at v5.4-rc6 19 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_BITMAP_H 3#define __LINUX_BITMAP_H 4 5#ifndef __ASSEMBLY__ 6 7#include <linux/types.h> 8#include <linux/bitops.h> 9#include <linux/string.h> 10#include <linux/kernel.h> 11 12/* 13 * bitmaps provide bit arrays that consume one or more unsigned 14 * longs. The bitmap interface and available operations are listed 15 * here, in bitmap.h 16 * 17 * Function implementations generic to all architectures are in 18 * lib/bitmap.c. Functions implementations that are architecture 19 * specific are in various include/asm-<arch>/bitops.h headers 20 * and other arch/<arch> specific files. 21 * 22 * See lib/bitmap.c for more details. 23 */ 24 25/** 26 * DOC: bitmap overview 27 * 28 * The available bitmap operations and their rough meaning in the 29 * case that the bitmap is a single unsigned long are thus: 30 * 31 * The generated code is more efficient when nbits is known at 32 * compile-time and at most BITS_PER_LONG. 33 * 34 * :: 35 * 36 * bitmap_zero(dst, nbits) *dst = 0UL 37 * bitmap_fill(dst, nbits) *dst = ~0UL 38 * bitmap_copy(dst, src, nbits) *dst = *src 39 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 40 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 41 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 42 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) 43 * bitmap_complement(dst, src, nbits) *dst = ~(*src) 44 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? 45 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? 46 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? 47 * bitmap_empty(src, nbits) Are all bits zero in *src? 48 * bitmap_full(src, nbits) Are all bits set in *src? 49 * bitmap_weight(src, nbits) Hamming Weight: number set bits 50 * bitmap_set(dst, pos, nbits) Set specified bit area 51 * bitmap_clear(dst, pos, nbits) Clear specified bit area 52 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area 53 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask) as above 54 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n 55 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n 56 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) 57 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) 58 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap 59 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz 60 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf 61 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf 62 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf 63 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf 64 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region 65 * bitmap_release_region(bitmap, pos, order) Free specified bit region 66 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region 67 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst 68 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst 69 * 70 * Note, bitmap_zero() and bitmap_fill() operate over the region of 71 * unsigned longs, that is, bits behind bitmap till the unsigned long 72 * boundary will be zeroed or filled as well. Consider to use 73 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling 74 * respectively. 75 */ 76 77/** 78 * DOC: bitmap bitops 79 * 80 * Also the following operations in asm/bitops.h apply to bitmaps.:: 81 * 82 * set_bit(bit, addr) *addr |= bit 83 * clear_bit(bit, addr) *addr &= ~bit 84 * change_bit(bit, addr) *addr ^= bit 85 * test_bit(bit, addr) Is bit set in *addr? 86 * test_and_set_bit(bit, addr) Set bit and return old value 87 * test_and_clear_bit(bit, addr) Clear bit and return old value 88 * test_and_change_bit(bit, addr) Change bit and return old value 89 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr 90 * find_first_bit(addr, nbits) Position first set bit in *addr 91 * find_next_zero_bit(addr, nbits, bit) 92 * Position next zero bit in *addr >= bit 93 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit 94 * find_next_and_bit(addr1, addr2, nbits, bit) 95 * Same as find_next_bit, but in 96 * (*addr1 & *addr2) 97 * 98 */ 99 100/** 101 * DOC: declare bitmap 102 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used 103 * to declare an array named 'name' of just enough unsigned longs to 104 * contain all bit positions from 0 to 'bits' - 1. 105 */ 106 107/* 108 * Allocation and deallocation of bitmap. 109 * Provided in lib/bitmap.c to avoid circular dependency. 110 */ 111extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); 112extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); 113extern void bitmap_free(const unsigned long *bitmap); 114 115/* 116 * lib/bitmap.c provides these functions: 117 */ 118 119extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits); 120extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits); 121extern int __bitmap_equal(const unsigned long *bitmap1, 122 const unsigned long *bitmap2, unsigned int nbits); 123extern bool __pure __bitmap_or_equal(const unsigned long *src1, 124 const unsigned long *src2, 125 const unsigned long *src3, 126 unsigned int nbits); 127extern void __bitmap_complement(unsigned long *dst, const unsigned long *src, 128 unsigned int nbits); 129extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 130 unsigned int shift, unsigned int nbits); 131extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 132 unsigned int shift, unsigned int nbits); 133extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 134 const unsigned long *bitmap2, unsigned int nbits); 135extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 136 const unsigned long *bitmap2, unsigned int nbits); 137extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 138 const unsigned long *bitmap2, unsigned int nbits); 139extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 140 const unsigned long *bitmap2, unsigned int nbits); 141extern int __bitmap_intersects(const unsigned long *bitmap1, 142 const unsigned long *bitmap2, unsigned int nbits); 143extern int __bitmap_subset(const unsigned long *bitmap1, 144 const unsigned long *bitmap2, unsigned