at v5.4-rc6 2012 lines 53 kB view raw
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10#include <linux/module.h> 11#include <linux/kernel.h> 12#include <linux/ptrace.h> 13#include <linux/seq_file.h> 14#include <linux/string.h> 15#include <linux/timer.h> 16#include <linux/major.h> 17#include <linux/fs.h> 18#include <linux/err.h> 19#include <linux/ioctl.h> 20#include <linux/init.h> 21#include <linux/of.h> 22#include <linux/proc_fs.h> 23#include <linux/idr.h> 24#include <linux/backing-dev.h> 25#include <linux/gfp.h> 26#include <linux/slab.h> 27#include <linux/reboot.h> 28#include <linux/leds.h> 29#include <linux/debugfs.h> 30#include <linux/nvmem-provider.h> 31 32#include <linux/mtd/mtd.h> 33#include <linux/mtd/partitions.h> 34 35#include "mtdcore.h" 36 37struct backing_dev_info *mtd_bdi; 38 39#ifdef CONFIG_PM_SLEEP 40 41static int mtd_cls_suspend(struct device *dev) 42{ 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46} 47 48static int mtd_cls_resume(struct device *dev) 49{ 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55} 56 57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59#else 60#define MTD_CLS_PM_OPS NULL 61#endif 62 63static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67}; 68 69static DEFINE_IDR(mtd_idr); 70 71/* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73DEFINE_MUTEX(mtd_table_mutex); 74EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76struct mtd_info *__mtd_next_device(int i) 77{ 78 return idr_get_next(&mtd_idr, &i); 79} 80EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82static LIST_HEAD(mtd_notifiers); 83 84 85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87/* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90static void mtd_release(struct device *dev) 91{ 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97} 98 99static ssize_t mtd_type_show(struct device *dev, 100 struct device_attribute *attr, char *buf) 101{ 102 struct mtd_info *mtd = dev_get_drvdata(dev); 103 char *type; 104 105 switch (mtd->type) { 106 case MTD_ABSENT: 107 type = "absent"; 108 break; 109 case MTD_RAM: 110 type = "ram"; 111 break; 112 case MTD_ROM: 113 type = "rom"; 114 break; 115 case MTD_NORFLASH: 116 type = "nor"; 117 break; 118 case MTD_NANDFLASH: 119 type = "nand"; 120 break; 121 case MTD_DATAFLASH: 122 type = "dataflash"; 123 break; 124 case MTD_UBIVOLUME: 125 type = "ubi"; 126 break; 127 case MTD_MLCNANDFLASH: 128 type = "mlc-nand"; 129 break; 130 default: 131 type = "unknown"; 132 } 133 134 return snprintf(buf, PAGE_SIZE, "%s\n", type); 135} 136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 137 138static ssize_t mtd_flags_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140{ 141 struct mtd_info *mtd = dev_get_drvdata(dev); 142 143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 144} 145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 146 147static ssize_t mtd_size_show(struct device *dev, 148 struct device_attribute *attr, char *buf) 149{ 150 struct mtd_info *mtd = dev_get_drvdata(dev); 151 152 return snprintf(buf, PAGE_SIZE, "%llu\n", 153 (unsigned long long)mtd->size); 154} 155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 156 157static ssize_t mtd_erasesize_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159{ 160 struct mtd_info *mtd = dev_get_drvdata(dev); 161 162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 163} 164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 165 166static ssize_t mtd_writesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168{ 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 172} 173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 174 175static ssize_t mtd_subpagesize_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177{ 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 180 181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 182} 183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 184 185static ssize_t mtd_oobsize_show(struct device *dev, 186 struct device_attribute *attr, char *buf) 187{ 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 191} 192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 193 194static ssize_t mtd_oobavail_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196{ 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 200} 201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 202 203static ssize_t mtd_numeraseregions_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205{ 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 209} 210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 211 NULL); 212 213static ssize_t mtd_name_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215{ 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 219} 220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 221 222static ssize_t mtd_ecc_strength_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224{ 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 228} 229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 230 231static ssize_t mtd_bitflip_threshold_show(struct device *dev, 232 struct device_attribute *attr, 233 char *buf) 234{ 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 238} 239 240static ssize_t mtd_bitflip_threshold_store(struct device *dev, 241 struct device_attribute *attr, 242 const char *buf, size_t count) 243{ 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 unsigned int bitflip_threshold; 246 int retval; 247 248 retval = kstrtouint(buf, 0, &bitflip_threshold); 249 if (retval) 250 return retval; 251 252 mtd->bitflip_threshold = bitflip_threshold; 253 return count; 254} 255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 256 mtd_bitflip_threshold_show, 257 mtd_bitflip_threshold_store); 258 259static ssize_t mtd_ecc_step_size_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261{ 262 struct mtd_info *mtd = dev_get_drvdata(dev); 263 264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 265 266} 267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 268 269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271{ 272 struct mtd_info *mtd = dev_get_drvdata(dev); 273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 276} 277static DEVICE_ATTR(corrected_bits, S_IRUGO, 278 mtd_ecc_stats_corrected_show, NULL); 279 280static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282{ 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 287} 288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 289 290static ssize_t mtd_badblocks_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292{ 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 297} 298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 299 300static ssize_t mtd_bbtblocks_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302{ 303 struct mtd_info *mtd = dev_get_drvdata(dev); 304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 305 306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 307} 308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 309 310static struct