at v5.4-rc4 2133 lines 53 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/vmstat.c 4 * 5 * Manages VM statistics 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 * 8 * zoned VM statistics 9 * Copyright (C) 2006 Silicon Graphics, Inc., 10 * Christoph Lameter <christoph@lameter.com> 11 * Copyright (C) 2008-2014 Christoph Lameter 12 */ 13#include <linux/fs.h> 14#include <linux/mm.h> 15#include <linux/err.h> 16#include <linux/module.h> 17#include <linux/slab.h> 18#include <linux/cpu.h> 19#include <linux/cpumask.h> 20#include <linux/vmstat.h> 21#include <linux/proc_fs.h> 22#include <linux/seq_file.h> 23#include <linux/debugfs.h> 24#include <linux/sched.h> 25#include <linux/math64.h> 26#include <linux/writeback.h> 27#include <linux/compaction.h> 28#include <linux/mm_inline.h> 29#include <linux/page_ext.h> 30#include <linux/page_owner.h> 31 32#include "internal.h" 33 34#define NUMA_STATS_THRESHOLD (U16_MAX - 2) 35 36#ifdef CONFIG_NUMA 37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT; 38 39/* zero numa counters within a zone */ 40static void zero_zone_numa_counters(struct zone *zone) 41{ 42 int item, cpu; 43 44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) { 45 atomic_long_set(&zone->vm_numa_stat[item], 0); 46 for_each_online_cpu(cpu) 47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item] 48 = 0; 49 } 50} 51 52/* zero numa counters of all the populated zones */ 53static void zero_zones_numa_counters(void) 54{ 55 struct zone *zone; 56 57 for_each_populated_zone(zone) 58 zero_zone_numa_counters(zone); 59} 60 61/* zero global numa counters */ 62static void zero_global_numa_counters(void) 63{ 64 int item; 65 66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) 67 atomic_long_set(&vm_numa_stat[item], 0); 68} 69 70static void invalid_numa_statistics(void) 71{ 72 zero_zones_numa_counters(); 73 zero_global_numa_counters(); 74} 75 76static DEFINE_MUTEX(vm_numa_stat_lock); 77 78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, 79 void __user *buffer, size_t *length, loff_t *ppos) 80{ 81 int ret, oldval; 82 83 mutex_lock(&vm_numa_stat_lock); 84 if (write) 85 oldval = sysctl_vm_numa_stat; 86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 87 if (ret || !write) 88 goto out; 89 90 if (oldval == sysctl_vm_numa_stat) 91 goto out; 92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) { 93 static_branch_enable(&vm_numa_stat_key); 94 pr_info("enable numa statistics\n"); 95 } else { 96 static_branch_disable(&vm_numa_stat_key); 97 invalid_numa_statistics(); 98 pr_info("disable numa statistics, and clear numa counters\n"); 99 } 100 101out: 102 mutex_unlock(&vm_numa_stat_lock); 103 return ret; 104} 105#endif 106 107#ifdef CONFIG_VM_EVENT_COUNTERS 108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 109EXPORT_PER_CPU_SYMBOL(vm_event_states); 110 111static void sum_vm_events(unsigned long *ret) 112{ 113 int cpu; 114 int i; 115 116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 117 118 for_each_online_cpu(cpu) { 119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 120 121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 122 ret[i] += this->event[i]; 123 } 124} 125 126/* 127 * Accumulate the vm event counters across all CPUs. 128 * The result is unavoidably approximate - it can change 129 * during and after execution of this function. 130*/ 131void all_vm_events(unsigned long *ret) 132{ 133 get_online_cpus(); 134 sum_vm_events(ret); 135 put_online_cpus(); 136} 137EXPORT_SYMBOL_GPL(all_vm_events); 138 139/* 140 * Fold the foreign cpu events into our own. 141 * 142 * This is adding to the events on one processor 143 * but keeps the global counts constant. 144 */ 145void vm_events_fold_cpu(int cpu) 146{ 147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 148 int i; 149 150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 151 count_vm_events(i, fold_state->event[i]); 152 fold_state->event[i] = 0; 153 } 154} 155 156#endif /* CONFIG_VM_EVENT_COUNTERS */ 157 158/* 159 * Manage combined zone based / global counters 160 * 161 * vm_stat contains the global counters 162 */ 163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp; 165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp; 166EXPORT_SYMBOL(vm_zone_stat); 167EXPORT_SYMBOL(vm_numa_stat); 168EXPORT_SYMBOL(vm_node_stat); 169 170#ifdef CONFIG_SMP 171 172int calculate_pressure_threshold(struct zone *zone) 173{ 174 int threshold; 175 int watermark_distance; 176 177 /* 178 * As vmstats are not up to date, there is drift between the estimated 179 * and real values. For high thresholds and a high number of CPUs, it 180 * is possible for the min watermark to be breached while the estimated 181 * value looks fine. The pressure threshold is a reduced value such 182 * that even the maximum amount of drift will not accidentally breach 183 * the min watermark 184 */ 185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 186 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 187 188 /* 189 * Maximum threshold is 125 190 */ 191 threshold = min(125, threshold); 192 193 return threshold; 194} 195 196int calculate_normal_threshold(struct zone *zone) 197{ 198 int threshold; 199 int mem; /* memory in 128 MB units */ 200 201 /* 202 * The threshold scales with the number of processors and the amount 203 * of memory per zone. More memory means that we can defer updates for 204 * longer, more processors could lead to more contention. 205 * fls() is used to have a cheap way of logarithmic scaling. 206 * 207 * Some sample thresholds: 208 * 209 * Threshold Processors (fls) Zonesize fls(mem+1) 210 * ------------------------------------------------------------------ 211 * 8 1 1 0.9-1 GB 4 212 * 16 2 2 0.9-1 GB 4 213 * 20 2 2 1-2 GB 5 214 * 24 2 2 2-4 GB 6 215 * 28 2 2 4-8 GB 7 216 * 32 2 2 8-16 GB 8 217 * 4 2 2 <128M 1 218 * 30 4 3 2-4 GB 5 219 * 48 4 3 8-16 GB 8 220 * 32 8 4 1-2 GB 4 221 * 32 8 4 0.9-1GB 4 222 * 10 16 5 <128M 1 223 * 40 16 5 900M 4 224 * 70 64 7 2-4 GB 5 225 * 84 64 7 4-8 GB 6 226 * 108 512 9 4-8 GB 6 227 * 125 1024 10 8-16 GB 8 228 * 125 1024 10 16-32 GB 9 229 */ 230 231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT); 232 233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 234 235 /* 236 * Maximum threshold is 125 237 */ 238 threshold = min(125, threshold); 239 240 return threshold; 241} 242 243/* 244 * Refresh the thresholds for each zone. 245 */ 246void refresh_zone_stat_thresholds(void) 247{ 248 struct pglist_data *pgdat; 249 struct zone *zone; 250 int cpu; 251 int threshold; 252 253 /* Zero current pgdat thresholds */ 254 for_each_online_pgdat(pgdat) { 255 for_each_online_cpu(cpu) { 256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0; 257 } 258 } 259 260 for_each_populated_zone(zone) { 261 struct pglist_data *pgdat = zone->zone_pgdat; 262 unsigned long max_drift, tolerate_drift; 263 264 threshold = calculate_normal_threshold(zone); 265 266 for_each_online_cpu(cpu) { 267 int pgdat_threshold; 268 269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 270 = threshold; 271 272 /* Base nodestat threshold on the largest populated zone. */ 273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold; 274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold 275 = max(threshold, pgdat_threshold); 276 } 277 278 /* 279 * Only set percpu_drift_mark if there is a danger that 280 * NR_FREE_PAGES reports the low watermark is ok when in fact 281 * the min watermark could be breached by an allocation 282 */ 283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 284 max_drift = num_online_cpus() * threshold; 285 if (max_drift > tolerate_drift) 286 zone->percpu_drift_mark = high_wmark_pages(zone) + 287 max_drift; 288 } 289} 290 291void set_pgdat_percpu_threshold(pg_data_t *pgdat, 292 int (*calculate_pressure)(struct zone *)) 293{ 294 struct zone *zone; 295 int cpu; 296 int threshold; 297 int i; 298 299 for (i = 0; i < pgdat->nr_zones; i++) { 300 zone = &pgdat->node_zones[i]; 301 if (!zone->percpu_drift_mark) 302 continue; 303 304 threshold = (*calculate_pressure)(zone); 305 for_each_online_cpu(cpu) 306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 307 = threshold; 308 } 309} 310 311/* 312 * For use when we know that interrupts are disabled, 313 * or when we know that preemption is disabled and that 314 * particular counter cannot be updated from interrupt context. 