int nbits); 145extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); 146extern void __bitmap_set(unsigned long *map, unsigned int start, int len); 147extern void __bitmap_clear(unsigned long *map, unsigned int start, int len); 148 149extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 150 unsigned long size, 151 unsigned long start, 152 unsigned int nr, 153 unsigned long align_mask, 154 unsigned long align_offset); 155 156/** 157 * bitmap_find_next_zero_area - find a contiguous aligned zero area 158 * @map: The address to base the search on 159 * @size: The bitmap size in bits 160 * @start: The bitnumber to start searching at 161 * @nr: The number of zeroed bits we're looking for 162 * @align_mask: Alignment mask for zero area 163 * 164 * The @align_mask should be one less than a power of 2; the effect is that 165 * the bit offset of all zero areas this function finds is multiples of that 166 * power of 2. A @align_mask of 0 means no alignment is required. 167 */ 168static inline unsigned long 169bitmap_find_next_zero_area(unsigned long *map, 170 unsigned long size, 171 unsigned long start, 172 unsigned int nr, 173 unsigned long align_mask) 174{ 175 return bitmap_find_next_zero_area_off(map, size, start, nr, 176 align_mask, 0); 177} 178 179extern int __bitmap_parse(const char *buf, unsigned int buflen, int is_user, 180 unsigned long *dst, int nbits); 181extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, 182 unsigned long *dst, int nbits); 183extern int bitmap_parselist(const char *buf, unsigned long *maskp, 184 int nmaskbits); 185extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, 186 unsigned long *dst, int nbits); 187extern void bitmap_remap(unsigned long *dst, const unsigned long *src, 188 const unsigned long *old, const unsigned long *new, unsigned int nbits); 189extern int bitmap_bitremap(int oldbit, 190 const unsigned long *old, const unsigned long *new, int bits); 191extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, 192 const unsigned long *relmap, unsigned int bits); 193extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, 194 unsigned int sz, unsigned int nbits); 195extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); 196extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); 197extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); 198 199#ifdef __BIG_ENDIAN 200extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); 201#else 202#define bitmap_copy_le bitmap_copy 203#endif 204extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); 205extern int bitmap_print_to_pagebuf(bool list, char *buf, 206 const unsigned long *maskp, int nmaskbits); 207 208#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) 209#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) 210 211/* 212 * The static inlines below do not handle constant nbits==0 correctly, 213 * so make such users (should any ever turn up) call the out-of-line 214 * versions. 215 */ 216#define small_const_nbits(nbits) \ 217 (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG && (nbits) > 0) 218 219static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) 220{ 221 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 222 memset(dst, 0, len); 223} 224 225static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) 226{ 227 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 228 memset(dst, 0xff, len); 229} 230 231static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, 232 unsigned int nbits) 233{ 234 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 235 memcpy(dst, src, len); 236} 237 238/* 239 * Copy bitmap and clear tail bits in last word. 240 */ 241static inline void bitmap_copy_clear_tail(unsigned long *dst, 242 const unsigned long *src, unsigned int nbits) 243{ 244 bitmap_copy(dst, src, nbits); 245 if (nbits % BITS_PER_LONG) 246 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); 247} 248 249/* 250 * On 32-bit systems bitmaps are represented as u32 arrays internally, and 251 * therefore conversion is not needed when copying data from/to arrays of u32. 252 */ 253#if BITS_PER_LONG == 64 254extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, 255 unsigned int nbits); 256extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, 257 unsigned int nbits); 258#else 259#define bitmap_from_arr32(bitmap, buf, nbits) \ 260 bitmap_copy_clear_tail((unsigned long *) (bitmap), \ 261 (const unsigned long *) (buf), (nbits)) 262#define bitmap_to_arr32(buf, bitmap, nbits) \ 263 bitmap_copy_clear_tail((unsigned long *) (buf), \ 264 (const unsigned long *) (bitmap), (nbits)) 265#endif 266 267static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, 268 const unsigned long *src2, unsigned int nbits) 269{ 270 if (small_const_nbits(nbits)) 271 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; 272 return __bitmap_and(dst, src1, src2, nbits); 273} 274 275static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, 276 const unsigned long *src2, unsigned int nbits) 277{ 278 if (small_const_nbits(nbits)) 279 *dst = *src1 | *src2; 280 else 281 __bitmap_or(dst, src1, src2, nbits); 282} 283 284static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, 285 const unsigned long *src2, unsigned int nbits) 286{ 287 if (small_const_nbits(nbits)) 288 *dst = *src1 ^ *src2; 289 else 290 __bitmap_xor(dst, src1, src2, nbits); 291} 292 293static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, 294 const unsigned long *src2, unsigned int nbits) 295{ 296 if (small_const_nbits(nbits)) 297 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 298 return __bitmap_andnot(dst, src1, src2, nbits); 299} 300 301static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, 302 unsigned int nbits) 303{ 304 if (small_const_nbits(nbits)) 305 *dst = ~(*src); 306 else 307 __bitmap_complement(dst, src, nbits); 308} 309 310#ifdef __LITTLE_ENDIAN 311#define BITMAP_MEM_ALIGNMENT 8 312#else 313#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) 314#endif 315#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) 316 317static inline int