Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/migrate.h>
61#include <linux/hugetlb.h>
62#include <linux/sched/rt.h>
63#include <linux/sched/mm.h>
64#include <linux/page_owner.h>
65#include <linux/kthread.h>
66#include <linux/memcontrol.h>
67#include <linux/ftrace.h>
68#include <linux/lockdep.h>
69#include <linux/nmi.h>
70#include <linux/psi.h>
71
72#include <asm/sections.h>
73#include <asm/tlbflush.h>
74#include <asm/div64.h>
75#include "internal.h"
76#include "shuffle.h"
77
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
80#define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98int _node_numa_mem_[MAX_NUMNODES];
99#endif
100
101/* work_structs for global per-cpu drains */
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
106DEFINE_MUTEX(pcpu_drain_mutex);
107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110volatile unsigned long latent_entropy __latent_entropy;
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
114/*
115 * Array of node states.
116 */
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124#endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
133unsigned long totalreserve_pages __read_mostly;
134unsigned long totalcma_pages __read_mostly;
135
136int percpu_pagelist_fraction;
137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
187
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
220{
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226}
227
228void pm_restrict_gfp_mask(void)
229{
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234}
235
236bool pm_suspended_storage(void)
237{
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241}
242#endif /* CONFIG_PM_SLEEP */
243
244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245unsigned int pageblock_order __read_mostly;
246#endif
247
248static void __free_pages_ok(struct page *page, unsigned int order);
249
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262#ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264#endif
265#ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267#endif
268 [ZONE_NORMAL] = 32,
269#ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271#endif
272 [ZONE_MOVABLE] = 0,
273};
274
275static char * const zone_names[MAX_NR_ZONES] = {
276#ifdef CONFIG_ZONE_DMA
277 "DMA",
278#endif
279#ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281#endif
282 "Normal",
283#ifdef CONFIG_HIGHMEM
284 "HighMem",
285#endif
286 "Movable",
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
290};
291
292const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
314};
315
316int min_free_kbytes = 1024;
317int user_min_free_kbytes = -1;
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
330int watermark_boost_factor __read_mostly = 15000;
331#endif
332int watermark_scale_factor = 10;
333
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
337
338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341static unsigned long required_kernelcore __initdata;
342static unsigned long required_kernelcore_percent __initdata;
343static unsigned long required_movablecore __initdata;
344static unsigned long required_movablecore_percent __initdata;
345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346static bool mirrored_kernelcore __meminitdata;
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352
353#if MAX_NUMNODES > 1
354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355unsigned int nr_online_nodes __read_mostly = 1;
356EXPORT_SYMBOL(nr_node_ids);
357EXPORT_SYMBOL(nr_online_nodes);
358#endif
359
360int page_group_by_mobility_disabled __read_mostly;
361
362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
389/* Returns true if the struct page for the pfn is uninitialised */
390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391{
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398}
399
400/*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406{
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433}
434#else
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443{
444 return false;
445}
446#endif
447
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
549
550void set_pageblock_migratetype(struct page *page, int migratetype)
551{
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
555
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
560#ifdef CONFIG_DEBUG_VM
561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562{
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
567
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
580
581 return ret;
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597{
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
602
603 return 0;
604}
605#else
606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607{
608 return 0;
609}
610#endif
611
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
614{
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
647
648 print_modules();
649 dump_stack();
650out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654}
655
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660 *
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663 *
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
666 *
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
669 */
670
671void free_compound_page(struct page *page)
672{
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
675}
676
677void prep_compound_page(struct page *page, unsigned int order)
678{
679 int i;
680 int nr_pages = 1 << order;
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
690 }
691 atomic_set(compound_mapcount_ptr(page), -1);
692}
693
694#ifdef CONFIG_DEBUG_PAGEALLOC
695unsigned int _debug_guardpage_minorder;
696
697#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699#else
700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701#endif
702EXPORT_SYMBOL(_debug_pagealloc_enabled);
703
704DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705
706static int __init early_debug_pagealloc(char *buf)
707{
708 bool enable = false;
709
710 if (kstrtobool(buf, &enable))
711 return -EINVAL;
712
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
715
716 return 0;
717}
718early_param("debug_pagealloc", early_debug_pagealloc);
719
720static void init_debug_guardpage(void)
721{
722 if (!debug_pagealloc_enabled())
723 return;
724
725 if (!debug_guardpage_minorder())
726 return;
727
728 static_branch_enable(&_debug_guardpage_enabled);
729}
730
731static int __init debug_guardpage_minorder_setup(char *buf)
732{
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
736 pr_err("Bad debug_guardpage_minorder value\n");
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 return 0;
742}
743early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744
745static inline bool set_page_guard(struct zone *zone, struct page *page,
746 unsigned int order, int migratetype)
747{
748 if (!debug_guardpage_enabled())
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
753
754 __SetPageGuard(page);
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
759
760 return true;
761}
762
763static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
765{
766 if (!debug_guardpage_enabled())
767 return;
768
769 __ClearPageGuard(page);
770
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
774}
775#else
776static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
778static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
780#endif
781
782static inline void set_page_order(struct page *page, unsigned int order)
783{
784 set_page_private(page, order);
785 __SetPageBuddy(page);
786}
787
788/*
789 * This function checks whether a page is free && is the buddy
790 * we can coalesce a page and its buddy if
791 * (a) the buddy is not in a hole (check before calling!) &&
792 * (b) the buddy is in the buddy system &&
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
795 *
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798 *
799 * For recording page's order, we use page_private(page).
800 */
801static inline int page_is_buddy(struct page *page, struct page *buddy,
802 unsigned int order)
803{
804 if (page_is_guard(buddy) && page_order(buddy) == order) {
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
807
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809
810 return 1;
811 }
812
813 if (PageBuddy(buddy) && page_order(buddy) == order) {
814 /*
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
818 */
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
821
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823
824 return 1;
825 }
826 return 0;
827}
828
829#ifdef CONFIG_COMPACTION
830static inline struct capture_control *task_capc(struct zone *zone)
831{
832 struct capture_control *capc = current->capture_control;
833
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
839}
840
841static inline bool
842compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
844{
845 if (!capc || order != capc->cc->order)
846 return false;
847
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
852
853 /*
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
858 */
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
861
862 capc->page = page;
863 return true;
864}
865
866#else
867static inline struct capture_control *task_capc(struct zone *zone)
868{
869 return NULL;
870}
871
872static inline bool
873compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
875{
876 return false;
877}
878#endif /* CONFIG_COMPACTION */
879
880/*
881 * Freeing function for a buddy system allocator.
882 *
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
895 * So when we are allocating or freeing one, we can derive the state of the
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
898 * If a block is freed, and its buddy is also free, then this
899 * triggers coalescing into a block of larger size.
900 *
901 * -- nyc
902 */
903
904static inline void __free_one_page(struct page *page,
905 unsigned long pfn,
906 struct zone *zone, unsigned int order,
907 int migratetype)
908{
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
911 struct page *buddy;
912 unsigned int max_order;
913 struct capture_control *capc = task_capc(zone);
914
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
916
917 VM_BUG_ON(!zone_is_initialized(zone));
918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
919
920 VM_BUG_ON(migratetype == -1);
921 if (likely(!is_migrate_isolate(migratetype)))
922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
923
924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
926
927continue_merging:
928 while (order < max_order - 1) {
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
933 }
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
936
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
939 if (!page_is_buddy(page, buddy, order))
940 goto done_merging;
941 /*
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
944 */
945 if (page_is_guard(buddy))
946 clear_page_guard(zone, buddy, order, migratetype);
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
952 order++;
953 }
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
959 *
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
962 */
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
965
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
968 buddy_mt = get_pageblock_migratetype(buddy);
969
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
974 }
975 max_order++;
976 goto continue_merging;
977 }
978
979done_merging:
980 set_page_order(page, order);
981
982 /*
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
989 */
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
992 struct page *higher_page, *higher_buddy;
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
1002 }
1003 }
1004
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1010
1011}
1012
1013/*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1020{
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1023
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026#ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028#endif
1029 (page->flags & check_flags)))
1030 return false;
1031
1032 return true;
1033}
1034
1035static void free_pages_check_bad(struct page *page)
1036{
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1039
1040 bad_reason = NULL;
1041 bad_flags = 0;
1042
1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
1047 if (unlikely(page_ref_count(page) != 0))
1048 bad_reason = "nonzero _refcount";
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 }
1053#ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056#endif
1057 bad_page(page, bad_reason, bad_flags);
1058}
1059
1060static inline int free_pages_check(struct page *page)
1061{
1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 return 0;
1064
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
1067 return 1;
1068}
1069
1070static int free_tail_pages_check(struct page *head_page, struct page *page)
1071{
1072 int ret = 1;
1073
1074 /*
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 */
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1083 }
1084 switch (page - head_page) {
1085 case 1:
1086 /* the first tail page: ->mapping may be compound_mapcount() */
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1090 }
1091 break;
1092 case 2:
1093 /*
1094 * the second tail page: ->mapping is
1095 * deferred_list.next -- ignore value.
1096 */
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1102 }
1103 break;
1104 }
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1108 }
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1112 }
1113 ret = 0;
1114out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1118}
1119
1120static void kernel_init_free_pages(struct page *page, int numpages)
1121{
1122 int i;
1123
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1126}
1127
1128static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
1130{
1131 int bad = 0;
1132
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1134
1135 trace_mm_page_free(page, order);
1136
1137 /*
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1140 */
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1144
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146
1147 if (compound)
1148 ClearPageDoubleMap(page);
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1155 }
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 }
1158 }
1159 if (PageMappingFlags(page))
1160 page->mapping = NULL;
1161 if (memcg_kmem_enabled() && PageKmemcg(page))
1162 __memcg_kmem_uncharge(page, order);
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
1167
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
1171
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
1174 PAGE_SIZE << order);
1175 debug_check_no_obj_freed(page_address(page),
1176 PAGE_SIZE << order);
1177 }
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1180
1181 kernel_poison_pages(page, 1 << order, 0);
1182 /*
1183 * arch_free_page() can make the page's contents inaccessible. s390
1184 * does this. So nothing which can access the page's contents should
1185 * happen after this.
1186 */
1187 arch_free_page(page, order);
1188
1189 if (debug_pagealloc_enabled())
1190 kernel_map_pages(page, 1 << order, 0);
1191
1192 kasan_free_nondeferred_pages(page, order);
1193
1194 return true;
1195}
1196
1197#ifdef CONFIG_DEBUG_VM
1198/*
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201 * moved from pcp lists to free lists.
1202 */
1203static bool free_pcp_prepare(struct page *page)
1204{
1205 return free_pages_prepare(page, 0, true);
1206}
1207
1208static bool bulkfree_pcp_prepare(struct page *page)
1209{
1210 if (debug_pagealloc_enabled())
1211 return free_pages_check(page);
1212 else
1213 return false;
1214}
1215#else
1216/*
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1219 * debug_pagealloc enabled, they are checked also immediately when being freed
1220 * to the pcp lists.
1221 */
1222static bool free_pcp_prepare(struct page *page)
1223{
1224 if (debug_pagealloc_enabled())
1225 return free_pages_prepare(page, 0, true);
1226 else
1227 return free_pages_prepare(page, 0, false);
1228}
1229
1230static bool bulkfree_pcp_prepare(struct page *page)
1231{
1232 return free_pages_check(page);
1233}
1234#endif /* CONFIG_DEBUG_VM */
1235
1236static inline void prefetch_buddy(struct page *page)
1237{
1238 unsigned long pfn = page_to_pfn(page);
1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 struct page *buddy = page + (buddy_pfn - pfn);
1241
1242 prefetch(buddy);
1243}
1244
1245/*
1246 * Frees a number of pages from the PCP lists
1247 * Assumes all pages on list are in same zone, and of same order.
1248 * count is the number of pages to free.
1249 *
1250 * If the zone was previously in an "all pages pinned" state then look to
1251 * see if this freeing clears that state.
1252 *
1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254 * pinned" detection logic.
1255 */
1256static void free_pcppages_bulk(struct zone *zone, int count,
1257 struct per_cpu_pages *pcp)
1258{
1259 int migratetype = 0;
1260 int batch_free = 0;
1261 int prefetch_nr = 0;
1262 bool isolated_pageblocks;
1263 struct page *page, *tmp;
1264 LIST_HEAD(head);
1265
1266 while (count) {
1267 struct list_head *list;
1268
1269 /*
1270 * Remove pages from lists in a round-robin fashion. A
1271 * batch_free count is maintained that is incremented when an
1272 * empty list is encountered. This is so more pages are freed
1273 * off fuller lists instead of spinning excessively around empty
1274 * lists
1275 */
1276 do {
1277 batch_free++;
1278 if (++migratetype == MIGRATE_PCPTYPES)
1279 migratetype = 0;
1280 list = &pcp->lists[migratetype];
1281 } while (list_empty(list));
1282
1283 /* This is the only non-empty list. Free them all. */
1284 if (batch_free == MIGRATE_PCPTYPES)
1285 batch_free = count;
1286
1287 do {
1288 page = list_last_entry(list, struct page, lru);
1289 /* must delete to avoid corrupting pcp list */
1290 list_del(&page->lru);
1291 pcp->count--;
1292
1293 if (bulkfree_pcp_prepare(page))
1294 continue;
1295
1296 list_add_tail(&page->lru, &head);
1297
1298 /*
1299 * We are going to put the page back to the global
1300 * pool, prefetch its buddy to speed up later access
1301 * under zone->lock. It is believed the overhead of
1302 * an additional test and calculating buddy_pfn here
1303 * can be offset by reduced memory latency later. To
1304 * avoid excessive prefetching due to large count, only
1305 * prefetch buddy for the first pcp->batch nr of pages.
1306 */
1307 if (prefetch_nr++ < pcp->batch)
1308 prefetch_buddy(page);
1309 } while (--count && --batch_free && !list_empty(list));
1310 }
1311
1312 spin_lock(&zone->lock);
1313 isolated_pageblocks = has_isolate_pageblock(zone);
1314
1315 /*
1316 * Use safe version since after __free_one_page(),
1317 * page->lru.next will not point to original list.
1318 */
1319 list_for_each_entry_safe(page, tmp, &head, lru) {
1320 int mt = get_pcppage_migratetype(page);
1321 /* MIGRATE_ISOLATE page should not go to pcplists */
1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 /* Pageblock could have been isolated meanwhile */
1324 if (unlikely(isolated_pageblocks))
1325 mt = get_pageblock_migratetype(page);
1326
1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 trace_mm_page_pcpu_drain(page, 0, mt);
1329 }
1330 spin_unlock(&zone->lock);
1331}
1332
1333static void free_one_page(struct zone *zone,
1334 struct page *page, unsigned long pfn,
1335 unsigned int order,
1336 int migratetype)
1337{
1338 spin_lock(&zone->lock);
1339 if (unlikely(has_isolate_pageblock(zone) ||
1340 is_migrate_isolate(migratetype))) {
1341 migratetype = get_pfnblock_migratetype(page, pfn);
1342 }
1343 __free_one_page(page, pfn, zone, order, migratetype);
1344 spin_unlock(&zone->lock);
1345}
1346
1347static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348 unsigned long zone, int nid)
1349{
1350 mm_zero_struct_page(page);
1351 set_page_links(page, zone, nid, pfn);
1352 init_page_count(page);
1353 page_mapcount_reset(page);
1354 page_cpupid_reset_last(page);
1355 page_kasan_tag_reset(page);
1356
1357 INIT_LIST_HEAD(&page->lru);
1358#ifdef WANT_PAGE_VIRTUAL
1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 if (!is_highmem_idx(zone))
1361 set_page_address(page, __va(pfn << PAGE_SHIFT));
1362#endif
1363}
1364
1365#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366static void __meminit init_reserved_page(unsigned long pfn)
1367{
1368 pg_data_t *pgdat;
1369 int nid, zid;
1370
1371 if (!early_page_uninitialised(pfn))
1372 return;
1373
1374 nid = early_pfn_to_nid(pfn);
1375 pgdat = NODE_DATA(nid);
1376
1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 struct zone *zone = &pgdat->node_zones[zid];
1379
1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 break;
1382 }
1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384}
1385#else
1386static inline void init_reserved_page(unsigned long pfn)
1387{
1388}
1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
1391/*
1392 * Initialised pages do not have PageReserved set. This function is
1393 * called for each range allocated by the bootmem allocator and
1394 * marks the pages PageReserved. The remaining valid pages are later
1395 * sent to the buddy page allocator.
1396 */
1397void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398{
1399 unsigned long start_pfn = PFN_DOWN(start);
1400 unsigned long end_pfn = PFN_UP(end);
1401
1402 for (; start_pfn < end_pfn; start_pfn++) {
1403 if (pfn_valid(start_pfn)) {
1404 struct page *page = pfn_to_page(start_pfn);
1405
1406 init_reserved_page(start_pfn);
1407
1408 /* Avoid false-positive PageTail() */
1409 INIT_LIST_HEAD(&page->lru);
1410
1411 /*
1412 * no need for atomic set_bit because the struct
1413 * page is not visible yet so nobody should
1414 * access it yet.
1415 */
1416 __SetPageReserved(page);
1417 }
1418 }
1419}
1420
1421static void __free_pages_ok(struct page *page, unsigned int order)
1422{
1423 unsigned long flags;
1424 int migratetype;
1425 unsigned long pfn = page_to_pfn(page);
1426
1427 if (!free_pages_prepare(page, order, true))
1428 return;
1429
1430 migratetype = get_pfnblock_migratetype(page, pfn);
1431 local_irq_save(flags);
1432 __count_vm_events(PGFREE, 1 << order);
1433 free_one_page(page_zone(page), page, pfn, order, migratetype);
1434 local_irq_restore(flags);
1435}
1436
1437void __free_pages_core(struct page *page, unsigned int order)
1438{
1439 unsigned int nr_pages = 1 << order;
1440 struct page *p = page;
1441 unsigned int loop;
1442
1443 prefetchw(p);
1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 prefetchw(p + 1);
1446 __ClearPageReserved(p);
1447 set_page_count(p, 0);
1448 }
1449 __ClearPageReserved(p);
1450 set_page_count(p, 0);
1451
1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 set_page_refcounted(page);
1454 __free_pages(page, order);
1455}
1456
1457#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459
1460static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461
1462int __meminit early_pfn_to_nid(unsigned long pfn)
1463{
1464 static DEFINE_SPINLOCK(early_pfn_lock);
1465 int nid;
1466
1467 spin_lock(&early_pfn_lock);
1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 if (nid < 0)
1470 nid = first_online_node;
1471 spin_unlock(&early_pfn_lock);
1472
1473 return nid;
1474}
1475#endif
1476
1477#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478/* Only safe to use early in boot when initialisation is single-threaded */
1479static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480{
1481 int nid;
1482
1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 if (nid >= 0 && nid != node)
1485 return false;
1486 return true;
1487}
1488
1489#else
1490static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491{
1492 return true;
1493}
1494#endif
1495
1496
1497void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 unsigned int order)
1499{
1500 if (early_page_uninitialised(pfn))
1501 return;
1502 __free_pages_core(page, order);
1503}
1504
1505/*
1506 * Check that the whole (or subset of) a pageblock given by the interval of
1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508 * with the migration of free compaction scanner. The scanners then need to
1509 * use only pfn_valid_within() check for arches that allow holes within
1510 * pageblocks.
1511 *
1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513 *
1514 * It's possible on some configurations to have a setup like node0 node1 node0
1515 * i.e. it's possible that all pages within a zones range of pages do not
1516 * belong to a single zone. We assume that a border between node0 and node1
1517 * can occur within a single pageblock, but not a node0 node1 node0
1518 * interleaving within a single pageblock. It is therefore sufficient to check
1519 * the first and last page of a pageblock and avoid checking each individual
1520 * page in a pageblock.
1521 */
1522struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 unsigned long end_pfn, struct zone *zone)
1524{
1525 struct page *start_page;
1526 struct page *end_page;
1527
1528 /* end_pfn is one past the range we are checking */
1529 end_pfn--;
1530
1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 return NULL;
1533
1534 start_page = pfn_to_online_page(start_pfn);
1535 if (!start_page)
1536 return NULL;
1537
1538 if (page_zone(start_page) != zone)
1539 return NULL;
1540
1541 end_page = pfn_to_page(end_pfn);
1542
1543 /* This gives a shorter code than deriving page_zone(end_page) */
1544 if (page_zone_id(start_page) != page_zone_id(end_page))
1545 return NULL;
1546
1547 return start_page;
1548}
1549
1550void set_zone_contiguous(struct zone *zone)
1551{
1552 unsigned long block_start_pfn = zone->zone_start_pfn;
1553 unsigned long block_end_pfn;
1554
1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 for (; block_start_pfn < zone_end_pfn(zone);
1557 block_start_pfn = block_end_pfn,
1558 block_end_pfn += pageblock_nr_pages) {
1559
1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561
1562 if (!__pageblock_pfn_to_page(block_start_pfn,
1563 block_end_pfn, zone))
1564 return;
1565 }
1566
1567 /* We confirm that there is no hole */
1568 zone->contiguous = true;
1569}
1570
1571void clear_zone_contiguous(struct zone *zone)
1572{
1573 zone->contiguous = false;
1574}
1575
1576#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577static void __init deferred_free_range(unsigned long pfn,
1578 unsigned long nr_pages)
1579{
1580 struct page *page;
1581 unsigned long i;
1582
1583 if (!nr_pages)
1584 return;
1585
1586 page = pfn_to_page(pfn);
1587
1588 /* Free a large naturally-aligned chunk if possible */
1589 if (nr_pages == pageblock_nr_pages &&
1590 (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 __free_pages_core(page, pageblock_order);
1593 return;
1594 }
1595
1596 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599 __free_pages_core(page, 0);
1600 }
1601}
1602
1603/* Completion tracking for deferred_init_memmap() threads */
1604static atomic_t pgdat_init_n_undone __initdata;
1605static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606
1607static inline void __init pgdat_init_report_one_done(void)
1608{
1609 if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 complete(&pgdat_init_all_done_comp);
1611}
1612
1613/*
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 *
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1619 *
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
1622 */
1623static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624{
1625 if (!pfn_valid_within(pfn))
1626 return false;
1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 return false;
1629 return true;
1630}
1631
1632/*
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1635 */
1636static void __init deferred_free_pages(unsigned long pfn,
1637 unsigned long end_pfn)
1638{
1639 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 unsigned long nr_free = 0;
1641
1642 for (; pfn < end_pfn; pfn++) {
1643 if (!deferred_pfn_valid(pfn)) {
1644 deferred_free_range(pfn - nr_free, nr_free);
1645 nr_free = 0;
1646 } else if (!(pfn & nr_pgmask)) {
1647 deferred_free_range(pfn - nr_free, nr_free);
1648 nr_free = 1;
1649 touch_nmi_watchdog();
1650 } else {
1651 nr_free++;
1652 }
1653 }
1654 /* Free the last block of pages to allocator */
1655 deferred_free_range(pfn - nr_free, nr_free);
1656}
1657
1658/*
1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1660 * by performing it only once every pageblock_nr_pages.
1661 * Return number of pages initialized.
1662 */
1663static unsigned long __init deferred_init_pages(struct zone *zone,
1664 unsigned long pfn,
1665 unsigned long end_pfn)
1666{
1667 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668 int nid = zone_to_nid(zone);
1669 unsigned long nr_pages = 0;
1670 int zid = zone_idx(zone);
1671 struct page *page = NULL;
1672
1673 for (; pfn < end_pfn; pfn++) {
1674 if (!deferred_pfn_valid(pfn)) {
1675 page = NULL;
1676 continue;
1677 } else if (!page || !(pfn & nr_pgmask)) {
1678 page = pfn_to_page(pfn);
1679 touch_nmi_watchdog();
1680 } else {
1681 page++;
1682 }
1683 __init_single_page(page, pfn, zid, nid);
1684 nr_pages++;
1685 }
1686 return (nr_pages);
1687}
1688
1689/*
1690 * This function is meant to pre-load the iterator for the zone init.
1691 * Specifically it walks through the ranges until we are caught up to the
1692 * first_init_pfn value and exits there. If we never encounter the value we
1693 * return false indicating there are no valid ranges left.
1694 */
1695static bool __init
1696deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 unsigned long *spfn, unsigned long *epfn,
1698 unsigned long first_init_pfn)
1699{
1700 u64 j;
1701
1702 /*
1703 * Start out by walking through the ranges in this zone that have
1704 * already been initialized. We don't need to do anything with them
1705 * so we just need to flush them out of the system.