315 */ 316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 317 long delta) 318{ 319 struct per_cpu_pageset __percpu *pcp = zone->pageset; 320 s8 __percpu *p = pcp->vm_stat_diff + item; 321 long x; 322 long t; 323 324 x = delta + __this_cpu_read(*p); 325 326 t = __this_cpu_read(pcp->stat_threshold); 327 328 if (unlikely(x > t || x < -t)) { 329 zone_page_state_add(x, zone, item); 330 x = 0; 331 } 332 __this_cpu_write(*p, x); 333} 334EXPORT_SYMBOL(__mod_zone_page_state); 335 336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 337 long delta) 338{ 339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 340 s8 __percpu *p = pcp->vm_node_stat_diff + item; 341 long x; 342 long t; 343 344 x = delta + __this_cpu_read(*p); 345 346 t = __this_cpu_read(pcp->stat_threshold); 347 348 if (unlikely(x > t || x < -t)) { 349 node_page_state_add(x, pgdat, item); 350 x = 0; 351 } 352 __this_cpu_write(*p, x); 353} 354EXPORT_SYMBOL(__mod_node_page_state); 355 356/* 357 * Optimized increment and decrement functions. 358 * 359 * These are only for a single page and therefore can take a struct page * 360 * argument instead of struct zone *. This allows the inclusion of the code 361 * generated for page_zone(page) into the optimized functions. 362 * 363 * No overflow check is necessary and therefore the differential can be 364 * incremented or decremented in place which may allow the compilers to 365 * generate better code. 366 * The increment or decrement is known and therefore one boundary check can 367 * be omitted. 368 * 369 * NOTE: These functions are very performance sensitive. Change only 370 * with care. 371 * 372 * Some processors have inc/dec instructions that are atomic vs an interrupt. 373 * However, the code must first determine the differential location in a zone 374 * based on the processor number and then inc/dec the counter. There is no 375 * guarantee without disabling preemption that the processor will not change 376 * in between and therefore the atomicity vs. interrupt cannot be exploited 377 * in a useful way here. 378 */ 379void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 380{ 381 struct per_cpu_pageset __percpu *pcp = zone->pageset; 382 s8 __percpu *p = pcp->vm_stat_diff + item; 383 s8 v, t; 384 385 v = __this_cpu_inc_return(*p); 386 t = __this_cpu_read(pcp->stat_threshold); 387 if (unlikely(v > t)) { 388 s8 overstep = t >> 1; 389 390 zone_page_state_add(v + overstep, zone, item); 391 __this_cpu_write(*p, -overstep); 392 } 393} 394 395void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 396{ 397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 398 s8 __percpu *p = pcp->vm_node_stat_diff + item; 399 s8 v, t; 400 401 v = __this_cpu_inc_return(*p); 402 t = __this_cpu_read(pcp->stat_threshold); 403 if (unlikely(v > t)) { 404 s8 overstep = t >> 1; 405 406 node_page_state_add(v + overstep, pgdat, item); 407 __this_cpu_write(*p, -overstep); 408 } 409} 410 411void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 412{ 413 __inc_zone_state(page_zone(page), item); 414} 415EXPORT_SYMBOL(__inc_zone_page_state); 416 417void __inc_node_page_state(struct page *page, enum node_stat_item item) 418{ 419 __inc_node_state(page_pgdat(page), item); 420} 421EXPORT_SYMBOL(__inc_node_page_state); 422 423void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 424{ 425 struct per_cpu_pageset __percpu *pcp = zone->pageset; 426 s8 __percpu *p = pcp->vm_stat_diff + item; 427 s8 v, t; 428 429 v = __this_cpu_dec_return(*p); 430 t = __this_cpu_read(pcp->stat_threshold); 431 if (unlikely(v < - t)) { 432 s8 overstep = t >> 1; 433 434 zone_page_state_add(v - overstep, zone, item); 435 __this_cpu_write(*p, overstep); 436 } 437} 438 439void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) 440{ 441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 442 s8 __percpu *p = pcp->vm_node_stat_diff + item; 443 s8 v, t; 444 445 v = __this_cpu_dec_return(*p); 446 t = __this_cpu_read(pcp->stat_threshold); 447 if (unlikely(v < - t)) { 448 s8 overstep = t >> 1; 449 450 node_page_state_add(v - overstep, pgdat, item); 451 __this_cpu_write(*p, overstep); 452 } 453} 454 455void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 456{ 457 __dec_zone_state(page_zone(page), item); 458} 459EXPORT_SYMBOL(__dec_zone_page_state); 460 461void __dec_node_page_state(struct page *page, enum node_stat_item item) 462{ 463 __dec_node_state(page_pgdat(page), item); 464} 465EXPORT_SYMBOL(__dec_node_page_state); 466 467#ifdef CONFIG_HAVE_CMPXCHG_LOCAL 468/* 469 * If we have cmpxchg_local support then we do not need to incur the overhead 470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 471 * 472 * mod_state() modifies the zone counter state through atomic per cpu 473 * operations. 474 * 475 * Overstep mode specifies how overstep should handled: 476 * 0 No overstepping 477 * 1 Overstepping half of threshold 478 * -1 Overstepping minus half of threshold 479*/ 480static inline void mod_zone_state(struct zone *zone, 481 enum zone_stat_item item, long delta, int overstep_mode) 482{ 483 struct per_cpu_pageset __percpu *pcp = zone->pageset; 484 s8 __percpu *p = pcp->vm_stat_diff + item; 485 long o, n, t, z; 486 487 do { 488 z = 0; /* overflow to zone counters */ 489 490 /* 491 * The fetching of the stat_threshold is racy. We may apply 492 * a counter threshold to the wrong the cpu if we get 493 * rescheduled while executing here. However, the next 494 * counter update will apply the threshold again and 495 * therefore bring the counter under the threshold again. 