attribute *mtd_attrs[] = { 311 &dev_attr_type.attr, 312 &dev_attr_flags.attr, 313 &dev_attr_size.attr, 314 &dev_attr_erasesize.attr, 315 &dev_attr_writesize.attr, 316 &dev_attr_subpagesize.attr, 317 &dev_attr_oobsize.attr, 318 &dev_attr_oobavail.attr, 319 &dev_attr_numeraseregions.attr, 320 &dev_attr_name.attr, 321 &dev_attr_ecc_strength.attr, 322 &dev_attr_ecc_step_size.attr, 323 &dev_attr_corrected_bits.attr, 324 &dev_attr_ecc_failures.attr, 325 &dev_attr_bad_blocks.attr, 326 &dev_attr_bbt_blocks.attr, 327 &dev_attr_bitflip_threshold.attr, 328 NULL, 329}; 330ATTRIBUTE_GROUPS(mtd); 331 332static const struct device_type mtd_devtype = { 333 .name = "mtd", 334 .groups = mtd_groups, 335 .release = mtd_release, 336}; 337 338static int mtd_partid_show(struct seq_file *s, void *p) 339{ 340 struct mtd_info *mtd = s->private; 341 342 seq_printf(s, "%s\n", mtd->dbg.partid); 343 344 return 0; 345} 346 347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file) 348{ 349 return single_open(file, mtd_partid_show, inode->i_private); 350} 351 352static const struct file_operations mtd_partid_debug_fops = { 353 .open = mtd_partid_debugfs_open, 354 .read = seq_read, 355 .llseek = seq_lseek, 356 .release = single_release, 357}; 358 359static int mtd_partname_show(struct seq_file *s, void *p) 360{ 361 struct mtd_info *mtd = s->private; 362 363 seq_printf(s, "%s\n", mtd->dbg.partname); 364 365 return 0; 366} 367 368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file) 369{ 370 return single_open(file, mtd_partname_show, inode->i_private); 371} 372 373static const struct file_operations mtd_partname_debug_fops = { 374 .open = mtd_partname_debugfs_open, 375 .read = seq_read, 376 .llseek = seq_lseek, 377 .release = single_release, 378}; 379 380static struct dentry *dfs_dir_mtd; 381 382static void mtd_debugfs_populate(struct mtd_info *mtd) 383{ 384 struct device *dev = &mtd->dev; 385 struct dentry *root, *dent; 386 387 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 388 return; 389 390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 391 if (IS_ERR_OR_NULL(root)) { 392 dev_dbg(dev, "won't show data in debugfs\n"); 393 return; 394 } 395 396 mtd->dbg.dfs_dir = root; 397 398 if (mtd->dbg.partid) { 399 dent = debugfs_create_file("partid", 0400, root, mtd, 400 &mtd_partid_debug_fops); 401 if (IS_ERR_OR_NULL(dent)) 402 dev_err(dev, "can't create debugfs entry for partid\n"); 403 } 404 405 if (mtd->dbg.partname) { 406 dent = debugfs_create_file("partname", 0400, root, mtd, 407 &mtd_partname_debug_fops); 408 if (IS_ERR_OR_NULL(dent)) 409 dev_err(dev, 410 "can't create debugfs entry for partname\n"); 411 } 412} 413 414#ifndef CONFIG_MMU 415unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 416{ 417 switch (mtd->type) { 418 case MTD_RAM: 419 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 420 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 421 case MTD_ROM: 422 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 423 NOMMU_MAP_READ; 424 default: 425 return NOMMU_MAP_COPY; 426 } 427} 428EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 429#endif 430 431static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 432 void *cmd) 433{ 434 struct mtd_info *mtd; 435 436 mtd = container_of(n, struct mtd_info, reboot_notifier); 437 mtd->_reboot(mtd); 438 439 return NOTIFY_DONE; 440} 441 442/** 443 * mtd_wunit_to_pairing_info - get pairing information of a wunit 444 * @mtd: pointer to new MTD device info structure 445 * @wunit: write unit we are interested in 446 * @info: returned pairing information 447 * 448 * Retrieve pairing information associated to the wunit. 449 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 450 * paired together, and where programming a page may influence the page it is 451 * paired with. 452 * The notion of page is replaced by the term wunit (write-unit) to stay 453 * consistent with the ->writesize field. 454 * 455 * The @wunit argument can be extracted from an absolute offset using 456 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 457 * to @wunit. 458 * 459 * From the pairing info the MTD user can find all the wunits paired with 460 * @wunit using the following loop: 461 * 462 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 463 * info.pair = i; 464 * mtd_pairing_info_to_wunit(mtd, &info); 465 * ... 466 * } 467 */ 468int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 469 struct mtd_pairing_info *info) 470{ 471 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 472 473 if (wunit < 0 || wunit >= npairs) 474 return -EINVAL; 475 476 if (mtd->pairing && mtd->pairing->get_info) 477 return mtd->pairing->get_info(mtd, wunit, info); 478 479 info->group = 0; 480 info->pair = wunit; 481 482 return 0; 483} 484EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 485 486/** 487 * mtd_pairing_info_to_wunit - get wunit from pairing information 488 * @mtd: pointer to new MTD device info structure 489 * @info: pairing information struct 490 * 491 * Returns a positive number representing the wunit associated to the info 492 * struct, or a negative error code. 493 * 494 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 495 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 496 * doc). 497 * 498 * It can also be used to only program the first page of each pair (i.e. 499 * page attached to group 0), which allows one to use an MLC NAND in 500 * software-emulated SLC mode: 501 * 502 * info.group = 0; 503 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 504 * for (info.pair = 0; info.pair < npairs; info.pair++) { 505 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 506 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 507 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 508 * } 509 */ 510int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 511 const struct mtd_pairing_info *info) 512{ 513 int ngroups = mtd_pairing_groups(mtd); 514 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 515 516 if (!info || info->pair < 0 || info->pair >= npairs || 517 info->group < 0 || info->group >= ngroups) 518 return -EINVAL; 519 520 if (mtd->pairing && mtd->pairing->get_wunit) 521 return mtd->pairing->get_wunit(mtd, info); 522 523 return info->pair; 524} 525EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 526 527/** 528 * mtd_pairing_groups - get the number of pairing groups 529 * @mtd: pointer to new MTD device info structure 530 * 531 * Returns the number of pairing groups. 532 * 533 * This number is usually equal to the number of bits exposed by a single 534 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 535 * to iterate over all pages of a given pair. 536 */ 537int mtd_pairing_groups(struct mtd_info *mtd) 538{ 539 if (!mtd->pairing || !mtd->pairing->ngroups) 540 return 1; 541 542 return mtd->pairing->ngroups; 543} 544EXPORT_SYMBOL_GPL(mtd_pairing_groups); 545 546static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 547 void *val, size_t bytes) 548{ 549 struct mtd_info *mtd = priv; 550 size_t retlen; 551 int err; 552 553 err = mtd_read(mtd, offset, bytes, &retlen, val); 554 if (err && err != -EUCLEAN) 555 return err; 556 557 return retlen == bytes ? 