1706 */
1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 if (*epfn <= first_init_pfn)
1709 continue;
1710 if (*spfn < first_init_pfn)
1711 *spfn = first_init_pfn;
1712 *i = j;
1713 return true;
1714 }
1715
1716 return false;
1717}
1718
1719/*
1720 * Initialize and free pages. We do it in two loops: first we initialize
1721 * struct page, then free to buddy allocator, because while we are
1722 * freeing pages we can access pages that are ahead (computing buddy
1723 * page in __free_one_page()).
1724 *
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1727 * any issues with the buddy page computation.
1728 */
1729static unsigned long __init
1730deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 unsigned long *end_pfn)
1732{
1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 unsigned long nr_pages = 0;
1736 u64 j = *i;
1737
1738 /* First we loop through and initialize the page values */
1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 unsigned long t;
1741
1742 if (mo_pfn <= *start_pfn)
1743 break;
1744
1745 t = min(mo_pfn, *end_pfn);
1746 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747
1748 if (mo_pfn < *end_pfn) {
1749 *start_pfn = mo_pfn;
1750 break;
1751 }
1752 }
1753
1754 /* Reset values and now loop through freeing pages as needed */
1755 swap(j, *i);
1756
1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 unsigned long t;
1759
1760 if (mo_pfn <= spfn)
1761 break;
1762
1763 t = min(mo_pfn, epfn);
1764 deferred_free_pages(spfn, t);
1765
1766 if (mo_pfn <= epfn)
1767 break;
1768 }
1769
1770 return nr_pages;
1771}
1772
1773/* Initialise remaining memory on a node */
1774static int __init deferred_init_memmap(void *data)
1775{
1776 pg_data_t *pgdat = data;
1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 unsigned long first_init_pfn, flags;
1780 unsigned long start = jiffies;
1781 struct zone *zone;
1782 int zid;
1783 u64 i;
1784
1785 /* Bind memory initialisation thread to a local node if possible */
1786 if (!cpumask_empty(cpumask))
1787 set_cpus_allowed_ptr(current, cpumask);
1788
1789 pgdat_resize_lock(pgdat, &flags);
1790 first_init_pfn = pgdat->first_deferred_pfn;
1791 if (first_init_pfn == ULONG_MAX) {
1792 pgdat_resize_unlock(pgdat, &flags);
1793 pgdat_init_report_one_done();
1794 return 0;
1795 }
1796
1797 /* Sanity check boundaries */
1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 pgdat->first_deferred_pfn = ULONG_MAX;
1801
1802 /* Only the highest zone is deferred so find it */
1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 zone = pgdat->node_zones + zid;
1805 if (first_init_pfn < zone_end_pfn(zone))
1806 break;
1807 }
1808
1809 /* If the zone is empty somebody else may have cleared out the zone */
1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 first_init_pfn))
1812 goto zone_empty;
1813
1814 /*
1815 * Initialize and free pages in MAX_ORDER sized increments so
1816 * that we can avoid introducing any issues with the buddy
1817 * allocator.
1818 */
1819 while (spfn < epfn)
1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821zone_empty:
1822 pgdat_resize_unlock(pgdat, &flags);
1823
1824 /* Sanity check that the next zone really is unpopulated */
1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826
1827 pr_info("node %d initialised, %lu pages in %ums\n",
1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1829
1830 pgdat_init_report_one_done();
1831 return 0;
1832}
1833
1834/*
1835 * If this zone has deferred pages, try to grow it by initializing enough
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1838 * of SECTION_SIZE bytes by initializing struct pages in increments of
1839 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840 *
1841 * Return true when zone was grown, otherwise return false. We return true even
1842 * when we grow less than requested, to let the caller decide if there are
1843 * enough pages to satisfy the allocation.
1844 *
1845 * Note: We use noinline because this function is needed only during boot, and
1846 * it is called from a __ref function _deferred_grow_zone. This way we are
1847 * making sure that it is not inlined into permanent text section.
1848 */
1849static noinline bool __init
1850deferred_grow_zone(struct zone *zone, unsigned int order)
1851{
1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853 pg_data_t *pgdat = zone->zone_pgdat;
1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 unsigned long spfn, epfn, flags;
1856 unsigned long nr_pages = 0;
1857 u64 i;
1858
1859 /* Only the last zone may have deferred pages */
1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 return false;
1862
1863 pgdat_resize_lock(pgdat, &flags);
1864
1865 /*
1866 * If deferred pages have been initialized while we were waiting for
1867 * the lock, return true, as the zone was grown. The caller will retry
1868 * this zone. We won't return to this function since the caller also
1869 * has this static branch.
1870 */
1871 if (!static_branch_unlikely(&deferred_pages)) {
1872 pgdat_resize_unlock(pgdat, &flags);
1873 return true;
1874 }
1875
1876 /*
1877 * If someone grew this zone while we were waiting for spinlock, return
1878 * true, as there might be enough pages already.
1879 */
1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 pgdat_resize_unlock(pgdat, &flags);
1882 return true;
1883 }
1884
1885 /* If the zone is empty somebody else may have cleared out the zone */
1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 first_deferred_pfn)) {
1888 pgdat->first_deferred_pfn = ULONG_MAX;
1889 pgdat_resize_unlock(pgdat, &flags);
1890 /* Retry only once. */
1891 return first_deferred_pfn != ULONG_MAX;
1892 }
1893
1894 /*
1895 * Initialize and free pages in MAX_ORDER sized increments so
1896 * that we can avoid introducing any issues with the buddy
1897 * allocator.
1898 */
1899 while (spfn < epfn) {
1900 /* update our first deferred PFN for this section */
1901 first_deferred_pfn = spfn;
1902
1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904
1905 /* We should only stop along section boundaries */
1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 continue;
1908
1909 /* If our quota has been met we can stop here */
1910 if (nr_pages >= nr_pages_needed)
1911 break;
1912 }
1913
1914 pgdat->first_deferred_pfn = spfn;
1915 pgdat_resize_unlock(pgdat, &flags);
1916
1917 return nr_pages > 0;
1918}
1919
1920/*
1921 * deferred_grow_zone() is __init, but it is called from
1922 * get_page_from_freelist() during early boot until deferred_pages permanently
1923 * disables this call. This is why we have refdata wrapper to avoid warning,
1924 * and to ensure that the function body gets unloaded.
1925 */
1926static bool __ref
1927_deferred_grow_zone(struct zone *zone, unsigned int order)
1928{
1929 return deferred_grow_zone(zone, order);
1930}
1931
1932#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933
1934void __init page_alloc_init_late(void)
1935{
1936 struct zone *zone;
1937 int nid;
1938
1939#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940
1941 /* There will be num_node_state(N_MEMORY) threads */
1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 for_each_node_state(nid, N_MEMORY) {
1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945 }
1946
1947 /* Block until all are initialised */
1948 wait_for_completion(&pgdat_init_all_done_comp);
1949
1950 /*
1951 * We initialized the rest of the deferred pages. Permanently disable
1952 * on-demand struct page initialization.
1953 */
1954 static_branch_disable(&deferred_pages);
1955
1956 /* Reinit limits that are based on free pages after the kernel is up */
1957 files_maxfiles_init();
1958#endif
1959
1960 /* Discard memblock private memory */
1961 memblock_discard();
1962
1963 for_each_node_state(nid, N_MEMORY)
1964 shuffle_free_memory(NODE_DATA(nid));
1965
1966 for_each_populated_zone(zone)
1967 set_zone_contiguous(zone);
1968
1969#ifdef CONFIG_DEBUG_PAGEALLOC
1970 init_debug_guardpage();
1971#endif
1972}
1973
1974#ifdef CONFIG_CMA
1975/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1976void __init init_cma_reserved_pageblock(struct page *page)
1977{
1978 unsigned i = pageblock_nr_pages;
1979 struct page *p = page;
1980
1981 do {
1982 __ClearPageReserved(p);
1983 set_page_count(p, 0);
1984 } while (++p, --i);
1985
1986 set_pageblock_migratetype(page, MIGRATE_CMA);
1987
1988 if (pageblock_order >= MAX_ORDER) {
1989 i = pageblock_nr_pages;
1990 p = page;
1991 do {
1992 set_page_refcounted(p);
1993 __free_pages(p, MAX_ORDER - 1);
1994 p += MAX_ORDER_NR_PAGES;
1995 } while (i -= MAX_ORDER_NR_PAGES);
1996 } else {
1997 set_page_refcounted(page);
1998 __free_pages(page, pageblock_order);
1999 }
2000
2001 adjust_managed_page_count(page, pageblock_nr_pages);
2002}
2003#endif
2004
2005/*
2006 * The order of subdivision here is critical for the IO subsystem.
2007 * Please do not alter this order without good reasons and regression
2008 * testing. Specifically, as large blocks of memory are subdivided,
2009 * the order in which smaller blocks are delivered depends on the order
2010 * they're subdivided in this function. This is the primary factor
2011 * influencing the order in which pages are delivered to the IO
2012 * subsystem according to empirical testing, and this is also justified
2013 * by considering the behavior of a buddy system containing a single
2014 * large block of memory acted on by a series of small allocations.
2015 * This behavior is a critical factor in sglist merging's success.
2016 *
2017 * -- nyc
2018 */
2019static inline void expand(struct zone *zone, struct page *page,
2020 int low, int high, struct free_area *area,
2021 int migratetype)
2022{
2023 unsigned long size = 1 << high;
2024
2025 while (high > low) {
2026 area--;
2027 high--;
2028 size >>= 1;
2029 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2030
2031 /*
2032 * Mark as guard pages (or page), that will allow to
2033 * merge back to allocator when buddy will be freed.
2034 * Corresponding page table entries will not be touched,
2035 * pages will stay not present in virtual address space
2036 */
2037 if (set_page_guard(zone, &page[size], high, migratetype))
2038 continue;
2039
2040 add_to_free_area(&page[size], area, migratetype);
2041 set_page_order(&page[size], high);
2042 }
2043}
2044
2045static void check_new_page_bad(struct page *page)
2046{
2047 const char *bad_reason = NULL;
2048 unsigned long bad_flags = 0;
2049
2050 if (unlikely(atomic_read(&page->_mapcount) != -1))
2051 bad_reason = "nonzero mapcount";
2052 if (unlikely(page->mapping != NULL))
2053 bad_reason = "non-NULL mapping";
2054 if (unlikely(page_ref_count(page) != 0))
2055 bad_reason = "nonzero _refcount";
2056 if (unlikely(page->flags & __PG_HWPOISON)) {
2057 bad_reason = "HWPoisoned (hardware-corrupted)";
2058 bad_flags = __PG_HWPOISON;
2059 /* Don't complain about hwpoisoned pages */
2060 page_mapcount_reset(page); /* remove PageBuddy */
2061 return;
2062 }
2063 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2064 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2065 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2066 }
2067#ifdef CONFIG_MEMCG
2068 if (unlikely(page->mem_cgroup))
2069 bad_reason = "page still charged to cgroup";
2070#endif
2071 bad_page(page, bad_reason, bad_flags);
2072}
2073
2074/*
2075 * This page is about to be returned from the page allocator
2076 */
2077static inline int check_new_page(struct page *page)
2078{
2079 if (likely(page_expected_state(page,
2080 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2081 return 0;
2082
2083 check_new_page_bad(page);
2084 return 1;
2085}
2086
2087static inline bool free_pages_prezeroed(void)
2088{
2089 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2090 page_poisoning_enabled()) || want_init_on_free();
2091}
2092
2093#ifdef CONFIG_DEBUG_VM
2094/*
2095 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2096 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2097 * also checked when pcp lists are refilled from the free lists.
2098 */
2099static inline bool check_pcp_refill(struct page *page)
2100{
2101 if (debug_pagealloc_enabled())
2102 return check_new_page(page);
2103 else
2104 return false;
2105}
2106
2107static inline bool check_new_pcp(struct page *page)
2108{
2109 return check_new_page(page);
2110}
2111#else
2112/*
2113 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2114 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2115 * enabled, they are also checked when being allocated from the pcp lists.
2116 */
2117static inline bool check_pcp_refill(struct page *page)
2118{
2119 return check_new_page(page);
2120}
2121static inline bool check_new_pcp(struct page *page)
2122{
2123 if (debug_pagealloc_enabled())
2124 return check_new_page(page);
2125 else
2126 return false;
2127}
2128#endif /* CONFIG_DEBUG_VM */
2129
2130static bool check_new_pages(struct page *page, unsigned int order)
2131{
2132 int i;
2133 for (i = 0; i < (1 << order); i++) {
2134 struct page *p = page + i;
2135
2136 if (unlikely(check_new_page(p)))
2137 return true;
2138 }
2139
2140 return false;
2141}
2142
2143inline void post_alloc_hook(struct page *page, unsigned int order,
2144 gfp_t gfp_flags)
2145{
2146 set_page_private(page, 0);
2147 set_page_refcounted(page);
2148
2149 arch_alloc_page(page, order);
2150 if (debug_pagealloc_enabled())
2151 kernel_map_pages(page, 1 << order, 1);
2152 kasan_alloc_pages(page, order);
2153 kernel_poison_pages(page, 1 << order, 1);
2154 set_page_owner(page, order, gfp_flags);
2155}
2156
2157static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2158 unsigned int alloc_flags)
2159{
2160 post_alloc_hook(page, order, gfp_flags);
2161
2162 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2163 kernel_init_free_pages(page, 1 << order);
2164
2165 if (order && (gfp_flags & __GFP_COMP))
2166 prep_compound_page(page, order);
2167
2168 /*
2169 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2170 * allocate the page. The expectation is that the caller is taking
2171 * steps that will free more memory. The caller should avoid the page
2172 * being used for !PFMEMALLOC purposes.
2173 */
2174 if (alloc_flags & ALLOC_NO_WATERMARKS)
2175 set_page_pfmemalloc(page);
2176 else
2177 clear_page_pfmemalloc(page);
2178}
2179
2180/*
2181 * Go through the free lists for the given migratetype and remove
2182 * the smallest available page from the freelists
2183 */
2184static __always_inline
2185struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2186 int migratetype)
2187{
2188 unsigned int current_order;
2189 struct free_area *area;
2190 struct page *page;
2191
2192 /* Find a page of the appropriate size in the preferred list */
2193 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2194 area = &(zone->free_area[current_order]);
2195 page = get_page_from_free_area(area, migratetype);
2196 if (!page)
2197 continue;
2198 del_page_from_free_area(page, area);
2199 expand(zone, page, order, current_order, area, migratetype);
2200 set_pcppage_migratetype(page, migratetype);
2201 return page;
2202 }
2203
2204 return NULL;
2205}
2206
2207
2208/*
2209 * This array describes the order lists are fallen back to when
2210 * the free lists for the desirable migrate type are depleted
2211 */
2212static int fallbacks[MIGRATE_TYPES][4] = {
2213 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2214 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2215 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2216#ifdef CONFIG_CMA
2217 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2218#endif
2219#ifdef CONFIG_MEMORY_ISOLATION
2220 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2221#endif
2222};
2223
2224#ifdef CONFIG_CMA
2225static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2226 unsigned int order)
2227{
2228 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2229}
2230#else
2231static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2232 unsigned int order) { return NULL; }
2233#endif
2234
2235/*
2236 * Move the free pages in a range to the free lists of the requested type.
2237 * Note that start_page and end_pages are not aligned on a pageblock
2238 * boundary. If alignment is required, use move_freepages_block()
2239 */
2240static int move_freepages(struct zone *zone,
2241 struct page *start_page, struct page *end_page,
2242 int migratetype, int *num_movable)
2243{
2244 struct page *page;
2245 unsigned int order;
2246 int pages_moved = 0;
2247
2248 for (page = start_page; page <= end_page;) {
2249 if (!pfn_valid_within(page_to_pfn(page))) {
2250 page++;
2251 continue;
2252 }
2253
2254 if (!PageBuddy(page)) {
2255 /*
2256 * We assume that pages that could be isolated for
2257 * migration are movable. But we don't actually try
2258 * isolating, as that would be expensive.
2259 */
2260 if (num_movable &&
2261 (PageLRU(page) || __PageMovable(page)))
2262 (*num_movable)++;
2263
2264 page++;
2265 continue;
2266 }
2267
2268 /* Make sure we are not inadvertently changing nodes */
2269 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2270 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2271
2272 order = page_order(page);
2273 move_to_free_area(page, &zone->free_area[order], migratetype);
2274 page += 1 << order;
2275 pages_moved += 1 << order;
2276 }
2277
2278 return pages_moved;
2279}
2280
2281int move_freepages_block(struct zone *zone, struct page *page,
2282 int migratetype, int *num_movable)
2283{
2284 unsigned long start_pfn, end_pfn;
2285 struct page *start_page, *end_page;
2286
2287 if (num_movable)
2288 *num_movable = 0;
2289
2290 start_pfn = page_to_pfn(page);
2291 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2292 start_page = pfn_to_page(start_pfn);
2293 end_page = start_page + pageblock_nr_pages - 1;
2294 end_pfn = start_pfn + pageblock_nr_pages - 1;
2295
2296 /* Do not cross zone boundaries */
2297 if (!zone_spans_pfn(zone, start_pfn))
2298 start_page = page;
2299 if (!zone_spans_pfn(zone, end_pfn))
2300 return 0;
2301
2302 return move_freepages(zone, start_page, end_page, migratetype,
2303 num_movable);
2304}
2305
2306static void change_pageblock_range(struct page *pageblock_page,
2307 int start_order, int migratetype)
2308{
2309 int nr_pageblocks = 1 << (start_order - pageblock_order);
2310
2311 while (nr_pageblocks--) {
2312 set_pageblock_migratetype(pageblock_page, migratetype);
2313 pageblock_page += pageblock_nr_pages;
2314 }
2315}
2316
2317/*
2318 * When we are falling back to another migratetype during allocation, try to
2319 * steal extra free pages from the same pageblocks to satisfy further
2320 * allocations, instead of polluting multiple pageblocks.
2321 *
2322 * If we are stealing a relatively large buddy page, it is likely there will
2323 * be more free pages in the pageblock, so try to steal them all. For
2324 * reclaimable and unmovable allocations, we steal regardless of page size,
2325 * as fragmentation caused by those allocations polluting movable pageblocks
2326 * is worse than movable allocations stealing from unmovable and reclaimable
2327 * pageblocks.
2328 */
2329static bool can_steal_fallback(unsigned int order, int start_mt)
2330{
2331 /*
2332 * Leaving this order check is intended, although there is
2333 * relaxed order check in next check. The reason is that
2334 * we can actually steal whole pageblock if this condition met,
2335 * but, below check doesn't guarantee it and that is just heuristic
2336 * so could be changed anytime.
2337 */
2338 if (order >= pageblock_order)
2339 return true;
2340
2341 if (order >= pageblock_order / 2 ||
2342 start_mt == MIGRATE_RECLAIMABLE ||
2343 start_mt == MIGRATE_UNMOVABLE ||
2344 page_group_by_mobility_disabled)
2345 return true;
2346
2347 return false;
2348}
2349
2350static inline void boost_watermark(struct zone *zone)
2351{
2352 unsigned long max_boost;
2353
2354 if (!watermark_boost_factor)
2355 return;
2356
2357 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2358 watermark_boost_factor, 10000);
2359
2360 /*
2361 * high watermark may be uninitialised if fragmentation occurs
2362 * very early in boot so do not boost. We do not fall
2363 * through and boost by pageblock_nr_pages as failing
2364 * allocations that early means that reclaim is not going
2365 * to help and it may even be impossible to reclaim the
2366 * boosted watermark resulting in a hang.
2367 */
2368 if (!max_boost)
2369 return;
2370
2371 max_boost = max(pageblock_nr_pages, max_boost);
2372
2373 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2374 max_boost);
2375}
2376
2377/*
2378 * This function implements actual steal behaviour. If order is large enough,
2379 * we can steal whole pageblock. If not, we first move freepages in this
2380 * pageblock to our migratetype and determine how many already-allocated pages
2381 * are there in the pageblock with a compatible migratetype. If at least half
2382 * of pages are free or compatible, we can change migratetype of the pageblock
2383 * itself, so pages freed in the future will be put on the correct free list.
2384 */
2385static void steal_suitable_fallback(struct zone *zone, struct page *page,
2386 unsigned int alloc_flags, int start_type, bool whole_block)
2387{
2388 unsigned int current_order = page_order(page);
2389 struct free_area *area;
2390 int free_pages, movable_pages, alike_pages;
2391 int old_block_type;
2392
2393 old_block_type = get_pageblock_migratetype(page);
2394
2395 /*
2396 * This can happen due to races and we want to prevent broken
2397 * highatomic accounting.
2398 */
2399 if (is_migrate_highatomic(old_block_type))
2400 goto single_page;
2401
2402 /* Take ownership for orders >= pageblock_order */
2403 if (current_order >= pageblock_order) {
2404 change_pageblock_range(page, current_order, start_type);
2405 goto single_page;
2406 }
2407
2408 /*
2409 * Boost watermarks to increase reclaim pressure to reduce the
2410 * likelihood of future fallbacks. Wake kswapd now as the node
2411 * may be balanced overall and kswapd will not wake naturally.
2412 */
2413 boost_watermark(zone);
2414 if (alloc_flags & ALLOC_KSWAPD)
2415 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2416
2417 /* We are not allowed to try stealing from the whole block */
2418 if (!whole_block)
2419 goto single_page;
2420
2421 free_pages = move_freepages_block(zone, page, start_type,
2422 &movable_pages);
2423 /*
2424 * Determine how many pages are compatible with our allocation.
2425 * For movable allocation, it's the number of movable pages which
2426 * we just obtained. For other types it's a bit more tricky.
2427 */
2428 if (start_type == MIGRATE_MOVABLE) {
2429 alike_pages = movable_pages;
2430 } else {
2431 /*
2432 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2433 * to MOVABLE pageblock, consider all non-movable pages as
2434 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2435 * vice versa, be conservative since we can't distinguish the
2436 * exact migratetype of non-movable pages.
2437 */
2438 if (old_block_type == MIGRATE_MOVABLE)
2439 alike_pages = pageblock_nr_pages
2440 - (free_pages + movable_pages);
2441 else
2442 alike_pages = 0;
2443 }
2444
2445 /* moving whole block can fail due to zone boundary conditions */
2446 if (!free_pages)
2447 goto single_page;
2448
2449 /*
2450 * If a sufficient number of pages in the block are either free or of
2451 * comparable migratability as our allocation, claim the whole block.
2452 */
2453 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2454 page_group_by_mobility_disabled)
2455 set_pageblock_migratetype(page, start_type);
2456
2457 return;
2458
2459single_page:
2460 area = &zone->free_area[current_order];
2461 move_to_free_area(page, area, start_type);
2462}
2463
2464/*
2465 * Check whether there is a suitable fallback freepage with requested order.
2466 * If only_stealable is true, this function returns fallback_mt only if
2467 * we can steal other freepages all together. This would help to reduce
2468 * fragmentation due to mixed migratetype pages in one pageblock.
2469 */
2470int find_suitable_fallback(struct free_area *area, unsigned int order,
2471 int migratetype, bool only_stealable, bool *can_steal)
2472{
2473 int i;
2474 int fallback_mt;
2475
2476 if (area->nr_free == 0)
2477 return -1;
2478
2479 *can_steal = false;
2480 for (i = 0;; i++) {
2481 fallback_mt = fallbacks[migratetype][i];
2482 if (fallback_mt == MIGRATE_TYPES)
2483 break;
2484
2485 if (free_area_empty(area, fallback_mt))
2486 continue;
2487
2488 if (can_steal_fallback(order, migratetype))
2489 *can_steal = true;
2490
2491 if (!only_stealable)
2492 return fallback_mt;
2493
2494 if (*can_steal)
2495 return fallback_mt;
2496 }
2497
2498 return -1;
2499}
2500
2501/*
2502 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2503 * there are no empty page blocks that contain a page with a suitable order
2504 */
2505static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2506 unsigned int alloc_order)
2507{
2508 int mt;
2509 unsigned long max_managed, flags;
2510
2511 /*
2512 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2513 * Check is race-prone but harmless.
2514 */
2515 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2516 if (zone->nr_reserved_highatomic >= max_managed)
2517 return;
2518
2519 spin_lock_irqsave(&zone->lock, flags);
2520
2521 /* Recheck the nr_reserved_highatomic limit under the lock */
2522 if (zone->nr_reserved_highatomic >= max_managed)
2523 goto out_unlock;
2524
2525 /* Yoink! */
2526 mt = get_pageblock_migratetype(page);
2527 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2528 && !is_migrate_cma(mt)) {
2529 zone->nr_reserved_highatomic += pageblock_nr_pages;
2530 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2531 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2532 }
2533
2534out_unlock:
2535 spin_unlock_irqrestore(&zone->lock, flags);
2536}
2537
2538/*
2539 * Used when an allocation is about to fail under memory pressure. This
2540 * potentially hurts the reliability of high-order allocations when under
2541 * intense memory pressure but failed atomic allocations should be easier
2542 * to recover from than an OOM.