496 * 497 * Most of the time the thresholds are the same anyways 498 * for all cpus in a zone. 499 */ 500 t = this_cpu_read(pcp->stat_threshold); 501 502 o = this_cpu_read(*p); 503 n = delta + o; 504 505 if (n > t || n < -t) { 506 int os = overstep_mode * (t >> 1) ; 507 508 /* Overflow must be added to zone counters */ 509 z = n + os; 510 n = -os; 511 } 512 } while (this_cpu_cmpxchg(*p, o, n) != o); 513 514 if (z) 515 zone_page_state_add(z, zone, item); 516} 517 518void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 519 long delta) 520{ 521 mod_zone_state(zone, item, delta, 0); 522} 523EXPORT_SYMBOL(mod_zone_page_state); 524 525void inc_zone_page_state(struct page *page, enum zone_stat_item item) 526{ 527 mod_zone_state(page_zone(page), item, 1, 1); 528} 529EXPORT_SYMBOL(inc_zone_page_state); 530 531void dec_zone_page_state(struct page *page, enum zone_stat_item item) 532{ 533 mod_zone_state(page_zone(page), item, -1, -1); 534} 535EXPORT_SYMBOL(dec_zone_page_state); 536 537static inline void mod_node_state(struct pglist_data *pgdat, 538 enum node_stat_item item, int delta, int overstep_mode) 539{ 540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats; 541 s8 __percpu *p = pcp->vm_node_stat_diff + item; 542 long o, n, t, z; 543 544 do { 545 z = 0; /* overflow to node counters */ 546 547 /* 548 * The fetching of the stat_threshold is racy. We may apply 549 * a counter threshold to the wrong the cpu if we get 550 * rescheduled while executing here. However, the next 551 * counter update will apply the threshold again and 552 * therefore bring the counter under the threshold again. 553 * 554 * Most of the time the thresholds are the same anyways 555 * for all cpus in a node. 556 */ 557 t = this_cpu_read(pcp->stat_threshold); 558 559 o = this_cpu_read(*p); 560 n = delta + o; 561 562 if (n > t || n < -t) { 563 int os = overstep_mode * (t >> 1) ; 564 565 /* Overflow must be added to node counters */ 566 z = n + os; 567 n = -os; 568 } 569 } while (this_cpu_cmpxchg(*p, o, n) != o); 570 571 if (z) 572 node_page_state_add(z, pgdat, item); 573} 574 575void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 576 long delta) 577{ 578 mod_node_state(pgdat, item, delta, 0); 579} 580EXPORT_SYMBOL(mod_node_page_state); 581 582void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 583{ 584 mod_node_state(pgdat, item, 1, 1); 585} 586 587void inc_node_page_state(struct page *page, enum node_stat_item item) 588{ 589 mod_node_state(page_pgdat(page), item, 1, 1); 590} 591EXPORT_SYMBOL(inc_node_page_state); 592 593void dec_node_page_state(struct page *page, enum node_stat_item item) 594{ 595 mod_node_state(page_pgdat(page), item, -1, -1); 596} 597EXPORT_SYMBOL(dec_node_page_state); 598#else 599/* 600 * Use interrupt disable to serialize counter updates 601 */ 602void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 603 long delta) 604{ 605 unsigned long flags; 606 607 local_irq_save(flags); 608 __mod_zone_page_state(zone, item, delta); 609 local_irq_restore(flags); 610} 611EXPORT_SYMBOL(mod_zone_page_state); 612 613void inc_zone_page_state(struct page *page, enum zone_stat_item item) 614{ 615 unsigned long flags; 616 struct zone *zone; 617 618 zone = page_zone(page); 619 local_irq_save(flags); 620 __inc_zone_state(zone, item); 621 local_irq_restore(flags); 622} 623EXPORT_SYMBOL(inc_zone_page_state); 624 625void dec_zone_page_state(struct page *page, enum zone_stat_item item) 626{ 627 unsigned long flags; 628 629 local_irq_save(flags); 630 __dec_zone_page_state(page, item); 631 local_irq_restore(flags); 632} 633EXPORT_SYMBOL(dec_zone_page_state); 634 635void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) 636{ 637 unsigned long flags; 638 639 local_irq_save(flags); 640 __inc_node_state(pgdat, item); 641 local_irq_restore(flags); 642} 643EXPORT_SYMBOL(inc_node_state); 644 645void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, 646 long delta) 647{ 648 unsigned long flags; 649 650 local_irq_save(flags); 651 __mod_node_page_state(pgdat, item, delta); 652 local_irq_restore(flags); 653} 654EXPORT_SYMBOL(mod_node_page_state); 655 656void inc_node_page_state(struct page *page, enum node_stat_item item) 657{ 658 unsigned long flags; 659 struct pglist_data *pgdat; 660 661 pgdat = page_pgdat(page); 662 local_irq_save(flags); 663 __inc_node_state(pgdat, item); 664 local_irq_restore(flags); 665} 666EXPORT_SYMBOL(inc_node_page_state); 667 668void dec_node_page_state(struct page *page, enum node_stat_item item) 669{ 670 unsigned long flags; 671 672 local_irq_save(flags); 673 __dec_node_page_state(page, item); 674 local_irq_restore(flags); 675} 676EXPORT_SYMBOL(dec_node_page_state); 677#endif 678 679/* 680 * Fold a differential into the global counters. 681 * Returns the number of counters updated. 682 */ 683#ifdef CONFIG_NUMA 684static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff) 685{ 686 int i; 687 int changes = 0; 688 689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 690 if (zone_diff[i]) { 691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 692 changes++; 693 } 694 695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 696 if (numa_diff[i]) { 697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]); 698 changes++; 699 } 700 701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 702 if (node_diff[i]) { 703 atomic_long_add(node_diff[i], &vm_node_stat[i]); 704 changes++; 705 } 706 return changes; 707} 708#else 709static int fold_diff(int *zone_diff, int *node_diff) 710{ 711 int i; 712 int changes = 0; 713 714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 715 if (zone_diff[i]) { 716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]); 717 changes++; 718 } 719 720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 721 if (node_diff[i]) { 722 atomic_long_add(node_diff[i], &vm_node_stat[i]); 723 changes++; 724 } 725 return changes; 726} 727#endif /* CONFIG_NUMA */ 728 729/* 730 * Update the zone counters for the current cpu. 731 * 732 * Note that refresh_cpu_vm_stats strives to only access 733 * node local memory. The per cpu pagesets on remote zones are placed 734 * in the memory local to the processor using that pageset. So the 735 * loop over all zones will access a series of cachelines local to 736 * the processor. 737 * 738 * The call to zone_page_state_add updates the cachelines with the 739 * statistics in the remote zone struct as well as the global cachelines 740 * with the global counters. These could cause remote node cache line 741 * bouncing and will have to be only done when necessary. 742 * 743 * The function returns the number of global counters updated. 744 */ 745static int refresh_cpu_vm_stats(bool do_pagesets) 746{ 747 struct pglist_data *pgdat; 748 struct zone *zone; 749 int i; 750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 751#ifdef CONFIG_NUMA 752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 753#endif 754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 755 int changes = 0; 756 757 for_each_populated_zone(zone) { 758 struct per_cpu_pageset __percpu *p = zone->pageset; 759 760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 761 int v; 762 763 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 764 if (v) { 765 766 atomic_long_add(v, &zone->vm_stat[i]); 767 global_zone_diff[i] += v; 768#ifdef CONFIG_NUMA 769 /* 3 seconds idle till flush */ 770 __this_cpu_write(p->expire, 3); 771#endif 772 } 773 } 774#ifdef CONFIG_NUMA 775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 776 int v; 777 778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0); 779 if (v) { 780 781 atomic_long_add(v, &zone->vm_numa_stat[i]); 782 global_numa_diff[i] += v; 783 __this_cpu_write(p->expire, 3); 784 } 785 } 786 787 if (do_pagesets) { 788 cond_resched(); 789 /* 790 * Deal with draining the remote pageset of this 791 * processor 792 * 793 * Check if there are pages remaining in this pageset 794 * if not then there is nothing to expire. 795 */ 796 if (!__this_cpu_read(p->expire) || 797 !