0 : -EIO; 558} 559 560static int mtd_nvmem_add(struct mtd_info *mtd) 561{ 562 struct nvmem_config config = {}; 563 564 config.id = -1; 565 config.dev = &mtd->dev; 566 config.name = mtd->name; 567 config.owner = THIS_MODULE; 568 config.reg_read = mtd_nvmem_reg_read; 569 config.size = mtd->size; 570 config.word_size = 1; 571 config.stride = 1; 572 config.read_only = true; 573 config.root_only = true; 574 config.no_of_node = true; 575 config.priv = mtd; 576 577 mtd->nvmem = nvmem_register(&config); 578 if (IS_ERR(mtd->nvmem)) { 579 /* Just ignore if there is no NVMEM support in the kernel */ 580 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 581 mtd->nvmem = NULL; 582 } else { 583 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 584 return PTR_ERR(mtd->nvmem); 585 } 586 } 587 588 return 0; 589} 590 591/** 592 * add_mtd_device - register an MTD device 593 * @mtd: pointer to new MTD device info structure 594 * 595 * Add a device to the list of MTD devices present in the system, and 596 * notify each currently active MTD 'user' of its arrival. Returns 597 * zero on success or non-zero on failure. 598 */ 599 600int add_mtd_device(struct mtd_info *mtd) 601{ 602 struct mtd_notifier *not; 603 int i, error; 604 605 /* 606 * May occur, for instance, on buggy drivers which call 607 * mtd_device_parse_register() multiple times on the same master MTD, 608 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 609 */ 610 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 611 return -EEXIST; 612 613 BUG_ON(mtd->writesize == 0); 614 615 /* 616 * MTD drivers should implement ->_{write,read}() or 617 * ->_{write,read}_oob(), but not both. 618 */ 619 if (WARN_ON((mtd->_write && mtd->_write_oob) || 620 (mtd->_read && mtd->_read_oob))) 621 return -EINVAL; 622 623 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 624 !(mtd->flags & MTD_NO_ERASE))) 625 return -EINVAL; 626 627 mutex_lock(&mtd_table_mutex); 628 629 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 630 if (i < 0) { 631 error = i; 632 goto fail_locked; 633 } 634 635 mtd->index = i; 636 mtd->usecount = 0; 637 638 /* default value if not set by driver */ 639 if (mtd->bitflip_threshold == 0) 640 mtd->bitflip_threshold = mtd->ecc_strength; 641 642 if (is_power_of_2(mtd->erasesize)) 643 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 644 else 645 mtd->erasesize_shift = 0; 646 647 if (is_power_of_2(mtd->writesize)) 648 mtd->writesize_shift = ffs(mtd->writesize) - 1; 649 else 650 mtd->writesize_shift = 0; 651 652 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 653 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 654 655 /* Some chips always power up locked. Unlock them now */ 656 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 657 error = mtd_unlock(mtd, 0, mtd->size); 658 if (error && error != -EOPNOTSUPP) 659 printk(KERN_WARNING 660 "%s: unlock failed, writes may not work\n", 661 mtd->name); 662 /* Ignore unlock failures? */ 663 error = 0; 664 } 665 666 /* Caller should have set dev.parent to match the 667 * physical device, if appropriate. 668 */ 669 mtd->dev.type = &mtd_devtype; 670 mtd->dev.class = &mtd_class; 671 mtd->dev.devt = MTD_DEVT(i); 672 dev_set_name(&mtd->dev, "mtd%d", i); 673 dev_set_drvdata(&mtd->dev, mtd); 674 of_node_get(mtd_get_of_node(mtd)); 675 error = device_register(&mtd->dev); 676 if (error) 677 goto fail_added; 678 679 /* Add the nvmem provider */ 680 error = mtd_nvmem_add(mtd); 681 if (error) 682 goto fail_nvmem_add; 683 684 mtd_debugfs_populate(mtd); 685 686 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 687 "mtd%dro", i); 688 689 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 690 /* No need to get a refcount on the module containing 691 the notifier, since we hold the mtd_table_mutex */ 692 list_for_each_entry(not, &mtd_notifiers, list) 693 not->add(mtd); 694 695 mutex_unlock(&mtd_table_mutex); 696 /* We _know_ we aren't being removed, because 697 our caller is still holding us here. So none 698 of this try_ nonsense, and no bitching about it 699 either. :) */ 700 __module_get(THIS_MODULE); 701 return 0; 702 703fail_nvmem_add: 704 device_unregister(&mtd->dev); 705fail_added: 706 of_node_put(mtd_get_of_node(mtd)); 707 idr_remove(&mtd_idr, i); 708fail_locked: 709 mutex_unlock(&mtd_table_mutex); 710 return error; 711} 712 713/** 714 * del_mtd_device - unregister an MTD device 715 * @mtd: pointer to MTD device info structure 716 * 717 * Remove a device from the list of MTD devices present in the system, 718 * and notify each currently active MTD 'user' of its departure. 719 * Returns zero on success or 1 on failure, which currently will happen 720 * if the requested device does not appear to be present in the list. 721 */ 722 723int del_mtd_device(struct mtd_info *mtd) 724{ 725 int ret; 726 struct mtd_notifier *not; 727 728 mutex_lock(&mtd_table_mutex); 729 730 debugfs_remove_recursive(mtd->dbg.dfs_dir); 731 732 if (idr_find(&mtd_idr, mtd->index) != mtd) { 733 ret = -ENODEV; 734 goto out_error; 735 } 736 737 /* No need to get a refcount on the module containing 738 the notifier, since we hold the mtd_table_mutex */ 739 list_for_each_entry(not, &mtd_notifiers, list) 740 not->remove(mtd); 741 742 if (mtd->usecount) { 743 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 744 mtd->index, mtd->name, mtd->usecount); 745 ret = -EBUSY; 746 } else { 747 /* Try to remove the NVMEM provider */ 748 if (mtd->nvmem) 749 nvmem_unregister(mtd->nvmem); 750 751 device_unregister(&mtd->dev); 752 753 idr_remove(&mtd_idr, mtd->index); 754 of_node_put(mtd_get_of_node(mtd)); 755 756 module_put(THIS_MODULE); 757 ret = 0; 758 } 759 760out_error: 761 mutex_unlock(&mtd_table_mutex); 762 return ret; 763} 764 765/* 766 * Set a few defaults based on the parent devices, if not provided by the 767 * driver 768 */ 769static void mtd_set_dev_defaults(struct mtd_info *mtd) 770{ 771 if (mtd->dev.parent) { 772 if (!mtd->owner && mtd->dev.parent->driver) 773 mtd->owner = mtd->dev.parent->driver->owner; 774 if (!mtd->name) 775 mtd->name = dev_name(mtd->dev.parent); 776 } else { 777 pr_debug("mtd device won't show a device symlink in sysfs\n"); 778 } 779 780 mtd->orig_flags = mtd->flags; 781} 782 783/** 784 * mtd_device_parse_register - parse partitions and register an MTD device. 785 * 786 * @mtd: the MTD device to register 787 * @types: the list of MTD partition probes to try, see 788 * 'parse_mtd_partitions()' for more information 789 * @parser_data: MTD partition parser-specific data 790 * @parts: fallback partition information to register, if parsing fails; 791 * only valid if %nr_parts > %0 792 * @nr_parts: the number of partitions in parts, if zero then the full 793 * MTD device is registered if no partition info is found 794 * 795 * This function aggregates MTD partitions parsing (done by 796 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 797 * basically follows the most common pattern found in many MTD drivers: 798 * 799 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 800 * registered first. 