2543 *
2544 * If @force is true, try to unreserve a pageblock even though highatomic
2545 * pageblock is exhausted.
2546 */
2547static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2548 bool force)
2549{
2550 struct zonelist *zonelist = ac->zonelist;
2551 unsigned long flags;
2552 struct zoneref *z;
2553 struct zone *zone;
2554 struct page *page;
2555 int order;
2556 bool ret;
2557
2558 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2559 ac->nodemask) {
2560 /*
2561 * Preserve at least one pageblock unless memory pressure
2562 * is really high.
2563 */
2564 if (!force && zone->nr_reserved_highatomic <=
2565 pageblock_nr_pages)
2566 continue;
2567
2568 spin_lock_irqsave(&zone->lock, flags);
2569 for (order = 0; order < MAX_ORDER; order++) {
2570 struct free_area *area = &(zone->free_area[order]);
2571
2572 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2573 if (!page)
2574 continue;
2575
2576 /*
2577 * In page freeing path, migratetype change is racy so
2578 * we can counter several free pages in a pageblock
2579 * in this loop althoug we changed the pageblock type
2580 * from highatomic to ac->migratetype. So we should
2581 * adjust the count once.
2582 */
2583 if (is_migrate_highatomic_page(page)) {
2584 /*
2585 * It should never happen but changes to
2586 * locking could inadvertently allow a per-cpu
2587 * drain to add pages to MIGRATE_HIGHATOMIC
2588 * while unreserving so be safe and watch for
2589 * underflows.
2590 */
2591 zone->nr_reserved_highatomic -= min(
2592 pageblock_nr_pages,
2593 zone->nr_reserved_highatomic);
2594 }
2595
2596 /*
2597 * Convert to ac->migratetype and avoid the normal
2598 * pageblock stealing heuristics. Minimally, the caller
2599 * is doing the work and needs the pages. More
2600 * importantly, if the block was always converted to
2601 * MIGRATE_UNMOVABLE or another type then the number
2602 * of pageblocks that cannot be completely freed
2603 * may increase.
2604 */
2605 set_pageblock_migratetype(page, ac->migratetype);
2606 ret = move_freepages_block(zone, page, ac->migratetype,
2607 NULL);
2608 if (ret) {
2609 spin_unlock_irqrestore(&zone->lock, flags);
2610 return ret;
2611 }
2612 }
2613 spin_unlock_irqrestore(&zone->lock, flags);
2614 }
2615
2616 return false;
2617}
2618
2619/*
2620 * Try finding a free buddy page on the fallback list and put it on the free
2621 * list of requested migratetype, possibly along with other pages from the same
2622 * block, depending on fragmentation avoidance heuristics. Returns true if
2623 * fallback was found so that __rmqueue_smallest() can grab it.
2624 *
2625 * The use of signed ints for order and current_order is a deliberate
2626 * deviation from the rest of this file, to make the for loop
2627 * condition simpler.
2628 */
2629static __always_inline bool
2630__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2631 unsigned int alloc_flags)
2632{
2633 struct free_area *area;
2634 int current_order;
2635 int min_order = order;
2636 struct page *page;
2637 int fallback_mt;
2638 bool can_steal;
2639
2640 /*
2641 * Do not steal pages from freelists belonging to other pageblocks
2642 * i.e. orders < pageblock_order. If there are no local zones free,
2643 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2644 */
2645 if (alloc_flags & ALLOC_NOFRAGMENT)
2646 min_order = pageblock_order;
2647
2648 /*
2649 * Find the largest available free page in the other list. This roughly
2650 * approximates finding the pageblock with the most free pages, which
2651 * would be too costly to do exactly.
2652 */
2653 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2654 --current_order) {
2655 area = &(zone->free_area[current_order]);
2656 fallback_mt = find_suitable_fallback(area, current_order,
2657 start_migratetype, false, &can_steal);
2658 if (fallback_mt == -1)
2659 continue;
2660
2661 /*
2662 * We cannot steal all free pages from the pageblock and the
2663 * requested migratetype is movable. In that case it's better to
2664 * steal and split the smallest available page instead of the
2665 * largest available page, because even if the next movable
2666 * allocation falls back into a different pageblock than this
2667 * one, it won't cause permanent fragmentation.
2668 */
2669 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2670 && current_order > order)
2671 goto find_smallest;
2672
2673 goto do_steal;
2674 }
2675
2676 return false;
2677
2678find_smallest:
2679 for (current_order = order; current_order < MAX_ORDER;
2680 current_order++) {
2681 area = &(zone->free_area[current_order]);
2682 fallback_mt = find_suitable_fallback(area, current_order,
2683 start_migratetype, false, &can_steal);
2684 if (fallback_mt != -1)
2685 break;
2686 }
2687
2688 /*
2689 * This should not happen - we already found a suitable fallback
2690 * when looking for the largest page.
2691 */
2692 VM_BUG_ON(current_order == MAX_ORDER);
2693
2694do_steal:
2695 page = get_page_from_free_area(area, fallback_mt);
2696
2697 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2698 can_steal);
2699
2700 trace_mm_page_alloc_extfrag(page, order, current_order,
2701 start_migratetype, fallback_mt);
2702
2703 return true;
2704
2705}
2706
2707/*
2708 * Do the hard work of removing an element from the buddy allocator.
2709 * Call me with the zone->lock already held.
2710 */
2711static __always_inline struct page *
2712__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2713 unsigned int alloc_flags)
2714{
2715 struct page *page;
2716
2717retry:
2718 page = __rmqueue_smallest(zone, order, migratetype);
2719 if (unlikely(!page)) {
2720 if (migratetype == MIGRATE_MOVABLE)
2721 page = __rmqueue_cma_fallback(zone, order);
2722
2723 if (!page && __rmqueue_fallback(zone, order, migratetype,
2724 alloc_flags))
2725 goto retry;
2726 }
2727
2728 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2729 return page;
2730}
2731
2732/*
2733 * Obtain a specified number of elements from the buddy allocator, all under
2734 * a single hold of the lock, for efficiency. Add them to the supplied list.
2735 * Returns the number of new pages which were placed at *list.
2736 */
2737static int rmqueue_bulk(struct zone *zone, unsigned int order,
2738 unsigned long count, struct list_head *list,
2739 int migratetype, unsigned int alloc_flags)
2740{
2741 int i, alloced = 0;
2742
2743 spin_lock(&zone->lock);
2744 for (i = 0; i < count; ++i) {
2745 struct page *page = __rmqueue(zone, order, migratetype,
2746 alloc_flags);
2747 if (unlikely(page == NULL))
2748 break;
2749
2750 if (unlikely(check_pcp_refill(page)))
2751 continue;
2752
2753 /*
2754 * Split buddy pages returned by expand() are received here in
2755 * physical page order. The page is added to the tail of
2756 * caller's list. From the callers perspective, the linked list
2757 * is ordered by page number under some conditions. This is
2758 * useful for IO devices that can forward direction from the
2759 * head, thus also in the physical page order. This is useful
2760 * for IO devices that can merge IO requests if the physical
2761 * pages are ordered properly.
2762 */
2763 list_add_tail(&page->lru, list);
2764 alloced++;
2765 if (is_migrate_cma(get_pcppage_migratetype(page)))
2766 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2767 -(1 << order));
2768 }
2769
2770 /*
2771 * i pages were removed from the buddy list even if some leak due
2772 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2773 * on i. Do not confuse with 'alloced' which is the number of
2774 * pages added to the pcp list.
2775 */
2776 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2777 spin_unlock(&zone->lock);
2778 return alloced;
2779}
2780
2781#ifdef CONFIG_NUMA
2782/*
2783 * Called from the vmstat counter updater to drain pagesets of this
2784 * currently executing processor on remote nodes after they have
2785 * expired.
2786 *
2787 * Note that this function must be called with the thread pinned to
2788 * a single processor.
2789 */
2790void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2791{
2792 unsigned long flags;
2793 int to_drain, batch;
2794
2795 local_irq_save(flags);
2796 batch = READ_ONCE(pcp->batch);
2797 to_drain = min(pcp->count, batch);
2798 if (to_drain > 0)
2799 free_pcppages_bulk(zone, to_drain, pcp);
2800 local_irq_restore(flags);
2801}
2802#endif
2803
2804/*
2805 * Drain pcplists of the indicated processor and zone.
2806 *
2807 * The processor must either be the current processor and the
2808 * thread pinned to the current processor or a processor that
2809 * is not online.
2810 */
2811static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2812{
2813 unsigned long flags;
2814 struct per_cpu_pageset *pset;
2815 struct per_cpu_pages *pcp;
2816
2817 local_irq_save(flags);
2818 pset = per_cpu_ptr(zone->pageset, cpu);
2819
2820 pcp = &pset->pcp;
2821 if (pcp->count)
2822 free_pcppages_bulk(zone, pcp->count, pcp);
2823 local_irq_restore(flags);
2824}
2825
2826/*
2827 * Drain pcplists of all zones on the indicated processor.
2828 *
2829 * The processor must either be the current processor and the
2830 * thread pinned to the current processor or a processor that
2831 * is not online.
2832 */
2833static void drain_pages(unsigned int cpu)
2834{
2835 struct zone *zone;
2836
2837 for_each_populated_zone(zone) {
2838 drain_pages_zone(cpu, zone);
2839 }
2840}
2841
2842/*
2843 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2844 *
2845 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2846 * the single zone's pages.
2847 */
2848void drain_local_pages(struct zone *zone)
2849{
2850 int cpu = smp_processor_id();
2851
2852 if (zone)
2853 drain_pages_zone(cpu, zone);
2854 else
2855 drain_pages(cpu);
2856}
2857
2858static void drain_local_pages_wq(struct work_struct *work)
2859{
2860 struct pcpu_drain *drain;
2861
2862 drain = container_of(work, struct pcpu_drain, work);
2863
2864 /*
2865 * drain_all_pages doesn't use proper cpu hotplug protection so
2866 * we can race with cpu offline when the WQ can move this from
2867 * a cpu pinned worker to an unbound one. We can operate on a different
2868 * cpu which is allright but we also have to make sure to not move to
2869 * a different one.
2870 */
2871 preempt_disable();
2872 drain_local_pages(drain->zone);
2873 preempt_enable();
2874}
2875
2876/*
2877 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2878 *
2879 * When zone parameter is non-NULL, spill just the single zone's pages.
2880 *
2881 * Note that this can be extremely slow as the draining happens in a workqueue.
2882 */
2883void drain_all_pages(struct zone *zone)
2884{
2885 int cpu;
2886
2887 /*
2888 * Allocate in the BSS so we wont require allocation in
2889 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2890 */
2891 static cpumask_t cpus_with_pcps;
2892
2893 /*
2894 * Make sure nobody triggers this path before mm_percpu_wq is fully
2895 * initialized.
2896 */
2897 if (WARN_ON_ONCE(!mm_percpu_wq))
2898 return;
2899
2900 /*
2901 * Do not drain if one is already in progress unless it's specific to
2902 * a zone. Such callers are primarily CMA and memory hotplug and need
2903 * the drain to be complete when the call returns.
2904 */
2905 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2906 if (!zone)
2907 return;
2908 mutex_lock(&pcpu_drain_mutex);
2909 }
2910
2911 /*
2912 * We don't care about racing with CPU hotplug event
2913 * as offline notification will cause the notified
2914 * cpu to drain that CPU pcps and on_each_cpu_mask
2915 * disables preemption as part of its processing
2916 */
2917 for_each_online_cpu(cpu) {
2918 struct per_cpu_pageset *pcp;
2919 struct zone *z;
2920 bool has_pcps = false;
2921
2922 if (zone) {
2923 pcp = per_cpu_ptr(zone->pageset, cpu);
2924 if (pcp->pcp.count)
2925 has_pcps = true;
2926 } else {
2927 for_each_populated_zone(z) {
2928 pcp = per_cpu_ptr(z->pageset, cpu);
2929 if (pcp->pcp.count) {
2930 has_pcps = true;
2931 break;
2932 }
2933 }
2934 }
2935
2936 if (has_pcps)
2937 cpumask_set_cpu(cpu, &cpus_with_pcps);
2938 else
2939 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2940 }
2941
2942 for_each_cpu(cpu, &cpus_with_pcps) {
2943 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2944
2945 drain->zone = zone;
2946 INIT_WORK(&drain->work, drain_local_pages_wq);
2947 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2948 }
2949 for_each_cpu(cpu, &cpus_with_pcps)
2950 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2951
2952 mutex_unlock(&pcpu_drain_mutex);
2953}
2954
2955#ifdef CONFIG_HIBERNATION
2956
2957/*
2958 * Touch the watchdog for every WD_PAGE_COUNT pages.
2959 */
2960#define WD_PAGE_COUNT (128*1024)
2961
2962void mark_free_pages(struct zone *zone)
2963{
2964 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2965 unsigned long flags;
2966 unsigned int order, t;
2967 struct page *page;
2968
2969 if (zone_is_empty(zone))
2970 return;
2971
2972 spin_lock_irqsave(&zone->lock, flags);
2973
2974 max_zone_pfn = zone_end_pfn(zone);
2975 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2976 if (pfn_valid(pfn)) {
2977 page = pfn_to_page(pfn);
2978
2979 if (!--page_count) {
2980 touch_nmi_watchdog();
2981 page_count = WD_PAGE_COUNT;
2982 }
2983
2984 if (page_zone(page) != zone)
2985 continue;
2986
2987 if (!swsusp_page_is_forbidden(page))
2988 swsusp_unset_page_free(page);
2989 }
2990
2991 for_each_migratetype_order(order, t) {
2992 list_for_each_entry(page,
2993 &zone->free_area[order].free_list[t], lru) {
2994 unsigned long i;
2995
2996 pfn = page_to_pfn(page);
2997 for (i = 0; i < (1UL << order); i++) {
2998 if (!--page_count) {
2999 touch_nmi_watchdog();
3000 page_count = WD_PAGE_COUNT;
3001 }
3002 swsusp_set_page_free(pfn_to_page(pfn + i));
3003 }
3004 }
3005 }
3006 spin_unlock_irqrestore(&zone->lock, flags);
3007}
3008#endif /* CONFIG_PM */
3009
3010static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3011{
3012 int migratetype;
3013
3014 if (!free_pcp_prepare(page))
3015 return false;
3016
3017 migratetype = get_pfnblock_migratetype(page, pfn);
3018 set_pcppage_migratetype(page, migratetype);
3019 return true;
3020}
3021
3022static void free_unref_page_commit(struct page *page, unsigned long pfn)
3023{
3024 struct zone *zone = page_zone(page);
3025 struct per_cpu_pages *pcp;
3026 int migratetype;
3027
3028 migratetype = get_pcppage_migratetype(page);
3029 __count_vm_event(PGFREE);
3030
3031 /*
3032 * We only track unmovable, reclaimable and movable on pcp lists.
3033 * Free ISOLATE pages back to the allocator because they are being
3034 * offlined but treat HIGHATOMIC as movable pages so we can get those
3035 * areas back if necessary. Otherwise, we may have to free
3036 * excessively into the page allocator
3037 */
3038 if (migratetype >= MIGRATE_PCPTYPES) {
3039 if (unlikely(is_migrate_isolate(migratetype))) {
3040 free_one_page(zone, page, pfn, 0, migratetype);
3041 return;
3042 }
3043 migratetype = MIGRATE_MOVABLE;
3044 }
3045
3046 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3047 list_add(&page->lru, &pcp->lists[migratetype]);
3048 pcp->count++;
3049 if (pcp->count >= pcp->high) {
3050 unsigned long batch = READ_ONCE(pcp->batch);
3051 free_pcppages_bulk(zone, batch, pcp);
3052 }
3053}
3054
3055/*
3056 * Free a 0-order page
3057 */
3058void free_unref_page(struct page *page)
3059{
3060 unsigned long flags;
3061 unsigned long pfn = page_to_pfn(page);
3062
3063 if (!free_unref_page_prepare(page, pfn))
3064 return;
3065
3066 local_irq_save(flags);
3067 free_unref_page_commit(page, pfn);
3068 local_irq_restore(flags);
3069}
3070
3071/*
3072 * Free a list of 0-order pages
3073 */
3074void free_unref_page_list(struct list_head *list)
3075{
3076 struct page *page, *next;
3077 unsigned long flags, pfn;
3078 int batch_count = 0;
3079
3080 /* Prepare pages for freeing */
3081 list_for_each_entry_safe(page, next, list, lru) {
3082 pfn = page_to_pfn(page);
3083 if (!free_unref_page_prepare(page, pfn))
3084 list_del(&page->lru);
3085 set_page_private(page, pfn);
3086 }
3087
3088 local_irq_save(flags);
3089 list_for_each_entry_safe(page, next, list, lru) {
3090 unsigned long pfn = page_private(page);
3091
3092 set_page_private(page, 0);
3093 trace_mm_page_free_batched(page);
3094 free_unref_page_commit(page, pfn);
3095
3096 /*
3097 * Guard against excessive IRQ disabled times when we get
3098 * a large list of pages to free.
3099 */
3100 if (++batch_count == SWAP_CLUSTER_MAX) {
3101 local_irq_restore(flags);
3102 batch_count = 0;
3103 local_irq_save(flags);
3104 }
3105 }
3106 local_irq_restore(flags);
3107}
3108
3109/*
3110 * split_page takes a non-compound higher-order page, and splits it into
3111 * n (1<<order) sub-pages: page[0..n]
3112 * Each sub-page must be freed individually.
3113 *
3114 * Note: this is probably too low level an operation for use in drivers.
3115 * Please consult with lkml before using this in your driver.
3116 */
3117void split_page(struct page *page, unsigned int order)
3118{
3119 int i;
3120
3121 VM_BUG_ON_PAGE(PageCompound(page), page);
3122 VM_BUG_ON_PAGE(!page_count(page), page);
3123
3124 for (i = 1; i < (1 << order); i++)
3125 set_page_refcounted(page + i);
3126 split_page_owner(page, order);
3127}
3128EXPORT_SYMBOL_GPL(split_page);
3129
3130int __isolate_free_page(struct page *page, unsigned int order)
3131{
3132 struct free_area *area = &page_zone(page)->free_area[order];
3133 unsigned long watermark;
3134 struct zone *zone;
3135 int mt;
3136
3137 BUG_ON(!PageBuddy(page));
3138
3139 zone = page_zone(page);
3140 mt = get_pageblock_migratetype(page);
3141
3142 if (!is_migrate_isolate(mt)) {
3143 /*
3144 * Obey watermarks as if the page was being allocated. We can
3145 * emulate a high-order watermark check with a raised order-0
3146 * watermark, because we already know our high-order page
3147 * exists.
3148 */
3149 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3150 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3151 return 0;
3152
3153 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3154 }
3155
3156 /* Remove page from free list */
3157
3158 del_page_from_free_area(page, area);
3159
3160 /*
3161 * Set the pageblock if the isolated page is at least half of a
3162 * pageblock
3163 */
3164 if (order >= pageblock_order - 1) {
3165 struct page *endpage = page + (1 << order) - 1;
3166 for (; page < endpage; page += pageblock_nr_pages) {
3167 int mt = get_pageblock_migratetype(page);
3168 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3169 && !is_migrate_highatomic(mt))
3170 set_pageblock_migratetype(page,
3171 MIGRATE_MOVABLE);
3172 }
3173 }
3174
3175
3176 return 1UL << order;
3177}
3178
3179/*
3180 * Update NUMA hit/miss statistics
3181 *
3182 * Must be called with interrupts disabled.
3183 */
3184static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3185{
3186#ifdef CONFIG_NUMA
3187 enum numa_stat_item local_stat = NUMA_LOCAL;
3188
3189 /* skip numa counters update if numa stats is disabled */
3190 if (!static_branch_likely(&vm_numa_stat_key))
3191 return;
3192
3193 if (zone_to_nid(z) != numa_node_id())
3194 local_stat = NUMA_OTHER;
3195
3196 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3197 __inc_numa_state(z, NUMA_HIT);
3198 else {
3199 __inc_numa_state(z, NUMA_MISS);
3200 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3201 }
3202 __inc_numa_state(z, local_stat);
3203#endif
3204}
3205
3206/* Remove page from the per-cpu list, caller must protect the list */
3207static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3208 unsigned int alloc_flags,
3209 struct per_cpu_pages *pcp,
3210 struct list_head *list)
3211{
3212 struct page *page;
3213
3214 do {
3215 if (list_empty(list)) {
3216 pcp->count += rmqueue_bulk(zone, 0,
3217 pcp->batch, list,
3218 migratetype, alloc_flags);
3219 if (unlikely(list_empty(list)))
3220 return NULL;
3221 }
3222
3223 page = list_first_entry(list, struct page, lru);
3224 list_del(&page->lru);
3225 pcp->count--;
3226 } while (check_new_pcp(page));
3227
3228 return page;
3229}
3230
3231/* Lock and remove page from the per-cpu list */
3232static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3233 struct zone *zone, gfp_t gfp_flags,
3234 int migratetype, unsigned int alloc_flags)
3235{
3236 struct per_cpu_pages *pcp;
3237 struct list_head *list;
3238 struct page *page;
3239 unsigned long flags;
3240
3241 local_irq_save(flags);
3242 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3243 list = &pcp->lists[migratetype];
3244 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3245 if (page) {
3246 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3247 zone_statistics(preferred_zone, zone);
3248 }
3249 local_irq_restore(flags);
3250 return page;
3251}
3252
3253/*
3254 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3255 */
3256static inline
3257struct page *rmqueue(struct zone *preferred_zone,
3258 struct zone *zone, unsigned int order,
3259 gfp_t gfp_flags, unsigned int alloc_flags,
3260 int migratetype)
3261{
3262 unsigned long flags;
3263 struct page *page;
3264
3265 if (likely(order == 0)) {
3266 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3267 migratetype, alloc_flags);
3268 goto out;
3269 }
3270
3271 /*
3272 * We most definitely don't want callers attempting to
3273 * allocate greater than order-1 page units with __GFP_NOFAIL.
3274 */
3275 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3276 spin_lock_irqsave(&zone->lock, flags);
3277
3278 do {
3279 page = NULL;
3280 if (alloc_flags & ALLOC_HARDER) {
3281 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3282 if (page)
3283 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3284 }
3285 if (!page)
3286 page = __rmqueue(zone, order, migratetype, alloc_flags);
3287 } while (page && check_new_pages(page, order));
3288 spin_unlock(&zone->lock);
3289 if (!page)
3290 goto failed;
3291 __mod_zone_freepage_state(zone, -(1 << order),
3292 get_pcppage_migratetype(page));
3293
3294 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3295 zone_statistics(preferred_zone, zone);
3296 local_irq_restore(flags);
3297
3298out:
3299 /* Separate test+clear to avoid unnecessary atomics */
3300 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3301 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3302 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3303 }
3304
3305 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3306 return page;
3307
3308failed:
3309 local_irq_restore(flags);
3310 return NULL;
3311}
3312
3313#ifdef CONFIG_FAIL_PAGE_ALLOC
3314
3315static struct {
3316 struct fault_attr attr;
3317
3318 bool ignore_gfp_highmem;
3319 bool ignore_gfp_reclaim;
3320 u32 min_order;
3321} fail_page_alloc = {
3322 .attr = FAULT_ATTR_INITIALIZER,
3323 .ignore_gfp_reclaim = true,
3324 .ignore_gfp_highmem = true,
3325 .min_order = 1,
3326};
3327
3328static int __init setup_fail_page_alloc(char *str)
3329{
3330 return setup_fault_attr(&fail_page_alloc.attr, str);
3331}
3332__setup("fail_page_alloc=", setup_fail_page_alloc);
3333
3334static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3335{
3336 if (order < fail_page_alloc.min_order)
3337 return false;
3338 if (gfp_mask & __GFP_NOFAIL)
3339 return false;
3340 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3341 return false;
3342 if (fail_page_alloc.ignore_gfp_reclaim &&
3343 (gfp_mask & __GFP_DIRECT_RECLAIM))
3344 return false;
3345
3346 return should_fail(&fail_page_alloc.attr, 1 << order);
3347}
3348
3349#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3350
3351static int __init fail_page_alloc_debugfs(void)
3352{
3353 umode_t mode = S_IFREG | 0600;
3354 struct dentry *dir;
3355
3356 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3357 &fail_page_alloc.attr);
3358
3359 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3360 &fail_page_alloc.ignore_gfp_reclaim);
3361 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3362 &fail_page_alloc.ignore_gfp_highmem);
3363 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3364
3365 return 0;
3366}
3367
3368late_initcall(fail_page_alloc_debugfs);
3369
3370#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3371
3372#else /* CONFIG_FAIL_PAGE_ALLOC */
3373
3374static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3375{
3376 return false;
3377}
3378
3379#endif /* CONFIG_FAIL_PAGE_ALLOC */
3380
3381static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3382{
3383 return __should_fail_alloc_page(gfp_mask, order);
3384}
3385ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3386
3387/*
3388 * Return true if free base pages are above 'mark'. For high-order checks it
3389 * will return true of the order-0 watermark is reached and there is at least
3390 * one free page of a suitable size. Checking now avoids taking the zone lock
3391 * to check in the allocation paths if no pages are free.