__this_cpu_read(p->pcp.count)) 798 continue; 799 800 /* 801 * We never drain zones local to this processor. 802 */ 803 if (zone_to_nid(zone) == numa_node_id()) { 804 __this_cpu_write(p->expire, 0); 805 continue; 806 } 807 808 if (__this_cpu_dec_return(p->expire)) 809 continue; 810 811 if (__this_cpu_read(p->pcp.count)) { 812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 813 changes++; 814 } 815 } 816#endif 817 } 818 819 for_each_online_pgdat(pgdat) { 820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats; 821 822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 823 int v; 824 825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0); 826 if (v) { 827 atomic_long_add(v, &pgdat->vm_stat[i]); 828 global_node_diff[i] += v; 829 } 830 } 831 } 832 833#ifdef CONFIG_NUMA 834 changes += fold_diff(global_zone_diff, global_numa_diff, 835 global_node_diff); 836#else 837 changes += fold_diff(global_zone_diff, global_node_diff); 838#endif 839 return changes; 840} 841 842/* 843 * Fold the data for an offline cpu into the global array. 844 * There cannot be any access by the offline cpu and therefore 845 * synchronization is simplified. 846 */ 847void cpu_vm_stats_fold(int cpu) 848{ 849 struct pglist_data *pgdat; 850 struct zone *zone; 851 int i; 852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 853#ifdef CONFIG_NUMA 854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, }; 855#endif 856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, }; 857 858 for_each_populated_zone(zone) { 859 struct per_cpu_pageset *p; 860 861 p = per_cpu_ptr(zone->pageset, cpu); 862 863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 864 if (p->vm_stat_diff[i]) { 865 int v; 866 867 v = p->vm_stat_diff[i]; 868 p->vm_stat_diff[i] = 0; 869 atomic_long_add(v, &zone->vm_stat[i]); 870 global_zone_diff[i] += v; 871 } 872 873#ifdef CONFIG_NUMA 874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 875 if (p->vm_numa_stat_diff[i]) { 876 int v; 877 878 v = p->vm_numa_stat_diff[i]; 879 p->vm_numa_stat_diff[i] = 0; 880 atomic_long_add(v, &zone->vm_numa_stat[i]); 881 global_numa_diff[i] += v; 882 } 883#endif 884 } 885 886 for_each_online_pgdat(pgdat) { 887 struct per_cpu_nodestat *p; 888 889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 890 891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 892 if (p->vm_node_stat_diff[i]) { 893 int v; 894 895 v = p->vm_node_stat_diff[i]; 896 p->vm_node_stat_diff[i] = 0; 897 atomic_long_add(v, &pgdat->vm_stat[i]); 898 global_node_diff[i] += v; 899 } 900 } 901 902#ifdef CONFIG_NUMA 903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff); 904#else 905 fold_diff(global_zone_diff, global_node_diff); 906#endif 907} 908 909/* 910 * this is only called if !populated_zone(zone), which implies no other users of 911 * pset->vm_stat_diff[] exsist. 912 */ 913void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 914{ 915 int i; 916 917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 918 if (pset->vm_stat_diff[i]) { 919 int v = pset->vm_stat_diff[i]; 920 pset->vm_stat_diff[i] = 0; 921 atomic_long_add(v, &zone->vm_stat[i]); 922 atomic_long_add(v, &vm_zone_stat[i]); 923 } 924 925#ifdef CONFIG_NUMA 926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 927 if (pset->vm_numa_stat_diff[i]) { 928 int v = pset->vm_numa_stat_diff[i]; 929 930 pset->vm_numa_stat_diff[i] = 0; 931 atomic_long_add(v, &zone->vm_numa_stat[i]); 932 atomic_long_add(v, &vm_numa_stat[i]); 933 } 934#endif 935} 936#endif 937 938#ifdef CONFIG_NUMA 939void __inc_numa_state(struct zone *zone, 940 enum numa_stat_item item) 941{ 942 struct per_cpu_pageset __percpu *pcp = zone->pageset; 943 u16 __percpu *p = pcp->vm_numa_stat_diff + item; 944 u16 v; 945 946 v = __this_cpu_inc_return(*p); 947 948 if (unlikely(v > NUMA_STATS_THRESHOLD)) { 949 zone_numa_state_add(v, zone, item); 950 __this_cpu_write(*p, 0); 951 } 952} 953 954/* 955 * Determine the per node value of a stat item. This function 956 * is called frequently in a NUMA machine, so try to be as 957 * frugal as possible. 958 */ 959unsigned long sum_zone_node_page_state(int node, 960 enum zone_stat_item item) 961{ 962 struct zone *zones = NODE_DATA(node)->node_zones; 963 int i; 964 unsigned long count = 0; 965 966 for (i = 0; i < MAX_NR_ZONES; i++) 967 count += zone_page_state(zones + i, item); 968 969 return count; 970} 971 972/* 973 * Determine the per node value of a numa stat item. To avoid deviation, 974 * the per cpu stat number in vm_numa_stat_diff[] is also included. 975 */ 976unsigned long sum_zone_numa_state(int node, 977 enum numa_stat_item item) 978{ 979 struct zone *zones = NODE_DATA(node)->node_zones; 980 int i; 981 unsigned long count = 0; 982 983 for (i = 0; i < MAX_NR_ZONES; i++) 984 count += zone_numa_state_snapshot(zones + i, item); 985 986 return count; 987} 988 989/* 990 * Determine the per node value of a stat item. 991 */ 992unsigned long node_page_state(struct pglist_data *pgdat, 993 enum node_stat_item item) 994{ 995 long x = atomic_long_read(&pgdat->vm_stat[item]); 996#ifdef CONFIG_SMP 997 if (x < 0) 998 x = 0; 999#endif 1000 return x; 1001} 1002#endif 1003 1004#ifdef CONFIG_COMPACTION 1005 1006struct contig_page_info { 1007 unsigned long free_pages; 1008 unsigned long free_blocks_total; 1009 unsigned long free_blocks_suitable; 1010}; 1011 1012/* 1013 * Calculate the number of free pages in a zone, how many contiguous 1014 * pages are free and how many are large enough to satisfy an allocation of 1015 * the target size. Note that this function makes no attempt to estimate 1016 * how many suitable free blocks there *might* be if MOVABLE pages were 1017 * migrated. Calculating that is possible, but expensive and can be 1018 * figured out from userspace 1019 */ 1020static void fill_contig_page_info(struct zone *zone, 1021 unsigned int suitable_order, 1022 struct contig_page_info *info) 1023{ 1024 unsigned int order; 1025 1026 info->free_pages = 0; 1027 info->free_blocks_total = 0; 1028 info->free_blocks_suitable = 0; 1029 1030 for (order = 0; order < MAX_ORDER; order++) { 1031 unsigned long blocks; 1032 1033 /* Count number of free blocks */ 1034 blocks = zone->free_area[order].nr_free; 1035 info->free_blocks_total += blocks; 1036 1037 /* Count free base pages */ 1038 info->free_pages += blocks << order; 1039 1040 /* Count the suitable free blocks */ 1041 if (order >= suitable_order) 1042 info->free_blocks_suitable += blocks << 1043 (order - suitable_order); 1044 } 1045} 1046 1047/* 1048 * A fragmentation index only makes sense if an allocation of a requested 1049 * size would fail. If that is true, the fragmentation index indicates 1050 * whether external fragmentation or a lack of memory was the problem. 