 2295 u8 is_fou:1; 2296 2297 /* Used to determine if flush_id can be ignored */ 2298 u8 is_atomic:1; 2299 2300 /* Number of gro_receive callbacks this packet already went through */ 2301 u8 recursion_counter:4; 2302 2303 /* 1 bit hole */ 2304 2305 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2306 __wsum csum; 2307 2308 /* used in skb_gro_receive() slow path */ 2309 struct sk_buff *last; 2310}; 2311 2312#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2313 2314#define GRO_RECURSION_LIMIT 15 2315static inline int gro_recursion_inc_test(struct sk_buff *skb) 2316{ 2317 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2318} 2319 2320typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *); 2321static inline struct sk_buff *call_gro_receive(gro_receive_t cb, 2322 struct list_head *head, 2323 struct sk_buff *skb) 2324{ 2325 if (unlikely(gro_recursion_inc_test(skb))) { 2326 NAPI_GRO_CB(skb)->flush |= 1; 2327 return NULL; 2328 } 2329 2330 return cb(head, skb); 2331} 2332 2333typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *, 2334 struct sk_buff *); 2335static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb, 2336 struct sock *sk, 2337 struct list_head *head, 2338 struct sk_buff *skb) 2339{ 2340 if (unlikely(gro_recursion_inc_test(skb))) { 2341 NAPI_GRO_CB(skb)->flush |= 1; 2342 return NULL; 2343 } 2344 2345 return cb(sk, head, skb); 2346} 2347 2348struct packet_type { 2349 __be16 type; /* This is really htons(ether_type). */ 2350 bool ignore_outgoing; 2351 struct net_device *dev; /* NULL is wildcarded here */ 2352 int (*func) (struct sk_buff *, 2353 struct net_device *, 2354 struct packet_type *, 2355 struct net_device *); 2356 void (*list_func) (struct list_head *, 2357 struct packet_type *, 2358 struct net_device *); 2359 bool (*id_match)(struct packet_type *ptype, 2360 struct sock *sk); 2361 void *af_packet_priv; 2362 struct list_head list; 2363}; 2364 2365struct offload_callbacks { 2366 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2367 netdev_features_t features); 2368 struct sk_buff *(*gro_receive)(struct list_head *head, 2369 struct sk_buff *skb); 2370 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2371}; 2372 2373struct packet_offload { 2374 __be16 type; /* This is really htons(ether_type). */ 2375 u16 priority; 2376 struct offload_callbacks callbacks; 2377 struct list_head list; 2378}; 2379 2380/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2381struct pcpu_sw_netstats { 2382 u64 rx_packets; 2383 u64 rx_bytes; 2384 u64 tx_packets; 2385 u64 tx_bytes; 2386 struct u64_stats_sync syncp; 2387} __aligned(4 * sizeof(u64)); 2388 2389struct pcpu_lstats { 2390 u64 packets; 2391 u64 bytes; 2392 struct u64_stats_sync syncp; 2393} __aligned(2 * sizeof(u64)); 2394 2395#define __netdev_alloc_pcpu_stats(type, gfp) \ 2396({ \ 2397 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2398 if (pcpu_stats) { \ 2399 int __cpu; \ 2400 for_each_possible_cpu(__cpu) { \ 2401 typeof(type) *stat; \ 2402 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2403 u64_stats_init(&stat->syncp); \ 2404 } \ 2405 } \ 2406 pcpu_stats; \ 2407}) 2408 2409#define netdev_alloc_pcpu_stats(type) \ 2410 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2411 2412enum netdev_lag_tx_type { 2413 NETDEV_LAG_TX_TYPE_UNKNOWN, 2414 NETDEV_LAG_TX_TYPE_RANDOM, 2415 NETDEV_LAG_TX_TYPE_BROADCAST, 2416 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2417 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2418 NETDEV_LAG_TX_TYPE_HASH, 2419}; 2420 2421enum netdev_lag_hash { 2422 NETDEV_LAG_HASH_NONE, 2423 NETDEV_LAG_HASH_L2, 2424 NETDEV_LAG_HASH_L34, 2425 NETDEV_LAG_HASH_L23, 2426 NETDEV_LAG_HASH_E23, 2427 NETDEV_LAG_HASH_E34, 2428 NETDEV_LAG_HASH_UNKNOWN, 2429}; 2430 2431struct netdev_lag_upper_info { 2432 enum netdev_lag_tx_type tx_type; 2433 enum netdev_lag_hash hash_type; 2434}; 2435 2436struct netdev_lag_lower_state_info { 2437 u8 link_up : 1, 2438 tx_enabled : 1; 2439}; 2440 2441#include <linux/notifier.h> 2442 2443/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2444 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2445 * adding new types. 2446 */ 2447enum netdev_cmd { 2448 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2449 NETDEV_DOWN, 2450 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2451 detected a hardware crash and restarted 2452 - we can use this eg to kick tcp sessions 2453 once done */ 2454 NETDEV_CHANGE, /* Notify device state change */ 2455 NETDEV_REGISTER, 2456 NETDEV_UNREGISTER, 2457 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2458 NETDEV_CHANGEADDR, /* notify after the address change */ 2459 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2460 NETDEV_GOING_DOWN, 2461 NETDEV_CHANGENAME, 2462 NETDEV_FEAT_CHANGE, 2463 NETDEV_BONDING_FAILOVER, 2464 NETDEV_PRE_UP, 2465 NETDEV_PRE_TYPE_CHANGE, 2466 NETDEV_POST_TYPE_CHANGE, 2467 NETDEV_POST_INIT, 2468 NETDEV_RELEASE, 2469 NETDEV_NOTIFY_PEERS, 2470 NETDEV_JOIN, 2471 NETDEV_CHANGEUPPER, 2472 NETDEV_RESEND_IGMP, 2473 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2474 NETDEV_CHANGEINFODATA, 2475 NETDEV_BONDING_INFO, 2476 NETDEV_PRECHANGEUPPER, 2477 NETDEV_CHANGELOWERSTATE, 2478 NETDEV_UDP_TUNNEL_PUSH_INFO, 2479 NETDEV_UDP_TUNNEL_DROP_INFO, 2480 NETDEV_CHANGE_TX_QUEUE_LEN, 2481 NETDEV_CVLAN_FILTER_PUSH_INFO, 2482 NETDEV_CVLAN_FILTER_DROP_INFO, 2483 NETDEV_SVLAN_FILTER_PUSH_INFO, 2484 NETDEV_SVLAN_FILTER_DROP_INFO, 2485}; 2486const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2487 2488int register_netdevice_notifier(struct notifier_block *nb); 2489int unregister_netdevice_notifier(struct notifier_block *nb); 2490 2491struct netdev_notifier_info { 2492 struct net_device *dev; 2493 struct netlink_ext_ack *extack; 2494}; 2495 2496struct netdev_notifier_info_ext { 2497 struct netdev_notifier_info info; /* must be first */ 2498 union { 2499 u32 mtu; 2500 } ext; 2501}; 2502 2503struct netdev_notifier_change_info { 2504 struct netdev_notifier_info info; /* must be first */ 2505 unsigned int flags_changed; 2506}; 2507 2508struct netdev_notifier_changeupper_info { 2509 struct netdev_notifier_info info; /* must be first */ 2510 struct net_device *upper_dev; /* new upper dev */ 2511 bool master; /* is upper dev master */ 2512 bool linking; /* is the notification for link or unlink */ 2513 void *upper_info; /* upper dev info */ 2514}; 2515 2516struct netdev_notifier_changelowerstate_info { 2517 struct netdev_notifier_info info; /* must be first */ 2518 void *lower_state_info; /* is lower dev state */ 2519}; 2520 2521struct netdev_notifier_pre_changeaddr_info { 2522 struct netdev_notifier_info info; /* must be first */ 2523 const unsigned char *dev_addr; 2524}; 2525 2526static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2527 struct net_device *dev) 2528{ 2529 info->dev = dev; 2530 info->extack = NULL; 2531} 2532 2533static inline struct net_device * 2534netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2535{ 2536 return info->dev; 2537} 2538 2539static inline struct netlink_ext_ack * 2540netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2541{ 2542 return info->extack; 2543} 2544 2545int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2546 2547 2548extern rwlock_t dev_base_lock; /* Device list lock */ 2549 2550#define for_each_netdev(net, d) \ 2551 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2552#define for_each_netdev_reverse(net, d) \ 2553 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2554#define for_each_netdev_rcu(net, d) \ 2555 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2556#define for_each_netdev_safe(net, d, n) \ 2557 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2558#define for_each_netdev_continue(net, d) \ 2559 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2560#define for_each_netdev_continue_rcu(net, d) \ 2561 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2562#define for_each_netdev_in_bond_rcu(bond, slave) \ 2563 for_each_netdev_rcu(&init_net, slave) \ 2564 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2565#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2566 2567static inline struct net_device *next_net_device(struct net_device *dev) 2568{ 2569 struct list_head *lh; 2570 struct net *net; 2571 2572 net = dev_net(dev); 2573 lh = dev->dev_list.next; 2574 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2575} 2576 2577static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2578{ 2579 struct list_head *lh; 2580 struct net *net; 2581 2582 net = dev_net(dev); 2583 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2584 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2585} 2586 2587static inline struct net_device *first_net_device(struct net *net) 2588{ 2589 return list_empty(&net->dev_base_head) ? NULL : 2590 net_device_entry(net->dev_base_head.next); 2591} 2592 2593static inline struct net_device *first_net_device_rcu(struct net *net) 2594{ 2595 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2596 2597 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2598} 2599 2600int netdev_boot_setup_check(struct net_device *dev); 2601unsigned long netdev_boot_base(const char *prefix, int unit); 2602struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2603 const char *hwaddr); 2604struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2605struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2606void dev_add_pack(struct packet_type *pt); 2607void dev_remove_pack(struct packet_type *pt); 2608void __dev_remove_pack(struct packet_type *pt); 2609void dev_add_offload(struct packet_offload *po); 2610void dev_remove_offload(struct packet_offload *po); 2611 2612int dev_get_iflink(const struct net_device *dev); 2613int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2614struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2615 unsigned short mask); 2616struct net_device *dev_get_by_name(struct net *net, const char *name); 2617struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2618struct net_device *__dev_get_by_name(struct net *net, const char *name); 2619int dev_alloc_name(struct net_device *dev, const char *name); 2620int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 2621void dev_close(struct net_device *dev); 2622void dev_close_many(struct