3392 */
3393bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3394 int classzone_idx, unsigned int alloc_flags,
3395 long free_pages)
3396{
3397 long min = mark;
3398 int o;
3399 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3400
3401 /* free_pages may go negative - that's OK */
3402 free_pages -= (1 << order) - 1;
3403
3404 if (alloc_flags & ALLOC_HIGH)
3405 min -= min / 2;
3406
3407 /*
3408 * If the caller does not have rights to ALLOC_HARDER then subtract
3409 * the high-atomic reserves. This will over-estimate the size of the
3410 * atomic reserve but it avoids a search.
3411 */
3412 if (likely(!alloc_harder)) {
3413 free_pages -= z->nr_reserved_highatomic;
3414 } else {
3415 /*
3416 * OOM victims can try even harder than normal ALLOC_HARDER
3417 * users on the grounds that it's definitely going to be in
3418 * the exit path shortly and free memory. Any allocation it
3419 * makes during the free path will be small and short-lived.
3420 */
3421 if (alloc_flags & ALLOC_OOM)
3422 min -= min / 2;
3423 else
3424 min -= min / 4;
3425 }
3426
3427
3428#ifdef CONFIG_CMA
3429 /* If allocation can't use CMA areas don't use free CMA pages */
3430 if (!(alloc_flags & ALLOC_CMA))
3431 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3432#endif
3433
3434 /*
3435 * Check watermarks for an order-0 allocation request. If these
3436 * are not met, then a high-order request also cannot go ahead
3437 * even if a suitable page happened to be free.
3438 */
3439 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3440 return false;
3441
3442 /* If this is an order-0 request then the watermark is fine */
3443 if (!order)
3444 return true;
3445
3446 /* For a high-order request, check at least one suitable page is free */
3447 for (o = order; o < MAX_ORDER; o++) {
3448 struct free_area *area = &z->free_area[o];
3449 int mt;
3450
3451 if (!area->nr_free)
3452 continue;
3453
3454 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3455 if (!free_area_empty(area, mt))
3456 return true;
3457 }
3458
3459#ifdef CONFIG_CMA
3460 if ((alloc_flags & ALLOC_CMA) &&
3461 !free_area_empty(area, MIGRATE_CMA)) {
3462 return true;
3463 }
3464#endif
3465 if (alloc_harder &&
3466 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3467 return true;
3468 }
3469 return false;
3470}
3471
3472bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3473 int classzone_idx, unsigned int alloc_flags)
3474{
3475 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3476 zone_page_state(z, NR_FREE_PAGES));
3477}
3478
3479static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3480 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3481{
3482 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3483 long cma_pages = 0;
3484
3485#ifdef CONFIG_CMA
3486 /* If allocation can't use CMA areas don't use free CMA pages */
3487 if (!(alloc_flags & ALLOC_CMA))
3488 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3489#endif
3490
3491 /*
3492 * Fast check for order-0 only. If this fails then the reserves
3493 * need to be calculated. There is a corner case where the check
3494 * passes but only the high-order atomic reserve are free. If
3495 * the caller is !atomic then it'll uselessly search the free
3496 * list. That corner case is then slower but it is harmless.
3497 */
3498 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3499 return true;
3500
3501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3502 free_pages);
3503}
3504
3505bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3506 unsigned long mark, int classzone_idx)
3507{
3508 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3509
3510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3512
3513 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3514 free_pages);
3515}
3516
3517#ifdef CONFIG_NUMA
3518static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3519{
3520 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3521 node_reclaim_distance;
3522}
3523#else /* CONFIG_NUMA */
3524static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3525{
3526 return true;
3527}
3528#endif /* CONFIG_NUMA */
3529
3530/*
3531 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3532 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3533 * premature use of a lower zone may cause lowmem pressure problems that
3534 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3535 * probably too small. It only makes sense to spread allocations to avoid
3536 * fragmentation between the Normal and DMA32 zones.
3537 */
3538static inline unsigned int
3539alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3540{
3541 unsigned int alloc_flags = 0;
3542
3543 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3544 alloc_flags |= ALLOC_KSWAPD;
3545
3546#ifdef CONFIG_ZONE_DMA32
3547 if (!zone)
3548 return alloc_flags;
3549
3550 if (zone_idx(zone) != ZONE_NORMAL)
3551 return alloc_flags;
3552
3553 /*
3554 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3555 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3556 * on UMA that if Normal is populated then so is DMA32.
3557 */
3558 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3559 if (nr_online_nodes > 1 && !populated_zone(--zone))
3560 return alloc_flags;
3561
3562 alloc_flags |= ALLOC_NOFRAGMENT;
3563#endif /* CONFIG_ZONE_DMA32 */
3564 return alloc_flags;
3565}
3566
3567/*
3568 * get_page_from_freelist goes through the zonelist trying to allocate
3569 * a page.
3570 */
3571static struct page *
3572get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3573 const struct alloc_context *ac)
3574{
3575 struct zoneref *z;
3576 struct zone *zone;
3577 struct pglist_data *last_pgdat_dirty_limit = NULL;
3578 bool no_fallback;
3579
3580retry:
3581 /*
3582 * Scan zonelist, looking for a zone with enough free.
3583 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3584 */
3585 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3586 z = ac->preferred_zoneref;
3587 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3588 ac->nodemask) {
3589 struct page *page;
3590 unsigned long mark;
3591
3592 if (cpusets_enabled() &&
3593 (alloc_flags & ALLOC_CPUSET) &&
3594 !__cpuset_zone_allowed(zone, gfp_mask))
3595 continue;
3596 /*
3597 * When allocating a page cache page for writing, we
3598 * want to get it from a node that is within its dirty
3599 * limit, such that no single node holds more than its
3600 * proportional share of globally allowed dirty pages.
3601 * The dirty limits take into account the node's
3602 * lowmem reserves and high watermark so that kswapd
3603 * should be able to balance it without having to
3604 * write pages from its LRU list.
3605 *
3606 * XXX: For now, allow allocations to potentially
3607 * exceed the per-node dirty limit in the slowpath
3608 * (spread_dirty_pages unset) before going into reclaim,
3609 * which is important when on a NUMA setup the allowed
3610 * nodes are together not big enough to reach the
3611 * global limit. The proper fix for these situations
3612 * will require awareness of nodes in the
3613 * dirty-throttling and the flusher threads.
3614 */
3615 if (ac->spread_dirty_pages) {
3616 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3617 continue;
3618
3619 if (!node_dirty_ok(zone->zone_pgdat)) {
3620 last_pgdat_dirty_limit = zone->zone_pgdat;
3621 continue;
3622 }
3623 }
3624
3625 if (no_fallback && nr_online_nodes > 1 &&
3626 zone != ac->preferred_zoneref->zone) {
3627 int local_nid;
3628
3629 /*
3630 * If moving to a remote node, retry but allow
3631 * fragmenting fallbacks. Locality is more important
3632 * than fragmentation avoidance.
3633 */
3634 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3635 if (zone_to_nid(zone) != local_nid) {
3636 alloc_flags &= ~ALLOC_NOFRAGMENT;
3637 goto retry;
3638 }
3639 }
3640
3641 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3642 if (!zone_watermark_fast(zone, order, mark,
3643 ac_classzone_idx(ac), alloc_flags)) {
3644 int ret;
3645
3646#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3647 /*
3648 * Watermark failed for this zone, but see if we can
3649 * grow this zone if it contains deferred pages.
3650 */
3651 if (static_branch_unlikely(&deferred_pages)) {
3652 if (_deferred_grow_zone(zone, order))
3653 goto try_this_zone;
3654 }
3655#endif
3656 /* Checked here to keep the fast path fast */
3657 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3658 if (alloc_flags & ALLOC_NO_WATERMARKS)
3659 goto try_this_zone;
3660
3661 if (node_reclaim_mode == 0 ||
3662 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3663 continue;
3664
3665 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3666 switch (ret) {
3667 case NODE_RECLAIM_NOSCAN:
3668 /* did not scan */
3669 continue;
3670 case NODE_RECLAIM_FULL:
3671 /* scanned but unreclaimable */
3672 continue;
3673 default:
3674 /* did we reclaim enough */
3675 if (zone_watermark_ok(zone, order, mark,
3676 ac_classzone_idx(ac), alloc_flags))
3677 goto try_this_zone;
3678
3679 continue;
3680 }
3681 }
3682
3683try_this_zone:
3684 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3685 gfp_mask, alloc_flags, ac->migratetype);
3686 if (page) {
3687 prep_new_page(page, order, gfp_mask, alloc_flags);
3688
3689 /*
3690 * If this is a high-order atomic allocation then check
3691 * if the pageblock should be reserved for the future
3692 */
3693 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3694 reserve_highatomic_pageblock(page, zone, order);
3695
3696 return page;
3697 } else {
3698#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3699 /* Try again if zone has deferred pages */
3700 if (static_branch_unlikely(&deferred_pages)) {
3701 if (_deferred_grow_zone(zone, order))
3702 goto try_this_zone;
3703 }
3704#endif
3705 }
3706 }
3707
3708 /*
3709 * It's possible on a UMA machine to get through all zones that are
3710 * fragmented. If avoiding fragmentation, reset and try again.
3711 */
3712 if (no_fallback) {
3713 alloc_flags &= ~ALLOC_NOFRAGMENT;
3714 goto retry;
3715 }
3716
3717 return NULL;
3718}
3719
3720static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3721{
3722 unsigned int filter = SHOW_MEM_FILTER_NODES;
3723 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3724
3725 if (!__ratelimit(&show_mem_rs))
3726 return;
3727
3728 /*
3729 * This documents exceptions given to allocations in certain
3730 * contexts that are allowed to allocate outside current's set
3731 * of allowed nodes.
3732 */
3733 if (!(gfp_mask & __GFP_NOMEMALLOC))
3734 if (tsk_is_oom_victim(current) ||
3735 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3736 filter &= ~SHOW_MEM_FILTER_NODES;
3737 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3738 filter &= ~SHOW_MEM_FILTER_NODES;
3739
3740 show_mem(filter, nodemask);
3741}
3742
3743void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3744{
3745 struct va_format vaf;
3746 va_list args;
3747 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3748 DEFAULT_RATELIMIT_BURST);
3749
3750 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3751 return;
3752
3753 va_start(args, fmt);
3754 vaf.fmt = fmt;
3755 vaf.va = &args;
3756 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3757 current->comm, &vaf, gfp_mask, &gfp_mask,
3758 nodemask_pr_args(nodemask));
3759 va_end(args);
3760
3761 cpuset_print_current_mems_allowed();
3762 pr_cont("\n");
3763 dump_stack();
3764 warn_alloc_show_mem(gfp_mask, nodemask);
3765}
3766
3767static inline struct page *
3768__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3769 unsigned int alloc_flags,
3770 const struct alloc_context *ac)
3771{
3772 struct page *page;
3773
3774 page = get_page_from_freelist(gfp_mask, order,
3775 alloc_flags|ALLOC_CPUSET, ac);
3776 /*
3777 * fallback to ignore cpuset restriction if our nodes
3778 * are depleted
3779 */
3780 if (!page)
3781 page = get_page_from_freelist(gfp_mask, order,
3782 alloc_flags, ac);
3783
3784 return page;
3785}
3786
3787static inline struct page *
3788__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3789 const struct alloc_context *ac, unsigned long *did_some_progress)
3790{
3791 struct oom_control oc = {
3792 .zonelist = ac->zonelist,
3793 .nodemask = ac->nodemask,
3794 .memcg = NULL,
3795 .gfp_mask = gfp_mask,
3796 .order = order,
3797 };
3798 struct page *page;
3799
3800 *did_some_progress = 0;
3801
3802 /*
3803 * Acquire the oom lock. If that fails, somebody else is
3804 * making progress for us.
3805 */
3806 if (!mutex_trylock(&oom_lock)) {
3807 *did_some_progress = 1;
3808 schedule_timeout_uninterruptible(1);
3809 return NULL;
3810 }
3811
3812 /*
3813 * Go through the zonelist yet one more time, keep very high watermark
3814 * here, this is only to catch a parallel oom killing, we must fail if
3815 * we're still under heavy pressure. But make sure that this reclaim
3816 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3817 * allocation which will never fail due to oom_lock already held.
3818 */
3819 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3820 ~__GFP_DIRECT_RECLAIM, order,
3821 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3822 if (page)
3823 goto out;
3824
3825 /* Coredumps can quickly deplete all memory reserves */
3826 if (current->flags & PF_DUMPCORE)
3827 goto out;
3828 /* The OOM killer will not help higher order allocs */
3829 if (order > PAGE_ALLOC_COSTLY_ORDER)
3830 goto out;
3831 /*
3832 * We have already exhausted all our reclaim opportunities without any
3833 * success so it is time to admit defeat. We will skip the OOM killer
3834 * because it is very likely that the caller has a more reasonable
3835 * fallback than shooting a random task.
3836 */
3837 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3838 goto out;
3839 /* The OOM killer does not needlessly kill tasks for lowmem */
3840 if (ac->high_zoneidx < ZONE_NORMAL)
3841 goto out;
3842 if (pm_suspended_storage())
3843 goto out;
3844 /*
3845 * XXX: GFP_NOFS allocations should rather fail than rely on
3846 * other request to make a forward progress.
3847 * We are in an unfortunate situation where out_of_memory cannot
3848 * do much for this context but let's try it to at least get
3849 * access to memory reserved if the current task is killed (see
3850 * out_of_memory). Once filesystems are ready to handle allocation
3851 * failures more gracefully we should just bail out here.
3852 */
3853
3854 /* The OOM killer may not free memory on a specific node */
3855 if (gfp_mask & __GFP_THISNODE)
3856 goto out;
3857
3858 /* Exhausted what can be done so it's blame time */
3859 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3860 *did_some_progress = 1;
3861
3862 /*
3863 * Help non-failing allocations by giving them access to memory
3864 * reserves
3865 */
3866 if (gfp_mask & __GFP_NOFAIL)
3867 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3868 ALLOC_NO_WATERMARKS, ac);
3869 }
3870out:
3871 mutex_unlock(&oom_lock);
3872 return page;
3873}
3874
3875/*
3876 * Maximum number of compaction retries wit a progress before OOM
3877 * killer is consider as the only way to move forward.
3878 */
3879#define MAX_COMPACT_RETRIES 16
3880
3881#ifdef CONFIG_COMPACTION
3882/* Try memory compaction for high-order allocations before reclaim */
3883static struct page *
3884__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3885 unsigned int alloc_flags, const struct alloc_context *ac,
3886 enum compact_priority prio, enum compact_result *compact_result)
3887{
3888 struct page *page = NULL;
3889 unsigned long pflags;
3890 unsigned int noreclaim_flag;
3891
3892 if (!order)
3893 return NULL;
3894
3895 psi_memstall_enter(&pflags);
3896 noreclaim_flag = memalloc_noreclaim_save();
3897
3898 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3899 prio, &page);
3900
3901 memalloc_noreclaim_restore(noreclaim_flag);
3902 psi_memstall_leave(&pflags);
3903
3904 /*
3905 * At least in one zone compaction wasn't deferred or skipped, so let's
3906 * count a compaction stall
3907 */
3908 count_vm_event(COMPACTSTALL);
3909
3910 /* Prep a captured page if available */
3911 if (page)
3912 prep_new_page(page, order, gfp_mask, alloc_flags);
3913
3914 /* Try get a page from the freelist if available */
3915 if (!page)
3916 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3917
3918 if (page) {
3919 struct zone *zone = page_zone(page);
3920
3921 zone->compact_blockskip_flush = false;
3922 compaction_defer_reset(zone, order, true);
3923 count_vm_event(COMPACTSUCCESS);
3924 return page;
3925 }
3926
3927 /*
3928 * It's bad if compaction run occurs and fails. The most likely reason
3929 * is that pages exist, but not enough to satisfy watermarks.
3930 */
3931 count_vm_event(COMPACTFAIL);
3932
3933 cond_resched();
3934
3935 return NULL;
3936}
3937
3938static inline bool
3939should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3940 enum compact_result compact_result,
3941 enum compact_priority *compact_priority,
3942 int *compaction_retries)
3943{
3944 int max_retries = MAX_COMPACT_RETRIES;
3945 int min_priority;
3946 bool ret = false;
3947 int retries = *compaction_retries;
3948 enum compact_priority priority = *compact_priority;
3949
3950 if (!order)
3951 return false;
3952
3953 if (compaction_made_progress(compact_result))
3954 (*compaction_retries)++;
3955
3956 /*
3957 * compaction considers all the zone as desperately out of memory
3958 * so it doesn't really make much sense to retry except when the
3959 * failure could be caused by insufficient priority
3960 */
3961 if (compaction_failed(compact_result))
3962 goto check_priority;
3963
3964 /*
3965 * compaction was skipped because there are not enough order-0 pages
3966 * to work with, so we retry only if it looks like reclaim can help.
3967 */
3968 if (compaction_needs_reclaim(compact_result)) {
3969 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3970 goto out;
3971 }
3972
3973 /*
3974 * make sure the compaction wasn't deferred or didn't bail out early
3975 * due to locks contention before we declare that we should give up.
3976 * But the next retry should use a higher priority if allowed, so
3977 * we don't just keep bailing out endlessly.
3978 */
3979 if (compaction_withdrawn(compact_result)) {
3980 goto check_priority;
3981 }
3982
3983 /*
3984 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3985 * costly ones because they are de facto nofail and invoke OOM
3986 * killer to move on while costly can fail and users are ready
3987 * to cope with that. 1/4 retries is rather arbitrary but we
3988 * would need much more detailed feedback from compaction to
3989 * make a better decision.
3990 */
3991 if (order > PAGE_ALLOC_COSTLY_ORDER)
3992 max_retries /= 4;
3993 if (*compaction_retries <= max_retries) {
3994 ret = true;
3995 goto out;
3996 }
3997
3998 /*
3999 * Make sure there are attempts at the highest priority if we exhausted
4000 * all retries or failed at the lower priorities.
4001 */
4002check_priority:
4003 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4004 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4005
4006 if (*compact_priority > min_priority) {
4007 (*compact_priority)--;
4008 *compaction_retries = 0;
4009 ret = true;
4010 }
4011out:
4012 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4013 return ret;
4014}
4015#else
4016static inline struct page *
4017__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4018 unsigned int alloc_flags, const struct alloc_context *ac,
4019 enum compact_priority prio, enum compact_result *compact_result)
4020{
4021 *compact_result = COMPACT_SKIPPED;
4022 return NULL;
4023}
4024
4025static inline bool
4026should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4027 enum compact_result compact_result,
4028 enum compact_priority *compact_priority,
4029 int *compaction_retries)
4030{
4031 struct zone *zone;
4032 struct zoneref *z;
4033
4034 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4035 return false;
4036
4037 /*
4038 * There are setups with compaction disabled which would prefer to loop
4039 * inside the allocator rather than hit the oom killer prematurely.
4040 * Let's give them a good hope and keep retrying while the order-0
4041 * watermarks are OK.
4042 */
4043 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4044 ac->nodemask) {
4045 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4046 ac_classzone_idx(ac), alloc_flags))
4047 return true;
4048 }
4049 return false;
4050}
4051#endif /* CONFIG_COMPACTION */
4052
4053#ifdef CONFIG_LOCKDEP
4054static struct lockdep_map __fs_reclaim_map =
4055 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4056
4057static bool __need_fs_reclaim(gfp_t gfp_mask)
4058{
4059 gfp_mask = current_gfp_context(gfp_mask);
4060
4061 /* no reclaim without waiting on it */
4062 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4063 return false;
4064
4065 /* this guy won't enter reclaim */
4066 if (current->flags & PF_MEMALLOC)
4067 return false;
4068
4069 /* We're only interested __GFP_FS allocations for now */
4070 if (!(gfp_mask & __GFP_FS))
4071 return false;
4072
4073 if (gfp_mask & __GFP_NOLOCKDEP)
4074 return false;
4075
4076 return true;
4077}
4078
4079void __fs_reclaim_acquire(void)
4080{
4081 lock_map_acquire(&__fs_reclaim_map);
4082}
4083
4084void __fs_reclaim_release(void)
4085{
4086 lock_map_release(&__fs_reclaim_map);
4087}
4088
4089void fs_reclaim_acquire(gfp_t gfp_mask)
4090{
4091 if (__need_fs_reclaim(gfp_mask))
4092 __fs_reclaim_acquire();
4093}
4094EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4095
4096void fs_reclaim_release(gfp_t gfp_mask)
4097{
4098 if (__need_fs_reclaim(gfp_mask))
4099 __fs_reclaim_release();
4100}
4101EXPORT_SYMBOL_GPL(fs_reclaim_release);
4102#endif
4103
4104/* Perform direct synchronous page reclaim */
4105static int
4106__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4107 const struct alloc_context *ac)
4108{
4109 int progress;
4110 unsigned int noreclaim_flag;
4111 unsigned long pflags;
4112
4113 cond_resched();
4114
4115 /* We now go into synchronous reclaim */
4116 cpuset_memory_pressure_bump();
4117 psi_memstall_enter(&pflags);
4118 fs_reclaim_acquire(gfp_mask);
4119 noreclaim_flag = memalloc_noreclaim_save();
4120
4121 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4122 ac->nodemask);
4123
4124 memalloc_noreclaim_restore(noreclaim_flag);
4125 fs_reclaim_release(gfp_mask);
4126 psi_memstall_leave(&pflags);
4127
4128 cond_resched();
4129
4130 return progress;
4131}
4132
4133/* The really slow allocator path where we enter direct reclaim */
4134static inline struct page *
4135__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4136 unsigned int alloc_flags, const struct alloc_context *ac,
4137 unsigned long *did_some_progress)
4138{
4139 struct page *page = NULL;
4140 bool drained = false;
4141
4142 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4143 if (unlikely(!(*did_some_progress)))
4144 return NULL;
4145
4146retry:
4147 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4148
4149 /*
4150 * If an allocation failed after direct reclaim, it could be because
4151 * pages are pinned on the per-cpu lists or in high alloc reserves.
4152 * Shrink them them and try again
4153 */
4154 if (!page && !drained) {
4155 unreserve_highatomic_pageblock(ac, false);
4156 drain_all_pages(NULL);
4157 drained = true;
4158 goto retry;
4159 }
4160
4161 return page;
4162}
4163
4164static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4165 const struct alloc_context *ac)
4166{
4167 struct zoneref *z;
4168 struct zone *zone;
4169 pg_data_t *last_pgdat = NULL;
4170 enum zone_type high_zoneidx = ac->high_zoneidx;
4171
4172 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4173 ac->nodemask) {
4174 if (last_pgdat != zone->zone_pgdat)
4175 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4176 last_pgdat = zone->zone_pgdat;
4177 }
4178}
4179
4180static inline unsigned int
4181gfp_to_alloc_flags(gfp_t gfp_mask)
4182{
4183 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4184
4185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4187
4188 /*
4189 * The caller may dip into page reserves a bit more if the caller
4190 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4192 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4193 */
4194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4195
4196 if (gfp_mask & __GFP_ATOMIC) {
4197 /*
4198 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4199 * if it can't schedule.
4200 */
4201 if (!(gfp_mask & __GFP_NOMEMALLOC))
4202 alloc_flags |= ALLOC_HARDER;
4203 /*
4204 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4205 * comment for __cpuset_node_allowed().