1051 * The value can be used to determine if page reclaim or compaction 1052 * should be used 1053 */ 1054static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 1055{ 1056 unsigned long requested = 1UL << order; 1057 1058 if (WARN_ON_ONCE(order >= MAX_ORDER)) 1059 return 0; 1060 1061 if (!info->free_blocks_total) 1062 return 0; 1063 1064 /* Fragmentation index only makes sense when a request would fail */ 1065 if (info->free_blocks_suitable) 1066 return -1000; 1067 1068 /* 1069 * Index is between 0 and 1 so return within 3 decimal places 1070 * 1071 * 0 => allocation would fail due to lack of memory 1072 * 1 => allocation would fail due to fragmentation 1073 */ 1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 1075} 1076 1077/* Same as __fragmentation index but allocs contig_page_info on stack */ 1078int fragmentation_index(struct zone *zone, unsigned int order) 1079{ 1080 struct contig_page_info info; 1081 1082 fill_contig_page_info(zone, order, &info); 1083 return __fragmentation_index(order, &info); 1084} 1085#endif 1086 1087#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 1088#ifdef CONFIG_ZONE_DMA 1089#define TEXT_FOR_DMA(xx) xx "_dma", 1090#else 1091#define TEXT_FOR_DMA(xx) 1092#endif 1093 1094#ifdef CONFIG_ZONE_DMA32 1095#define TEXT_FOR_DMA32(xx) xx "_dma32", 1096#else 1097#define TEXT_FOR_DMA32(xx) 1098#endif 1099 1100#ifdef CONFIG_HIGHMEM 1101#define TEXT_FOR_HIGHMEM(xx) xx "_high", 1102#else 1103#define TEXT_FOR_HIGHMEM(xx) 1104#endif 1105 1106#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 1107 TEXT_FOR_HIGHMEM(xx) xx "_movable", 1108 1109const char * const vmstat_text[] = { 1110 /* enum zone_stat_item countes */ 1111 "nr_free_pages", 1112 "nr_zone_inactive_anon", 1113 "nr_zone_active_anon", 1114 "nr_zone_inactive_file", 1115 "nr_zone_active_file", 1116 "nr_zone_unevictable", 1117 "nr_zone_write_pending", 1118 "nr_mlock", 1119 "nr_page_table_pages", 1120 "nr_kernel_stack", 1121 "nr_bounce", 1122#if IS_ENABLED(CONFIG_ZSMALLOC) 1123 "nr_zspages", 1124#endif 1125 "nr_free_cma", 1126 1127 /* enum numa_stat_item counters */ 1128#ifdef CONFIG_NUMA 1129 "numa_hit", 1130 "numa_miss", 1131 "numa_foreign", 1132 "numa_interleave", 1133 "numa_local", 1134 "numa_other", 1135#endif 1136 1137 /* Node-based counters */ 1138 "nr_inactive_anon", 1139 "nr_active_anon", 1140 "nr_inactive_file", 1141 "nr_active_file", 1142 "nr_unevictable", 1143 "nr_slab_reclaimable", 1144 "nr_slab_unreclaimable", 1145 "nr_isolated_anon", 1146 "nr_isolated_file", 1147 "workingset_nodes", 1148 "workingset_refault", 1149 "workingset_activate", 1150 "workingset_restore", 1151 "workingset_nodereclaim", 1152 "nr_anon_pages", 1153 "nr_mapped", 1154 "nr_file_pages", 1155 "nr_dirty", 1156 "nr_writeback", 1157 "nr_writeback_temp", 1158 "nr_shmem", 1159 "nr_shmem_hugepages", 1160 "nr_shmem_pmdmapped", 1161 "nr_file_hugepages", 1162 "nr_file_pmdmapped", 1163 "nr_anon_transparent_hugepages", 1164 "nr_unstable", 1165 "nr_vmscan_write", 1166 "nr_vmscan_immediate_reclaim", 1167 "nr_dirtied", 1168 "nr_written", 1169 "nr_kernel_misc_reclaimable", 1170 1171 /* enum writeback_stat_item counters */ 1172 "nr_dirty_threshold", 1173 "nr_dirty_background_threshold", 1174 1175#ifdef CONFIG_VM_EVENT_COUNTERS 1176 /* enum vm_event_item counters */ 1177 "pgpgin", 1178 "pgpgout", 1179 "pswpin", 1180 "pswpout", 1181 1182 TEXTS_FOR_ZONES("pgalloc") 1183 TEXTS_FOR_ZONES("allocstall") 1184 TEXTS_FOR_ZONES("pgskip") 1185 1186 "pgfree", 1187 "pgactivate", 1188 "pgdeactivate", 1189 "pglazyfree", 1190 1191 "pgfault", 1192 "pgmajfault", 1193 "pglazyfreed", 1194 1195 "pgrefill", 1196 "pgsteal_kswapd", 1197 "pgsteal_direct", 1198 "pgscan_kswapd", 1199 "pgscan_direct", 1200 "pgscan_direct_throttle", 1201 1202#ifdef CONFIG_NUMA 1203 "zone_reclaim_failed", 1204#endif 1205 "pginodesteal", 1206 "slabs_scanned", 1207 "kswapd_inodesteal", 1208 "kswapd_low_wmark_hit_quickly", 1209 "kswapd_high_wmark_hit_quickly", 1210 "pageoutrun", 1211 1212 "pgrotated", 1213 1214 "drop_pagecache", 1215 "drop_slab", 1216 "oom_kill", 1217 1218#ifdef CONFIG_NUMA_BALANCING 1219 "numa_pte_updates", 1220 "numa_huge_pte_updates", 1221 "numa_hint_faults", 1222 "numa_hint_faults_local", 1223 "numa_pages_migrated", 1224#endif 1225#ifdef CONFIG_MIGRATION 1226 "pgmigrate_success", 1227 "pgmigrate_fail", 1228#endif 1229#ifdef CONFIG_COMPACTION 1230 "compact_migrate_scanned", 1231 "compact_free_scanned", 1232 "compact_isolated", 1233 "compact_stall", 1234 "compact_fail", 1235 "compact_success", 1236 "compact_daemon_wake", 1237 "compact_daemon_migrate_scanned", 1238 "compact_daemon_free_scanned", 1239#endif 1240 1241#ifdef CONFIG_HUGETLB_PAGE 1242 "htlb_buddy_alloc_success", 1243 "htlb_buddy_alloc_fail", 1244#endif 1245 "unevictable_pgs_culled", 1246 "unevictable_pgs_scanned", 1247 "unevictable_pgs_rescued", 1248 "unevictable_pgs_mlocked", 1249 "unevictable_pgs_munlocked", 1250 "unevictable_pgs_cleared", 1251 "unevictable_pgs_stranded", 1252 1253#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1254 "thp_fault_alloc", 1255 "thp_fault_fallback", 1256 "thp_collapse_alloc", 1257 "thp_collapse_alloc_failed", 1258 "thp_file_alloc", 1259 "thp_file_mapped", 1260 "thp_split_page", 1261 "thp_split_page_failed", 1262 "thp_deferred_split_page", 1263 "thp_split_pmd", 1264#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1265 "thp_split_pud", 1266#endif 1267 "thp_zero_page_alloc", 1268 "thp_zero_page_alloc_failed", 1269 "thp_swpout", 1270 "thp_swpout_fallback", 1271#endif 1272#ifdef CONFIG_MEMORY_BALLOON 1273 "balloon_inflate", 1274 "balloon_deflate", 1275#ifdef CONFIG_BALLOON_COMPACTION 1276 "balloon_migrate", 1277#endif 1278#endif /* CONFIG_MEMORY_BALLOON */ 1279#ifdef CONFIG_DEBUG_TLBFLUSH 1280 "nr_tlb_remote_flush", 1281 "nr_tlb_remote_flush_received", 1282 "nr_tlb_local_flush_all", 1283 "nr_tlb_local_flush_one", 1284#endif /* CONFIG_DEBUG_TLBFLUSH */ 1285 1286#ifdef CONFIG_DEBUG_VM_VMACACHE 1287 "vmacache_find_calls", 1288 "vmacache_find_hits", 1289#endif 1290#ifdef CONFIG_SWAP 1291 "swap_ra", 1292 "swap_ra_hit", 1293#endif 1294#endif /* CONFIG_VM_EVENTS_COUNTERS */ 1295}; 1296#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 1297 1298#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \ 1299 defined(CONFIG_PROC_FS) 1300static void *frag_start(struct seq_file *m, loff_t *pos) 1301{ 1302 pg_data_t *pgdat; 1303 loff_t node = *pos; 1304 1305 for (pgdat = first_online_pgdat(); 1306 pgdat && node; 1307 pgdat = next_online_pgdat(pgdat)) 1308 --node; 1309 1310 return pgdat; 1311} 1312 1313static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 1314{ 1315 pg_data_t *pgdat = (pg_data_t *)arg; 1316 1317 (*pos)++; 1318 return next_online_pgdat(pgdat); 1319} 1320 1321static void frag_stop(struct seq_file *m, void *arg) 1322{ 1323} 1324 1325/* 1326 * Walk zones in a node and print using a callback. 1327 * If @assert_populated is true, only use callback for zones that are populated. 