list_head *head, bool unlink); 2623void dev_disable_lro(struct net_device *dev); 2624int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2625u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 2626 struct net_device *sb_dev); 2627u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 2628 struct net_device *sb_dev); 2629int dev_queue_xmit(struct sk_buff *skb); 2630int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev); 2631int dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 2632int register_netdevice(struct net_device *dev); 2633void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2634void unregister_netdevice_many(struct list_head *head); 2635static inline void unregister_netdevice(struct net_device *dev) 2636{ 2637 unregister_netdevice_queue(dev, NULL); 2638} 2639 2640int netdev_refcnt_read(const struct net_device *dev); 2641void free_netdev(struct net_device *dev); 2642void netdev_freemem(struct net_device *dev); 2643void synchronize_net(void); 2644int init_dummy_netdev(struct net_device *dev); 2645 2646struct net_device *dev_get_by_index(struct net *net, int ifindex); 2647struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2648struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2649struct net_device *dev_get_by_napi_id(unsigned int napi_id); 2650int netdev_get_name(struct net *net, char *name, int ifindex); 2651int dev_restart(struct net_device *dev); 2652int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb); 2653 2654static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2655{ 2656 return NAPI_GRO_CB(skb)->data_offset; 2657} 2658 2659static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2660{ 2661 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2662} 2663 2664static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2665{ 2666 NAPI_GRO_CB(skb)->data_offset += len; 2667} 2668 2669static inline void *skb_gro_header_fast(struct sk_buff *skb, 2670 unsigned int offset) 2671{ 2672 return NAPI_GRO_CB(skb)->frag0 + offset; 2673} 2674 2675static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2676{ 2677 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2678} 2679 2680static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2681{ 2682 NAPI_GRO_CB(skb)->frag0 = NULL; 2683 NAPI_GRO_CB(skb)->frag0_len = 0; 2684} 2685 2686static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2687 unsigned int offset) 2688{ 2689 if (!pskb_may_pull(skb, hlen)) 2690 return NULL; 2691 2692 skb_gro_frag0_invalidate(skb); 2693 return skb->data + offset; 2694} 2695 2696static inline void *skb_gro_network_header(struct sk_buff *skb) 2697{ 2698 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2699 skb_network_offset(skb); 2700} 2701 2702static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2703 const void *start, unsigned int len) 2704{ 2705 if (NAPI_GRO_CB(skb)->csum_valid) 2706 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2707 csum_partial(start, len, 0)); 2708} 2709 2710/* GRO checksum functions. These are logical equivalents of the normal 2711 * checksum functions (in skbuff.h) except that they operate on the GRO 2712 * offsets and fields in sk_buff. 2713 */ 2714 2715__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2716 2717static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2718{ 2719 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2720} 2721 2722static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2723 bool zero_okay, 2724 __sum16 check) 2725{ 2726 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2727 skb_checksum_start_offset(skb) < 2728 skb_gro_offset(skb)) && 2729 !skb_at_gro_remcsum_start(skb) && 2730 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2731 (!zero_okay || check)); 2732} 2733 2734static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2735 __wsum psum) 2736{ 2737 if (NAPI_GRO_CB(skb)->csum_valid && 2738 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2739 return 0; 2740 2741 NAPI_GRO_CB(skb)->csum = psum; 2742 2743 return __skb_gro_checksum_complete(skb); 2744} 2745 2746static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2747{ 2748 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2749 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2750 NAPI_GRO_CB(skb)->csum_cnt--; 2751 } else { 2752 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2753 * verified a new top level checksum or an encapsulated one 2754 * during GRO. This saves work if we fallback to normal path. 2755 */ 2756 __skb_incr_checksum_unnecessary(skb); 2757 } 2758} 2759 2760#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2761 compute_pseudo) \ 2762({ \ 2763 __sum16 __ret = 0; \ 2764 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2765 __ret = __skb_gro_checksum_validate_complete(skb, \ 2766 compute_pseudo(skb, proto)); \ 2767 if (!__ret) \ 2768 skb_gro_incr_csum_unnecessary(skb); \ 2769 __ret; \ 2770}) 2771 2772#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2773 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2774 2775#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2776 compute_pseudo) \ 2777 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2778 2779#define skb_gro_checksum_simple_validate(skb) \ 2780 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2781 2782static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2783{ 2784 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2785 !NAPI_GRO_CB(skb)->csum_valid); 2786} 2787 2788static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2789 __sum16 check, __wsum pseudo) 2790{ 2791 NAPI_GRO_CB(skb)->csum = ~pseudo; 2792 NAPI_GRO_CB(skb)->csum_valid = 1; 2793} 2794 2795#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2796do { \ 2797 if (__skb_gro_checksum_convert_check(skb)) \ 2798 __skb_gro_checksum_convert(skb, check, \ 2799 compute_pseudo(skb, proto)); \ 2800} while (0) 2801 2802struct gro_remcsum { 2803 int offset; 2804 __wsum delta; 2805}; 2806 2807static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2808{ 2809 grc->offset = 0; 2810 grc->delta = 0; 2811} 2812 2813static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2814 unsigned int off, size_t hdrlen, 2815 int start, int offset, 2816 struct gro_remcsum *grc, 2817 bool nopartial) 2818{ 2819 __wsum delta; 2820 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2821 2822 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2823 2824 if (!nopartial) { 2825 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2826 return ptr; 2827 } 2828 2829 ptr = skb_gro_header_fast(skb, off); 2830 if (skb_gro_header_hard(skb, off + plen)) { 2831 ptr = skb_gro_header_slow(skb, off + plen, off); 2832 if (!ptr) 2833 return NULL; 2834 } 2835 2836 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2837 start, offset); 2838 2839 /* Adjust skb->csum since we changed the packet */ 2840 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2841 2842 grc->offset = off + hdrlen + offset; 2843 grc->delta = delta; 2844 2845 return ptr; 2846} 2847 2848static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2849 struct gro_remcsum *grc) 2850{ 2851 void *ptr; 2852 size_t plen = grc->offset + sizeof(u16); 2853 2854 if (!grc->delta) 2855 return; 2856 2857 ptr = skb_gro_header_fast(skb, grc->offset); 2858 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2859 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2860 if (!ptr) 2861 return; 2862 } 2863 2864 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2865} 2866 2867#ifdef CONFIG_XFRM_OFFLOAD 2868static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2869{ 2870 if (PTR_ERR(pp) != -EINPROGRESS) 2871 NAPI_GRO_CB(skb)->flush |= flush; 2872} 2873static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2874 struct sk_buff *pp, 2875 int flush, 2876 struct gro_remcsum *grc) 2877{ 2878 if (PTR_ERR(pp) != -EINPROGRESS) { 2879 NAPI_GRO_CB(skb)->flush |= flush; 2880 skb_gro_remcsum_cleanup(skb, grc); 2881 skb->remcsum_offload = 0; 2882 } 2883} 2884#else 2885static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush) 2886{ 2887 NAPI_GRO_CB(skb)->flush |= flush; 2888} 2889static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb, 2890 struct sk_buff *pp, 2891 int flush, 2892 struct gro_remcsum *grc) 2893{ 2894 NAPI_GRO_CB(skb)->flush |= flush; 2895 skb_gro_remcsum_cleanup(skb, grc); 2896 skb->remcsum_offload = 0; 2897} 2898#endif 2899 2900static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2901 unsigned short type, 2902 const void *daddr, const void *saddr, 2903 unsigned int len) 2904{ 2905 if (!dev->header_ops || !dev->header_ops->create) 2906 return 0; 2907 2908 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2909} 2910 2911static inline int dev_parse_header(const struct sk_buff *skb, 2912 unsigned char *haddr) 2913{ 2914 const struct net_device *dev = skb->dev; 2915 2916 if (!dev->header_ops || !dev->header_ops->parse) 2917 return 0; 2918 return dev->header_ops->parse(skb, haddr); 2919} 2920 2921static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 2922{ 2923 const struct net_device *dev = skb->dev; 2924 2925 if (!dev->header_ops || !dev->header_ops->parse_protocol) 2926 return 0; 2927 return dev->header_ops->parse_protocol(skb); 2928} 2929 2930/* ll_header must have at least hard_header_len allocated */ 2931static inline bool dev_validate_header(const struct net_device *dev, 2932 char *ll_header, int len) 2933{ 2934 if (likely(len >= dev->hard_header_len)) 2935 return true; 2936 if (len < dev->min_header_len) 2937 return false; 2938 2939 if (capable(CAP_SYS_RAWIO)) { 2940 memset(ll_header + len, 0, dev->hard_header_len - len); 2941 return true; 2942 } 2943 2944 if (dev->header_ops && dev->header_ops->validate) 2945 return dev->header_ops->validate(ll_header, len); 2946 2947 return false; 2948} 2949 2950typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, 2951 int len, int size); 2952int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2953static inline int unregister_gifconf(unsigned int family) 2954{ 2955 return register_gifconf(family, NULL); 2956} 2957 2958#ifdef CONFIG_NET_FLOW_LIMIT 2959#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2960struct sd_flow_limit { 2961 u64 count; 2962 unsigned int num_buckets; 2963 unsigned int history_head; 2964 