4206 */
4207 alloc_flags &= ~ALLOC_CPUSET;
4208 } else if (unlikely(rt_task(current)) && !in_interrupt())
4209 alloc_flags |= ALLOC_HARDER;
4210
4211 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4212 alloc_flags |= ALLOC_KSWAPD;
4213
4214#ifdef CONFIG_CMA
4215 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4216 alloc_flags |= ALLOC_CMA;
4217#endif
4218 return alloc_flags;
4219}
4220
4221static bool oom_reserves_allowed(struct task_struct *tsk)
4222{
4223 if (!tsk_is_oom_victim(tsk))
4224 return false;
4225
4226 /*
4227 * !MMU doesn't have oom reaper so give access to memory reserves
4228 * only to the thread with TIF_MEMDIE set
4229 */
4230 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4231 return false;
4232
4233 return true;
4234}
4235
4236/*
4237 * Distinguish requests which really need access to full memory
4238 * reserves from oom victims which can live with a portion of it
4239 */
4240static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4241{
4242 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4243 return 0;
4244 if (gfp_mask & __GFP_MEMALLOC)
4245 return ALLOC_NO_WATERMARKS;
4246 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4247 return ALLOC_NO_WATERMARKS;
4248 if (!in_interrupt()) {
4249 if (current->flags & PF_MEMALLOC)
4250 return ALLOC_NO_WATERMARKS;
4251 else if (oom_reserves_allowed(current))
4252 return ALLOC_OOM;
4253 }
4254
4255 return 0;
4256}
4257
4258bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4259{
4260 return !!__gfp_pfmemalloc_flags(gfp_mask);
4261}
4262
4263/*
4264 * Checks whether it makes sense to retry the reclaim to make a forward progress
4265 * for the given allocation request.
4266 *
4267 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4268 * without success, or when we couldn't even meet the watermark if we
4269 * reclaimed all remaining pages on the LRU lists.
4270 *
4271 * Returns true if a retry is viable or false to enter the oom path.
4272 */
4273static inline bool
4274should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4275 struct alloc_context *ac, int alloc_flags,
4276 bool did_some_progress, int *no_progress_loops)
4277{
4278 struct zone *zone;
4279 struct zoneref *z;
4280 bool ret = false;
4281
4282 /*
4283 * Costly allocations might have made a progress but this doesn't mean
4284 * their order will become available due to high fragmentation so
4285 * always increment the no progress counter for them
4286 */
4287 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4288 *no_progress_loops = 0;
4289 else
4290 (*no_progress_loops)++;
4291
4292 /*
4293 * Make sure we converge to OOM if we cannot make any progress
4294 * several times in the row.
4295 */
4296 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4297 /* Before OOM, exhaust highatomic_reserve */
4298 return unreserve_highatomic_pageblock(ac, true);
4299 }
4300
4301 /*
4302 * Keep reclaiming pages while there is a chance this will lead
4303 * somewhere. If none of the target zones can satisfy our allocation
4304 * request even if all reclaimable pages are considered then we are
4305 * screwed and have to go OOM.
4306 */
4307 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4308 ac->nodemask) {
4309 unsigned long available;
4310 unsigned long reclaimable;
4311 unsigned long min_wmark = min_wmark_pages(zone);
4312 bool wmark;
4313
4314 available = reclaimable = zone_reclaimable_pages(zone);
4315 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4316
4317 /*
4318 * Would the allocation succeed if we reclaimed all
4319 * reclaimable pages?
4320 */
4321 wmark = __zone_watermark_ok(zone, order, min_wmark,
4322 ac_classzone_idx(ac), alloc_flags, available);
4323 trace_reclaim_retry_zone(z, order, reclaimable,
4324 available, min_wmark, *no_progress_loops, wmark);
4325 if (wmark) {
4326 /*
4327 * If we didn't make any progress and have a lot of
4328 * dirty + writeback pages then we should wait for
4329 * an IO to complete to slow down the reclaim and
4330 * prevent from pre mature OOM
4331 */
4332 if (!did_some_progress) {
4333 unsigned long write_pending;
4334
4335 write_pending = zone_page_state_snapshot(zone,
4336 NR_ZONE_WRITE_PENDING);
4337
4338 if (2 * write_pending > reclaimable) {
4339 congestion_wait(BLK_RW_ASYNC, HZ/10);
4340 return true;
4341 }
4342 }
4343
4344 ret = true;
4345 goto out;
4346 }
4347 }
4348
4349out:
4350 /*
4351 * Memory allocation/reclaim might be called from a WQ context and the
4352 * current implementation of the WQ concurrency control doesn't
4353 * recognize that a particular WQ is congested if the worker thread is
4354 * looping without ever sleeping. Therefore we have to do a short sleep
4355 * here rather than calling cond_resched().
4356 */
4357 if (current->flags & PF_WQ_WORKER)
4358 schedule_timeout_uninterruptible(1);
4359 else
4360 cond_resched();
4361 return ret;
4362}
4363
4364static inline bool
4365check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4366{
4367 /*
4368 * It's possible that cpuset's mems_allowed and the nodemask from
4369 * mempolicy don't intersect. This should be normally dealt with by
4370 * policy_nodemask(), but it's possible to race with cpuset update in
4371 * such a way the check therein was true, and then it became false
4372 * before we got our cpuset_mems_cookie here.
4373 * This assumes that for all allocations, ac->nodemask can come only
4374 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4375 * when it does not intersect with the cpuset restrictions) or the
4376 * caller can deal with a violated nodemask.
4377 */
4378 if (cpusets_enabled() && ac->nodemask &&
4379 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4380 ac->nodemask = NULL;
4381 return true;
4382 }
4383
4384 /*
4385 * When updating a task's mems_allowed or mempolicy nodemask, it is
4386 * possible to race with parallel threads in such a way that our
4387 * allocation can fail while the mask is being updated. If we are about
4388 * to fail, check if the cpuset changed during allocation and if so,
4389 * retry.
4390 */
4391 if (read_mems_allowed_retry(cpuset_mems_cookie))
4392 return true;
4393
4394 return false;
4395}
4396
4397static inline struct page *
4398__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4399 struct alloc_context *ac)
4400{
4401 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4402 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4403 struct page *page = NULL;
4404 unsigned int alloc_flags;
4405 unsigned long did_some_progress;
4406 enum compact_priority compact_priority;
4407 enum compact_result compact_result;
4408 int compaction_retries;
4409 int no_progress_loops;
4410 unsigned int cpuset_mems_cookie;
4411 int reserve_flags;
4412
4413 /*
4414 * We also sanity check to catch abuse of atomic reserves being used by
4415 * callers that are not in atomic context.
4416 */
4417 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4418 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4419 gfp_mask &= ~__GFP_ATOMIC;
4420
4421retry_cpuset:
4422 compaction_retries = 0;
4423 no_progress_loops = 0;
4424 compact_priority = DEF_COMPACT_PRIORITY;
4425 cpuset_mems_cookie = read_mems_allowed_begin();
4426
4427 /*
4428 * The fast path uses conservative alloc_flags to succeed only until
4429 * kswapd needs to be woken up, and to avoid the cost of setting up
4430 * alloc_flags precisely. So we do that now.
4431 */
4432 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4433
4434 /*
4435 * We need to recalculate the starting point for the zonelist iterator
4436 * because we might have used different nodemask in the fast path, or
4437 * there was a cpuset modification and we are retrying - otherwise we
4438 * could end up iterating over non-eligible zones endlessly.
4439 */
4440 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4441 ac->high_zoneidx, ac->nodemask);
4442 if (!ac->preferred_zoneref->zone)
4443 goto nopage;
4444
4445 if (alloc_flags & ALLOC_KSWAPD)
4446 wake_all_kswapds(order, gfp_mask, ac);
4447
4448 /*
4449 * The adjusted alloc_flags might result in immediate success, so try
4450 * that first
4451 */
4452 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4453 if (page)
4454 goto got_pg;
4455
4456 /*
4457 * For costly allocations, try direct compaction first, as it's likely
4458 * that we have enough base pages and don't need to reclaim. For non-
4459 * movable high-order allocations, do that as well, as compaction will
4460 * try prevent permanent fragmentation by migrating from blocks of the
4461 * same migratetype.
4462 * Don't try this for allocations that are allowed to ignore
4463 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4464 */
4465 if (can_direct_reclaim &&
4466 (costly_order ||
4467 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4468 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4469 page = __alloc_pages_direct_compact(gfp_mask, order,
4470 alloc_flags, ac,
4471 INIT_COMPACT_PRIORITY,
4472 &compact_result);
4473 if (page)
4474 goto got_pg;
4475
4476 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4477 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4478 /*
4479 * If allocating entire pageblock(s) and compaction
4480 * failed because all zones are below low watermarks
4481 * or is prohibited because it recently failed at this
4482 * order, fail immediately unless the allocator has
4483 * requested compaction and reclaim retry.
4484 *
4485 * Reclaim is
4486 * - potentially very expensive because zones are far
4487 * below their low watermarks or this is part of very
4488 * bursty high order allocations,
4489 * - not guaranteed to help because isolate_freepages()
4490 * may not iterate over freed pages as part of its
4491 * linear scan, and
4492 * - unlikely to make entire pageblocks free on its
4493 * own.
4494 */
4495 if (compact_result == COMPACT_SKIPPED ||
4496 compact_result == COMPACT_DEFERRED)
4497 goto nopage;
4498 }
4499
4500 /*
4501 * Checks for costly allocations with __GFP_NORETRY, which
4502 * includes THP page fault allocations
4503 */
4504 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4505 /*
4506 * If compaction is deferred for high-order allocations,
4507 * it is because sync compaction recently failed. If
4508 * this is the case and the caller requested a THP
4509 * allocation, we do not want to heavily disrupt the
4510 * system, so we fail the allocation instead of entering
4511 * direct reclaim.
4512 */
4513 if (compact_result == COMPACT_DEFERRED)
4514 goto nopage;
4515
4516 /*
4517 * Looks like reclaim/compaction is worth trying, but
4518 * sync compaction could be very expensive, so keep
4519 * using async compaction.
4520 */
4521 compact_priority = INIT_COMPACT_PRIORITY;
4522 }
4523 }
4524
4525retry:
4526 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4527 if (alloc_flags & ALLOC_KSWAPD)
4528 wake_all_kswapds(order, gfp_mask, ac);
4529
4530 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4531 if (reserve_flags)
4532 alloc_flags = reserve_flags;
4533
4534 /*
4535 * Reset the nodemask and zonelist iterators if memory policies can be
4536 * ignored. These allocations are high priority and system rather than
4537 * user oriented.
4538 */
4539 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4540 ac->nodemask = NULL;
4541 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4542 ac->high_zoneidx, ac->nodemask);
4543 }
4544
4545 /* Attempt with potentially adjusted zonelist and alloc_flags */
4546 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4547 if (page)
4548 goto got_pg;
4549
4550 /* Caller is not willing to reclaim, we can't balance anything */
4551 if (!can_direct_reclaim)
4552 goto nopage;
4553
4554 /* Avoid recursion of direct reclaim */
4555 if (current->flags & PF_MEMALLOC)
4556 goto nopage;
4557
4558 /* Try direct reclaim and then allocating */
4559 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4560 &did_some_progress);
4561 if (page)
4562 goto got_pg;
4563
4564 /* Try direct compaction and then allocating */
4565 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4566 compact_priority, &compact_result);
4567 if (page)
4568 goto got_pg;
4569
4570 /* Do not loop if specifically requested */
4571 if (gfp_mask & __GFP_NORETRY)
4572 goto nopage;
4573
4574 /*
4575 * Do not retry costly high order allocations unless they are
4576 * __GFP_RETRY_MAYFAIL
4577 */
4578 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4579 goto nopage;
4580
4581 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4582 did_some_progress > 0, &no_progress_loops))
4583 goto retry;
4584
4585 /*
4586 * It doesn't make any sense to retry for the compaction if the order-0
4587 * reclaim is not able to make any progress because the current
4588 * implementation of the compaction depends on the sufficient amount
4589 * of free memory (see __compaction_suitable)
4590 */
4591 if (did_some_progress > 0 &&
4592 should_compact_retry(ac, order, alloc_flags,
4593 compact_result, &compact_priority,
4594 &compaction_retries))
4595 goto retry;
4596
4597
4598 /* Deal with possible cpuset update races before we start OOM killing */
4599 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4600 goto retry_cpuset;
4601
4602 /* Reclaim has failed us, start killing things */
4603 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4604 if (page)
4605 goto got_pg;
4606
4607 /* Avoid allocations with no watermarks from looping endlessly */
4608 if (tsk_is_oom_victim(current) &&
4609 (alloc_flags == ALLOC_OOM ||
4610 (gfp_mask & __GFP_NOMEMALLOC)))
4611 goto nopage;
4612
4613 /* Retry as long as the OOM killer is making progress */
4614 if (did_some_progress) {
4615 no_progress_loops = 0;
4616 goto retry;
4617 }
4618
4619nopage:
4620 /* Deal with possible cpuset update races before we fail */
4621 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4622 goto retry_cpuset;
4623
4624 /*
4625 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4626 * we always retry
4627 */
4628 if (gfp_mask & __GFP_NOFAIL) {
4629 /*
4630 * All existing users of the __GFP_NOFAIL are blockable, so warn
4631 * of any new users that actually require GFP_NOWAIT
4632 */
4633 if (WARN_ON_ONCE(!can_direct_reclaim))
4634 goto fail;
4635
4636 /*
4637 * PF_MEMALLOC request from this context is rather bizarre
4638 * because we cannot reclaim anything and only can loop waiting
4639 * for somebody to do a work for us
4640 */
4641 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4642
4643 /*
4644 * non failing costly orders are a hard requirement which we
4645 * are not prepared for much so let's warn about these users
4646 * so that we can identify them and convert them to something
4647 * else.
4648 */
4649 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4650
4651 /*
4652 * Help non-failing allocations by giving them access to memory
4653 * reserves but do not use ALLOC_NO_WATERMARKS because this
4654 * could deplete whole memory reserves which would just make
4655 * the situation worse
4656 */
4657 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4658 if (page)
4659 goto got_pg;
4660
4661 cond_resched();
4662 goto retry;
4663 }
4664fail:
4665 warn_alloc(gfp_mask, ac->nodemask,
4666 "page allocation failure: order:%u", order);
4667got_pg:
4668 return page;
4669}
4670
4671static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4672 int preferred_nid, nodemask_t *nodemask,
4673 struct alloc_context *ac, gfp_t *alloc_mask,
4674 unsigned int *alloc_flags)
4675{
4676 ac->high_zoneidx = gfp_zone(gfp_mask);
4677 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4678 ac->nodemask = nodemask;
4679 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4680
4681 if (cpusets_enabled()) {
4682 *alloc_mask |= __GFP_HARDWALL;
4683 if (!ac->nodemask)
4684 ac->nodemask = &cpuset_current_mems_allowed;
4685 else
4686 *alloc_flags |= ALLOC_CPUSET;
4687 }
4688
4689 fs_reclaim_acquire(gfp_mask);
4690 fs_reclaim_release(gfp_mask);
4691
4692 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4693
4694 if (should_fail_alloc_page(gfp_mask, order))
4695 return false;
4696
4697 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4698 *alloc_flags |= ALLOC_CMA;
4699
4700 return true;
4701}
4702
4703/* Determine whether to spread dirty pages and what the first usable zone */
4704static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4705{
4706 /* Dirty zone balancing only done in the fast path */
4707 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4708
4709 /*
4710 * The preferred zone is used for statistics but crucially it is
4711 * also used as the starting point for the zonelist iterator. It
4712 * may get reset for allocations that ignore memory policies.
4713 */
4714 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4715 ac->high_zoneidx, ac->nodemask);
4716}
4717
4718/*
4719 * This is the 'heart' of the zoned buddy allocator.
4720 */
4721struct page *
4722__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4723 nodemask_t *nodemask)
4724{
4725 struct page *page;
4726 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4727 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4728 struct alloc_context ac = { };
4729
4730 /*
4731 * There are several places where we assume that the order value is sane
4732 * so bail out early if the request is out of bound.
4733 */
4734 if (unlikely(order >= MAX_ORDER)) {
4735 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4736 return NULL;
4737 }
4738
4739 gfp_mask &= gfp_allowed_mask;
4740 alloc_mask = gfp_mask;
4741 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4742 return NULL;
4743
4744 finalise_ac(gfp_mask, &ac);
4745
4746 /*
4747 * Forbid the first pass from falling back to types that fragment
4748 * memory until all local zones are considered.
4749 */
4750 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4751
4752 /* First allocation attempt */
4753 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4754 if (likely(page))
4755 goto out;
4756
4757 /*
4758 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4759 * resp. GFP_NOIO which has to be inherited for all allocation requests
4760 * from a particular context which has been marked by
4761 * memalloc_no{fs,io}_{save,restore}.
4762 */
4763 alloc_mask = current_gfp_context(gfp_mask);
4764 ac.spread_dirty_pages = false;
4765
4766 /*
4767 * Restore the original nodemask if it was potentially replaced with
4768 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4769 */
4770 if (unlikely(ac.nodemask != nodemask))
4771 ac.nodemask = nodemask;
4772
4773 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4774
4775out:
4776 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4777 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4778 __free_pages(page, order);
4779 page = NULL;
4780 }
4781
4782 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4783
4784 return page;
4785}
4786EXPORT_SYMBOL(__alloc_pages_nodemask);
4787
4788/*
4789 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4790 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4791 * you need to access high mem.
4792 */
4793unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4794{
4795 struct page *page;
4796
4797 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4798 if (!page)
4799 return 0;
4800 return (unsigned long) page_address(page);
4801}
4802EXPORT_SYMBOL(__get_free_pages);
4803
4804unsigned long get_zeroed_page(gfp_t gfp_mask)
4805{
4806 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4807}
4808EXPORT_SYMBOL(get_zeroed_page);
4809
4810static inline void free_the_page(struct page *page, unsigned int order)
4811{
4812 if (order == 0) /* Via pcp? */
4813 free_unref_page(page);
4814 else
4815 __free_pages_ok(page, order);
4816}
4817
4818void __free_pages(struct page *page, unsigned int order)
4819{
4820 if (put_page_testzero(page))
4821 free_the_page(page, order);
4822}
4823EXPORT_SYMBOL(__free_pages);
4824
4825void free_pages(unsigned long addr, unsigned int order)
4826{
4827 if (addr != 0) {
4828 VM_BUG_ON(!virt_addr_valid((void *)addr));
4829 __free_pages(virt_to_page((void *)addr), order);
4830 }
4831}
4832
4833EXPORT_SYMBOL(free_pages);
4834
4835/*
4836 * Page Fragment:
4837 * An arbitrary-length arbitrary-offset area of memory which resides
4838 * within a 0 or higher order page. Multiple fragments within that page
4839 * are individually refcounted, in the page's reference counter.
4840 *
4841 * The page_frag functions below provide a simple allocation framework for
4842 * page fragments. This is used by the network stack and network device
4843 * drivers to provide a backing region of memory for use as either an
4844 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4845 */
4846static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4847 gfp_t gfp_mask)
4848{
4849 struct page *page = NULL;
4850 gfp_t gfp = gfp_mask;
4851
4852#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4853 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4854 __GFP_NOMEMALLOC;
4855 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4856 PAGE_FRAG_CACHE_MAX_ORDER);
4857 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4858#endif
4859 if (unlikely(!page))
4860 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4861
4862 nc->va = page ? page_address(page) : NULL;
4863
4864 return page;
4865}
4866
4867void __page_frag_cache_drain(struct page *page, unsigned int count)
4868{
4869 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4870
4871 if (page_ref_sub_and_test(page, count))
4872 free_the_page(page, compound_order(page));
4873}
4874EXPORT_SYMBOL(__page_frag_cache_drain);
4875
4876void *page_frag_alloc(struct page_frag_cache *nc,
4877 unsigned int fragsz, gfp_t gfp_mask)
4878{
4879 unsigned int size = PAGE_SIZE;
4880 struct page *page;
4881 int offset;
4882
4883 if (unlikely(!nc->va)) {
4884refill:
4885 page = __page_frag_cache_refill(nc, gfp_mask);
4886 if (!page)
4887 return NULL;
4888
4889#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4890 /* if size can vary use size else just use PAGE_SIZE */
4891 size = nc->size;
4892#endif
4893 /* Even if we own the page, we do not use atomic_set().
4894 * This would break get_page_unless_zero() users.
4895 */
4896 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4897
4898 /* reset page count bias and offset to start of new frag */
4899 nc->pfmemalloc = page_is_pfmemalloc(page);
4900 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4901 nc->offset = size;
4902 }
4903
4904 offset = nc->offset - fragsz;
4905 if (unlikely(offset < 0)) {
4906 page = virt_to_page(nc->va);
4907
4908 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4909 goto refill;
4910
4911#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4912 /* if size can vary use size else just use PAGE_SIZE */
4913 size = nc->size;
4914#endif
4915 /* OK, page count is 0, we can safely set it */
4916 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4917
4918 /* reset page count bias and offset to start of new frag */
4919 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4920 offset = size - fragsz;
4921 }
4922
4923 nc->pagecnt_bias--;
4924 nc->offset = offset;
4925
4926 return nc->va + offset;
4927}
4928EXPORT_SYMBOL(page_frag_alloc);
4929
4930/*
4931 * Frees a page fragment allocated out of either a compound or order 0 page.
4932 */
4933void page_frag_free(void *addr)
4934{
4935 struct page *page = virt_to_head_page(addr);
4936
4937 if (unlikely(put_page_testzero(page)))
4938 free_the_page(page, compound_order(page));
4939}
4940EXPORT_SYMBOL(page_frag_free);
4941
4942static void *make_alloc_exact(unsigned long addr, unsigned int order,
4943 size_t size)
4944{
4945 if (addr) {
4946 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4947 unsigned long used = addr + PAGE_ALIGN(size);
4948
4949 split_page(virt_to_page((void *)addr), order);
4950 while (used < alloc_end) {
4951 free_page(used);
4952 used += PAGE_SIZE;
4953 }
4954 }
4955 return (void *)addr;
4956}
4957
4958/**
4959 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4960 * @size: the number of bytes to allocate
4961 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4962 *
4963 * This function is similar to alloc_pages(), except that it allocates the
4964 * minimum number of pages to satisfy the request. alloc_pages() can only
4965 * allocate memory in power-of-two pages.
4966 *
4967 * This function is also limited by MAX_ORDER.
4968 *
4969 * Memory allocated by this function must be released by free_pages_exact().
4970 *
4971 * Return: pointer to the allocated area or %NULL in case of error.
4972 */
4973void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4974{
4975 unsigned int order = get_order(size);
4976 unsigned long addr;
4977
4978 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4979 gfp_mask &= ~__GFP_COMP;
4980
4981 addr = __get_free_pages(gfp_mask, order);
4982 return make_alloc_exact(addr, order, size);
4983}
4984EXPORT_SYMBOL(alloc_pages_exact);
4985
4986/**
4987 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4988 * pages on a node.
4989 * @nid: the preferred node ID where memory should be allocated
4990 * @size: the number of bytes to allocate
4991 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4992 *
4993 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4994 * back.
4995 *
4996 * Return: pointer to the allocated area or %NULL in case of error.
4997 */
4998void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4999{
5000 unsigned int order = get_order(size);
5001 struct page *p;
5002
5003 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5004 gfp_mask &= ~__GFP_COMP;
5005
5006 p = alloc_pages_node(nid, gfp_mask, order);
5007 if (!p)
5008 return NULL;
5009 return make_alloc_exact((unsigned long)page_address(p), order, size);
5010}
5011
5012/**
5013 * free_pages_exact - release memory allocated via alloc_pages_exact()
5014 * @virt: the value returned by alloc_pages_exact.
5015 * @size: size of allocation, same value as passed to alloc_pages_exact().
5016 *
5017 * Release the memory allocated by a previous call to alloc_pages_exact.
5018 */
5019void free_pages_exact(void *virt, size_t size)
5020{
5021 unsigned long addr = (unsigned long)virt;
5022 unsigned long end = addr + PAGE_ALIGN(size);
5023
5024 while (addr < end) {
5025 free_page(addr);
5026 addr += PAGE_SIZE;
5027 }
5028}
5029EXPORT_SYMBOL(free_pages_exact);
5030
5031/**
5032 * nr_free_zone_pages - count number of pages beyond high watermark
5033 * @offset: The zone index of the highest zone
5034 *
5035 * nr_free_zone_pages() counts the number of pages which are beyond the
5036 * high watermark within all zones at or below a given zone index. For each
5037 * zone, the number of pages is calculated as:
5038 *
5039 * nr_free_zone_pages = managed_pages - high_pages
5040 *
5041 * Return: number of pages beyond high watermark.