1328 */ 1329static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 1330 bool assert_populated, bool nolock, 1331 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 1332{ 1333 struct zone *zone; 1334 struct zone *node_zones = pgdat->node_zones; 1335 unsigned long flags; 1336 1337 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 1338 if (assert_populated && !populated_zone(zone)) 1339 continue; 1340 1341 if (!nolock) 1342 spin_lock_irqsave(&zone->lock, flags); 1343 print(m, pgdat, zone); 1344 if (!nolock) 1345 spin_unlock_irqrestore(&zone->lock, flags); 1346 } 1347} 1348#endif 1349 1350#ifdef CONFIG_PROC_FS 1351static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 1352 struct zone *zone) 1353{ 1354 int order; 1355 1356 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1357 for (order = 0; order < MAX_ORDER; ++order) 1358 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 1359 seq_putc(m, '\n'); 1360} 1361 1362/* 1363 * This walks the free areas for each zone. 1364 */ 1365static int frag_show(struct seq_file *m, void *arg) 1366{ 1367 pg_data_t *pgdat = (pg_data_t *)arg; 1368 walk_zones_in_node(m, pgdat, true, false, frag_show_print); 1369 return 0; 1370} 1371 1372static void pagetypeinfo_showfree_print(struct seq_file *m, 1373 pg_data_t *pgdat, struct zone *zone) 1374{ 1375 int order, mtype; 1376 1377 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 1378 seq_printf(m, "Node %4d, zone %8s, type %12s ", 1379 pgdat->node_id, 1380 zone->name, 1381 migratetype_names[mtype]); 1382 for (order = 0; order < MAX_ORDER; ++order) { 1383 unsigned long freecount = 0; 1384 struct free_area *area; 1385 struct list_head *curr; 1386 1387 area = &(zone->free_area[order]); 1388 1389 list_for_each(curr, &area->free_list[mtype]) 1390 freecount++; 1391 seq_printf(m, "%6lu ", freecount); 1392 } 1393 seq_putc(m, '\n'); 1394 } 1395} 1396 1397/* Print out the free pages at each order for each migatetype */ 1398static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 1399{ 1400 int order; 1401 pg_data_t *pgdat = (pg_data_t *)arg; 1402 1403 /* Print header */ 1404 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 1405 for (order = 0; order < MAX_ORDER; ++order) 1406 seq_printf(m, "%6d ", order); 1407 seq_putc(m, '\n'); 1408 1409 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print); 1410 1411 return 0; 1412} 1413 1414static void pagetypeinfo_showblockcount_print(struct seq_file *m, 1415 pg_data_t *pgdat, struct zone *zone) 1416{ 1417 int mtype; 1418 unsigned long pfn; 1419 unsigned long start_pfn = zone->zone_start_pfn; 1420 unsigned long end_pfn = zone_end_pfn(zone); 1421 unsigned long count[MIGRATE_TYPES] = { 0, }; 1422 1423 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 1424 struct page *page; 1425 1426 page = pfn_to_online_page(pfn); 1427 if (!page) 1428 continue; 1429 1430 /* Watch for unexpected holes punched in the memmap */ 1431 if (!memmap_valid_within(pfn, page, zone)) 1432 continue; 1433 1434 if (page_zone(page) != zone) 1435 continue; 1436 1437 mtype = get_pageblock_migratetype(page); 1438 1439 if (mtype < MIGRATE_TYPES) 1440 count[mtype]++; 1441 } 1442 1443 /* Print counts */ 1444 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 1445 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1446 seq_printf(m, "%12lu ", count[mtype]); 1447 seq_putc(m, '\n'); 1448} 1449 1450/* Print out the number of pageblocks for each migratetype */ 1451static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 1452{ 1453 int mtype; 1454 pg_data_t *pgdat = (pg_data_t *)arg; 1455 1456 seq_printf(m, "\n%-23s", "Number of blocks type "); 1457 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1458 seq_printf(m, "%12s ", migratetype_names[mtype]); 1459 seq_putc(m, '\n'); 1460 walk_zones_in_node(m, pgdat, true, false, 1461 pagetypeinfo_showblockcount_print); 1462 1463 return 0; 1464} 1465 1466/* 1467 * Print out the number of pageblocks for each migratetype that contain pages 1468 * of other types. This gives an indication of how well fallbacks are being 1469 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER 1470 * to determine what is going on 1471 */ 1472static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat) 1473{ 1474#ifdef CONFIG_PAGE_OWNER 1475 int mtype; 1476 1477 if (!static_branch_unlikely(&page_owner_inited)) 1478 return; 1479 1480 drain_all_pages(NULL); 1481 1482 seq_printf(m, "\n%-23s", "Number of mixed blocks "); 1483 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 1484 seq_printf(m, "%12s ", migratetype_names[mtype]); 1485 seq_putc(m, '\n'); 1486 1487 walk_zones_in_node(m, pgdat, true, true, 1488 pagetypeinfo_showmixedcount_print); 1489#endif /* CONFIG_PAGE_OWNER */ 1490} 1491 1492/* 1493 * This prints out statistics in relation to grouping pages by mobility. 1494 * It is expensive to collect so do not constantly read the file. 1495 */ 1496static int pagetypeinfo_show(struct seq_file *m, void *arg) 1497{ 1498 pg_data_t *pgdat = (pg_data_t *)arg; 1499 1500 /* check memoryless node */ 1501 if (!node_state(pgdat->node_id, N_MEMORY)) 1502 return 0; 1503 1504 seq_printf(m, "Page block order: %d\n", pageblock_order); 1505 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1506 seq_putc(m, '\n'); 1507 pagetypeinfo_showfree(m, pgdat); 1508 pagetypeinfo_showblockcount(m, pgdat); 1509 pagetypeinfo_showmixedcount(m, pgdat); 1510 1511 return 0; 1512} 1513 1514static const struct seq_operations fragmentation_op = { 1515 .start = frag_start, 1516 .next = frag_next, 1517 .stop = frag_stop, 1518 .show = frag_show, 1519}; 1520 1521static const struct seq_operations pagetypeinfo_op = { 1522 .start = frag_start, 1523 .next = frag_next, 1524 .stop = frag_stop, 1525 .show = pagetypeinfo_show, 1526}; 1527 1528static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone) 1529{ 1530 int zid; 1531 1532 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1533 struct zone *compare = &pgdat->node_zones[zid]; 1534 1535 if (populated_zone(compare)) 1536 return zone == compare; 1537 } 1538 1539 return false; 1540} 1541 1542static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1543 struct zone *zone) 1544{ 1545 int i; 1546 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1547 if (is_zone_first_populated(pgdat, zone)) { 1548 seq_printf(m, "\n per-node stats"); 1549 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 1550 seq_printf(m, "\n %-12s %lu", 1551 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS + 1552 NR_VM_NUMA_STAT_ITEMS], 1553 node_page_state(pgdat, i)); 1554 } 1555 } 1556 seq_printf(m, 1557 "\n pages free %lu" 1558 "\n min %lu" 1559 "\n low %lu" 1560 "\n high %lu" 1561 "\n spanned %lu" 1562 "\n present %lu" 1563 "\n managed %lu", 1564 zone_page_state(zone, NR_FREE_PAGES), 1565 min_wmark_pages(zone), 1566 low_wmark_pages(zone), 1567 high_wmark_pages(zone), 1568 zone->spanned_pages, 1569 zone->present_pages, 1570 zone_managed_pages(zone)); 1571 1572 seq_printf(m, 1573 "\n protection: (%ld", 1574 zone->lowmem_reserve[0]); 1575 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1576 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1577 seq_putc(m, ')'); 1578 1579 /* If unpopulated, no other information is useful */ 1580 if (!populated_zone(zone)) { 1581 seq_putc(m, '\n'); 1582 return; 1583 } 1584 1585 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1586 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1587 zone_page_state(zone, i)); 1588 1589#ifdef CONFIG_NUMA 1590 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1591 seq_printf(m, "\n %-12s %lu", 1592 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], 1593 zone_numa_state_snapshot(zone, i)); 1594#endif 1595 1596 seq_printf(m, "\n pagesets"); 1597 for_each_online_cpu(i) { 1598 struct per_cpu_pageset *pageset; 1599 1600 pageset = per_cpu_ptr(zone->pageset, i); 1601 seq_printf(m, 1602 "\n cpu: %i" 1603 "\n count: %i" 1604 "\n high: %i" 1605 "\n batch: %i", 1606 i, 1607 pageset->pcp.count, 1608 pageset->pcp.high, 1609 pageset->pcp.batch); 1610#ifdef CONFIG_SMP 1611 seq_printf(m, "\n vm stats threshold: %d", 1612 pageset->stat_threshold); 1613#endif 1614 } 1615 seq_printf(m, 1616 "\n node_unreclaimable: %u" 1617 "\n start_pfn: %lu", 1618 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES, 1619 zone->zone_start_pfn); 1620 seq_putc(m, '\n'); 1621} 1622 1623/* 1624 * Output information about zones in @pgdat. All zones are printed regardless 1625 * of whether they are populated or not: lowmem_reserve_ratio operates on the 1626 * set of all zones and userspace would not be aware of such zones if they are 1627 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio). 