801 * * Then It tries to probe partitions on MTD device @mtd using parsers 802 * specified in @types (if @types is %NULL, then the default list of parsers 803 * is used, see 'parse_mtd_partitions()' for more information). If none are 804 * found this functions tries to fallback to information specified in 805 * @parts/@nr_parts. 806 * * If no partitions were found this function just registers the MTD device 807 * @mtd and exits. 808 * 809 * Returns zero in case of success and a negative error code in case of failure. 810 */ 811int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 812 struct mtd_part_parser_data *parser_data, 813 const struct mtd_partition *parts, 814 int nr_parts) 815{ 816 int ret; 817 818 mtd_set_dev_defaults(mtd); 819 820 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 821 ret = add_mtd_device(mtd); 822 if (ret) 823 return ret; 824 } 825 826 /* Prefer parsed partitions over driver-provided fallback */ 827 ret = parse_mtd_partitions(mtd, types, parser_data); 828 if (ret > 0) 829 ret = 0; 830 else if (nr_parts) 831 ret = add_mtd_partitions(mtd, parts, nr_parts); 832 else if (!device_is_registered(&mtd->dev)) 833 ret = add_mtd_device(mtd); 834 else 835 ret = 0; 836 837 if (ret) 838 goto out; 839 840 /* 841 * FIXME: some drivers unfortunately call this function more than once. 842 * So we have to check if we've already assigned the reboot notifier. 843 * 844 * Generally, we can make multiple calls work for most cases, but it 845 * does cause problems with parse_mtd_partitions() above (e.g., 846 * cmdlineparts will register partitions more than once). 847 */ 848 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 849 "MTD already registered\n"); 850 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 851 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 852 register_reboot_notifier(&mtd->reboot_notifier); 853 } 854 855out: 856 if (ret && device_is_registered(&mtd->dev)) 857 del_mtd_device(mtd); 858 859 return ret; 860} 861EXPORT_SYMBOL_GPL(mtd_device_parse_register); 862 863/** 864 * mtd_device_unregister - unregister an existing MTD device. 865 * 866 * @master: the MTD device to unregister. This will unregister both the master 867 * and any partitions if registered. 868 */ 869int mtd_device_unregister(struct mtd_info *master) 870{ 871 int err; 872 873 if (master->_reboot) 874 unregister_reboot_notifier(&master->reboot_notifier); 875 876 err = del_mtd_partitions(master); 877 if (err) 878 return err; 879 880 if (!device_is_registered(&master->dev)) 881 return 0; 882 883 return del_mtd_device(master); 884} 885EXPORT_SYMBOL_GPL(mtd_device_unregister); 886 887/** 888 * register_mtd_user - register a 'user' of MTD devices. 889 * @new: pointer to notifier info structure 890 * 891 * Registers a pair of callbacks function to be called upon addition 892 * or removal of MTD devices. Causes the 'add' callback to be immediately 893 * invoked for each MTD device currently present in the system. 894 */ 895void register_mtd_user (struct mtd_notifier *new) 896{ 897 struct mtd_info *mtd; 898 899 mutex_lock(&mtd_table_mutex); 900 901 list_add(&new->list, &mtd_notifiers); 902 903 __module_get(THIS_MODULE); 904 905 mtd_for_each_device(mtd) 906 new->add(mtd); 907 908 mutex_unlock(&mtd_table_mutex); 909} 910EXPORT_SYMBOL_GPL(register_mtd_user); 911 912/** 913 * unregister_mtd_user - unregister a 'user' of MTD devices. 914 * @old: pointer to notifier info structure 915 * 916 * Removes a callback function pair from the list of 'users' to be 917 * notified upon addition or removal of MTD devices. Causes the 918 * 'remove' callback to be immediately invoked for each MTD device 919 * currently present in the system. 920 */ 921int unregister_mtd_user (struct mtd_notifier *old) 922{ 923 struct mtd_info *mtd; 924 925 mutex_lock(&mtd_table_mutex); 926 927 module_put(THIS_MODULE); 928 929 mtd_for_each_device(mtd) 930 old->remove(mtd); 931 932 list_del(&old->list); 933 mutex_unlock(&mtd_table_mutex); 934 return 0; 935} 936EXPORT_SYMBOL_GPL(unregister_mtd_user); 937 938/** 939 * get_mtd_device - obtain a validated handle for an MTD device 940 * @mtd: last known address of the required MTD device 941 * @num: internal device number of the required MTD device 942 * 943 * Given a number and NULL address, return the num'th entry in the device 944 * table, if any. Given an address and num == -1, search the device table 945 * for a device with that address and return if it's still present. Given 946 * both, return the num'th driver only if its address matches. Return 947 * error code if not. 948 */ 949struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 950{ 951 struct mtd_info *ret = NULL, *other; 952 int err = -ENODEV; 953 954 mutex_lock(&mtd_table_mutex); 955 956 if (num == -1) { 957 mtd_for_each_device(other) { 958 if (other == mtd) { 959 ret = mtd; 960 break; 961 } 962 } 963 } else if (num >= 0) { 964 ret = idr_find(&mtd_idr, num); 965 if (mtd && mtd != ret) 966 ret = NULL; 967 } 968 969 if (!ret) { 970 ret = ERR_PTR(err); 971 goto out; 972 } 973 974 err = __get_mtd_device(ret); 975 if (err) 976 ret = ERR_PTR(err); 977out: 978 mutex_unlock(&mtd_table_mutex); 979 return ret; 980} 981EXPORT_SYMBOL_GPL(get_mtd_device); 982 983 984int __get_mtd_device(struct mtd_info *mtd) 985{ 986 int err; 987 988 if (!try_module_get(mtd->owner)) 989 return -ENODEV; 990 991 if (mtd->_get_device) { 992 err = mtd->_get_device(mtd); 993 994 if (err) { 995 module_put(mtd->owner); 996 return err; 997 } 998 } 999 mtd->usecount++; 1000 return 0; 1001} 1002EXPORT_SYMBOL_GPL(__get_mtd_device); 1003 1004/** 1005 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1006 * device name 1007 * @name: MTD device name to open 1008 * 1009 * This function returns MTD device description structure in case of 1010 * success and an error code in case of failure. 1011 */ 1012struct mtd_info *get_mtd_device_nm(const char *name) 1013{ 1014 int err = -ENODEV; 1015 struct mtd_info *mtd = NULL, *other; 1016 1017 mutex_lock(&mtd_table_mutex); 1018 1019 mtd_for_each_device(other) { 1020 if (!strcmp(name, other->name)) { 1021 mtd = other; 1022 break; 1023 } 1024 } 1025 1026 if (!mtd) 1027 goto out_unlock; 1028 1029 err = __get_mtd_device(mtd); 1030 if (err) 1031 goto out_unlock; 1032 1033 mutex_unlock(&mtd_table_mutex); 1034 return mtd; 1035 1036out_unlock: 1037 mutex_unlock(&mtd_table_mutex); 1038 return ERR_PTR(err); 1039} 1040EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1041 1042void put_mtd_device(struct mtd_info *mtd) 1043{ 1044 mutex_lock(&mtd_table_mutex); 1045 __put_mtd_device(mtd); 1046 mutex_unlock(&mtd_table_mutex); 1047 1048} 1049EXPORT_SYMBOL_GPL(put_mtd_device); 1050 1051void __put_mtd_device(struct mtd_info *mtd) 1052{ 1053 --mtd->usecount; 1054 BUG_ON(mtd->usecount < 0); 1055 1056 if (mtd->_put_device) 1057 mtd->_put_device(mtd); 1058 1059 module_put(mtd->owner); 1060} 1061EXPORT_SYMBOL_GPL(__put_mtd_device); 1062 1063/* 1064 * Erase is an synchronous operation. Device drivers are epected to return a 1065 * negative error code if the operation failed and update instr->fail_addr 1066 * to point the portion that was not properly erased. 