u16 history[FLOW_LIMIT_HISTORY]; 2965 u8 buckets[]; 2966}; 2967 2968extern int netdev_flow_limit_table_len; 2969#endif /* CONFIG_NET_FLOW_LIMIT */ 2970 2971/* 2972 * Incoming packets are placed on per-CPU queues 2973 */ 2974struct softnet_data { 2975 struct list_head poll_list; 2976 struct sk_buff_head process_queue; 2977 2978 /* stats */ 2979 unsigned int processed; 2980 unsigned int time_squeeze; 2981 unsigned int received_rps; 2982#ifdef CONFIG_RPS 2983 struct softnet_data *rps_ipi_list; 2984#endif 2985#ifdef CONFIG_NET_FLOW_LIMIT 2986 struct sd_flow_limit __rcu *flow_limit; 2987#endif 2988 struct Qdisc *output_queue; 2989 struct Qdisc **output_queue_tailp; 2990 struct sk_buff *completion_queue; 2991#ifdef CONFIG_XFRM_OFFLOAD 2992 struct sk_buff_head xfrm_backlog; 2993#endif 2994 /* written and read only by owning cpu: */ 2995 struct { 2996 u16 recursion; 2997 u8 more; 2998 } xmit; 2999#ifdef CONFIG_RPS 3000 /* input_queue_head should be written by cpu owning this struct, 3001 * and only read by other cpus. Worth using a cache line. 3002 */ 3003 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3004 3005 /* Elements below can be accessed between CPUs for RPS/RFS */ 3006 call_single_data_t csd ____cacheline_aligned_in_smp; 3007 struct softnet_data *rps_ipi_next; 3008 unsigned int cpu; 3009 unsigned int input_queue_tail; 3010#endif 3011 unsigned int dropped; 3012 struct sk_buff_head input_pkt_queue; 3013 struct napi_struct backlog; 3014 3015}; 3016 3017static inline void input_queue_head_incr(struct softnet_data *sd) 3018{ 3019#ifdef CONFIG_RPS 3020 sd->input_queue_head++; 3021#endif 3022} 3023 3024static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3025 unsigned int *qtail) 3026{ 3027#ifdef CONFIG_RPS 3028 *qtail = ++sd->input_queue_tail; 3029#endif 3030} 3031 3032DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3033 3034static inline int dev_recursion_level(void) 3035{ 3036 return this_cpu_read(softnet_data.xmit.recursion); 3037} 3038 3039#define XMIT_RECURSION_LIMIT 10 3040static inline bool dev_xmit_recursion(void) 3041{ 3042 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3043 XMIT_RECURSION_LIMIT); 3044} 3045 3046static inline void dev_xmit_recursion_inc(void) 3047{ 3048 __this_cpu_inc(softnet_data.xmit.recursion); 3049} 3050 3051static inline void dev_xmit_recursion_dec(void) 3052{ 3053 __this_cpu_dec(softnet_data.xmit.recursion); 3054} 3055 3056void __netif_schedule(struct Qdisc *q); 3057void netif_schedule_queue(struct netdev_queue *txq); 3058 3059static inline void netif_tx_schedule_all(struct net_device *dev) 3060{ 3061 unsigned int i; 3062 3063 for (i = 0; i < dev->num_tx_queues; i++) 3064 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3065} 3066 3067static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3068{ 3069 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3070} 3071 3072/** 3073 * netif_start_queue - allow transmit 3074 * @dev: network device 3075 * 3076 * Allow upper layers to call the device hard_start_xmit routine. 3077 */ 3078static inline void netif_start_queue(struct net_device *dev) 3079{ 3080 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3081} 3082 3083static inline void netif_tx_start_all_queues(struct net_device *dev) 3084{ 3085 unsigned int i; 3086 3087 for (i = 0; i < dev->num_tx_queues; i++) { 3088 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3089 netif_tx_start_queue(txq); 3090 } 3091} 3092 3093void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3094 3095/** 3096 * netif_wake_queue - restart transmit 3097 * @dev: network device 3098 * 3099 * Allow upper layers to call the device hard_start_xmit routine. 3100 * Used for flow control when transmit resources are available. 3101 */ 3102static inline void netif_wake_queue(struct net_device *dev) 3103{ 3104 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3105} 3106 3107static inline void netif_tx_wake_all_queues(struct net_device *dev) 3108{ 3109 unsigned int i; 3110 3111 for (i = 0; i < dev->num_tx_queues; i++) { 3112 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3113 netif_tx_wake_queue(txq); 3114 } 3115} 3116 3117static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3118{ 3119 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3120} 3121 3122/** 3123 * netif_stop_queue - stop transmitted packets 3124 * @dev: network device 3125 * 3126 * Stop upper layers calling the device hard_start_xmit routine. 3127 * Used for flow control when transmit resources are unavailable. 3128 */ 3129static inline void netif_stop_queue(struct net_device *dev) 3130{ 3131 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3132} 3133 3134void netif_tx_stop_all_queues(struct net_device *dev); 3135void netdev_update_lockdep_key(struct net_device *dev); 3136 3137static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3138{ 3139 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3140} 3141 3142/** 3143 * netif_queue_stopped - test if transmit queue is flowblocked 3144 * @dev: network device 3145 * 3146 * Test if transmit queue on device is currently unable to send. 3147 */ 3148static inline bool netif_queue_stopped(const struct net_device *dev) 3149{ 3150 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3151} 3152 3153static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3154{ 3155 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3156} 3157 3158static inline bool 3159netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3160{ 3161 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3162} 3163 3164static inline bool 3165netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3166{ 3167 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3168} 3169 3170/** 3171 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3172 * @dev_queue: pointer to transmit queue 3173 * 3174 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3175 * to give appropriate hint to the CPU. 3176 */ 3177static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3178{ 3179#ifdef CONFIG_BQL 3180 prefetchw(&dev_queue->dql.num_queued); 3181#endif 3182} 3183 3184/** 3185 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3186 * @dev_queue: pointer to transmit queue 3187 * 3188 * BQL enabled drivers might use this helper in their TX completion path, 3189 * to give appropriate hint to the CPU. 3190 */ 3191static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3192{ 3193#ifdef CONFIG_BQL 3194 prefetchw(&dev_queue->dql.limit); 3195#endif 3196} 3197 3198static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3199 unsigned int bytes) 3200{ 3201#ifdef CONFIG_BQL 3202 dql_queued(&dev_queue->dql, bytes); 3203 3204 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3205 return; 3206 3207 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3208 3209 /* 3210 * The XOFF flag must be set before checking the dql_avail below, 3211 * because in netdev_tx_completed_queue we update the dql_completed 3212 * before checking the XOFF flag. 3213 */ 3214 smp_mb(); 3215 3216 /* check again in case another CPU has just made room avail */ 3217 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3218 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3219#endif 3220} 3221 3222/* Variant of netdev_tx_sent_queue() for drivers that are aware 3223 * that they should not test BQL status themselves. 3224 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3225 * skb of a batch. 3226 * Returns true if the doorbell must be used to kick the NIC. 3227 */ 3228static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3229 unsigned int bytes, 3230 bool xmit_more) 3231{ 3232 if (xmit_more) { 3233#ifdef CONFIG_BQL 3234 dql_queued(&dev_queue->dql, bytes); 3235#endif 3236 return netif_tx_queue_stopped(dev_queue); 3237 } 3238 netdev_tx_sent_queue(dev_queue, bytes); 3239 return true; 3240} 3241 3242/** 3243 * netdev_sent_queue - report the number of bytes queued to hardware 3244 * @dev: network device 3245 * @bytes: number of bytes queued to the hardware device queue 3246 * 3247 * Report the number of bytes queued for sending/completion to the network 3248 * device hardware queue. @bytes should be a good approximation and should 3249 * exactly match netdev_completed_queue() @bytes 3250 */ 3251static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3252{ 3253 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3254} 3255 3256static inline bool __netdev_sent_queue(struct net_device *dev, 3257 unsigned int bytes, 3258 bool xmit_more) 3259{ 3260 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3261 xmit_more); 3262} 3263 3264static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3265 unsigned int pkts, unsigned int bytes) 3266{ 3267#ifdef CONFIG_BQL 3268 if (unlikely(!bytes)) 3269 return; 3270 3271 dql_completed(&dev_queue->dql, bytes); 3272 3273 /* 3274 * Without the memory barrier there is a small possiblity that 3275 * netdev_tx_sent_queue will miss the update and cause the queue to 3276 * be stopped forever 3277 */ 3278 smp_mb(); 3279 3280 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3281 return; 3282 3283 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3284 netif_schedule_queue(dev_queue); 3285#endif 3286} 3287 3288/** 3289 * netdev_completed_queue - report bytes and packets completed by device 3290 * @dev: network device 3291 * @pkts: actual number of packets sent over the medium 3292 * @bytes: actual number of bytes sent over the medium 3293 * 3294 * Report the number of bytes and packets transmitted by the network device 3295 * hardware queue over the physical medium, @bytes must exactly match the 3296 * @bytes amount passed to netdev_sent_queue() 3297 */ 3298static inline void netdev_completed_queue(struct net_device *dev, 3299 unsigned int pkts, unsigned int bytes) 3300{ 3301 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3302} 3303 3304static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3305{ 3306#ifdef CONFIG_BQL 3307 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3308 dql_reset(&q->dql); 3309#endif 3310} 3311 3312/** 3313 * netdev_reset_queue - reset the packets and bytes count of a network device 3314 * @dev_queue: network device 3315 * 3316 * Reset the bytes and packet count of a network device and clear the 3317 * software flow control OFF bit for this network device 3318 */ 3319static inline void netdev_reset_queue(struct net_device *dev_queue) 3320{ 3321 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3322} 3323 3324/** 3325 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3326 * @dev: network device 3327 * @queue_index: given tx queue index 3328 * 3329 * Returns 0 if given tx queue index >= number of device tx queues, 3330 * otherwise returns the originally passed tx queue index. 