1628 */ 1629static int zoneinfo_show(struct seq_file *m, void *arg) 1630{ 1631 pg_data_t *pgdat = (pg_data_t *)arg; 1632 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print); 1633 return 0; 1634} 1635 1636static const struct seq_operations zoneinfo_op = { 1637 .start = frag_start, /* iterate over all zones. The same as in 1638 * fragmentation. */ 1639 .next = frag_next, 1640 .stop = frag_stop, 1641 .show = zoneinfo_show, 1642}; 1643 1644enum writeback_stat_item { 1645 NR_DIRTY_THRESHOLD, 1646 NR_DIRTY_BG_THRESHOLD, 1647 NR_VM_WRITEBACK_STAT_ITEMS, 1648}; 1649 1650static void *vmstat_start(struct seq_file *m, loff_t *pos) 1651{ 1652 unsigned long *v; 1653 int i, stat_items_size; 1654 1655 if (*pos >= ARRAY_SIZE(vmstat_text)) 1656 return NULL; 1657 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1658 NR_VM_NUMA_STAT_ITEMS * sizeof(unsigned long) + 1659 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) + 1660 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1661 1662#ifdef CONFIG_VM_EVENT_COUNTERS 1663 stat_items_size += sizeof(struct vm_event_state); 1664#endif 1665 1666 BUILD_BUG_ON(stat_items_size != 1667 ARRAY_SIZE(vmstat_text) * sizeof(unsigned long)); 1668 v = kmalloc(stat_items_size, GFP_KERNEL); 1669 m->private = v; 1670 if (!v) 1671 return ERR_PTR(-ENOMEM); 1672 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1673 v[i] = global_zone_page_state(i); 1674 v += NR_VM_ZONE_STAT_ITEMS; 1675 1676#ifdef CONFIG_NUMA 1677 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) 1678 v[i] = global_numa_state(i); 1679 v += NR_VM_NUMA_STAT_ITEMS; 1680#endif 1681 1682 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 1683 v[i] = global_node_page_state(i); 1684 v += NR_VM_NODE_STAT_ITEMS; 1685 1686 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1687 v + NR_DIRTY_THRESHOLD); 1688 v += NR_VM_WRITEBACK_STAT_ITEMS; 1689 1690#ifdef CONFIG_VM_EVENT_COUNTERS 1691 all_vm_events(v); 1692 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1693 v[PGPGOUT] /= 2; 1694#endif 1695 return (unsigned long *)m->private + *pos; 1696} 1697 1698static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1699{ 1700 (*pos)++; 1701 if (*pos >= ARRAY_SIZE(vmstat_text)) 1702 return NULL; 1703 return (unsigned long *)m->private + *pos; 1704} 1705 1706static int vmstat_show(struct seq_file *m, void *arg) 1707{ 1708 unsigned long *l = arg; 1709 unsigned long off = l - (unsigned long *)m->private; 1710 1711 seq_puts(m, vmstat_text[off]); 1712 seq_put_decimal_ull(m, " ", *l); 1713 seq_putc(m, '\n'); 1714 return 0; 1715} 1716 1717static void vmstat_stop(struct seq_file *m, void *arg) 1718{ 1719 kfree(m->private); 1720 m->private = NULL; 1721} 1722 1723static const struct seq_operations vmstat_op = { 1724 .start = vmstat_start, 1725 .next = vmstat_next, 1726 .stop = vmstat_stop, 1727 .show = vmstat_show, 1728}; 1729#endif /* CONFIG_PROC_FS */ 1730 1731#ifdef CONFIG_SMP 1732static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1733int sysctl_stat_interval __read_mostly = HZ; 1734 1735#ifdef CONFIG_PROC_FS 1736static void refresh_vm_stats(struct work_struct *work) 1737{ 1738 refresh_cpu_vm_stats(true); 1739} 1740 1741int vmstat_refresh(struct ctl_table *table, int write, 1742 void __user *buffer, size_t *lenp, loff_t *ppos) 1743{ 1744 long val; 1745 int err; 1746 int i; 1747 1748 /* 1749 * The regular update, every sysctl_stat_interval, may come later 1750 * than expected: leaving a significant amount in per_cpu buckets. 1751 * This is particularly misleading when checking a quantity of HUGE 1752 * pages, immediately after running a test. /proc/sys/vm/stat_refresh, 1753 * which can equally be echo'ed to or cat'ted from (by root), 1754 * can be used to update the stats just before reading them. 1755 * 1756 * Oh, and since global_zone_page_state() etc. are so careful to hide 1757 * transiently negative values, report an error here if any of 1758 * the stats is negative, so we know to go looking for imbalance. 1759 */ 1760 err = schedule_on_each_cpu(refresh_vm_stats); 1761 if (err) 1762 return err; 1763 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 1764 val = atomic_long_read(&vm_zone_stat[i]); 1765 if (val < 0) { 1766 pr_warn("%s: %s %ld\n", 1767 __func__, vmstat_text[i], val); 1768 err = -EINVAL; 1769 } 1770 } 1771#ifdef CONFIG_NUMA 1772 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) { 1773 val = atomic_long_read(&vm_numa_stat[i]); 1774 if (val < 0) { 1775 pr_warn("%s: %s %ld\n", 1776 __func__, vmstat_text[i + NR_VM_ZONE_STAT_ITEMS], val); 1777 err = -EINVAL; 1778 } 1779 } 1780#endif 1781 if (err) 1782 return err; 1783 if (write) 1784 *ppos += *lenp; 1785 else 1786 *lenp = 0; 1787 return 0; 1788} 1789#endif /* CONFIG_PROC_FS */ 1790 1791static void vmstat_update(struct work_struct *w) 1792{ 1793 if (refresh_cpu_vm_stats(true)) { 1794 /* 1795 * Counters were updated so we expect more updates 1796 * to occur in the future. Keep on running the 1797 * update worker thread. 1798 */ 1799 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq, 1800 this_cpu_ptr(&vmstat_work), 1801 round_jiffies_relative(sysctl_stat_interval)); 1802 } 1803} 1804 1805/* 1806 * Switch off vmstat processing and then fold all the remaining differentials 1807 * until the diffs stay at zero. The function is used by NOHZ and can only be 1808 * invoked when tick processing is not active. 1809 */ 1810/* 1811 * Check if the diffs for a certain cpu indicate that 1812 * an update is needed. 1813 */ 1814static bool need_update(int cpu) 1815{ 1816 struct zone *zone; 1817 1818 for_each_populated_zone(zone) { 1819 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); 1820 1821 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); 1822#ifdef CONFIG_NUMA 1823 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); 1824#endif 1825 1826 /* 1827 * The fast way of checking if there are any vmstat diffs. 1828 */ 1829 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS * 1830 sizeof(p->vm_stat_diff[0]))) 1831 return true; 1832#ifdef CONFIG_NUMA 1833 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS * 1834 sizeof(p->vm_numa_stat_diff[0]))) 1835 return true; 1836#endif 1837 } 1838 return false; 1839} 1840 1841/* 1842 * Switch off vmstat processing and then fold all the remaining differentials 1843 * until the diffs stay at zero. The function is used by NOHZ and can only be 1844 * invoked when tick processing is not active. 1845 */ 1846void quiet_vmstat(void) 1847{ 1848 if (system_state != SYSTEM_RUNNING) 1849 return; 1850 1851 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work))) 1852 return; 1853 1854 if (!need_update(smp_processor_id())) 1855 return; 1856 1857 /* 1858 * Just refresh counters and do not care about the pending delayed 1859 * vmstat_update. It doesn't fire that often to matter and canceling 1860 * it would be too expensive from this path. 1861 * vmstat_shepherd will take care about that for us. 1862 */ 1863 refresh_cpu_vm_stats(false); 1864} 1865 1866/* 1867 * Shepherd worker thread that checks the 1868 * differentials of processors that have their worker 1869 * threads for vm statistics updates disabled because of 1870 * inactivity. 