5042 */
5043static unsigned long nr_free_zone_pages(int offset)
5044{
5045 struct zoneref *z;
5046 struct zone *zone;
5047
5048 /* Just pick one node, since fallback list is circular */
5049 unsigned long sum = 0;
5050
5051 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5052
5053 for_each_zone_zonelist(zone, z, zonelist, offset) {
5054 unsigned long size = zone_managed_pages(zone);
5055 unsigned long high = high_wmark_pages(zone);
5056 if (size > high)
5057 sum += size - high;
5058 }
5059
5060 return sum;
5061}
5062
5063/**
5064 * nr_free_buffer_pages - count number of pages beyond high watermark
5065 *
5066 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5067 * watermark within ZONE_DMA and ZONE_NORMAL.
5068 *
5069 * Return: number of pages beyond high watermark within ZONE_DMA and
5070 * ZONE_NORMAL.
5071 */
5072unsigned long nr_free_buffer_pages(void)
5073{
5074 return nr_free_zone_pages(gfp_zone(GFP_USER));
5075}
5076EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5077
5078/**
5079 * nr_free_pagecache_pages - count number of pages beyond high watermark
5080 *
5081 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5082 * high watermark within all zones.
5083 *
5084 * Return: number of pages beyond high watermark within all zones.
5085 */
5086unsigned long nr_free_pagecache_pages(void)
5087{
5088 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5089}
5090
5091static inline void show_node(struct zone *zone)
5092{
5093 if (IS_ENABLED(CONFIG_NUMA))
5094 printk("Node %d ", zone_to_nid(zone));
5095}
5096
5097long si_mem_available(void)
5098{
5099 long available;
5100 unsigned long pagecache;
5101 unsigned long wmark_low = 0;
5102 unsigned long pages[NR_LRU_LISTS];
5103 unsigned long reclaimable;
5104 struct zone *zone;
5105 int lru;
5106
5107 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5108 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5109
5110 for_each_zone(zone)
5111 wmark_low += low_wmark_pages(zone);
5112
5113 /*
5114 * Estimate the amount of memory available for userspace allocations,
5115 * without causing swapping.
5116 */
5117 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5118
5119 /*
5120 * Not all the page cache can be freed, otherwise the system will
5121 * start swapping. Assume at least half of the page cache, or the
5122 * low watermark worth of cache, needs to stay.
5123 */
5124 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5125 pagecache -= min(pagecache / 2, wmark_low);
5126 available += pagecache;
5127
5128 /*
5129 * Part of the reclaimable slab and other kernel memory consists of
5130 * items that are in use, and cannot be freed. Cap this estimate at the
5131 * low watermark.
5132 */
5133 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5134 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5135 available += reclaimable - min(reclaimable / 2, wmark_low);
5136
5137 if (available < 0)
5138 available = 0;
5139 return available;
5140}
5141EXPORT_SYMBOL_GPL(si_mem_available);
5142
5143void si_meminfo(struct sysinfo *val)
5144{
5145 val->totalram = totalram_pages();
5146 val->sharedram = global_node_page_state(NR_SHMEM);
5147 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5148 val->bufferram = nr_blockdev_pages();
5149 val->totalhigh = totalhigh_pages();
5150 val->freehigh = nr_free_highpages();
5151 val->mem_unit = PAGE_SIZE;
5152}
5153
5154EXPORT_SYMBOL(si_meminfo);
5155
5156#ifdef CONFIG_NUMA
5157void si_meminfo_node(struct sysinfo *val, int nid)
5158{
5159 int zone_type; /* needs to be signed */
5160 unsigned long managed_pages = 0;
5161 unsigned long managed_highpages = 0;
5162 unsigned long free_highpages = 0;
5163 pg_data_t *pgdat = NODE_DATA(nid);
5164
5165 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5166 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5167 val->totalram = managed_pages;
5168 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5169 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5170#ifdef CONFIG_HIGHMEM
5171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5172 struct zone *zone = &pgdat->node_zones[zone_type];
5173
5174 if (is_highmem(zone)) {
5175 managed_highpages += zone_managed_pages(zone);
5176 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5177 }
5178 }
5179 val->totalhigh = managed_highpages;
5180 val->freehigh = free_highpages;
5181#else
5182 val->totalhigh = managed_highpages;
5183 val->freehigh = free_highpages;
5184#endif
5185 val->mem_unit = PAGE_SIZE;
5186}
5187#endif
5188
5189/*
5190 * Determine whether the node should be displayed or not, depending on whether
5191 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5192 */
5193static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5194{
5195 if (!(flags & SHOW_MEM_FILTER_NODES))
5196 return false;
5197
5198 /*
5199 * no node mask - aka implicit memory numa policy. Do not bother with
5200 * the synchronization - read_mems_allowed_begin - because we do not
5201 * have to be precise here.
5202 */
5203 if (!nodemask)
5204 nodemask = &cpuset_current_mems_allowed;
5205
5206 return !node_isset(nid, *nodemask);
5207}
5208
5209#define K(x) ((x) << (PAGE_SHIFT-10))
5210
5211static void show_migration_types(unsigned char type)
5212{
5213 static const char types[MIGRATE_TYPES] = {
5214 [MIGRATE_UNMOVABLE] = 'U',
5215 [MIGRATE_MOVABLE] = 'M',
5216 [MIGRATE_RECLAIMABLE] = 'E',
5217 [MIGRATE_HIGHATOMIC] = 'H',
5218#ifdef CONFIG_CMA
5219 [MIGRATE_CMA] = 'C',
5220#endif
5221#ifdef CONFIG_MEMORY_ISOLATION
5222 [MIGRATE_ISOLATE] = 'I',
5223#endif
5224 };
5225 char tmp[MIGRATE_TYPES + 1];
5226 char *p = tmp;
5227 int i;
5228
5229 for (i = 0; i < MIGRATE_TYPES; i++) {
5230 if (type & (1 << i))
5231 *p++ = types[i];
5232 }
5233
5234 *p = '\0';
5235 printk(KERN_CONT "(%s) ", tmp);
5236}
5237
5238/*
5239 * Show free area list (used inside shift_scroll-lock stuff)
5240 * We also calculate the percentage fragmentation. We do this by counting the
5241 * memory on each free list with the exception of the first item on the list.
5242 *
5243 * Bits in @filter:
5244 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5245 * cpuset.
5246 */
5247void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5248{
5249 unsigned long free_pcp = 0;
5250 int cpu;
5251 struct zone *zone;
5252 pg_data_t *pgdat;
5253
5254 for_each_populated_zone(zone) {
5255 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5256 continue;
5257
5258 for_each_online_cpu(cpu)
5259 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5260 }
5261
5262 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5263 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5264 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5265 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5266 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5267 " free:%lu free_pcp:%lu free_cma:%lu\n",
5268 global_node_page_state(NR_ACTIVE_ANON),
5269 global_node_page_state(NR_INACTIVE_ANON),
5270 global_node_page_state(NR_ISOLATED_ANON),
5271 global_node_page_state(NR_ACTIVE_FILE),
5272 global_node_page_state(NR_INACTIVE_FILE),
5273 global_node_page_state(NR_ISOLATED_FILE),
5274 global_node_page_state(NR_UNEVICTABLE),
5275 global_node_page_state(NR_FILE_DIRTY),
5276 global_node_page_state(NR_WRITEBACK),
5277 global_node_page_state(NR_UNSTABLE_NFS),
5278 global_node_page_state(NR_SLAB_RECLAIMABLE),
5279 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5280 global_node_page_state(NR_FILE_MAPPED),
5281 global_node_page_state(NR_SHMEM),
5282 global_zone_page_state(NR_PAGETABLE),
5283 global_zone_page_state(NR_BOUNCE),
5284 global_zone_page_state(NR_FREE_PAGES),
5285 free_pcp,
5286 global_zone_page_state(NR_FREE_CMA_PAGES));
5287
5288 for_each_online_pgdat(pgdat) {
5289 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5290 continue;
5291
5292 printk("Node %d"
5293 " active_anon:%lukB"
5294 " inactive_anon:%lukB"
5295 " active_file:%lukB"
5296 " inactive_file:%lukB"
5297 " unevictable:%lukB"
5298 " isolated(anon):%lukB"
5299 " isolated(file):%lukB"
5300 " mapped:%lukB"
5301 " dirty:%lukB"
5302 " writeback:%lukB"
5303 " shmem:%lukB"
5304#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5305 " shmem_thp: %lukB"
5306 " shmem_pmdmapped: %lukB"
5307 " anon_thp: %lukB"
5308#endif
5309 " writeback_tmp:%lukB"
5310 " unstable:%lukB"
5311 " all_unreclaimable? %s"
5312 "\n",
5313 pgdat->node_id,
5314 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5315 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5316 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5317 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5318 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5319 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5320 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5321 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5322 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5323 K(node_page_state(pgdat, NR_WRITEBACK)),
5324 K(node_page_state(pgdat, NR_SHMEM)),
5325#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5326 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5327 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5328 * HPAGE_PMD_NR),
5329 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5330#endif
5331 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5332 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5333 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5334 "yes" : "no");
5335 }
5336
5337 for_each_populated_zone(zone) {
5338 int i;
5339
5340 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5341 continue;
5342
5343 free_pcp = 0;
5344 for_each_online_cpu(cpu)
5345 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5346
5347 show_node(zone);
5348 printk(KERN_CONT
5349 "%s"
5350 " free:%lukB"
5351 " min:%lukB"
5352 " low:%lukB"
5353 " high:%lukB"
5354 " active_anon:%lukB"
5355 " inactive_anon:%lukB"
5356 " active_file:%lukB"
5357 " inactive_file:%lukB"
5358 " unevictable:%lukB"
5359 " writepending:%lukB"
5360 " present:%lukB"
5361 " managed:%lukB"
5362 " mlocked:%lukB"
5363 " kernel_stack:%lukB"
5364 " pagetables:%lukB"
5365 " bounce:%lukB"
5366 " free_pcp:%lukB"
5367 " local_pcp:%ukB"
5368 " free_cma:%lukB"
5369 "\n",
5370 zone->name,
5371 K(zone_page_state(zone, NR_FREE_PAGES)),
5372 K(min_wmark_pages(zone)),
5373 K(low_wmark_pages(zone)),
5374 K(high_wmark_pages(zone)),
5375 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5376 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5377 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5378 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5379 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5380 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5381 K(zone->present_pages),
5382 K(zone_managed_pages(zone)),
5383 K(zone_page_state(zone, NR_MLOCK)),
5384 zone_page_state(zone, NR_KERNEL_STACK_KB),
5385 K(zone_page_state(zone, NR_PAGETABLE)),
5386 K(zone_page_state(zone, NR_BOUNCE)),
5387 K(free_pcp),
5388 K(this_cpu_read(zone->pageset->pcp.count)),
5389 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5390 printk("lowmem_reserve[]:");
5391 for (i = 0; i < MAX_NR_ZONES; i++)
5392 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5393 printk(KERN_CONT "\n");
5394 }
5395
5396 for_each_populated_zone(zone) {
5397 unsigned int order;
5398 unsigned long nr[MAX_ORDER], flags, total = 0;
5399 unsigned char types[MAX_ORDER];
5400
5401 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5402 continue;
5403 show_node(zone);
5404 printk(KERN_CONT "%s: ", zone->name);
5405
5406 spin_lock_irqsave(&zone->lock, flags);
5407 for (order = 0; order < MAX_ORDER; order++) {
5408 struct free_area *area = &zone->free_area[order];
5409 int type;
5410
5411 nr[order] = area->nr_free;
5412 total += nr[order] << order;
5413
5414 types[order] = 0;
5415 for (type = 0; type < MIGRATE_TYPES; type++) {
5416 if (!free_area_empty(area, type))
5417 types[order] |= 1 << type;
5418 }
5419 }
5420 spin_unlock_irqrestore(&zone->lock, flags);
5421 for (order = 0; order < MAX_ORDER; order++) {
5422 printk(KERN_CONT "%lu*%lukB ",
5423 nr[order], K(1UL) << order);
5424 if (nr[order])
5425 show_migration_types(types[order]);
5426 }
5427 printk(KERN_CONT "= %lukB\n", K(total));
5428 }
5429
5430 hugetlb_show_meminfo();
5431
5432 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5433
5434 show_swap_cache_info();
5435}
5436
5437static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5438{
5439 zoneref->zone = zone;
5440 zoneref->zone_idx = zone_idx(zone);
5441}
5442
5443/*
5444 * Builds allocation fallback zone lists.
5445 *
5446 * Add all populated zones of a node to the zonelist.
5447 */
5448static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5449{
5450 struct zone *zone;
5451 enum zone_type zone_type = MAX_NR_ZONES;
5452 int nr_zones = 0;
5453
5454 do {
5455 zone_type--;
5456 zone = pgdat->node_zones + zone_type;
5457 if (managed_zone(zone)) {
5458 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5459 check_highest_zone(zone_type);
5460 }
5461 } while (zone_type);
5462
5463 return nr_zones;
5464}
5465
5466#ifdef CONFIG_NUMA
5467
5468static int __parse_numa_zonelist_order(char *s)
5469{
5470 /*
5471 * We used to support different zonlists modes but they turned
5472 * out to be just not useful. Let's keep the warning in place
5473 * if somebody still use the cmd line parameter so that we do
5474 * not fail it silently
5475 */
5476 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5477 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5478 return -EINVAL;
5479 }
5480 return 0;
5481}
5482
5483static __init int setup_numa_zonelist_order(char *s)
5484{
5485 if (!s)
5486 return 0;
5487
5488 return __parse_numa_zonelist_order(s);
5489}
5490early_param("numa_zonelist_order", setup_numa_zonelist_order);
5491
5492char numa_zonelist_order[] = "Node";
5493
5494/*
5495 * sysctl handler for numa_zonelist_order
5496 */
5497int numa_zonelist_order_handler(struct ctl_table *table, int write,
5498 void __user *buffer, size_t *length,
5499 loff_t *ppos)
5500{
5501 char *str;
5502 int ret;
5503
5504 if (!write)
5505 return proc_dostring(table, write, buffer, length, ppos);
5506 str = memdup_user_nul(buffer, 16);
5507 if (IS_ERR(str))
5508 return PTR_ERR(str);
5509
5510 ret = __parse_numa_zonelist_order(str);
5511 kfree(str);
5512 return ret;
5513}
5514
5515
5516#define MAX_NODE_LOAD (nr_online_nodes)
5517static int node_load[MAX_NUMNODES];
5518
5519/**
5520 * find_next_best_node - find the next node that should appear in a given node's fallback list
5521 * @node: node whose fallback list we're appending
5522 * @used_node_mask: nodemask_t of already used nodes
5523 *
5524 * We use a number of factors to determine which is the next node that should
5525 * appear on a given node's fallback list. The node should not have appeared
5526 * already in @node's fallback list, and it should be the next closest node
5527 * according to the distance array (which contains arbitrary distance values
5528 * from each node to each node in the system), and should also prefer nodes
5529 * with no CPUs, since presumably they'll have very little allocation pressure
5530 * on them otherwise.
5531 *
5532 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5533 */
5534static int find_next_best_node(int node, nodemask_t *used_node_mask)
5535{
5536 int n, val;
5537 int min_val = INT_MAX;
5538 int best_node = NUMA_NO_NODE;
5539 const struct cpumask *tmp = cpumask_of_node(0);
5540
5541 /* Use the local node if we haven't already */
5542 if (!node_isset(node, *used_node_mask)) {
5543 node_set(node, *used_node_mask);
5544 return node;
5545 }
5546
5547 for_each_node_state(n, N_MEMORY) {
5548
5549 /* Don't want a node to appear more than once */
5550 if (node_isset(n, *used_node_mask))
5551 continue;
5552
5553 /* Use the distance array to find the distance */
5554 val = node_distance(node, n);
5555
5556 /* Penalize nodes under us ("prefer the next node") */
5557 val += (n < node);
5558
5559 /* Give preference to headless and unused nodes */
5560 tmp = cpumask_of_node(n);
5561 if (!cpumask_empty(tmp))
5562 val += PENALTY_FOR_NODE_WITH_CPUS;
5563
5564 /* Slight preference for less loaded node */
5565 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5566 val += node_load[n];
5567
5568 if (val < min_val) {
5569 min_val = val;
5570 best_node = n;
5571 }
5572 }
5573
5574 if (best_node >= 0)
5575 node_set(best_node, *used_node_mask);
5576
5577 return best_node;
5578}
5579
5580
5581/*
5582 * Build zonelists ordered by node and zones within node.
5583 * This results in maximum locality--normal zone overflows into local
5584 * DMA zone, if any--but risks exhausting DMA zone.
5585 */
5586static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5587 unsigned nr_nodes)
5588{
5589 struct zoneref *zonerefs;
5590 int i;
5591
5592 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5593
5594 for (i = 0; i < nr_nodes; i++) {
5595 int nr_zones;
5596
5597 pg_data_t *node = NODE_DATA(node_order[i]);
5598
5599 nr_zones = build_zonerefs_node(node, zonerefs);
5600 zonerefs += nr_zones;
5601 }
5602 zonerefs->zone = NULL;
5603 zonerefs->zone_idx = 0;
5604}
5605
5606/*
5607 * Build gfp_thisnode zonelists
5608 */
5609static void build_thisnode_zonelists(pg_data_t *pgdat)
5610{
5611 struct zoneref *zonerefs;
5612 int nr_zones;
5613
5614 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5615 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5616 zonerefs += nr_zones;
5617 zonerefs->zone = NULL;
5618 zonerefs->zone_idx = 0;
5619}
5620
5621/*
5622 * Build zonelists ordered by zone and nodes within zones.
5623 * This results in conserving DMA zone[s] until all Normal memory is
5624 * exhausted, but results in overflowing to remote node while memory
5625 * may still exist in local DMA zone.
5626 */
5627
5628static void build_zonelists(pg_data_t *pgdat)
5629{
5630 static int node_order[MAX_NUMNODES];
5631 int node, load, nr_nodes = 0;
5632 nodemask_t used_mask;
5633 int local_node, prev_node;
5634
5635 /* NUMA-aware ordering of nodes */
5636 local_node = pgdat->node_id;
5637 load = nr_online_nodes;
5638 prev_node = local_node;
5639 nodes_clear(used_mask);
5640
5641 memset(node_order, 0, sizeof(node_order));
5642 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5643 /*
5644 * We don't want to pressure a particular node.
5645 * So adding penalty to the first node in same
5646 * distance group to make it round-robin.
5647 */
5648 if (node_distance(local_node, node) !=
5649 node_distance(local_node, prev_node))
5650 node_load[node] = load;
5651
5652 node_order[nr_nodes++] = node;
5653 prev_node = node;
5654 load--;
5655 }
5656
5657 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5658 build_thisnode_zonelists(pgdat);
5659}
5660
5661#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5662/*
5663 * Return node id of node used for "local" allocations.
5664 * I.e., first node id of first zone in arg node's generic zonelist.
5665 * Used for initializing percpu 'numa_mem', which is used primarily
5666 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5667 */
5668int local_memory_node(int node)
5669{
5670 struct zoneref *z;
5671
5672 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5673 gfp_zone(GFP_KERNEL),
5674 NULL);
5675 return zone_to_nid(z->zone);
5676}
5677#endif
5678
5679static void setup_min_unmapped_ratio(void);
5680static void setup_min_slab_ratio(void);
5681#else /* CONFIG_NUMA */
5682
5683static void build_zonelists(pg_data_t *pgdat)
5684{
5685 int node, local_node;
5686 struct zoneref *zonerefs;
5687 int nr_zones;
5688
5689 local_node = pgdat->node_id;
5690
5691 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5692 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5693 zonerefs += nr_zones;
5694
5695 /*
5696 * Now we build the zonelist so that it contains the zones
5697 * of all the other nodes.
5698 * We don't want to pressure a particular node, so when
5699 * building the zones for node N, we make sure that the
5700 * zones coming right after the local ones are those from
5701 * node N+1 (modulo N)
5702 */
5703 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5704 if (!node_online(node))
5705 continue;
5706 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5707 zonerefs += nr_zones;
5708 }
5709 for (node = 0; node < local_node; node++) {
5710 if (!node_online(node))
5711 continue;
5712 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5713 zonerefs += nr_zones;
5714 }
5715
5716 zonerefs->zone = NULL;
5717 zonerefs->zone_idx = 0;
5718}
5719
5720#endif /* CONFIG_NUMA */
5721
5722/*
5723 * Boot pageset table. One per cpu which is going to be used for all
5724 * zones and all nodes. The parameters will be set in such a way
5725 * that an item put on a list will immediately be handed over to
5726 * the buddy list. This is safe since pageset manipulation is done
5727 * with interrupts disabled.
5728 *
5729 * The boot_pagesets must be kept even after bootup is complete for
5730 * unused processors and/or zones. They do play a role for bootstrapping
5731 * hotplugged processors.
5732 *
5733 * zoneinfo_show() and maybe other functions do
5734 * not check if the processor is online before following the pageset pointer.
5735 * Other parts of the kernel may not check if the zone is available.
5736 */
5737static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5738static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5739static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5740
5741static void __build_all_zonelists(void *data)
5742{
5743 int nid;
5744 int __maybe_unused cpu;
5745 pg_data_t *self = data;
5746 static DEFINE_SPINLOCK(lock);
5747
5748 spin_lock(&lock);
5749
5750#ifdef CONFIG_NUMA
5751 memset(node_load, 0, sizeof(node_load));
5752#endif
5753
5754 /*
5755 * This node is hotadded and no memory is yet present. So just
5756 * building zonelists is fine - no need to touch other nodes.
5757 */
5758 if (self && !node_online(self->node_id)) {
5759 build_zonelists(self);
5760 } else {
5761 for_each_online_node(nid) {
5762 pg_data_t *pgdat = NODE_DATA(nid);
5763
5764 build_zonelists(pgdat);
5765 }
5766
5767#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5768 /*
5769 * We now know the "local memory node" for each node--
5770 * i.e., the node of the first zone in the generic zonelist.
5771 * Set up numa_mem percpu variable for on-line cpus. During
5772 * boot, only the boot cpu should be on-line; we'll init the
5773 * secondary cpus' numa_mem as they come on-line. During
5774 * node/memory hotplug, we'll fixup all on-line cpus.
5775 */
5776 for_each_online_cpu(cpu)
5777 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5778#endif
5779 }
5780
5781 spin_unlock(&lock);
5782}
5783
5784static noinline void __init
5785build_all_zonelists_init(void)
5786{
5787 int cpu;
5788
5789 __build_all_zonelists(NULL);
5790
5791 /*
5792 * Initialize the boot_pagesets that are going to be used
5793 * for bootstrapping processors. The real pagesets for
5794 * each zone will be allocated later when the per cpu
5795 * allocator is available.
5796 *
5797 * boot_pagesets are used also for bootstrapping offline
5798 * cpus if the system is already booted because the pagesets
5799 * are needed to initialize allocators on a specific cpu too.
5800 * F.e. the percpu allocator needs the page allocator which
5801 * needs the percpu allocator in order to allocate its pagesets
5802 * (a chicken-egg dilemma).
5803 */
5804 for_each_possible_cpu(cpu)
5805 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5806
5807 mminit_verify_zonelist();
5808 cpuset_init_current_mems_allowed();
5809}
5810
5811/*
5812 * unless system_state == SYSTEM_BOOTING.
5813 *
5814 * __ref due to call of __init annotated helper build_all_zonelists_init
5815 * [protected by SYSTEM_BOOTING].
5816 */
5817void __ref build_all_zonelists(pg_data_t *pgdat)
5818{
5819 if (system_state == SYSTEM_BOOTING) {
5820 build_all_zonelists_init();
5821 } else {
5822 __build_all_zonelists(pgdat);
5823 /* cpuset refresh routine should be here */
5824 }
5825 vm_total_pages = nr_free_pagecache_pages();
5826 /*
5827 * Disable grouping by mobility if the number of pages in the
5828 * system is too low to allow the mechanism to work. It would be
5829 * more accurate, but expensive to check per-zone. This check is
5830 * made on memory-hotadd so a system can start with mobility
5831 * disabled and enable it later
5832 */
5833 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5834 page_group_by_mobility_disabled = 1;
5835 else
5836 page_group_by_mobility_disabled = 0;
5837
5838 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5839 nr_online_nodes,
5840 page_group_by_mobility_disabled ? "off" : "on",
5841 vm_total_pages);
5842#ifdef CONFIG_NUMA
5843 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5844#endif
5845}
5846
5847/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5848static bool __meminit
5849overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5850{
5851#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5852 static struct memblock_region *r;
5853
5854 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5855 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5856 for_each_memblock(memory, r) {
5857 if (*pfn < memblock_region_memory_end_pfn(r))
5858 break;
5859 }
5860 }
5861 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5862 memblock_is_mirror(r)) {
5863 *pfn = memblock_region_memory_end_pfn(r);
5864 return true;
5865 }
5866 }
5867#endif
5868 return false;
5869}
5870
5871/*
5872 * Initially all pages are reserved - free ones are freed
5873 * up by memblock_free_all() once the early boot process is
5874 * done. Non-atomic initialization, single-pass.