3331 */ 3332static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3333{ 3334 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3335 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3336 dev->name, queue_index, 3337 dev->real_num_tx_queues); 3338 return 0; 3339 } 3340 3341 return queue_index; 3342} 3343 3344/** 3345 * netif_running - test if up 3346 * @dev: network device 3347 * 3348 * Test if the device has been brought up. 3349 */ 3350static inline bool netif_running(const struct net_device *dev) 3351{ 3352 return test_bit(__LINK_STATE_START, &dev->state); 3353} 3354 3355/* 3356 * Routines to manage the subqueues on a device. We only need start, 3357 * stop, and a check if it's stopped. All other device management is 3358 * done at the overall netdevice level. 3359 * Also test the device if we're multiqueue. 3360 */ 3361 3362/** 3363 * netif_start_subqueue - allow sending packets on subqueue 3364 * @dev: network device 3365 * @queue_index: sub queue index 3366 * 3367 * Start individual transmit queue of a device with multiple transmit queues. 3368 */ 3369static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3370{ 3371 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3372 3373 netif_tx_start_queue(txq); 3374} 3375 3376/** 3377 * netif_stop_subqueue - stop sending packets on subqueue 3378 * @dev: network device 3379 * @queue_index: sub queue index 3380 * 3381 * Stop individual transmit queue of a device with multiple transmit queues. 3382 */ 3383static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3384{ 3385 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3386 netif_tx_stop_queue(txq); 3387} 3388 3389/** 3390 * netif_subqueue_stopped - test status of subqueue 3391 * @dev: network device 3392 * @queue_index: sub queue index 3393 * 3394 * Check individual transmit queue of a device with multiple transmit queues. 3395 */ 3396static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3397 u16 queue_index) 3398{ 3399 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3400 3401 return netif_tx_queue_stopped(txq); 3402} 3403 3404static inline bool netif_subqueue_stopped(const struct net_device *dev, 3405 struct sk_buff *skb) 3406{ 3407 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3408} 3409 3410/** 3411 * netif_wake_subqueue - allow sending packets on subqueue 3412 * @dev: network device 3413 * @queue_index: sub queue index 3414 * 3415 * Resume individual transmit queue of a device with multiple transmit queues. 3416 */ 3417static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3418{ 3419 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3420 3421 netif_tx_wake_queue(txq); 3422} 3423 3424#ifdef CONFIG_XPS 3425int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3426 u16 index); 3427int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3428 u16 index, bool is_rxqs_map); 3429 3430/** 3431 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3432 * @j: CPU/Rx queue index 3433 * @mask: bitmask of all cpus/rx queues 3434 * @nr_bits: number of bits in the bitmask 3435 * 3436 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3437 */ 3438static inline bool netif_attr_test_mask(unsigned long j, 3439 const unsigned long *mask, 3440 unsigned int nr_bits) 3441{ 3442 cpu_max_bits_warn(j, nr_bits); 3443 return test_bit(j, mask); 3444} 3445 3446/** 3447 * netif_attr_test_online - Test for online CPU/Rx queue 3448 * @j: CPU/Rx queue index 3449 * @online_mask: bitmask for CPUs/Rx queues that are online 3450 * @nr_bits: number of bits in the bitmask 3451 * 3452 * Returns true if a CPU/Rx queue is online. 3453 */ 3454static inline bool netif_attr_test_online(unsigned long j, 3455 const unsigned long *online_mask, 3456 unsigned int nr_bits) 3457{ 3458 cpu_max_bits_warn(j, nr_bits); 3459 3460 if (online_mask) 3461 return test_bit(j, online_mask); 3462 3463 return (j < nr_bits); 3464} 3465 3466/** 3467 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3468 * @n: CPU/Rx queue index 3469 * @srcp: the cpumask/Rx queue mask pointer 3470 * @nr_bits: number of bits in the bitmask 3471 * 3472 * Returns >= nr_bits if no further CPUs/Rx queues set. 3473 */ 3474static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3475 unsigned int nr_bits) 3476{ 3477 /* -1 is a legal arg here. */ 3478 if (n != -1) 3479 cpu_max_bits_warn(n, nr_bits); 3480 3481 if (srcp) 3482 return find_next_bit(srcp, nr_bits, n + 1); 3483 3484 return n + 1; 3485} 3486 3487/** 3488 * netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p 3489 * @n: CPU/Rx queue index 3490 * @src1p: the first CPUs/Rx queues mask pointer 3491 * @src2p: the second CPUs/Rx queues mask pointer 3492 * @nr_bits: number of bits in the bitmask 3493 * 3494 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3495 */ 3496static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3497 const unsigned long *src2p, 3498 unsigned int nr_bits) 3499{ 3500 /* -1 is a legal arg here. */ 3501 if (n != -1) 3502 cpu_max_bits_warn(n, nr_bits); 3503 3504 if (src1p && src2p) 3505 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3506 else if (src1p) 3507 return find_next_bit(src1p, nr_bits, n + 1); 3508 else if (src2p) 3509 return find_next_bit(src2p, nr_bits, n + 1); 3510 3511 return n + 1; 3512} 3513#else 3514static inline int netif_set_xps_queue(struct net_device *dev, 3515 const struct cpumask *mask, 3516 u16 index) 3517{ 3518 return 0; 3519} 3520 3521static inline int __netif_set_xps_queue(struct net_device *dev, 3522 const unsigned long *mask, 3523 u16 index, bool is_rxqs_map) 3524{ 3525 return 0; 3526} 3527#endif 3528 3529/** 3530 * netif_is_multiqueue - test if device has multiple transmit queues 3531 * @dev: network device 3532 * 3533 * Check if device has multiple transmit queues 3534 */ 3535static inline bool netif_is_multiqueue(const struct net_device *dev) 3536{ 3537 return dev->num_tx_queues > 1; 3538} 3539 3540int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3541 3542#ifdef CONFIG_SYSFS 3543int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3544#else 3545static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3546 unsigned int rxqs) 3547{ 3548 dev->real_num_rx_queues = rxqs; 3549 return 0; 3550} 3551#endif 3552 3553static inline struct netdev_rx_queue * 3554__netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3555{ 3556 return dev->_rx + rxq; 3557} 3558 3559#ifdef CONFIG_SYSFS 3560static inline unsigned int get_netdev_rx_queue_index( 3561 struct netdev_rx_queue *queue) 3562{ 3563 struct net_device *dev = queue->dev; 3564 int index = queue - dev->_rx; 3565 3566 BUG_ON(index >= dev->num_rx_queues); 3567 return index; 3568} 3569#endif 3570 3571#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3572int netif_get_num_default_rss_queues(void); 3573 3574enum skb_free_reason { 3575 SKB_REASON_CONSUMED, 3576 SKB_REASON_DROPPED, 3577}; 3578 3579void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3580void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3581 3582/* 3583 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3584 * interrupt context or with hardware interrupts being disabled. 3585 * (in_irq() || irqs_disabled()) 3586 * 3587 * We provide four helpers that can be used in following contexts : 3588 * 3589 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3590 * replacing kfree_skb(skb) 3591 * 3592 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3593 * Typically used in place of consume_skb(skb) in TX completion path 3594 * 3595 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3596 * replacing kfree_skb(skb) 3597 * 3598 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3599 * and consumed a packet. Used in place of consume_skb(skb) 3600 */ 3601static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3602{ 3603 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3604} 3605 3606static inline void dev_consume_skb_irq(struct sk_buff *skb) 3607{ 3608 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3609} 3610 3611static inline void dev_kfree_skb_any(struct sk_buff *skb) 3612{ 3613 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3614} 3615 3616static inline void dev_consume_skb_any(struct sk_buff *skb) 3617{ 3618 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3619} 3620 3621void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3622int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3623int netif_rx(struct sk_buff *skb); 3624int netif_rx_ni(struct sk_buff *skb); 3625int netif_receive_skb(struct sk_buff *skb); 3626int netif_receive_skb_core(struct sk_buff *skb); 3627void netif_receive_skb_list(struct list_head *head); 3628gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3629void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3630struct sk_buff *napi_get_frags(struct napi_struct *napi); 3631gro_result_t napi_gro_frags(struct napi_struct *napi); 3632struct packet_offload *gro_find_receive_by_type(__be16 type); 3633struct packet_offload *gro_find_complete_by_type(__be16 type); 3634 3635static inline void napi_free_frags(struct napi_struct *napi) 3636{ 3637 kfree_skb(napi->skb); 3638 napi->skb = NULL; 3639} 3640 3641bool netdev_is_rx_handler_busy(struct net_device *dev); 3642int netdev_rx_handler_register(struct net_device *dev, 3643 rx_handler_func_t *rx_handler, 3644 void *rx_handler_data); 3645void netdev_rx_handler_unregister(struct net_device *dev); 3646 3647bool dev_valid_name(const char *name); 3648int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3649 bool *need_copyout); 3650int dev_ifconf(struct net *net, struct ifconf *, int); 3651int dev_ethtool(struct net *net, struct ifreq *); 3652unsigned int dev_get_flags(const struct net_device *); 3653int __dev_change_flags(struct net_device *dev, unsigned int flags, 3654 struct netlink_ext_ack *extack); 3655int dev_change_flags(struct net_device *dev, unsigned int flags, 3656 struct netlink_ext_ack *extack); 3657void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3658 unsigned int gchanges); 3659int dev_change_name(struct net_device *, const char *); 3660int dev_set_alias(struct net_device *, const char *, size_t); 3661int dev_get_alias(const struct net_device *, char *, size_t); 3662int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3663int __dev_set_mtu(struct net_device *, int); 3664int dev_set_mtu_ext(struct net_device *dev, int mtu, 3665 struct netlink_ext_ack *extack); 3666int dev_set_mtu(struct net_device *, int); 3667int dev_change_tx_queue_len(struct net_device *, unsigned long); 3668void dev_set_group(struct net_device *, int); 3669int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3670 struct netlink_ext_ack *extack); 3671int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3672 struct netlink_ext_ack *extack); 3673int dev_change_carrier(struct net_device *, bool new_carrier); 3674int dev_get_phys_port_id(struct net_device *dev, 3675 struct netdev_phys_item_id *ppid); 3676int dev_get_phys_port_name(struct net_device *dev, 3677 char *name, size_t len); 3678int dev_get_port_parent_id(struct net_device *dev, 3679 struct netdev_phys_item_id *ppid, bool recurse); 3680bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3681int dev_change_proto_down(struct net_device *dev, bool proto_down); 3682int dev_change_proto_down_generic(struct net_device *dev, bool proto_down); 3683struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3684struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3685 struct netdev_queue *txq, int *ret); 3686 3687typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf); 3688int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 3689 int fd, u32 flags); 3690u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op, 3691 enum bpf_netdev_command cmd); 3692int xdp_umem_query(struct net_device *dev, u16 queue_id); 3693 3694int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3695int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3696bool is_skb_forwardable(const struct net_device *dev, 3697 const struct sk_buff *skb); 3698 3699static __always_inline int ____dev_forward_skb(struct net_device *dev, 3700 struct sk_buff *skb) 3701{ 3702 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3703 unlikely(!is_skb_forwardable(dev, skb))) { 3704 atomic_long_inc(&dev->rx_dropped); 3705 kfree_skb(skb); 3706 return NET_RX_DROP; 3707 } 3708 3709 skb_scrub_packet(skb, true); 3710 skb->priority = 0; 3711 return 0; 3712} 3713 3714bool dev_nit_active(struct net_device *dev); 3715void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3716 3717extern int netdev_budget; 3718extern unsigned int netdev_budget_usecs; 3719 3720/* Called by rtnetlink.c:rtnl_unlock() */ 3721void netdev_run_todo(void); 3722 3723/** 3724 * dev_put - release reference to device 3725 * @dev: network device 3726 * 3727 * Release reference to device to allow it to be freed. 3728 */ 3729static inline void dev_put(struct net_device *dev) 3730{ 3731 this_cpu_dec(*dev->pcpu_refcnt); 3732} 3733 3734/** 3735 * dev_hold - get reference to device 3736 * @dev: network device 3737 * 3738 * Hold reference to device to keep it from being freed. 3739 */ 3740static inline void dev_hold(struct net_device *dev) 3741{ 3742 this_cpu_inc(*dev->pcpu_refcnt); 3743} 3744 3745/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3746 * and _off may be called from IRQ context, but it is caller 3747 * who is responsible for serialization of these calls. 3748 * 3749 * The name carrier is inappropriate, these functions should really be 3750 * called netif_lowerlayer_*() because they represent the state of any 3751 * kind of lower layer not just hardware media. 3752 */ 3753 3754void linkwatch_init_dev(struct net_device *dev); 3755void linkwatch_fire_event(struct net_device *dev); 3756void linkwatch_forget_dev(struct net_device *dev); 3757 3758/** 3759 * netif_carrier_ok - test if carrier present 3760 * @dev: network device 3761 * 3762 * Check if carrier is present on device 3763 */ 3764static inline bool netif_carrier_ok(const struct net_device *dev) 3765{ 3766 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3767} 3768 3769unsigned long dev_trans_start(struct net_device *dev); 3770 3771void __netdev_watchdog_up(struct net_device *dev); 3772 3773void netif_carrier_on(struct net_device *dev); 3774 3775void netif_carrier_off(struct net_device *dev); 3776 3777/** 3778 * netif_dormant_on - mark device as dormant. 3779 * @dev: network device 3780 * 3781 * Mark device as dormant (as per RFC2863). 3782 * 3783 * The dormant state indicates that the relevant interface is not 3784 * actually in a condition to pass packets (i.e., it is not 'up') but is 3785 * in a "pending" state, waiting for some external event. For "on- 3786 * demand" interfaces, this new state identifies the situation where the 3787 * interface is waiting for events to place it in the up state. 3788 */ 3789static inline void netif_dormant_on(struct net_device *dev) 3790{ 3791 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3792 linkwatch_fire_event(dev); 3793} 3794 3795/** 3796 * netif_dormant_off - set device as not dormant. 3797 * @dev: network device 3798 * 3799 * Device is not in dormant state. 3800 */ 3801static inline void netif_dormant_off(struct net_device *dev) 3802{ 3803 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3804 linkwatch_fire_event(dev); 3805} 3806 3807/** 3808 * netif_dormant - test if device is dormant 3809 * @dev: network device 3810 * 3811 * Check if device is dormant. 3812 */ 3813static inline bool netif_dormant(const struct net_device *dev) 3814{ 3815 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3816} 3817 3818 3819/** 3820 * netif_oper_up - test if device is operational 3821 * @dev: network device 3822 * 3823 * Check if carrier is operational 3824 */ 3825static inline bool netif_oper_up(const struct net_device *dev) 3826{ 3827 return (dev->operstate == IF_OPER_UP || 3828 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3829} 3830 3831/** 3832 * netif_device_present - is device available or removed 3833 * @dev: network device 3834 * 3835 * Check if device has not been removed from system. 3836 */ 3837static inline bool netif_device_present(struct net_device *dev) 3838{ 3839 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3840} 3841 3842void netif_device_detach(struct net_device *dev); 3843 3844void netif_device_attach(struct net_device *dev); 3845 3846/* 3847 * Network interface message level settings 3848 */ 3849 3850enum { 3851 NETIF_MSG_DRV = 0x0001, 3852 NETIF_MSG_PROBE = 0x0002, 3853 NETIF_MSG_LINK = 0x0004, 3854 NETIF_MSG_TIMER = 0x0008, 3855 NETIF_MSG_IFDOWN = 0x0010, 3856 NETIF_MSG_IFUP = 0x0020, 3857 NETIF_MSG_RX_ERR = 0x0040, 3858 NETIF_MSG_TX_ERR = 0x0080, 3859 NETIF_MSG_TX_QUEUED = 0x0100, 3860 NETIF_MSG_INTR = 0x0200, 3861 NETIF_MSG_TX_DONE = 0x0400, 3862 NETIF_MSG_RX_STATUS = 0x0800, 3863 NETIF_MSG_PKTDATA = 0x1000, 3864 NETIF_MSG_HW = 0x2000, 3865 NETIF_MSG_WOL = 0x4000, 3866}; 3867 3868#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3869#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3870#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3871#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3872#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3873#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3874#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3875#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3876#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3877#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3878#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3879#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3880#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3881#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3882#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3883 3884static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3885{ 3886 /* use default */ 3887 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3888 return default_msg_enable_bits; 3889 if (debug_value == 0) /* no output */ 3890 return 0; 3891 /* set low N bits */ 3892 return (1U << debug_value) - 1; 3893} 3894 3895static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3896{ 3897 spin_lock(&txq->_xmit_lock); 3898 txq->xmit_lock_owner = cpu; 3899} 3900 3901static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3902{ 3903 __acquire(&txq->_xmit_lock); 3904 return true; 3905} 3906 3907static inline void __netif_tx_release(struct netdev_queue *txq) 3908{ 3909 __release(&txq->_xmit_lock); 3910} 3911 3912static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3913{ 3914 spin_lock_bh(&txq->_xmit_lock); 3915 txq->xmit_lock_owner = smp_processor_id(); 3916} 3917 3918static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3919{ 3920 bool ok = spin_trylock(&txq->_xmit_lock); 3921 if (likely(ok)) 3922 txq->xmit_lock_owner = smp_processor_id(); 3923 return ok; 3924} 3925 3926static inline void __netif_tx_unlock(struct netdev_queue *txq) 3927{ 3928 txq->xmit_lock_owner = -1; 3929 spin_unlock(&txq->_xmit_lock); 3930} 3931 3932static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3933{ 3934 txq->xmit_lock_owner = -1; 3935 spin_unlock_bh(&txq->_xmit_lock); 3936} 3937 3938static inline void txq_trans_update(struct netdev_queue *txq) 3939{ 3940 if (txq->xmit_lock_owner != -1) 3941 txq->trans_start = jiffies; 3942} 3943 3944/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3945static inline void netif_trans_update(struct net_device *dev) 3946{ 3947 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3948 3949 if (txq->trans_start != jiffies) 3950 txq->trans_start = jiffies; 3951} 3952 3953/** 3954 * netif_tx_lock - grab network device transmit lock 3955 * @dev: network device 3956 * 3957 * Get network device transmit lock 3958 */ 3959static inline void netif_tx_lock(struct net_device *dev) 3960{ 3961 unsigned int i; 3962 int cpu; 3963 3964 spin_lock(&dev->tx_global_lock); 3965 cpu = smp_processor_id(); 3966 for (i = 0; i < dev->num_tx_queues; i++) { 3967 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3968 3969 /* We are the only thread of execution doing a 3970 * freeze, but we have to grab the _xmit_lock in 3971 * order to synchronize with threads which are in 3972 * the ->hard_start_xmit() handler and already 3973 * checked the frozen bit. 3974 */ 3975 __netif_tx_lock(txq, cpu); 3976 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3977 __netif_tx_unlock(txq); 3978 } 3979} 3980 3981static inline void netif_tx_lock_bh(struct net_device *dev) 3982{ 3983 local_bh_disable(); 3984 netif_tx_lock(dev); 3985} 3986 3987static inline void netif_tx_unlock(struct net_device *dev) 3988{ 3989 unsigned int i; 3990 3991 for (i = 0; i < dev->num_tx_queues; i++) { 3992 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3993 3994 /* No need to grab the _xmit_lock here. If the 3995 * queue is not stopped for another reason, we 3996 * force a schedule. 