bitmap_equal(const unsigned long *src1, 318 const unsigned long *src2, unsigned int nbits) 319{ 320 if (small_const_nbits(nbits)) 321 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); 322 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && 323 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 324 return !memcmp(src1, src2, nbits / 8); 325 return __bitmap_equal(src1, src2, nbits); 326} 327 328/** 329 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third 330 * @src1: Pointer to bitmap 1 331 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 332 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 333 * @nbits: number of bits in each of these bitmaps 334 * 335 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise 336 */ 337static inline bool bitmap_or_equal(const unsigned long *src1, 338 const unsigned long *src2, 339 const unsigned long *src3, 340 unsigned int nbits) 341{ 342 if (!small_const_nbits(nbits)) 343 return __bitmap_or_equal(src1, src2, src3, nbits); 344 345 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); 346} 347 348static inline int bitmap_intersects(const unsigned long *src1, 349 const unsigned long *src2, unsigned int nbits) 350{ 351 if (small_const_nbits(nbits)) 352 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 353 else 354 return __bitmap_intersects(src1, src2, nbits); 355} 356 357static inline int bitmap_subset(const unsigned long *src1, 358 const unsigned long *src2, unsigned int nbits) 359{ 360 if (small_const_nbits(nbits)) 361 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); 362 else 363 return __bitmap_subset(src1, src2, nbits); 364} 365 366static inline int bitmap_empty(const unsigned long *src, unsigned nbits) 367{ 368 if (small_const_nbits(nbits)) 369 return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); 370 371 return find_first_bit(src, nbits) == nbits; 372} 373 374static inline int bitmap_full(const unsigned long *src, unsigned int nbits) 375{ 376 if (small_const_nbits(nbits)) 377 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); 378 379 return find_first_zero_bit(src, nbits) == nbits; 380} 381 382static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) 383{ 384 if (small_const_nbits(nbits)) 385 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); 386 return __bitmap_weight(src, nbits); 387} 388 389static __always_inline void bitmap_set(unsigned long *map, unsigned int start, 390 unsigned int nbits) 391{ 392 if (__builtin_constant_p(nbits) && nbits == 1) 393 __set_bit(start, map); 394 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 395 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 396 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 397 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 398 memset((char *)map + start / 8, 0xff, nbits / 8); 399 else 400 __bitmap_set(map, start, nbits); 401} 402 403static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, 404 unsigned int nbits) 405{ 406 if (__builtin_constant_p(nbits) && nbits == 1) 407 __clear_bit(start, map); 408 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 409 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 410 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 411 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 412 memset((char *)map + start / 8, 0, nbits / 8); 413 else 414 __bitmap_clear(map, start, nbits); 415} 416 417static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, 418 unsigned int shift, unsigned int nbits) 419{ 420 if (small_const_nbits(nbits)) 421 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; 422 else 423 __bitmap_shift_right(dst, src, shift, nbits); 424} 425 426static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, 427 unsigned int shift, unsigned int nbits) 428{ 429 if (small_const_nbits(nbits)) 430 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); 431 else 432 __bitmap_shift_left(dst, src, shift, nbits); 433} 434 435static inline int bitmap_parse(const char *buf, unsigned int buflen, 436 unsigned long *maskp, int nmaskbits) 437{ 438 return __bitmap_parse(buf, buflen, 0, maskp, nmaskbits); 439} 440 441/** 442 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. 443 * @n: u64 value 444 * 445 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit 446 * integers in 32-bit environment, and 64-bit integers in 64-bit one. 447 * 448 * There are four combinations of endianness and length of the word in linux 449 * ABIs: LE64, BE64, LE32 and BE32. 450 * 451 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in 452 * bitmaps and therefore don't require any special handling. 453 * 454 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory 455 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the 456 * other hand is represented as an array of 32-bit words and the position of 457 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that 458 * word. For example, bit #42 is located at 10th position of 2nd word. 459 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit 460 * values in memory as it usually does. But for BE we need to swap hi and lo 461 * words manually. 462 * 463 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and 464 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps 465 * hi and lo words, as is expected by bitmap. 466 */ 467#if __BITS_PER_LONG == 64 468#define BITMAP_FROM_U64(n) (n) 469#else 470#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ 471 ((unsigned long) ((u64)(n) >> 32)) 472#endif 473 474/** 475 * bitmap_from_u64 - Check and swap words within u64. 476 * @mask: source bitmap 477 * @dst: destination bitmap 478 * 479 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` 480 * to read u64 mask, we will get the wrong word. 481 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, 482 * but we expect the lower 32-bits of u64. 483 */ 484static inline void bitmap_from_u64(unsigned long *dst, u64 mask) 485{ 486 dst[0] = mask & ULONG_MAX; 487 488 if (sizeof(mask) > sizeof(unsigned long)) 489 dst[1] = mask >> 32; 490} 491 492#endif /* __ASSEMBLY__ */ 493 494#endif /* __LINUX_BITMAP_H */