1067 */ 1068int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1069{ 1070 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1071 1072 if (!mtd->erasesize || !mtd->_erase) 1073 return -ENOTSUPP; 1074 1075 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1076 return -EINVAL; 1077 if (!(mtd->flags & MTD_WRITEABLE)) 1078 return -EROFS; 1079 1080 if (!instr->len) 1081 return 0; 1082 1083 ledtrig_mtd_activity(); 1084 return mtd->_erase(mtd, instr); 1085} 1086EXPORT_SYMBOL_GPL(mtd_erase); 1087 1088/* 1089 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1090 */ 1091int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1092 void **virt, resource_size_t *phys) 1093{ 1094 *retlen = 0; 1095 *virt = NULL; 1096 if (phys) 1097 *phys = 0; 1098 if (!mtd->_point) 1099 return -EOPNOTSUPP; 1100 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1101 return -EINVAL; 1102 if (!len) 1103 return 0; 1104 return mtd->_point(mtd, from, len, retlen, virt, phys); 1105} 1106EXPORT_SYMBOL_GPL(mtd_point); 1107 1108/* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1109int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1110{ 1111 if (!mtd->_unpoint) 1112 return -EOPNOTSUPP; 1113 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1114 return -EINVAL; 1115 if (!len) 1116 return 0; 1117 return mtd->_unpoint(mtd, from, len); 1118} 1119EXPORT_SYMBOL_GPL(mtd_unpoint); 1120 1121/* 1122 * Allow NOMMU mmap() to directly map the device (if not NULL) 1123 * - return the address to which the offset maps 1124 * - return -ENOSYS to indicate refusal to do the mapping 1125 */ 1126unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1127 unsigned long offset, unsigned long flags) 1128{ 1129 size_t retlen; 1130 void *virt; 1131 int ret; 1132 1133 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1134 if (ret) 1135 return ret; 1136 if (retlen != len) { 1137 mtd_unpoint(mtd, offset, retlen); 1138 return -ENOSYS; 1139 } 1140 return (unsigned long)virt; 1141} 1142EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1143 1144int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1145 u_char *buf) 1146{ 1147 struct mtd_oob_ops ops = { 1148 .len = len, 1149 .datbuf = buf, 1150 }; 1151 int ret; 1152 1153 ret = mtd_read_oob(mtd, from, &ops); 1154 *retlen = ops.retlen; 1155 1156 return ret; 1157} 1158EXPORT_SYMBOL_GPL(mtd_read); 1159 1160int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1161 const u_char *buf) 1162{ 1163 struct mtd_oob_ops ops = { 1164 .len = len, 1165 .datbuf = (u8 *)buf, 1166 }; 1167 int ret; 1168 1169 ret = mtd_write_oob(mtd, to, &ops); 1170 *retlen = ops.retlen; 1171 1172 return ret; 1173} 1174EXPORT_SYMBOL_GPL(mtd_write); 1175 1176/* 1177 * In blackbox flight recorder like scenarios we want to make successful writes 1178 * in interrupt context. panic_write() is only intended to be called when its 1179 * known the kernel is about to panic and we need the write to succeed. Since 1180 * the kernel is not going to be running for much longer, this function can 1181 * break locks and delay to ensure the write succeeds (but not sleep). 1182 */ 1183int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1184 const u_char *buf) 1185{ 1186 *retlen = 0; 1187 if (!mtd->_panic_write) 1188 return -EOPNOTSUPP; 1189 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1190 return -EINVAL; 1191 if (!(mtd->flags & MTD_WRITEABLE)) 1192 return -EROFS; 1193 if (!len) 1194 return 0; 1195 if (!mtd->oops_panic_write) 1196 mtd->oops_panic_write = true; 1197 1198 return mtd->_panic_write(mtd, to, len, retlen, buf); 1199} 1200EXPORT_SYMBOL_GPL(mtd_panic_write); 1201 1202static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1203 struct mtd_oob_ops *ops) 1204{ 1205 /* 1206 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1207 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1208 * this case. 1209 */ 1210 if (!ops->datbuf) 1211 ops->len = 0; 1212 1213 if (!ops->oobbuf) 1214 ops->ooblen = 0; 1215 1216 if (offs < 0 || offs + ops->len > mtd->size) 1217 return -EINVAL; 1218 1219 if (ops->ooblen) { 1220 size_t maxooblen; 1221 1222 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1223 return -EINVAL; 1224 1225 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1226 mtd_div_by_ws(offs, mtd)) * 1227 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1228 if (ops->ooblen > maxooblen) 1229 return -EINVAL; 1230 } 1231 1232 return 0; 1233} 1234 1235int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1236{ 1237 int ret_code; 1238 ops->retlen = ops->oobretlen = 0; 1239 1240 ret_code = mtd_check_oob_ops(mtd, from, ops); 1241 if (ret_code) 1242 return ret_code; 1243 1244 ledtrig_mtd_activity(); 1245 1246 /* Check the validity of a potential fallback on mtd->_read */ 1247 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1248 return -EOPNOTSUPP; 1249 1250 if (mtd->_read_oob) 1251 ret_code = mtd->_read_oob(mtd, from, ops); 1252 else 1253 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1254 ops->datbuf); 1255 1256 /* 1257 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1258 * similar to mtd->_read(), returning a non-negative integer 1259 * representing max bitflips. In other cases, mtd->_read_oob() may 1260 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1261 */ 1262 if (unlikely(ret_code < 0)) 1263 return ret_code; 1264 if (mtd->ecc_strength == 0) 1265 return 0; /* device lacks ecc */ 1266 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1267} 1268EXPORT_SYMBOL_GPL(mtd_read_oob); 1269 1270int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1271 struct mtd_oob_ops *ops) 1272{ 1273 int ret; 1274 1275 ops->retlen = ops->oobretlen = 0; 1276 1277 if (!(mtd->flags & MTD_WRITEABLE)) 1278 return -EROFS; 1279 1280 ret = mtd_check_oob_ops(mtd, to, ops); 1281 if (ret) 1282 return ret; 1283 1284 ledtrig_mtd_activity(); 1285 1286 /* Check the validity of a potential fallback on mtd->_write */ 1287 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1288 return -EOPNOTSUPP; 1289 1290 if (mtd->_write_oob) 1291 return mtd->_write_oob(mtd, to, ops); 1292 else 1293 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1294 ops->datbuf); 1295} 1296EXPORT_SYMBOL_GPL(mtd_write_oob); 1297 1298/** 1299 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1300 * @mtd: MTD device structure 1301 * @section: ECC section. Depending on the layout you may have all the ECC 1302 * bytes stored in a single contiguous section, or one section 1303 * per ECC chunk (and sometime several sections for a single ECC 1304 * ECC chunk) 1305 * @oobecc: OOB region struct filled with the appropriate ECC position 1306 * information 1307 * 1308 * This function returns ECC section information in the OOB area. If you want 1309 * to get all the ECC bytes information, then you should call 1310 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1311 * 1312 * Returns zero on success, a negative error code otherwise. 