1871 */ 1872static void vmstat_shepherd(struct work_struct *w); 1873 1874static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd); 1875 1876static void vmstat_shepherd(struct work_struct *w) 1877{ 1878 int cpu; 1879 1880 get_online_cpus(); 1881 /* Check processors whose vmstat worker threads have been disabled */ 1882 for_each_online_cpu(cpu) { 1883 struct delayed_work *dw = &per_cpu(vmstat_work, cpu); 1884 1885 if (!delayed_work_pending(dw) && need_update(cpu)) 1886 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); 1887 } 1888 put_online_cpus(); 1889 1890 schedule_delayed_work(&shepherd, 1891 round_jiffies_relative(sysctl_stat_interval)); 1892} 1893 1894static void __init start_shepherd_timer(void) 1895{ 1896 int cpu; 1897 1898 for_each_possible_cpu(cpu) 1899 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu), 1900 vmstat_update); 1901 1902 schedule_delayed_work(&shepherd, 1903 round_jiffies_relative(sysctl_stat_interval)); 1904} 1905 1906static void __init init_cpu_node_state(void) 1907{ 1908 int node; 1909 1910 for_each_online_node(node) { 1911 if (cpumask_weight(cpumask_of_node(node)) > 0) 1912 node_set_state(node, N_CPU); 1913 } 1914} 1915 1916static int vmstat_cpu_online(unsigned int cpu) 1917{ 1918 refresh_zone_stat_thresholds(); 1919 node_set_state(cpu_to_node(cpu), N_CPU); 1920 return 0; 1921} 1922 1923static int vmstat_cpu_down_prep(unsigned int cpu) 1924{ 1925 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1926 return 0; 1927} 1928 1929static int vmstat_cpu_dead(unsigned int cpu) 1930{ 1931 const struct cpumask *node_cpus; 1932 int node; 1933 1934 node = cpu_to_node(cpu); 1935 1936 refresh_zone_stat_thresholds(); 1937 node_cpus = cpumask_of_node(node); 1938 if (cpumask_weight(node_cpus) > 0) 1939 return 0; 1940 1941 node_clear_state(node, N_CPU); 1942 return 0; 1943} 1944 1945#endif 1946 1947struct workqueue_struct *mm_percpu_wq; 1948 1949void __init init_mm_internals(void) 1950{ 1951 int ret __maybe_unused; 1952 1953 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0); 1954 1955#ifdef CONFIG_SMP 1956 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead", 1957 NULL, vmstat_cpu_dead); 1958 if (ret < 0) 1959 pr_err("vmstat: failed to register 'dead' hotplug state\n"); 1960 1961 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online", 1962 vmstat_cpu_online, 1963 vmstat_cpu_down_prep); 1964 if (ret < 0) 1965 pr_err("vmstat: failed to register 'online' hotplug state\n"); 1966 1967 get_online_cpus(); 1968 init_cpu_node_state(); 1969 put_online_cpus(); 1970 1971 start_shepherd_timer(); 1972#endif 1973#ifdef CONFIG_PROC_FS 1974 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op); 1975 proc_create_seq("pagetypeinfo", 0444, NULL, &pagetypeinfo_op); 1976 proc_create_seq("vmstat", 0444, NULL, &vmstat_op); 1977 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op); 1978#endif 1979} 1980 1981#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1982 1983/* 1984 * Return an index indicating how much of the available free memory is 1985 * unusable for an allocation of the requested size. 1986 */ 1987static int unusable_free_index(unsigned int order, 1988 struct contig_page_info *info) 1989{ 1990 /* No free memory is interpreted as all free memory is unusable */ 1991 if (info->free_pages == 0) 1992 return 1000; 1993 1994 /* 1995 * Index should be a value between 0 and 1. Return a value to 3 1996 * decimal places. 1997 * 1998 * 0 => no fragmentation 1999 * 1 => high fragmentation 2000 */ 2001 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 2002 2003} 2004 2005static void unusable_show_print(struct seq_file *m, 2006 pg_data_t *pgdat, struct zone *zone) 2007{ 2008 unsigned int order; 2009 int index; 2010 struct contig_page_info info; 2011 2012 seq_printf(m, "Node %d, zone %8s ", 2013 pgdat->node_id, 2014 zone->name); 2015 for (order = 0; order < MAX_ORDER; ++order) { 2016 fill_contig_page_info(zone, order, &info); 2017 index = unusable_free_index(order, &info); 2018 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2019 } 2020 2021 seq_putc(m, '\n'); 2022} 2023 2024/* 2025 * Display unusable free space index 2026 * 2027 * The unusable free space index measures how much of the available free 2028 * memory cannot be used to satisfy an allocation of a given size and is a 2029 * value between 0 and 1. The higher the value, the more of free memory is 2030 * unusable and by implication, the worse the external fragmentation is. This 2031 * can be expressed as a percentage by multiplying by 100. 2032 */ 2033static int unusable_show(struct seq_file *m, void *arg) 2034{ 2035 pg_data_t *pgdat = (pg_data_t *)arg; 2036 2037 /* check memoryless node */ 2038 if (!node_state(pgdat->node_id, N_MEMORY)) 2039 return 0; 2040 2041 walk_zones_in_node(m, pgdat, true, false, unusable_show_print); 2042 2043 return 0; 2044} 2045 2046static const struct seq_operations unusable_op = { 2047 .start = frag_start, 2048 .next = frag_next, 2049 .stop = frag_stop, 2050 .show = unusable_show, 2051}; 2052 2053static int unusable_open(struct inode *inode, struct file *file) 2054{ 2055 return seq_open(file, &unusable_op); 2056} 2057 2058static const struct file_operations unusable_file_ops = { 2059 .open = unusable_open, 2060 .read = seq_read, 2061 .llseek = seq_lseek, 2062 .release = seq_release, 2063}; 2064 2065static void extfrag_show_print(struct seq_file *m, 2066 pg_data_t *pgdat, struct zone *zone) 2067{ 2068 unsigned int order; 2069 int index; 2070 2071 /* Alloc on stack as interrupts are disabled for zone walk */ 2072 struct contig_page_info info; 2073 2074 seq_printf(m, "Node %d, zone %8s ", 2075 pgdat->node_id, 2076 zone->name); 2077 for (order = 0; order < MAX_ORDER; ++order) { 2078 fill_contig_page_info(zone, order, &info); 2079 index = __fragmentation_index(order, &info); 2080 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 2081 } 2082 2083 seq_putc(m, '\n'); 2084} 2085 2086/* 2087 * Display fragmentation index for orders that allocations would fail for 2088 */ 2089static int extfrag_show(struct seq_file *m, void *arg) 2090{ 2091 pg_data_t *pgdat = (pg_data_t *)arg; 2092 2093 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print); 2094 2095 return 0; 2096} 2097 2098static const struct seq_operations extfrag_op = { 2099 .start = frag_start, 2100 .next = frag_next, 2101 .stop = frag_stop, 2102 .show = extfrag_show, 2103}; 2104 2105static int extfrag_open(struct inode *inode, struct file *file) 2106{ 2107 return seq_open(file, &extfrag_op); 2108} 2109 2110static const struct file_operations extfrag_file_ops = { 2111 .open = extfrag_open, 2112 .read = seq_read, 2113 .llseek = seq_lseek, 2114 .release = seq_release, 2115}; 2116 2117static int __init extfrag_debug_init(void) 2118{ 2119 struct dentry *extfrag_debug_root; 2120 2121 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 2122 2123 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL, 2124 &unusable_file_ops); 2125 2126 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL, 2127 &extfrag_file_ops); 2128 2129 return 0; 2130} 2131 2132module_init(extfrag_debug_init); 2133#endif