5875 */
5876void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5877 unsigned long start_pfn, enum memmap_context context,
5878 struct vmem_altmap *altmap)
5879{
5880 unsigned long pfn, end_pfn = start_pfn + size;
5881 struct page *page;
5882
5883 if (highest_memmap_pfn < end_pfn - 1)
5884 highest_memmap_pfn = end_pfn - 1;
5885
5886#ifdef CONFIG_ZONE_DEVICE
5887 /*
5888 * Honor reservation requested by the driver for this ZONE_DEVICE
5889 * memory. We limit the total number of pages to initialize to just
5890 * those that might contain the memory mapping. We will defer the
5891 * ZONE_DEVICE page initialization until after we have released
5892 * the hotplug lock.
5893 */
5894 if (zone == ZONE_DEVICE) {
5895 if (!altmap)
5896 return;
5897
5898 if (start_pfn == altmap->base_pfn)
5899 start_pfn += altmap->reserve;
5900 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5901 }
5902#endif
5903
5904 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5905 /*
5906 * There can be holes in boot-time mem_map[]s handed to this
5907 * function. They do not exist on hotplugged memory.
5908 */
5909 if (context == MEMMAP_EARLY) {
5910 if (!early_pfn_valid(pfn))
5911 continue;
5912 if (!early_pfn_in_nid(pfn, nid))
5913 continue;
5914 if (overlap_memmap_init(zone, &pfn))
5915 continue;
5916 if (defer_init(nid, pfn, end_pfn))
5917 break;
5918 }
5919
5920 page = pfn_to_page(pfn);
5921 __init_single_page(page, pfn, zone, nid);
5922 if (context == MEMMAP_HOTPLUG)
5923 __SetPageReserved(page);
5924
5925 /*
5926 * Mark the block movable so that blocks are reserved for
5927 * movable at startup. This will force kernel allocations
5928 * to reserve their blocks rather than leaking throughout
5929 * the address space during boot when many long-lived
5930 * kernel allocations are made.
5931 *
5932 * bitmap is created for zone's valid pfn range. but memmap
5933 * can be created for invalid pages (for alignment)
5934 * check here not to call set_pageblock_migratetype() against
5935 * pfn out of zone.
5936 */
5937 if (!(pfn & (pageblock_nr_pages - 1))) {
5938 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5939 cond_resched();
5940 }
5941 }
5942}
5943
5944#ifdef CONFIG_ZONE_DEVICE
5945void __ref memmap_init_zone_device(struct zone *zone,
5946 unsigned long start_pfn,
5947 unsigned long size,
5948 struct dev_pagemap *pgmap)
5949{
5950 unsigned long pfn, end_pfn = start_pfn + size;
5951 struct pglist_data *pgdat = zone->zone_pgdat;
5952 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5953 unsigned long zone_idx = zone_idx(zone);
5954 unsigned long start = jiffies;
5955 int nid = pgdat->node_id;
5956
5957 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5958 return;
5959
5960 /*
5961 * The call to memmap_init_zone should have already taken care
5962 * of the pages reserved for the memmap, so we can just jump to
5963 * the end of that region and start processing the device pages.
5964 */
5965 if (altmap) {
5966 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5967 size = end_pfn - start_pfn;
5968 }
5969
5970 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5971 struct page *page = pfn_to_page(pfn);
5972
5973 __init_single_page(page, pfn, zone_idx, nid);
5974
5975 /*
5976 * Mark page reserved as it will need to wait for onlining
5977 * phase for it to be fully associated with a zone.
5978 *
5979 * We can use the non-atomic __set_bit operation for setting
5980 * the flag as we are still initializing the pages.
5981 */
5982 __SetPageReserved(page);
5983
5984 /*
5985 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5986 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5987 * ever freed or placed on a driver-private list.
5988 */
5989 page->pgmap = pgmap;
5990 page->zone_device_data = NULL;
5991
5992 /*
5993 * Mark the block movable so that blocks are reserved for
5994 * movable at startup. This will force kernel allocations
5995 * to reserve their blocks rather than leaking throughout
5996 * the address space during boot when many long-lived
5997 * kernel allocations are made.
5998 *
5999 * bitmap is created for zone's valid pfn range. but memmap
6000 * can be created for invalid pages (for alignment)
6001 * check here not to call set_pageblock_migratetype() against
6002 * pfn out of zone.
6003 *
6004 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6005 * because this is done early in section_activate()
6006 */
6007 if (!(pfn & (pageblock_nr_pages - 1))) {
6008 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6009 cond_resched();
6010 }
6011 }
6012
6013 pr_info("%s initialised %lu pages in %ums\n", __func__,
6014 size, jiffies_to_msecs(jiffies - start));
6015}
6016
6017#endif
6018static void __meminit zone_init_free_lists(struct zone *zone)
6019{
6020 unsigned int order, t;
6021 for_each_migratetype_order(order, t) {
6022 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6023 zone->free_area[order].nr_free = 0;
6024 }
6025}
6026
6027void __meminit __weak memmap_init(unsigned long size, int nid,
6028 unsigned long zone, unsigned long start_pfn)
6029{
6030 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6031}
6032
6033static int zone_batchsize(struct zone *zone)
6034{
6035#ifdef CONFIG_MMU
6036 int batch;
6037
6038 /*
6039 * The per-cpu-pages pools are set to around 1000th of the
6040 * size of the zone.
6041 */
6042 batch = zone_managed_pages(zone) / 1024;
6043 /* But no more than a meg. */
6044 if (batch * PAGE_SIZE > 1024 * 1024)
6045 batch = (1024 * 1024) / PAGE_SIZE;
6046 batch /= 4; /* We effectively *= 4 below */
6047 if (batch < 1)
6048 batch = 1;
6049
6050 /*
6051 * Clamp the batch to a 2^n - 1 value. Having a power
6052 * of 2 value was found to be more likely to have
6053 * suboptimal cache aliasing properties in some cases.
6054 *
6055 * For example if 2 tasks are alternately allocating
6056 * batches of pages, one task can end up with a lot
6057 * of pages of one half of the possible page colors
6058 * and the other with pages of the other colors.
6059 */
6060 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6061
6062 return batch;
6063
6064#else
6065 /* The deferral and batching of frees should be suppressed under NOMMU
6066 * conditions.
6067 *
6068 * The problem is that NOMMU needs to be able to allocate large chunks
6069 * of contiguous memory as there's no hardware page translation to
6070 * assemble apparent contiguous memory from discontiguous pages.
6071 *
6072 * Queueing large contiguous runs of pages for batching, however,
6073 * causes the pages to actually be freed in smaller chunks. As there
6074 * can be a significant delay between the individual batches being
6075 * recycled, this leads to the once large chunks of space being
6076 * fragmented and becoming unavailable for high-order allocations.
6077 */
6078 return 0;
6079#endif
6080}
6081
6082/*
6083 * pcp->high and pcp->batch values are related and dependent on one another:
6084 * ->batch must never be higher then ->high.
6085 * The following function updates them in a safe manner without read side
6086 * locking.
6087 *
6088 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6089 * those fields changing asynchronously (acording the the above rule).
6090 *
6091 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6092 * outside of boot time (or some other assurance that no concurrent updaters
6093 * exist).
6094 */
6095static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6096 unsigned long batch)
6097{
6098 /* start with a fail safe value for batch */
6099 pcp->batch = 1;
6100 smp_wmb();
6101
6102 /* Update high, then batch, in order */
6103 pcp->high = high;
6104 smp_wmb();
6105
6106 pcp->batch = batch;
6107}
6108
6109/* a companion to pageset_set_high() */
6110static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6111{
6112 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6113}
6114
6115static void pageset_init(struct per_cpu_pageset *p)
6116{
6117 struct per_cpu_pages *pcp;
6118 int migratetype;
6119
6120 memset(p, 0, sizeof(*p));
6121
6122 pcp = &p->pcp;
6123 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6124 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6125}
6126
6127static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6128{
6129 pageset_init(p);
6130 pageset_set_batch(p, batch);
6131}
6132
6133/*
6134 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6135 * to the value high for the pageset p.
6136 */
6137static void pageset_set_high(struct per_cpu_pageset *p,
6138 unsigned long high)
6139{
6140 unsigned long batch = max(1UL, high / 4);
6141 if ((high / 4) > (PAGE_SHIFT * 8))
6142 batch = PAGE_SHIFT * 8;
6143
6144 pageset_update(&p->pcp, high, batch);
6145}
6146
6147static void pageset_set_high_and_batch(struct zone *zone,
6148 struct per_cpu_pageset *pcp)
6149{
6150 if (percpu_pagelist_fraction)
6151 pageset_set_high(pcp,
6152 (zone_managed_pages(zone) /
6153 percpu_pagelist_fraction));
6154 else
6155 pageset_set_batch(pcp, zone_batchsize(zone));
6156}
6157
6158static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6159{
6160 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6161
6162 pageset_init(pcp);
6163 pageset_set_high_and_batch(zone, pcp);
6164}
6165
6166void __meminit setup_zone_pageset(struct zone *zone)
6167{
6168 int cpu;
6169 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6170 for_each_possible_cpu(cpu)
6171 zone_pageset_init(zone, cpu);
6172}
6173
6174/*
6175 * Allocate per cpu pagesets and initialize them.
6176 * Before this call only boot pagesets were available.
6177 */
6178void __init setup_per_cpu_pageset(void)
6179{
6180 struct pglist_data *pgdat;
6181 struct zone *zone;
6182
6183 for_each_populated_zone(zone)
6184 setup_zone_pageset(zone);
6185
6186 for_each_online_pgdat(pgdat)
6187 pgdat->per_cpu_nodestats =
6188 alloc_percpu(struct per_cpu_nodestat);
6189}
6190
6191static __meminit void zone_pcp_init(struct zone *zone)
6192{
6193 /*
6194 * per cpu subsystem is not up at this point. The following code
6195 * relies on the ability of the linker to provide the
6196 * offset of a (static) per cpu variable into the per cpu area.
6197 */
6198 zone->pageset = &boot_pageset;
6199
6200 if (populated_zone(zone))
6201 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6202 zone->name, zone->present_pages,
6203 zone_batchsize(zone));
6204}
6205
6206void __meminit init_currently_empty_zone(struct zone *zone,
6207 unsigned long zone_start_pfn,
6208 unsigned long size)
6209{
6210 struct pglist_data *pgdat = zone->zone_pgdat;
6211 int zone_idx = zone_idx(zone) + 1;
6212
6213 if (zone_idx > pgdat->nr_zones)
6214 pgdat->nr_zones = zone_idx;
6215
6216 zone->zone_start_pfn = zone_start_pfn;
6217
6218 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6219 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6220 pgdat->node_id,
6221 (unsigned long)zone_idx(zone),
6222 zone_start_pfn, (zone_start_pfn + size));
6223
6224 zone_init_free_lists(zone);
6225 zone->initialized = 1;
6226}
6227
6228#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6229#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6230
6231/*
6232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6233 */
6234int __meminit __early_pfn_to_nid(unsigned long pfn,
6235 struct mminit_pfnnid_cache *state)
6236{
6237 unsigned long start_pfn, end_pfn;
6238 int nid;
6239
6240 if (state->last_start <= pfn && pfn < state->last_end)
6241 return state->last_nid;
6242
6243 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6244 if (nid != NUMA_NO_NODE) {
6245 state->last_start = start_pfn;
6246 state->last_end = end_pfn;
6247 state->last_nid = nid;
6248 }
6249
6250 return nid;
6251}
6252#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6253
6254/**
6255 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6256 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6257 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6258 *
6259 * If an architecture guarantees that all ranges registered contain no holes
6260 * and may be freed, this this function may be used instead of calling
6261 * memblock_free_early_nid() manually.
6262 */
6263void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6264{
6265 unsigned long start_pfn, end_pfn;
6266 int i, this_nid;
6267
6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6269 start_pfn = min(start_pfn, max_low_pfn);
6270 end_pfn = min(end_pfn, max_low_pfn);
6271
6272 if (start_pfn < end_pfn)
6273 memblock_free_early_nid(PFN_PHYS(start_pfn),
6274 (end_pfn - start_pfn) << PAGE_SHIFT,
6275 this_nid);
6276 }
6277}
6278
6279/**
6280 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6281 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6282 *
6283 * If an architecture guarantees that all ranges registered contain no holes and may
6284 * be freed, this function may be used instead of calling memory_present() manually.
6285 */
6286void __init sparse_memory_present_with_active_regions(int nid)
6287{
6288 unsigned long start_pfn, end_pfn;
6289 int i, this_nid;
6290
6291 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6292 memory_present(this_nid, start_pfn, end_pfn);
6293}
6294
6295/**
6296 * get_pfn_range_for_nid - Return the start and end page frames for a node
6297 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6298 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6299 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6300 *
6301 * It returns the start and end page frame of a node based on information
6302 * provided by memblock_set_node(). If called for a node
6303 * with no available memory, a warning is printed and the start and end
6304 * PFNs will be 0.
6305 */
6306void __init get_pfn_range_for_nid(unsigned int nid,
6307 unsigned long *start_pfn, unsigned long *end_pfn)
6308{
6309 unsigned long this_start_pfn, this_end_pfn;
6310 int i;
6311
6312 *start_pfn = -1UL;
6313 *end_pfn = 0;
6314
6315 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6316 *start_pfn = min(*start_pfn, this_start_pfn);
6317 *end_pfn = max(*end_pfn, this_end_pfn);
6318 }
6319
6320 if (*start_pfn == -1UL)
6321 *start_pfn = 0;
6322}
6323
6324/*
6325 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6326 * assumption is made that zones within a node are ordered in monotonic
6327 * increasing memory addresses so that the "highest" populated zone is used
6328 */
6329static void __init find_usable_zone_for_movable(void)
6330{
6331 int zone_index;
6332 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6333 if (zone_index == ZONE_MOVABLE)
6334 continue;
6335
6336 if (arch_zone_highest_possible_pfn[zone_index] >
6337 arch_zone_lowest_possible_pfn[zone_index])
6338 break;
6339 }
6340
6341 VM_BUG_ON(zone_index == -1);
6342 movable_zone = zone_index;
6343}
6344
6345/*
6346 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6347 * because it is sized independent of architecture. Unlike the other zones,
6348 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6349 * in each node depending on the size of each node and how evenly kernelcore
6350 * is distributed. This helper function adjusts the zone ranges
6351 * provided by the architecture for a given node by using the end of the
6352 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6353 * zones within a node are in order of monotonic increases memory addresses
6354 */
6355static void __init adjust_zone_range_for_zone_movable(int nid,
6356 unsigned long zone_type,
6357 unsigned long node_start_pfn,
6358 unsigned long node_end_pfn,
6359 unsigned long *zone_start_pfn,
6360 unsigned long *zone_end_pfn)
6361{
6362 /* Only adjust if ZONE_MOVABLE is on this node */
6363 if (zone_movable_pfn[nid]) {
6364 /* Size ZONE_MOVABLE */
6365 if (zone_type == ZONE_MOVABLE) {
6366 *zone_start_pfn = zone_movable_pfn[nid];
6367 *zone_end_pfn = min(node_end_pfn,
6368 arch_zone_highest_possible_pfn[movable_zone]);
6369
6370 /* Adjust for ZONE_MOVABLE starting within this range */
6371 } else if (!mirrored_kernelcore &&
6372 *zone_start_pfn < zone_movable_pfn[nid] &&
6373 *zone_end_pfn > zone_movable_pfn[nid]) {
6374 *zone_end_pfn = zone_movable_pfn[nid];
6375
6376 /* Check if this whole range is within ZONE_MOVABLE */
6377 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6378 *zone_start_pfn = *zone_end_pfn;
6379 }
6380}
6381
6382/*
6383 * Return the number of pages a zone spans in a node, including holes
6384 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6385 */
6386static unsigned long __init zone_spanned_pages_in_node(int nid,
6387 unsigned long zone_type,
6388 unsigned long node_start_pfn,
6389 unsigned long node_end_pfn,
6390 unsigned long *zone_start_pfn,
6391 unsigned long *zone_end_pfn,
6392 unsigned long *ignored)
6393{
6394 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6395 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6396 /* When hotadd a new node from cpu_up(), the node should be empty */
6397 if (!node_start_pfn && !node_end_pfn)
6398 return 0;
6399
6400 /* Get the start and end of the zone */
6401 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6402 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6403 adjust_zone_range_for_zone_movable(nid, zone_type,
6404 node_start_pfn, node_end_pfn,
6405 zone_start_pfn, zone_end_pfn);
6406
6407 /* Check that this node has pages within the zone's required range */
6408 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6409 return 0;
6410
6411 /* Move the zone boundaries inside the node if necessary */
6412 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6413 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6414
6415 /* Return the spanned pages */
6416 return *zone_end_pfn - *zone_start_pfn;
6417}
6418
6419/*
6420 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6421 * then all holes in the requested range will be accounted for.
6422 */
6423unsigned long __init __absent_pages_in_range(int nid,
6424 unsigned long range_start_pfn,
6425 unsigned long range_end_pfn)
6426{
6427 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6428 unsigned long start_pfn, end_pfn;
6429 int i;
6430
6431 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6432 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6433 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6434 nr_absent -= end_pfn - start_pfn;
6435 }
6436 return nr_absent;
6437}
6438
6439/**
6440 * absent_pages_in_range - Return number of page frames in holes within a range
6441 * @start_pfn: The start PFN to start searching for holes
6442 * @end_pfn: The end PFN to stop searching for holes
6443 *
6444 * Return: the number of pages frames in memory holes within a range.
6445 */
6446unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6447 unsigned long end_pfn)
6448{
6449 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6450}
6451
6452/* Return the number of page frames in holes in a zone on a node */
6453static unsigned long __init zone_absent_pages_in_node(int nid,
6454 unsigned long zone_type,
6455 unsigned long node_start_pfn,
6456 unsigned long node_end_pfn,
6457 unsigned long *ignored)
6458{
6459 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6460 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6461 unsigned long zone_start_pfn, zone_end_pfn;
6462 unsigned long nr_absent;
6463
6464 /* When hotadd a new node from cpu_up(), the node should be empty */
6465 if (!node_start_pfn && !node_end_pfn)
6466 return 0;
6467
6468 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6469 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6470
6471 adjust_zone_range_for_zone_movable(nid, zone_type,
6472 node_start_pfn, node_end_pfn,
6473 &zone_start_pfn, &zone_end_pfn);
6474 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6475
6476 /*
6477 * ZONE_MOVABLE handling.
6478 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6479 * and vice versa.
6480 */
6481 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6482 unsigned long start_pfn, end_pfn;
6483 struct memblock_region *r;
6484
6485 for_each_memblock(memory, r) {
6486 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6487 zone_start_pfn, zone_end_pfn);
6488 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6489 zone_start_pfn, zone_end_pfn);
6490
6491 if (zone_type == ZONE_MOVABLE &&
6492 memblock_is_mirror(r))
6493 nr_absent += end_pfn - start_pfn;
6494
6495 if (zone_type == ZONE_NORMAL &&
6496 !memblock_is_mirror(r))
6497 nr_absent += end_pfn - start_pfn;
6498 }
6499 }
6500
6501 return nr_absent;
6502}
6503
6504#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6505static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6506 unsigned long zone_type,
6507 unsigned long node_start_pfn,
6508 unsigned long node_end_pfn,
6509 unsigned long *zone_start_pfn,
6510 unsigned long *zone_end_pfn,
6511 unsigned long *zones_size)
6512{
6513 unsigned int zone;
6514
6515 *zone_start_pfn = node_start_pfn;
6516 for (zone = 0; zone < zone_type; zone++)
6517 *zone_start_pfn += zones_size[zone];
6518
6519 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6520
6521 return zones_size[zone_type];
6522}
6523
6524static inline unsigned long __init zone_absent_pages_in_node(int nid,
6525 unsigned long zone_type,
6526 unsigned long node_start_pfn,
6527 unsigned long node_end_pfn,
6528 unsigned long *zholes_size)
6529{
6530 if (!zholes_size)
6531 return 0;
6532
6533 return zholes_size[zone_type];
6534}
6535
6536#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6537
6538static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6539 unsigned long node_start_pfn,
6540 unsigned long node_end_pfn,
6541 unsigned long *zones_size,
6542 unsigned long *zholes_size)
6543{
6544 unsigned long realtotalpages = 0, totalpages = 0;
6545 enum zone_type i;
6546
6547 for (i = 0; i < MAX_NR_ZONES; i++) {
6548 struct zone *zone = pgdat->node_zones + i;
6549 unsigned long zone_start_pfn, zone_end_pfn;
6550 unsigned long size, real_size;
6551
6552 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6553 node_start_pfn,
6554 node_end_pfn,
6555 &zone_start_pfn,
6556 &zone_end_pfn,
6557 zones_size);
6558 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6559 node_start_pfn, node_end_pfn,
6560 zholes_size);
6561 if (size)
6562 zone->zone_start_pfn = zone_start_pfn;
6563 else
6564 zone->zone_start_pfn = 0;
6565 zone->spanned_pages = size;
6566 zone->present_pages = real_size;
6567
6568 totalpages += size;
6569 realtotalpages += real_size;
6570 }
6571
6572 pgdat->node_spanned_pages = totalpages;
6573 pgdat->node_present_pages = realtotalpages;
6574 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6575 realtotalpages);
6576}
6577
6578#ifndef CONFIG_SPARSEMEM
6579/*
6580 * Calculate the size of the zone->blockflags rounded to an unsigned long
6581 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6582 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6583 * round what is now in bits to nearest long in bits, then return it in
6584 * bytes.
6585 */
6586static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6587{
6588 unsigned long usemapsize;
6589
6590 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6591 usemapsize = roundup(zonesize, pageblock_nr_pages);
6592 usemapsize = usemapsize >> pageblock_order;
6593 usemapsize *= NR_PAGEBLOCK_BITS;
6594 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6595
6596 return usemapsize / 8;
6597}
6598
6599static void __ref setup_usemap(struct pglist_data *pgdat,
6600 struct zone *zone,
6601 unsigned long zone_start_pfn,
6602 unsigned long zonesize)
6603{
6604 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6605 zone->pageblock_flags = NULL;
6606 if (usemapsize) {
6607 zone->pageblock_flags =
6608 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6609 pgdat->node_id);
6610 if (!zone->pageblock_flags)
6611 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6612 usemapsize, zone->name, pgdat->node_id);
6613 }
6614}
6615#else
6616static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6617 unsigned long zone_start_pfn, unsigned long zonesize) {}
6618#endif /* CONFIG_SPARSEMEM */
6619
6620#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6621
6622/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6623void __init set_pageblock_order(void)
6624{
6625 unsigned int order;
6626
6627 /* Check that pageblock_nr_pages has not already been setup */
6628 if (pageblock_order)
6629 return;
6630
6631 if (HPAGE_SHIFT > PAGE_SHIFT)
6632 order = HUGETLB_PAGE_ORDER;
6633 else
6634 order = MAX_ORDER - 1;
6635
6636 /*
6637 * Assume the largest contiguous order of interest is a huge page.
6638 * This value may be variable depending on boot parameters on IA64 and
6639 * powerpc.
6640 */
6641 pageblock_order = order;
6642}
6643#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6644
6645/*
6646 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6647 * is unused as pageblock_order is set at compile-time. See
6648 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6649 * the kernel config
6650 */
6651void __init set_pageblock_order(void)
6652{
6653}
6654
6655#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6656
6657static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6658 unsigned long present_pages)
6659{
6660 unsigned long pages = spanned_pages;
6661
6662 /*
6663 * Provide a more accurate estimation if there are holes within
6664 * the zone and SPARSEMEM is in use. If there are holes within the
6665 * zone, each populated memory region may cost us one or two extra
6666 * memmap pages due to alignment because memmap pages for each
6667 * populated regions may not be naturally aligned on page boundary.