1313 */ 1314int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1315 struct mtd_oob_region *oobecc) 1316{ 1317 memset(oobecc, 0, sizeof(*oobecc)); 1318 1319 if (!mtd || section < 0) 1320 return -EINVAL; 1321 1322 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1323 return -ENOTSUPP; 1324 1325 return mtd->ooblayout->ecc(mtd, section, oobecc); 1326} 1327EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1328 1329/** 1330 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1331 * section 1332 * @mtd: MTD device structure 1333 * @section: Free section you are interested in. Depending on the layout 1334 * you may have all the free bytes stored in a single contiguous 1335 * section, or one section per ECC chunk plus an extra section 1336 * for the remaining bytes (or other funky layout). 1337 * @oobfree: OOB region struct filled with the appropriate free position 1338 * information 1339 * 1340 * This function returns free bytes position in the OOB area. If you want 1341 * to get all the free bytes information, then you should call 1342 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1343 * 1344 * Returns zero on success, a negative error code otherwise. 1345 */ 1346int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1347 struct mtd_oob_region *oobfree) 1348{ 1349 memset(oobfree, 0, sizeof(*oobfree)); 1350 1351 if (!mtd || section < 0) 1352 return -EINVAL; 1353 1354 if (!mtd->ooblayout || !mtd->ooblayout->free) 1355 return -ENOTSUPP; 1356 1357 return mtd->ooblayout->free(mtd, section, oobfree); 1358} 1359EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1360 1361/** 1362 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1363 * @mtd: mtd info structure 1364 * @byte: the byte we are searching for 1365 * @sectionp: pointer where the section id will be stored 1366 * @oobregion: used to retrieve the ECC position 1367 * @iter: iterator function. Should be either mtd_ooblayout_free or 1368 * mtd_ooblayout_ecc depending on the region type you're searching for 1369 * 1370 * This function returns the section id and oobregion information of a 1371 * specific byte. For example, say you want to know where the 4th ECC byte is 1372 * stored, you'll use: 1373 * 1374 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc); 1375 * 1376 * Returns zero on success, a negative error code otherwise. 1377 */ 1378static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1379 int *sectionp, struct mtd_oob_region *oobregion, 1380 int (*iter)(struct mtd_info *, 1381 int section, 1382 struct mtd_oob_region *oobregion)) 1383{ 1384 int pos = 0, ret, section = 0; 1385 1386 memset(oobregion, 0, sizeof(*oobregion)); 1387 1388 while (1) { 1389 ret = iter(mtd, section, oobregion); 1390 if (ret) 1391 return ret; 1392 1393 if (pos + oobregion->length > byte) 1394 break; 1395 1396 pos += oobregion->length; 1397 section++; 1398 } 1399 1400 /* 1401 * Adjust region info to make it start at the beginning at the 1402 * 'start' ECC byte. 1403 */ 1404 oobregion->offset += byte - pos; 1405 oobregion->length -= byte - pos; 1406 *sectionp = section; 1407 1408 return 0; 1409} 1410 1411/** 1412 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1413 * ECC byte 1414 * @mtd: mtd info structure 1415 * @eccbyte: the byte we are searching for 1416 * @sectionp: pointer where the section id will be stored 1417 * @oobregion: OOB region information 1418 * 1419 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1420 * byte. 1421 * 1422 * Returns zero on success, a negative error code otherwise. 1423 */ 1424int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1425 int *section, 1426 struct mtd_oob_region *oobregion) 1427{ 1428 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1429 mtd_ooblayout_ecc); 1430} 1431EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1432 1433/** 1434 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1435 * @mtd: mtd info structure 1436 * @buf: destination buffer to store OOB bytes 1437 * @oobbuf: OOB buffer 1438 * @start: first byte to retrieve 1439 * @nbytes: number of bytes to retrieve 1440 * @iter: section iterator 1441 * 1442 * Extract bytes attached to a specific category (ECC or free) 1443 * from the OOB buffer and copy them into buf. 1444 * 1445 * Returns zero on success, a negative error code otherwise. 1446 */ 1447static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1448 const u8 *oobbuf, int start, int nbytes, 1449 int (*iter)(struct mtd_info *, 1450 int section, 1451 struct mtd_oob_region *oobregion)) 1452{ 1453 struct mtd_oob_region oobregion; 1454 int section, ret; 1455 1456 ret = mtd_ooblayout_find_region(mtd, start, &section, 1457 &oobregion, iter); 1458 1459 while (!ret) { 1460 int cnt; 1461 1462 cnt = min_t(int, nbytes, oobregion.length); 1463 memcpy(buf, oobbuf + oobregion.offset, cnt); 1464 buf += cnt; 1465 nbytes -= cnt; 1466 1467 if (!nbytes) 1468 break; 1469 1470 ret = iter(mtd, ++section, &oobregion); 1471 } 1472 1473 return ret; 1474} 1475 1476/** 1477 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1478 * @mtd: mtd info structure 1479 * @buf: source buffer to get OOB bytes from 1480 * @oobbuf: OOB buffer 1481 * @start: first OOB byte to set 1482 * @nbytes: number of OOB bytes to set 1483 * @iter: section iterator 1484 * 1485 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1486 * is selected by passing the appropriate iterator. 1487 * 1488 * Returns zero on success, a negative error code otherwise. 1489 */ 1490static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1491 u8 *oobbuf, int start, int nbytes, 1492 int (*iter)(struct mtd_info *, 1493 int section, 1494 struct mtd_oob_region *oobregion)) 1495{ 1496 struct mtd_oob_region oobregion; 1497 int section, ret; 1498 1499 ret = mtd_ooblayout_find_region(mtd, start, &section, 1500 &oobregion, iter); 1501 1502 while (!ret) { 1503 int cnt; 1504 1505 cnt = min_t(int, nbytes, oobregion.length); 1506 memcpy(oobbuf + oobregion.offset, buf, cnt); 1507 buf += cnt; 1508 nbytes -= cnt; 1509 1510 if (!nbytes) 1511 break; 1512 1513 ret = iter(mtd, ++section, &oobregion); 1514 } 1515 1516 return ret; 1517} 1518 1519/** 1520 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1521 * @mtd: mtd info structure 1522 * @iter: category iterator 1523 * 1524 * Count the number of bytes in a given category. 1525 * 1526 * Returns a positive value on success, a negative error code otherwise. 