3997 */ 3998 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3999 netif_schedule_queue(txq); 4000 } 4001 spin_unlock(&dev->tx_global_lock); 4002} 4003 4004static inline void netif_tx_unlock_bh(struct net_device *dev) 4005{ 4006 netif_tx_unlock(dev); 4007 local_bh_enable(); 4008} 4009 4010#define HARD_TX_LOCK(dev, txq, cpu) { \ 4011 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4012 __netif_tx_lock(txq, cpu); \ 4013 } else { \ 4014 __netif_tx_acquire(txq); \ 4015 } \ 4016} 4017 4018#define HARD_TX_TRYLOCK(dev, txq) \ 4019 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4020 __netif_tx_trylock(txq) : \ 4021 __netif_tx_acquire(txq)) 4022 4023#define HARD_TX_UNLOCK(dev, txq) { \ 4024 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4025 __netif_tx_unlock(txq); \ 4026 } else { \ 4027 __netif_tx_release(txq); \ 4028 } \ 4029} 4030 4031static inline void netif_tx_disable(struct net_device *dev) 4032{ 4033 unsigned int i; 4034 int cpu; 4035 4036 local_bh_disable(); 4037 cpu = smp_processor_id(); 4038 for (i = 0; i < dev->num_tx_queues; i++) { 4039 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4040 4041 __netif_tx_lock(txq, cpu); 4042 netif_tx_stop_queue(txq); 4043 __netif_tx_unlock(txq); 4044 } 4045 local_bh_enable(); 4046} 4047 4048static inline void netif_addr_lock(struct net_device *dev) 4049{ 4050 spin_lock(&dev->addr_list_lock); 4051} 4052 4053static inline void netif_addr_lock_bh(struct net_device *dev) 4054{ 4055 spin_lock_bh(&dev->addr_list_lock); 4056} 4057 4058static inline void netif_addr_unlock(struct net_device *dev) 4059{ 4060 spin_unlock(&dev->addr_list_lock); 4061} 4062 4063static inline void netif_addr_unlock_bh(struct net_device *dev) 4064{ 4065 spin_unlock_bh(&dev->addr_list_lock); 4066} 4067 4068/* 4069 * dev_addrs walker. Should be used only for read access. Call with 4070 * rcu_read_lock held. 4071 */ 4072#define for_each_dev_addr(dev, ha) \ 4073 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4074 4075/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4076 4077void ether_setup(struct net_device *dev); 4078 4079/* Support for loadable net-drivers */ 4080struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4081 unsigned char name_assign_type, 4082 void (*setup)(struct net_device *), 4083 unsigned int txqs, unsigned int rxqs); 4084int dev_get_valid_name(struct net *net, struct net_device *dev, 4085 const char *name); 4086 4087#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4088 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4089 4090#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4091 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4092 count) 4093 4094int register_netdev(struct net_device *dev); 4095void unregister_netdev(struct net_device *dev); 4096 4097/* General hardware address lists handling functions */ 4098int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4099 struct netdev_hw_addr_list *from_list, int addr_len); 4100void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4101 struct netdev_hw_addr_list *from_list, int addr_len); 4102int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4103 struct net_device *dev, 4104 int (*sync)(struct net_device *, const unsigned char *), 4105 int (*unsync)(struct net_device *, 4106 const unsigned char *)); 4107int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4108 struct net_device *dev, 4109 int (*sync)(struct net_device *, 4110 const unsigned char *, int), 4111 int (*unsync)(struct net_device *, 4112 const unsigned char *, int)); 4113void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4114 struct net_device *dev, 4115 int (*unsync)(struct net_device *, 4116 const unsigned char *, int)); 4117void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4118 struct net_device *dev, 4119 int (*unsync)(struct net_device *, 4120 const unsigned char *)); 4121void __hw_addr_init(struct netdev_hw_addr_list *list); 4122 4123/* Functions used for device addresses handling */ 4124int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4125 unsigned char addr_type); 4126int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4127 unsigned char addr_type); 4128void dev_addr_flush(struct net_device *dev); 4129int dev_addr_init(struct net_device *dev); 4130 4131/* Functions used for unicast addresses handling */ 4132int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4133int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4134int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4135int dev_uc_sync(struct net_device *to, struct net_device *from); 4136int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4137void dev_uc_unsync(struct net_device *to, struct net_device *from); 4138void dev_uc_flush(struct net_device *dev); 4139void dev_uc_init(struct net_device *dev); 4140 4141/** 4142 * __dev_uc_sync - Synchonize device's unicast list 4143 * @dev: device to sync 4144 * @sync: function to call if address should be added 4145 * @unsync: function to call if address should be removed 4146 * 4147 * Add newly added addresses to the interface, and release 4148 * addresses that have been deleted. 4149 */ 4150static inline int __dev_uc_sync(struct net_device *dev, 4151 int (*sync)(struct net_device *, 4152 const unsigned char *), 4153 int (*unsync)(struct net_device *, 4154 const unsigned char *)) 4155{ 4156 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4157} 4158 4159/** 4160 * __dev_uc_unsync - Remove synchronized addresses from device 4161 * @dev: device to sync 4162 * @unsync: function to call if address should be removed 4163 * 4164 * Remove all addresses that were added to the device by dev_uc_sync(). 4165 */ 4166static inline void __dev_uc_unsync(struct net_device *dev, 4167 int (*unsync)(struct net_device *, 4168 const unsigned char *)) 4169{ 4170 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4171} 4172 4173/* Functions used for multicast addresses handling */ 4174int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4175int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4176int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4177int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4178int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4179int dev_mc_sync(struct net_device *to, struct net_device *from); 4180int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4181void dev_mc_unsync(struct net_device *to, struct net_device *from); 4182void dev_mc_flush(struct net_device *dev); 4183void dev_mc_init(struct net_device *dev); 4184 4185/** 4186 * __dev_mc_sync - Synchonize device's multicast list 4187 * @dev: device to sync 4188 * @sync: function to call if address should be added 4189 * @unsync: function to call if address should be removed 4190 * 4191 * Add newly added addresses to the interface, and release 4192 * addresses that have been deleted. 4193 */ 4194static inline int __dev_mc_sync(struct net_device *dev, 4195 int (*sync)(struct net_device *, 4196 const unsigned char *), 4197 int (*unsync)(struct net_device *, 4198 const unsigned char *)) 4199{ 4200 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4201} 4202 4203/** 4204 * __dev_mc_unsync - Remove synchronized addresses from device 4205 * @dev: device to sync 4206 * @unsync: function to call if address should be removed 4207 * 4208 * Remove all addresses that were added to the device by dev_mc_sync(). 4209 */ 4210static inline void __dev_mc_unsync(struct net_device *dev, 4211 int (*unsync)(struct net_device *, 4212 const unsigned char *)) 4213{ 4214 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4215} 4216 4217/* Functions used for secondary unicast and multicast support */ 4218void dev_set_rx_mode(struct net_device *dev); 4219void __dev_set_rx_mode(struct net_device *dev); 4220int dev_set_promiscuity(struct net_device *dev, int inc); 4221int dev_set_allmulti(struct net_device *dev, int inc); 4222void netdev_state_change(struct net_device *dev); 4223void netdev_notify_peers(struct net_device *dev); 4224void netdev_features_change(struct net_device *dev); 4225/* Load a device via the kmod */ 4226void dev_load(struct net *net, const char *name); 4227struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4228 struct rtnl_link_stats64 *storage); 4229void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4230 const struct net_device_stats *netdev_stats); 4231 4232extern int netdev_max_backlog; 4233extern int netdev_tstamp_prequeue; 4234extern int weight_p; 4235extern int dev_weight_rx_bias; 4236extern int dev_weight_tx_bias; 4237extern int dev_rx_weight; 4238extern int dev_tx_weight; 4239extern int gro_normal_batch; 4240 4241bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4242struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4243 struct list_head **iter); 4244struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4245 struct list_head **iter); 4246 4247/* iterate through upper list, must be called under RCU read lock */ 4248#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4249 for (iter = &(dev)->adj_list.upper, \ 4250 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4251 updev; \ 4252 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4253 4254int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4255 int (*fn)(struct net_device *upper_dev, 4256 void *data), 4257 void *data); 4258 4259bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4260 