1527 */ 1528static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1529 int (*iter)(struct mtd_info *, 1530 int section, 1531 struct mtd_oob_region *oobregion)) 1532{ 1533 struct mtd_oob_region oobregion; 1534 int section = 0, ret, nbytes = 0; 1535 1536 while (1) { 1537 ret = iter(mtd, section++, &oobregion); 1538 if (ret) { 1539 if (ret == -ERANGE) 1540 ret = nbytes; 1541 break; 1542 } 1543 1544 nbytes += oobregion.length; 1545 } 1546 1547 return ret; 1548} 1549 1550/** 1551 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1552 * @mtd: mtd info structure 1553 * @eccbuf: destination buffer to store ECC bytes 1554 * @oobbuf: OOB buffer 1555 * @start: first ECC byte to retrieve 1556 * @nbytes: number of ECC bytes to retrieve 1557 * 1558 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1559 * 1560 * Returns zero on success, a negative error code otherwise. 1561 */ 1562int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1563 const u8 *oobbuf, int start, int nbytes) 1564{ 1565 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1566 mtd_ooblayout_ecc); 1567} 1568EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1569 1570/** 1571 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1572 * @mtd: mtd info structure 1573 * @eccbuf: source buffer to get ECC bytes from 1574 * @oobbuf: OOB buffer 1575 * @start: first ECC byte to set 1576 * @nbytes: number of ECC bytes to set 1577 * 1578 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1579 * 1580 * Returns zero on success, a negative error code otherwise. 1581 */ 1582int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1583 u8 *oobbuf, int start, int nbytes) 1584{ 1585 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1586 mtd_ooblayout_ecc); 1587} 1588EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1589 1590/** 1591 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1592 * @mtd: mtd info structure 1593 * @databuf: destination buffer to store ECC bytes 1594 * @oobbuf: OOB buffer 1595 * @start: first ECC byte to retrieve 1596 * @nbytes: number of ECC bytes to retrieve 1597 * 1598 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1599 * 1600 * Returns zero on success, a negative error code otherwise. 1601 */ 1602int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1603 const u8 *oobbuf, int start, int nbytes) 1604{ 1605 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1606 mtd_ooblayout_free); 1607} 1608EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1609 1610/** 1611 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1612 * @mtd: mtd info structure 1613 * @databuf: source buffer to get data bytes from 1614 * @oobbuf: OOB buffer 1615 * @start: first ECC byte to set 1616 * @nbytes: number of ECC bytes to set 1617 * 1618 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1619 * 1620 * Returns zero on success, a negative error code otherwise. 1621 */ 1622int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1623 u8 *oobbuf, int start, int nbytes) 1624{ 1625 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1626 mtd_ooblayout_free); 1627} 1628EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1629 1630/** 1631 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1632 * @mtd: mtd info structure 1633 * 1634 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1635 * 1636 * Returns zero on success, a negative error code otherwise. 1637 */ 1638int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1639{ 1640 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1641} 1642EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1643 1644/** 1645 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1646 * @mtd: mtd info structure 1647 * 1648 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1649 * 1650 * Returns zero on success, a negative error code otherwise. 1651 */ 1652int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1653{ 1654 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1655} 1656EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1657 1658/* 1659 * Method to access the protection register area, present in some flash 1660 * devices. The user data is one time programmable but the factory data is read 1661 * only. 1662 */ 1663int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1664 struct otp_info *buf) 1665{ 1666 if (!mtd->_get_fact_prot_info) 1667 return -EOPNOTSUPP; 1668 if (!len) 1669 return 0; 1670 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1671} 1672EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1673 1674int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1675 size_t *retlen, u_char *buf) 1676{ 1677 *retlen = 0; 1678 if (!mtd->_read_fact_prot_reg) 1679 return -EOPNOTSUPP; 1680 if (!len) 1681 return 0; 1682 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1683} 1684EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1685 1686int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1687 struct otp_info *buf) 1688{ 1689 if (!mtd->_get_user_prot_info) 1690 return -EOPNOTSUPP; 1691 if (!len) 1692 return 0; 1693 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1694} 1695EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1696 1697int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1698 size_t *retlen, u_char *buf) 1699{ 1700 *retlen = 0; 1701 if (!mtd->_read_user_prot_reg) 1702 return -EOPNOTSUPP; 1703 if (!len) 1704 return 0; 1705 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1706} 1707EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1708 1709int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1710 size_t *retlen, u_char *buf) 1711{ 1712 int ret; 1713 1714 *retlen = 0; 1715 if (!mtd->_write_user_prot_reg) 1716 return -EOPNOTSUPP; 1717 if (!len) 1718 return 0; 1719 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1720 if (ret) 1721 return ret; 1722 1723 /* 1724 * If no data could be written at all, we are out of memory and 1725 * must return -ENOSPC. 1726 */ 1727 return (*retlen) ? 0 : -ENOSPC; 1728} 1729EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1730 1731int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1732{ 1733 if (!mtd->_lock_user_prot_reg) 1734 return -EOPNOTSUPP; 1735 if (!len) 1736 return 0; 1737 return mtd->_lock_user_prot_reg(mtd, from, len); 1738} 1739EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1740 1741/* Chip-supported device locking */ 1742int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1743{ 1744 if (!mtd->_lock) 1745 return -EOPNOTSUPP; 1746 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1747 return -EINVAL; 1748 if (!len) 1749 return 0; 1750 return mtd->_lock(mtd, ofs, len); 1751} 1752EXPORT_SYMBOL_GPL(mtd_lock); 1753 1754int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1755{ 1756 if (!mtd->_unlock) 1757 return -EOPNOTSUPP; 1758 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1759 return -EINVAL; 1760 if (!len) 1761 return 0; 1762 return mtd->_unlock(mtd, ofs, len); 1763} 1764EXPORT_SYMBOL_GPL(mtd_unlock); 1765 1766int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1767{ 1768 if (!mtd->_is_locked) 1769 return -EOPNOTSUPP; 1770 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1771 return -EINVAL; 1772 if (!len) 1773 return 0; 1774 return mtd->_is_locked(mtd, ofs, len); 1775} 1776EXPORT_SYMBOL_GPL(mtd_is_locked); 1777 1778int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1779{ 1780 if (ofs < 0 || ofs >= mtd->size) 1781 return -EINVAL; 1782 if (!mtd->_block_isreserved) 1783 return 0; 1784 return mtd->_block_isreserved(mtd, ofs); 1785} 1786EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1787 1788int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1789{ 1790 if (ofs < 0 || ofs >= mtd->size) 1791 return -EINVAL; 1792 if (!mtd->_block_isbad) 1793 return 0; 1794 return mtd->_block_isbad(mtd, ofs); 1795} 1796EXPORT_SYMBOL_GPL(mtd_block_isbad); 1797 1798int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1799{ 1800 if (!mtd->_block_markbad) 1801 return -EOPNOTSUPP; 1802 if (ofs < 0 || ofs >= mtd->size) 1803 return -EINVAL; 1804 if (!