struct net_device *upper_dev); 4261 4262bool netdev_has_any_upper_dev(struct net_device *dev); 4263 4264void *netdev_lower_get_next_private(struct net_device *dev, 4265 struct list_head **iter); 4266void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4267 struct list_head **iter); 4268 4269#define netdev_for_each_lower_private(dev, priv, iter) \ 4270 for (iter = (dev)->adj_list.lower.next, \ 4271 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4272 priv; \ 4273 priv = netdev_lower_get_next_private(dev, &(iter))) 4274 4275#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4276 for (iter = &(dev)->adj_list.lower, \ 4277 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4278 priv; \ 4279 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4280 4281void *netdev_lower_get_next(struct net_device *dev, 4282 struct list_head **iter); 4283 4284#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4285 for (iter = (dev)->adj_list.lower.next, \ 4286 ldev = netdev_lower_get_next(dev, &(iter)); \ 4287 ldev; \ 4288 ldev = netdev_lower_get_next(dev, &(iter))) 4289 4290struct net_device *netdev_all_lower_get_next(struct net_device *dev, 4291 struct list_head **iter); 4292struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 4293 struct list_head **iter); 4294 4295int netdev_walk_all_lower_dev(struct net_device *dev, 4296 int (*fn)(struct net_device *lower_dev, 4297 void *data), 4298 void *data); 4299int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4300 int (*fn)(struct net_device *lower_dev, 4301 void *data), 4302 void *data); 4303 4304void *netdev_adjacent_get_private(struct list_head *adj_list); 4305void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4306struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4307struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4308int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4309 struct netlink_ext_ack *extack); 4310int netdev_master_upper_dev_link(struct net_device *dev, 4311 struct net_device *upper_dev, 4312 void *upper_priv, void *upper_info, 4313 struct netlink_ext_ack *extack); 4314void netdev_upper_dev_unlink(struct net_device *dev, 4315 struct net_device *upper_dev); 4316int netdev_adjacent_change_prepare(struct net_device *old_dev, 4317 struct net_device *new_dev, 4318 struct net_device *dev, 4319 struct netlink_ext_ack *extack); 4320void netdev_adjacent_change_commit(struct net_device *old_dev, 4321 struct net_device *new_dev, 4322 struct net_device *dev); 4323void netdev_adjacent_change_abort(struct net_device *old_dev, 4324 struct net_device *new_dev, 4325 struct net_device *dev); 4326void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4327void *netdev_lower_dev_get_private(struct net_device *dev, 4328 struct net_device *lower_dev); 4329void netdev_lower_state_changed(struct net_device *lower_dev, 4330 void *lower_state_info); 4331 4332/* RSS keys are 40 or 52 bytes long */ 4333#define NETDEV_RSS_KEY_LEN 52 4334extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4335void netdev_rss_key_fill(void *buffer, size_t len); 4336 4337int skb_checksum_help(struct sk_buff *skb); 4338int skb_crc32c_csum_help(struct sk_buff *skb); 4339int skb_csum_hwoffload_help(struct sk_buff *skb, 4340 const netdev_features_t features); 4341 4342struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4343 netdev_features_t features, bool tx_path); 4344struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4345 netdev_features_t features); 4346 4347struct netdev_bonding_info { 4348 ifslave slave; 4349 ifbond master; 4350}; 4351 4352struct netdev_notifier_bonding_info { 4353 struct netdev_notifier_info info; /* must be first */ 4354 struct netdev_bonding_info bonding_info; 4355}; 4356 4357void netdev_bonding_info_change(struct net_device *dev, 4358 struct netdev_bonding_info *bonding_info); 4359 4360static inline 4361struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4362{ 4363 return __skb_gso_segment(skb, features, true); 4364} 4365__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4366 4367static inline bool can_checksum_protocol(netdev_features_t features, 4368 __be16 protocol) 4369{ 4370 if (protocol == htons(ETH_P_FCOE)) 4371 return !!(features & NETIF_F_FCOE_CRC); 4372 4373 /* Assume this is an IP checksum (not SCTP CRC) */ 4374 4375 if (features & NETIF_F_HW_CSUM) { 4376 /* Can checksum everything */ 4377 return true; 4378 } 4379 4380 switch (protocol) { 4381 case htons(ETH_P_IP): 4382 return !!(features & NETIF_F_IP_CSUM); 4383 case htons(ETH_P_IPV6): 4384 return !!(features & NETIF_F_IPV6_CSUM); 4385 default: 4386 return false; 4387 } 4388} 4389 4390#ifdef CONFIG_BUG 4391void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4392#else 4393static inline void netdev_rx_csum_fault(struct net_device *dev, 4394 struct sk_buff *skb) 4395{ 4396} 4397#endif 4398/* rx skb timestamps */ 4399void net_enable_timestamp(void); 4400void net_disable_timestamp(void); 4401 4402#ifdef CONFIG_PROC_FS 4403int __init dev_proc_init(void); 4404#else 4405#define dev_proc_init() 0 4406#endif 4407 4408static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4409 struct sk_buff *skb, struct net_device *dev, 4410 bool more) 4411{ 4412 __this_cpu_write(softnet_data.xmit.more, more); 4413 return ops->ndo_start_xmit(skb, dev); 4414} 4415 4416static inline bool netdev_xmit_more(void) 4417{ 4418 return __this_cpu_read(softnet_data.xmit.more); 4419} 4420 4421static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4422 struct netdev_queue *txq, bool more) 4423{ 4424 const struct net_device_ops *ops = dev->netdev_ops; 4425 netdev_tx_t rc; 4426 4427 rc = __netdev_start_xmit(ops, skb, dev, more); 4428 if (rc == NETDEV_TX_OK) 4429 txq_trans_update(txq); 4430 4431 return rc; 4432} 4433 4434int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4435 const void *ns); 4436void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4437 const void *ns); 4438 4439static inline int netdev_class_create_file(const struct class_attribute *class_attr) 4440{ 4441 return netdev_class_create_file_ns(class_attr, NULL); 4442} 4443 4444static inline void netdev_class_remove_file(const struct class_attribute *class_attr) 4445{ 4446 netdev_class_remove_file_ns(class_attr, NULL); 4447} 4448 4449extern const struct kobj_ns_type_operations net_ns_type_operations; 4450 4451const char *netdev_drivername(const struct net_device *dev); 4452 4453void linkwatch_run_queue(void); 4454 4455static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4456 netdev_features_t f2) 4457{ 4458 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4459 if (f1 & NETIF_F_HW_CSUM) 4460 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4461 else 4462 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4463 } 4464 4465 return f1 & f2; 4466} 4467 4468static inline netdev_features_t netdev_get_wanted_features( 4469 struct net_device *dev) 4470{ 4471 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4472} 4473netdev_features_t netdev_increment_features(netdev_features_t all, 4474 netdev_features_t one, netdev_features_t mask); 4475 4476/* Allow TSO being used on stacked device : 4477 * Performing the GSO segmentation before last device 4478 * is a performance improvement. 4479 */ 4480static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4481 netdev_features_t mask) 4482{ 4483 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4484} 4485 4486int __netdev_update_features(struct net_device *dev); 4487void netdev_update_features(struct net_device *dev); 4488void netdev_change_features(struct net_device *dev); 4489 4490void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4491 struct net_device *dev); 4492 4493netdev_features_t passthru_features_check(struct sk_buff *skb, 4494 struct net_device *dev, 4495 netdev_features_t features); 4496netdev_features_t netif_skb_features(struct sk_buff *skb); 4497 4498static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4499{ 4500 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4501 4502 /* check flags correspondence */ 4503 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4504 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4505 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4506 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4507 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4508 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4509 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4510 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4511 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4512 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4513 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4514 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4515 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4516 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4517 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4518 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 4519 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 4520 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 4521 4522 return (features & feature) == feature; 4523} 4524 4525static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4526{ 4527 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4528 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4529} 4530 4531static inline bool netif_needs_gso(struct sk_buff *skb, 4532 netdev_features_t features) 4533{ 4534 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4535 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4536 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4537} 4538 4539static inline void netif_set_gso_max_size(struct net_device *dev, 4540 unsigned int size) 4541{ 4542 dev->gso_max_size = size; 4543} 4544 4545static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4546 int pulled_hlen, u16 mac_offset, 4547 int mac_len) 4548{ 4549 skb->protocol = protocol; 4550 skb->encapsulation = 1; 4551 skb_push(skb, pulled_hlen); 4552 skb_reset_transport_header(skb); 4553 skb->mac_header = mac_offset; 4554 skb->network_header = skb->mac_header + mac_len; 4555 skb->mac_len = mac_len; 4556} 4557 4558static inline bool netif_is_macsec(const struct net_device *dev) 4559{ 4560 return dev->priv_flags & IFF_MACSEC; 4561} 4562 4563static inline bool netif_is_macvlan(const struct net_device *dev) 4564{ 4565 return dev->priv_flags & IFF_MACVLAN; 4566} 4567 4568static inline bool netif_is_macvlan_port(const struct net_device *dev) 4569{ 4570 return dev->priv_flags & IFF_MACVLAN_PORT; 4571} 4572 4573static inline bool netif_is_bond_master(const struct net_device *dev) 4574{ 4575 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4576} 4577 4578static inline bool netif_is_bond_slave(const struct net_device *dev) 4579{ 4580 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4581} 4582 4583static inline bool netif_supports_nofcs(struct net_device *dev) 4584{ 4585 return dev->priv_flags & IFF_SUPP_NOFCS; 4586} 4587 4588static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 4589{ 4590 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 4591} 4592 4593static inline bool netif_is_l3_master(const struct net_device *dev) 4594{ 4595 return dev->priv_flags & IFF_L3MDEV_MASTER; 4596} 4597 4598static inline bool netif_is_l3_slave(const struct net_device *dev) 4599{ 4600 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4601} 4602 4603static inline bool netif_is_bridge_master(const struct net_device *dev) 4604{ 4605 return dev->priv_flags & IFF_EBRIDGE; 4606} 4607 4608static inline bool netif_is_bridge_port(const struct net_device *dev) 4609{ 4610 return dev->priv_flags & IFF_BRIDGE_PORT; 4611} 4612 4613static inline bool netif_is_ovs_master(const struct net_device *dev) 4614{ 4615 return dev->priv_flags & IFF_OPENVSWITCH; 4616} 4617 4618static inline bool netif_is_ovs_port(const struct net_device *dev) 4619{ 4620 return dev->priv_flags & IFF_OVS_DATAPATH; 4621} 4622 4623static inline bool netif_is_team_master(const struct net_device *dev) 4624{ 4625 return dev->priv_flags & IFF_TEAM; 4626} 4627 4628static inline bool netif_is_team_port(const struct net_device *dev) 4629{ 4630 return dev->priv_flags & IFF_TEAM_PORT; 4631} 4632 4633static inline bool netif_is_lag_master(const struct net_device *dev) 4634{ 4635 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4636} 4637 4638static inline bool netif_is_lag_port(const struct net_device *dev) 4639{ 4640 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4641} 4642 4643static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4644{ 4645 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4646} 4647 4648static inline bool netif_is_failover(const struct net_device *dev) 4649{ 4650 return dev->priv_flags & IFF_FAILOVER; 4651} 4652 4653static inline bool netif_is_failover_slave(const struct net_device *dev) 4654{ 4655 return dev->priv_flags & IFF_FAILOVER_SLAVE; 4656} 4657 4658/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4659static inline void netif_keep_dst(struct net_device *dev) 4660{ 4661 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4662} 4663 4664/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4665static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4666{ 4667 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4668 return dev->priv_flags & IFF_MACSEC; 4669} 4670 4671extern struct pernet_operations __net_initdata loopback_net_ops; 4672 4673/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4674 4675/* netdev_printk helpers, similar to dev_printk */ 4676 4677static inline const char *netdev_name(const struct net_device *dev) 4678{ 4679 if (!dev->name[0] || strchr(dev->name, '%')) 4680 return "(unnamed net_device)"; 4681 return dev->name; 4682} 4683 4684static inline bool netdev_unregistering(const struct net_device *dev) 4685{ 4686 return dev->reg_state == NETREG_UNREGISTERING; 4687} 4688 4689static inline const char *netdev_reg_state(const struct net_device *dev) 4690{ 4691 switch (dev->reg_state) { 4692 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4693 case NETREG_REGISTERED: return ""; 4694 case NETREG_UNREGISTERING: return " (unregistering)"; 4695 case NETREG_UNREGISTERED: return " (unregistered)"; 4696 case NETREG_RELEASED: return " (released)"; 4697 case NETREG_DUMMY: return " (dummy)"; 4698 } 4699 4700 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4701 return " (unknown)"; 4702} 4703 4704__printf(3, 4) __cold 4705void netdev_printk(const char *level, const struct net_device *dev, 4706 const char *format, ...); 4707__printf(2, 3) __cold 4708void netdev_emerg(const struct net_device *dev, const char *format, ...); 4709__printf(2, 3) __cold 4710void netdev_alert(const struct net_device *dev, const char *format, ...); 4711__printf(2, 3) __cold 4712void netdev_crit(const struct net_device *dev, const char *format, ...); 4713__printf(2, 3) __cold 4714void netdev_err(const struct net_device *dev, const char *format, ...); 4715__printf(2, 3) __cold 4716void netdev_warn(const struct net_device *dev, const char *format, ...); 4717__printf(2, 3) __cold 4718void netdev_notice(const struct net_device *dev, const char *format, ...); 4719__printf(2, 3) __cold 4720void netdev_info(const struct net_device *dev, const char *format, ...); 4721 4722#define netdev_level_once(level, dev, fmt, ...) \ 4723do { \ 4724 static bool __print_once __read_mostly; \ 4725 \ 4726 if (!__print_once) { \ 4727 __print_once = true; \ 4728 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \ 4729 } \ 4730} while (0) 4731 4732#define netdev_emerg_once(dev, fmt, ...) \ 4733 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__) 4734#define netdev_alert_once(dev, fmt, ...) \ 4735 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__) 4736#define netdev_crit_once(dev, fmt, ...) \ 4737 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__) 4738#define netdev_err_once(dev, fmt, ...) \ 4739 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__) 4740#define netdev_warn_once(dev, fmt, ...) \ 4741 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__) 4742#define netdev_notice_once(dev, fmt, ...) \ 4743 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__) 4744#define netdev_info_once(dev, fmt, ...) \ 4745 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__) 4746 4747#define MODULE_ALIAS_NETDEV(device) \ 4748 MODULE_ALIAS("netdev-" device) 4749 4750#if defined(CONFIG_DYNAMIC_DEBUG) 4751#define netdev_dbg(__dev, format, args...) \ 4752do { \ 4753 dynamic_netdev_dbg(__dev, format, ##args); \ 4754} while (0) 4755#elif defined(DEBUG) 4756#define netdev_dbg(__dev, format, args...) \ 4757 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4758#else 4759#define netdev_dbg(__dev, format, args...) \ 4760({ \ 4761 if (0) \ 4762 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4763}) 4764#endif 4765 4766#if defined(VERBOSE_DEBUG) 4767#define netdev_vdbg netdev_dbg 4768#else 4769 4770#define netdev_vdbg(dev, format, args...) \ 4771({ \ 4772 if (0) \ 4773 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4774 0; \ 4775}) 4776#endif 4777 4778/* 4779 * netdev_WARN() acts like dev_printk(), but with the key difference 4780 * of using a WARN/WARN_ON to get the message out, including the 4781 * file/line information and a backtrace. 4782 */ 4783#define netdev_WARN(dev, format, args...) \ 4784 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4785 netdev_reg_state(dev), ##args) 4786 4787#define netdev_WARN_ONCE(dev, format, args...) \ 4788 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 4789 netdev_reg_state(dev), ##args) 4790 4791/* netif printk helpers, similar to netdev_printk */ 4792 4793#define netif_printk(priv, type, level, dev, fmt, args...) \ 4794do { \ 4795 if (netif_msg_##type(priv)) \ 4796 netdev_printk(level, (dev), fmt, ##args); \ 4797} while (0) 4798 4799#define netif_level(level, priv, type, dev, fmt, args...) \ 4800do { \ 4801 if (netif_msg_##type(priv)) \ 4802 netdev_##level(dev, fmt, ##args); \ 4803} while (0) 4804 4805#define netif_emerg(priv, type, dev, fmt, args...) \ 4806 netif_level(emerg, priv, type, dev, fmt, ##args) 4807#define netif_alert(priv, type, dev, fmt, args...) \ 4808 netif_level(alert, priv, type, dev, fmt, ##args) 4809#define netif_crit(priv, type, dev, fmt, args...) \ 4810 netif_level(crit, priv, type, dev, fmt, ##args) 4811#define netif_err(priv, type, dev, fmt, args...) \ 4812 netif_level(err, priv, type, dev, fmt, ##args) 4813#define netif_warn(priv, type, dev, fmt, args...) \ 4814 netif_level(warn, priv, type, dev, fmt, ##args) 4815#define netif_notice(priv, type, dev, fmt, args...) \ 4816 netif_level(notice, priv, type, dev, fmt, ##args) 4817#define netif_info(priv, type, dev, fmt, args...) \ 4818 netif_level(info, priv, type, dev, fmt, ##args) 4819 4820#if defined(CONFIG_DYNAMIC_DEBUG) 4821#define netif_dbg(priv, type, netdev, format, args...) \ 4822do { \ 4823 if (netif_msg_##type(priv)) \ 4824 dynamic_netdev_dbg(netdev, format, ##args); \ 4825} while (0) 4826#elif defined(DEBUG) 4827#define netif_dbg(priv, type, dev, format, args...) \ 4828 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4829#else 4830#define netif_dbg(priv, type, dev, format, args...) \ 4831({ \ 4832 if (0) \ 4833 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4834 0; \ 4835}) 4836#endif 4837 4838/* if @cond then downgrade to debug, else print at @level */ 4839#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \ 4840 do { \ 4841 if (cond) \ 4842 netif_dbg(priv, type, netdev, fmt, ##args); \ 4843 else \ 4844 netif_ ## level(priv, type, netdev, fmt, ##args); \ 4845 } while (0) 4846 4847#if defined(VERBOSE_DEBUG) 4848#define netif_vdbg netif_dbg 4849#else 4850#define netif_vdbg(priv, type, dev, format, args...) \ 4851({ \ 4852 if (0) \ 4853 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4854 0; \ 4855}) 4856#endif 4857 4858/* 4859 * The list of packet types we will receive (as opposed to discard) 4860 * and the routines to invoke. 4861 * 4862 * Why 16. Because with 16 the only overlap we get on a hash of the 4863 * low nibble of the protocol value is RARP/SNAP/X.25. 4864 * 4865 * 0800 IP 4866 * 0001 802.3 4867 * 0002 AX.25 4868 * 0004 802.2 4869 * 8035 RARP 4870 * 0005 SNAP 4871 * 0805 X.25 4872 * 0806 ARP 4873 * 8137 IPX 4874 * 0009 Localtalk 4875 * 86DD IPv6 4876 */ 4877#define PTYPE_HASH_SIZE (16) 4878#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4879 4880extern struct net_device *blackhole_netdev; 4881 4882#endif /* _LINUX_NETDEVICE_H */