(mtd->flags & MTD_WRITEABLE)) 1805 return -EROFS; 1806 return mtd->_block_markbad(mtd, ofs); 1807} 1808EXPORT_SYMBOL_GPL(mtd_block_markbad); 1809 1810/* 1811 * default_mtd_writev - the default writev method 1812 * @mtd: mtd device description object pointer 1813 * @vecs: the vectors to write 1814 * @count: count of vectors in @vecs 1815 * @to: the MTD device offset to write to 1816 * @retlen: on exit contains the count of bytes written to the MTD device. 1817 * 1818 * This function returns zero in case of success and a negative error code in 1819 * case of failure. 1820 */ 1821static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1822 unsigned long count, loff_t to, size_t *retlen) 1823{ 1824 unsigned long i; 1825 size_t totlen = 0, thislen; 1826 int ret = 0; 1827 1828 for (i = 0; i < count; i++) { 1829 if (!vecs[i].iov_len) 1830 continue; 1831 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1832 vecs[i].iov_base); 1833 totlen += thislen; 1834 if (ret || thislen != vecs[i].iov_len) 1835 break; 1836 to += vecs[i].iov_len; 1837 } 1838 *retlen = totlen; 1839 return ret; 1840} 1841 1842/* 1843 * mtd_writev - the vector-based MTD write method 1844 * @mtd: mtd device description object pointer 1845 * @vecs: the vectors to write 1846 * @count: count of vectors in @vecs 1847 * @to: the MTD device offset to write to 1848 * @retlen: on exit contains the count of bytes written to the MTD device. 1849 * 1850 * This function returns zero in case of success and a negative error code in 1851 * case of failure. 1852 */ 1853int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1854 unsigned long count, loff_t to, size_t *retlen) 1855{ 1856 *retlen = 0; 1857 if (!(mtd->flags & MTD_WRITEABLE)) 1858 return -EROFS; 1859 if (!mtd->_writev) 1860 return default_mtd_writev(mtd, vecs, count, to, retlen); 1861 return mtd->_writev(mtd, vecs, count, to, retlen); 1862} 1863EXPORT_SYMBOL_GPL(mtd_writev); 1864 1865/** 1866 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1867 * @mtd: mtd device description object pointer 1868 * @size: a pointer to the ideal or maximum size of the allocation, points 1869 * to the actual allocation size on success. 1870 * 1871 * This routine attempts to allocate a contiguous kernel buffer up to 1872 * the specified size, backing off the size of the request exponentially 1873 * until the request succeeds or until the allocation size falls below 1874 * the system page size. This attempts to make sure it does not adversely 1875 * impact system performance, so when allocating more than one page, we 1876 * ask the memory allocator to avoid re-trying, swapping, writing back 1877 * or performing I/O. 1878 * 1879 * Note, this function also makes sure that the allocated buffer is aligned to 1880 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1881 * 1882 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1883 * to handle smaller (i.e. degraded) buffer allocations under low- or 1884 * fragmented-memory situations where such reduced allocations, from a 1885 * requested ideal, are allowed. 1886 * 1887 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1888 */ 1889void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1890{ 1891 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1892 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1893 void *kbuf; 1894 1895 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1896 1897 while (*size > min_alloc) { 1898 kbuf = kmalloc(*size, flags); 1899 if (kbuf) 1900 return kbuf; 1901 1902 *size >>= 1; 1903 *size = ALIGN(*size, mtd->writesize); 1904 } 1905 1906 /* 1907 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1908 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1909 */ 1910 return kmalloc(*size, GFP_KERNEL); 1911} 1912EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1913 1914#ifdef CONFIG_PROC_FS 1915 1916/*====================================================================*/ 1917/* Support for /proc/mtd */ 1918 1919static int mtd_proc_show(struct seq_file *m, void *v) 1920{ 1921 struct mtd_info *mtd; 1922 1923 seq_puts(m, "dev: size erasesize name\n"); 1924 mutex_lock(&mtd_table_mutex); 1925 mtd_for_each_device(mtd) { 1926 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1927 mtd->index, (unsigned long long)mtd->size, 1928 mtd->erasesize, mtd->name); 1929 } 1930 mutex_unlock(&mtd_table_mutex); 1931 return 0; 1932} 1933#endif /* CONFIG_PROC_FS */ 1934 1935/*====================================================================*/ 1936/* Init code */ 1937 1938static struct backing_dev_info * __init mtd_bdi_init(char *name) 1939{ 1940 struct backing_dev_info *bdi; 1941 int ret; 1942 1943 bdi = bdi_alloc(GFP_KERNEL); 1944 if (!bdi) 1945 return ERR_PTR(-ENOMEM); 1946 1947 bdi->name = name; 1948 /* 1949 * We put '-0' suffix to the name to get the same name format as we 1950 * used to get. Since this is called only once, we get a unique name. 1951 */ 1952 ret = bdi_register(bdi, "%.28s-0", name); 1953 if (ret) 1954 bdi_put(bdi); 1955 1956 return ret ? ERR_PTR(ret) : bdi; 1957} 1958 1959static struct proc_dir_entry *proc_mtd; 1960 1961static int __init init_mtd(void) 1962{ 1963 int ret; 1964 1965 ret = class_register(&mtd_class); 1966 if (ret) 1967 goto err_reg; 1968 1969 mtd_bdi = mtd_bdi_init("mtd"); 1970 if (IS_ERR(mtd_bdi)) { 1971 ret = PTR_ERR(mtd_bdi); 1972 goto err_bdi; 1973 } 1974 1975 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1976 1977 ret = init_mtdchar(); 1978 if (ret) 1979 goto out_procfs; 1980 1981 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1982 1983 return 0; 1984 1985out_procfs: 1986 if (proc_mtd) 1987 remove_proc_entry("mtd", NULL); 1988 bdi_put(mtd_bdi); 1989err_bdi: 1990 class_unregister(&mtd_class); 1991err_reg: 1992 pr_err("Error registering mtd class or bdi: %d\n", ret); 1993 return ret; 1994} 1995 1996static void __exit cleanup_mtd(void) 1997{ 1998 debugfs_remove_recursive(dfs_dir_mtd); 1999 cleanup_mtdchar(); 2000 if (proc_mtd) 2001 remove_proc_entry("mtd", NULL); 2002 class_unregister(&mtd_class); 2003 bdi_put(mtd_bdi); 2004 idr_destroy(&mtd_idr); 2005} 2006 2007module_init(init_mtd); 2008module_exit(cleanup_mtd); 2009 2010MODULE_LICENSE("GPL"); 2011MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2012MODULE_DESCRIPTION("Core MTD registration and access routines");