6668 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6669 */
6670 if (spanned_pages > present_pages + (present_pages >> 4) &&
6671 IS_ENABLED(CONFIG_SPARSEMEM))
6672 pages = present_pages;
6673
6674 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6675}
6676
6677#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6678static void pgdat_init_split_queue(struct pglist_data *pgdat)
6679{
6680 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6681
6682 spin_lock_init(&ds_queue->split_queue_lock);
6683 INIT_LIST_HEAD(&ds_queue->split_queue);
6684 ds_queue->split_queue_len = 0;
6685}
6686#else
6687static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6688#endif
6689
6690#ifdef CONFIG_COMPACTION
6691static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6692{
6693 init_waitqueue_head(&pgdat->kcompactd_wait);
6694}
6695#else
6696static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6697#endif
6698
6699static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6700{
6701 pgdat_resize_init(pgdat);
6702
6703 pgdat_init_split_queue(pgdat);
6704 pgdat_init_kcompactd(pgdat);
6705
6706 init_waitqueue_head(&pgdat->kswapd_wait);
6707 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6708
6709 pgdat_page_ext_init(pgdat);
6710 spin_lock_init(&pgdat->lru_lock);
6711 lruvec_init(node_lruvec(pgdat));
6712}
6713
6714static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6715 unsigned long remaining_pages)
6716{
6717 atomic_long_set(&zone->managed_pages, remaining_pages);
6718 zone_set_nid(zone, nid);
6719 zone->name = zone_names[idx];
6720 zone->zone_pgdat = NODE_DATA(nid);
6721 spin_lock_init(&zone->lock);
6722 zone_seqlock_init(zone);
6723 zone_pcp_init(zone);
6724}
6725
6726/*
6727 * Set up the zone data structures
6728 * - init pgdat internals
6729 * - init all zones belonging to this node
6730 *
6731 * NOTE: this function is only called during memory hotplug
6732 */
6733#ifdef CONFIG_MEMORY_HOTPLUG
6734void __ref free_area_init_core_hotplug(int nid)
6735{
6736 enum zone_type z;
6737 pg_data_t *pgdat = NODE_DATA(nid);
6738
6739 pgdat_init_internals(pgdat);
6740 for (z = 0; z < MAX_NR_ZONES; z++)
6741 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6742}
6743#endif
6744
6745/*
6746 * Set up the zone data structures:
6747 * - mark all pages reserved
6748 * - mark all memory queues empty
6749 * - clear the memory bitmaps
6750 *
6751 * NOTE: pgdat should get zeroed by caller.
6752 * NOTE: this function is only called during early init.
6753 */
6754static void __init free_area_init_core(struct pglist_data *pgdat)
6755{
6756 enum zone_type j;
6757 int nid = pgdat->node_id;
6758
6759 pgdat_init_internals(pgdat);
6760 pgdat->per_cpu_nodestats = &boot_nodestats;
6761
6762 for (j = 0; j < MAX_NR_ZONES; j++) {
6763 struct zone *zone = pgdat->node_zones + j;
6764 unsigned long size, freesize, memmap_pages;
6765 unsigned long zone_start_pfn = zone->zone_start_pfn;
6766
6767 size = zone->spanned_pages;
6768 freesize = zone->present_pages;
6769
6770 /*
6771 * Adjust freesize so that it accounts for how much memory
6772 * is used by this zone for memmap. This affects the watermark
6773 * and per-cpu initialisations
6774 */
6775 memmap_pages = calc_memmap_size(size, freesize);
6776 if (!is_highmem_idx(j)) {
6777 if (freesize >= memmap_pages) {
6778 freesize -= memmap_pages;
6779 if (memmap_pages)
6780 printk(KERN_DEBUG
6781 " %s zone: %lu pages used for memmap\n",
6782 zone_names[j], memmap_pages);
6783 } else
6784 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6785 zone_names[j], memmap_pages, freesize);
6786 }
6787
6788 /* Account for reserved pages */
6789 if (j == 0 && freesize > dma_reserve) {
6790 freesize -= dma_reserve;
6791 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6792 zone_names[0], dma_reserve);
6793 }
6794
6795 if (!is_highmem_idx(j))
6796 nr_kernel_pages += freesize;
6797 /* Charge for highmem memmap if there are enough kernel pages */
6798 else if (nr_kernel_pages > memmap_pages * 2)
6799 nr_kernel_pages -= memmap_pages;
6800 nr_all_pages += freesize;
6801
6802 /*
6803 * Set an approximate value for lowmem here, it will be adjusted
6804 * when the bootmem allocator frees pages into the buddy system.
6805 * And all highmem pages will be managed by the buddy system.
6806 */
6807 zone_init_internals(zone, j, nid, freesize);
6808
6809 if (!size)
6810 continue;
6811
6812 set_pageblock_order();
6813 setup_usemap(pgdat, zone, zone_start_pfn, size);
6814 init_currently_empty_zone(zone, zone_start_pfn, size);
6815 memmap_init(size, nid, j, zone_start_pfn);
6816 }
6817}
6818
6819#ifdef CONFIG_FLAT_NODE_MEM_MAP
6820static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6821{
6822 unsigned long __maybe_unused start = 0;
6823 unsigned long __maybe_unused offset = 0;
6824
6825 /* Skip empty nodes */
6826 if (!pgdat->node_spanned_pages)
6827 return;
6828
6829 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6830 offset = pgdat->node_start_pfn - start;
6831 /* ia64 gets its own node_mem_map, before this, without bootmem */
6832 if (!pgdat->node_mem_map) {
6833 unsigned long size, end;
6834 struct page *map;
6835
6836 /*
6837 * The zone's endpoints aren't required to be MAX_ORDER
6838 * aligned but the node_mem_map endpoints must be in order
6839 * for the buddy allocator to function correctly.
6840 */
6841 end = pgdat_end_pfn(pgdat);
6842 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6843 size = (end - start) * sizeof(struct page);
6844 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6845 pgdat->node_id);
6846 if (!map)
6847 panic("Failed to allocate %ld bytes for node %d memory map\n",
6848 size, pgdat->node_id);
6849 pgdat->node_mem_map = map + offset;
6850 }
6851 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6852 __func__, pgdat->node_id, (unsigned long)pgdat,
6853 (unsigned long)pgdat->node_mem_map);
6854#ifndef CONFIG_NEED_MULTIPLE_NODES
6855 /*
6856 * With no DISCONTIG, the global mem_map is just set as node 0's
6857 */
6858 if (pgdat == NODE_DATA(0)) {
6859 mem_map = NODE_DATA(0)->node_mem_map;
6860#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6861 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6862 mem_map -= offset;
6863#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6864 }
6865#endif
6866}
6867#else
6868static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6869#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6870
6871#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6872static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6873{
6874 pgdat->first_deferred_pfn = ULONG_MAX;
6875}
6876#else
6877static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6878#endif
6879
6880void __init free_area_init_node(int nid, unsigned long *zones_size,
6881 unsigned long node_start_pfn,
6882 unsigned long *zholes_size)
6883{
6884 pg_data_t *pgdat = NODE_DATA(nid);
6885 unsigned long start_pfn = 0;
6886 unsigned long end_pfn = 0;
6887
6888 /* pg_data_t should be reset to zero when it's allocated */
6889 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6890
6891 pgdat->node_id = nid;
6892 pgdat->node_start_pfn = node_start_pfn;
6893 pgdat->per_cpu_nodestats = NULL;
6894#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6895 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6897 (u64)start_pfn << PAGE_SHIFT,
6898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6899#else
6900 start_pfn = node_start_pfn;
6901#endif
6902 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6903 zones_size, zholes_size);
6904
6905 alloc_node_mem_map(pgdat);
6906 pgdat_set_deferred_range(pgdat);
6907
6908 free_area_init_core(pgdat);
6909}
6910
6911#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6912/*
6913 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6914 * pages zeroed
6915 */
6916static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6917{
6918 unsigned long pfn;
6919 u64 pgcnt = 0;
6920
6921 for (pfn = spfn; pfn < epfn; pfn++) {
6922 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6923 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6924 + pageblock_nr_pages - 1;
6925 continue;
6926 }
6927 mm_zero_struct_page(pfn_to_page(pfn));
6928 pgcnt++;
6929 }
6930
6931 return pgcnt;
6932}
6933
6934/*
6935 * Only struct pages that are backed by physical memory are zeroed and
6936 * initialized by going through __init_single_page(). But, there are some
6937 * struct pages which are reserved in memblock allocator and their fields
6938 * may be accessed (for example page_to_pfn() on some configuration accesses
6939 * flags). We must explicitly zero those struct pages.
6940 *
6941 * This function also addresses a similar issue where struct pages are left
6942 * uninitialized because the physical address range is not covered by
6943 * memblock.memory or memblock.reserved. That could happen when memblock
6944 * layout is manually configured via memmap=.
6945 */
6946void __init zero_resv_unavail(void)
6947{
6948 phys_addr_t start, end;
6949 u64 i, pgcnt;
6950 phys_addr_t next = 0;
6951
6952 /*
6953 * Loop through unavailable ranges not covered by memblock.memory.
6954 */
6955 pgcnt = 0;
6956 for_each_mem_range(i, &memblock.memory, NULL,
6957 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6958 if (next < start)
6959 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6960 next = end;
6961 }
6962 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6963
6964 /*
6965 * Struct pages that do not have backing memory. This could be because
6966 * firmware is using some of this memory, or for some other reasons.
6967 */
6968 if (pgcnt)
6969 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6970}
6971#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6972
6973#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6974
6975#if MAX_NUMNODES > 1
6976/*
6977 * Figure out the number of possible node ids.
6978 */
6979void __init setup_nr_node_ids(void)
6980{
6981 unsigned int highest;
6982
6983 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6984 nr_node_ids = highest + 1;
6985}
6986#endif
6987
6988/**
6989 * node_map_pfn_alignment - determine the maximum internode alignment
6990 *
6991 * This function should be called after node map is populated and sorted.
6992 * It calculates the maximum power of two alignment which can distinguish
6993 * all the nodes.
6994 *
6995 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6996 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6997 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6998 * shifted, 1GiB is enough and this function will indicate so.
6999 *
7000 * This is used to test whether pfn -> nid mapping of the chosen memory
7001 * model has fine enough granularity to avoid incorrect mapping for the
7002 * populated node map.
7003 *
7004 * Return: the determined alignment in pfn's. 0 if there is no alignment
7005 * requirement (single node).
7006 */
7007unsigned long __init node_map_pfn_alignment(void)
7008{
7009 unsigned long accl_mask = 0, last_end = 0;
7010 unsigned long start, end, mask;
7011 int last_nid = NUMA_NO_NODE;
7012 int i, nid;
7013
7014 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7015 if (!start || last_nid < 0 || last_nid == nid) {
7016 last_nid = nid;
7017 last_end = end;
7018 continue;
7019 }
7020
7021 /*
7022 * Start with a mask granular enough to pin-point to the
7023 * start pfn and tick off bits one-by-one until it becomes
7024 * too coarse to separate the current node from the last.
7025 */
7026 mask = ~((1 << __ffs(start)) - 1);
7027 while (mask && last_end <= (start & (mask << 1)))
7028 mask <<= 1;
7029
7030 /* accumulate all internode masks */
7031 accl_mask |= mask;
7032 }
7033
7034 /* convert mask to number of pages */
7035 return ~accl_mask + 1;
7036}
7037
7038/* Find the lowest pfn for a node */
7039static unsigned long __init find_min_pfn_for_node(int nid)
7040{
7041 unsigned long min_pfn = ULONG_MAX;
7042 unsigned long start_pfn;
7043 int i;
7044
7045 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7046 min_pfn = min(min_pfn, start_pfn);
7047
7048 if (min_pfn == ULONG_MAX) {
7049 pr_warn("Could not find start_pfn for node %d\n", nid);
7050 return 0;
7051 }
7052
7053 return min_pfn;
7054}
7055
7056/**
7057 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7058 *
7059 * Return: the minimum PFN based on information provided via
7060 * memblock_set_node().
7061 */
7062unsigned long __init find_min_pfn_with_active_regions(void)
7063{
7064 return find_min_pfn_for_node(MAX_NUMNODES);
7065}
7066
7067/*
7068 * early_calculate_totalpages()
7069 * Sum pages in active regions for movable zone.
7070 * Populate N_MEMORY for calculating usable_nodes.
7071 */
7072static unsigned long __init early_calculate_totalpages(void)
7073{
7074 unsigned long totalpages = 0;
7075 unsigned long start_pfn, end_pfn;
7076 int i, nid;
7077
7078 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7079 unsigned long pages = end_pfn - start_pfn;
7080
7081 totalpages += pages;
7082 if (pages)
7083 node_set_state(nid, N_MEMORY);
7084 }
7085 return totalpages;
7086}
7087
7088/*
7089 * Find the PFN the Movable zone begins in each node. Kernel memory
7090 * is spread evenly between nodes as long as the nodes have enough
7091 * memory. When they don't, some nodes will have more kernelcore than
7092 * others
7093 */
7094static void __init find_zone_movable_pfns_for_nodes(void)
7095{
7096 int i, nid;
7097 unsigned long usable_startpfn;
7098 unsigned long kernelcore_node, kernelcore_remaining;
7099 /* save the state before borrow the nodemask */
7100 nodemask_t saved_node_state = node_states[N_MEMORY];
7101 unsigned long totalpages = early_calculate_totalpages();
7102 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7103 struct memblock_region *r;
7104
7105 /* Need to find movable_zone earlier when movable_node is specified. */
7106 find_usable_zone_for_movable();
7107
7108 /*
7109 * If movable_node is specified, ignore kernelcore and movablecore
7110 * options.
7111 */
7112 if (movable_node_is_enabled()) {
7113 for_each_memblock(memory, r) {
7114 if (!memblock_is_hotpluggable(r))
7115 continue;
7116
7117 nid = r->nid;
7118
7119 usable_startpfn = PFN_DOWN(r->base);
7120 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7121 min(usable_startpfn, zone_movable_pfn[nid]) :
7122 usable_startpfn;
7123 }
7124
7125 goto out2;
7126 }
7127
7128 /*
7129 * If kernelcore=mirror is specified, ignore movablecore option
7130 */
7131 if (mirrored_kernelcore) {
7132 bool mem_below_4gb_not_mirrored = false;
7133
7134 for_each_memblock(memory, r) {
7135 if (memblock_is_mirror(r))
7136 continue;
7137
7138 nid = r->nid;
7139
7140 usable_startpfn = memblock_region_memory_base_pfn(r);
7141
7142 if (usable_startpfn < 0x100000) {
7143 mem_below_4gb_not_mirrored = true;
7144 continue;
7145 }
7146
7147 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7148 min(usable_startpfn, zone_movable_pfn[nid]) :
7149 usable_startpfn;
7150 }
7151
7152 if (mem_below_4gb_not_mirrored)
7153 pr_warn("This configuration results in unmirrored kernel memory.");
7154
7155 goto out2;
7156 }
7157
7158 /*
7159 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7160 * amount of necessary memory.
7161 */
7162 if (required_kernelcore_percent)
7163 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7164 10000UL;
7165 if (required_movablecore_percent)
7166 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7167 10000UL;
7168
7169 /*
7170 * If movablecore= was specified, calculate what size of
7171 * kernelcore that corresponds so that memory usable for
7172 * any allocation type is evenly spread. If both kernelcore
7173 * and movablecore are specified, then the value of kernelcore
7174 * will be used for required_kernelcore if it's greater than
7175 * what movablecore would have allowed.
7176 */
7177 if (required_movablecore) {
7178 unsigned long corepages;
7179
7180 /*
7181 * Round-up so that ZONE_MOVABLE is at least as large as what
7182 * was requested by the user
7183 */
7184 required_movablecore =
7185 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7186 required_movablecore = min(totalpages, required_movablecore);
7187 corepages = totalpages - required_movablecore;
7188
7189 required_kernelcore = max(required_kernelcore, corepages);
7190 }
7191
7192 /*
7193 * If kernelcore was not specified or kernelcore size is larger
7194 * than totalpages, there is no ZONE_MOVABLE.
7195 */
7196 if (!required_kernelcore || required_kernelcore >= totalpages)
7197 goto out;
7198
7199 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7200 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7201
7202restart:
7203 /* Spread kernelcore memory as evenly as possible throughout nodes */
7204 kernelcore_node = required_kernelcore / usable_nodes;
7205 for_each_node_state(nid, N_MEMORY) {
7206 unsigned long start_pfn, end_pfn;
7207
7208 /*
7209 * Recalculate kernelcore_node if the division per node
7210 * now exceeds what is necessary to satisfy the requested
7211 * amount of memory for the kernel
7212 */
7213 if (required_kernelcore < kernelcore_node)
7214 kernelcore_node = required_kernelcore / usable_nodes;
7215
7216 /*
7217 * As the map is walked, we track how much memory is usable
7218 * by the kernel using kernelcore_remaining. When it is
7219 * 0, the rest of the node is usable by ZONE_MOVABLE
7220 */
7221 kernelcore_remaining = kernelcore_node;
7222
7223 /* Go through each range of PFNs within this node */
7224 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7225 unsigned long size_pages;
7226
7227 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7228 if (start_pfn >= end_pfn)
7229 continue;
7230
7231 /* Account for what is only usable for kernelcore */
7232 if (start_pfn < usable_startpfn) {
7233 unsigned long kernel_pages;
7234 kernel_pages = min(end_pfn, usable_startpfn)
7235 - start_pfn;
7236
7237 kernelcore_remaining -= min(kernel_pages,
7238 kernelcore_remaining);
7239 required_kernelcore -= min(kernel_pages,
7240 required_kernelcore);
7241
7242 /* Continue if range is now fully accounted */
7243 if (end_pfn <= usable_startpfn) {
7244
7245 /*
7246 * Push zone_movable_pfn to the end so
7247 * that if we have to rebalance
7248 * kernelcore across nodes, we will
7249 * not double account here
7250 */
7251 zone_movable_pfn[nid] = end_pfn;
7252 continue;
7253 }
7254 start_pfn = usable_startpfn;
7255 }
7256
7257 /*
7258 * The usable PFN range for ZONE_MOVABLE is from
7259 * start_pfn->end_pfn. Calculate size_pages as the
7260 * number of pages used as kernelcore
7261 */
7262 size_pages = end_pfn - start_pfn;
7263 if (size_pages > kernelcore_remaining)
7264 size_pages = kernelcore_remaining;
7265 zone_movable_pfn[nid] = start_pfn + size_pages;
7266
7267 /*
7268 * Some kernelcore has been met, update counts and
7269 * break if the kernelcore for this node has been
7270 * satisfied
7271 */
7272 required_kernelcore -= min(required_kernelcore,
7273 size_pages);
7274 kernelcore_remaining -= size_pages;
7275 if (!kernelcore_remaining)
7276 break;
7277 }
7278 }
7279
7280 /*
7281 * If there is still required_kernelcore, we do another pass with one
7282 * less node in the count. This will push zone_movable_pfn[nid] further
7283 * along on the nodes that still have memory until kernelcore is
7284 * satisfied
7285 */
7286 usable_nodes--;
7287 if (usable_nodes && required_kernelcore > usable_nodes)
7288 goto restart;
7289
7290out2:
7291 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7292 for (nid = 0; nid < MAX_NUMNODES; nid++)
7293 zone_movable_pfn[nid] =
7294 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7295
7296out:
7297 /* restore the node_state */
7298 node_states[N_MEMORY] = saved_node_state;
7299}
7300
7301/* Any regular or high memory on that node ? */
7302static void check_for_memory(pg_data_t *pgdat, int nid)
7303{
7304 enum zone_type zone_type;
7305
7306 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7307 struct zone *zone = &pgdat->node_zones[zone_type];
7308 if (populated_zone(zone)) {
7309 if (IS_ENABLED(CONFIG_HIGHMEM))
7310 node_set_state(nid, N_HIGH_MEMORY);
7311 if (zone_type <= ZONE_NORMAL)
7312 node_set_state(nid, N_NORMAL_MEMORY);
7313 break;
7314 }
7315 }
7316}
7317
7318/**
7319 * free_area_init_nodes - Initialise all pg_data_t and zone data
7320 * @max_zone_pfn: an array of max PFNs for each zone
7321 *
7322 * This will call free_area_init_node() for each active node in the system.
7323 * Using the page ranges provided by memblock_set_node(), the size of each
7324 * zone in each node and their holes is calculated. If the maximum PFN
7325 * between two adjacent zones match, it is assumed that the zone is empty.
7326 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7327 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7328 * starts where the previous one ended. For example, ZONE_DMA32 starts
7329 * at arch_max_dma_pfn.
7330 */
7331void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7332{
7333 unsigned long start_pfn, end_pfn;
7334 int i, nid;
7335
7336 /* Record where the zone boundaries are */
7337 memset(arch_zone_lowest_possible_pfn, 0,
7338 sizeof(arch_zone_lowest_possible_pfn));
7339 memset(arch_zone_highest_possible_pfn, 0,
7340 sizeof(arch_zone_highest_possible_pfn));
7341
7342 start_pfn = find_min_pfn_with_active_regions();
7343
7344 for (i = 0; i < MAX_NR_ZONES; i++) {
7345 if (i == ZONE_MOVABLE)
7346 continue;
7347
7348 end_pfn = max(max_zone_pfn[i], start_pfn);
7349 arch_zone_lowest_possible_pfn[i] = start_pfn;
7350 arch_zone_highest_possible_pfn[i] = end_pfn;
7351
7352 start_pfn = end_pfn;
7353 }
7354
7355 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7356 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7357 find_zone_movable_pfns_for_nodes();
7358
7359 /* Print out the zone ranges */
7360 pr_info("Zone ranges:\n");
7361 for (i = 0; i < MAX_NR_ZONES; i++) {
7362 if (i == ZONE_MOVABLE)
7363 continue;
7364 pr_info(" %-8s ", zone_names[i]);
7365 if (arch_zone_lowest_possible_pfn[i] ==
7366 arch_zone_highest_possible_pfn[i])
7367 pr_cont("empty\n");
7368 else
7369 pr_cont("[mem %#018Lx-%#018Lx]\n",
7370 (u64)arch_zone_lowest_possible_pfn[i]
7371 << PAGE_SHIFT,
7372 ((u64)arch_zone_highest_possible_pfn[i]
7373 << PAGE_SHIFT) - 1);
7374 }
7375
7376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7377 pr_info("Movable zone start for each node\n");
7378 for (i = 0; i < MAX_NUMNODES; i++) {
7379 if (zone_movable_pfn[i])
7380 pr_info(" Node %d: %#018Lx\n", i,
7381 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7382 }
7383
7384 /*
7385 * Print out the early node map, and initialize the
7386 * subsection-map relative to active online memory ranges to
7387 * enable future "sub-section" extensions of the memory map.
7388 */
7389 pr_info("Early memory node ranges\n");
7390 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7391 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7392 (u64)start_pfn << PAGE_SHIFT,
7393 ((u64)end_pfn << PAGE_SHIFT) - 1);
7394 subsection_map_init(start_pfn, end_pfn - start_pfn);
7395 }
7396
7397 /* Initialise every node */
7398 mminit_verify_pageflags_layout();
7399 setup_nr_node_ids();
7400 zero_resv_unavail();
7401 for_each_online_node(nid) {
7402 pg_data_t *pgdat = NODE_DATA(nid);
7403 free_area_init_node(nid, NULL,
7404 find_min_pfn_for_node(nid), NULL);
7405
7406 /* Any memory on that node */
7407 if (pgdat->node_present_pages)
7408 node_set_state(nid, N_MEMORY);
7409 check_for_memory(pgdat, nid);
7410 }
7411}
7412
7413static int __init cmdline_parse_core(char *p, unsigned long *core,
7414 unsigned long *percent)
7415{
7416 unsigned long long coremem;
7417 char *endptr;
7418
7419 if (!p)
7420 return -EINVAL;
7421
7422 /* Value may be a percentage of total memory, otherwise bytes */
7423 coremem = simple_strtoull(p, &endptr, 0);
7424 if (*endptr == '%') {
7425 /* Paranoid check for percent values greater than 100 */
7426 WARN_ON(coremem > 100);
7427
7428 *percent = coremem;
7429 } else {
7430 coremem = memparse(p, &p);
7431 /* Paranoid check that UL is enough for the coremem value */
7432 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7433
7434 *core = coremem >> PAGE_SHIFT;
7435 *percent = 0UL;
7436 }
7437 return 0;
7438}
7439
7440/*
7441 * kernelcore=size sets the amount of memory for use for allocations that
7442 * cannot be reclaimed or migrated.
7443 */
7444static int __init cmdline_parse_kernelcore(char *p)
7445{
7446 /* parse kernelcore=mirror */
7447 if (parse_option_str(p, "mirror")) {
7448 mirrored_kernelcore = true;
7449 return 0;
7450 }
7451
7452 return cmdline_parse_core(p, &required_kernelcore,
7453 &required_kernelcore_percent);
7454}
7455
7456/*
7457 * movablecore=size sets the amount of memory for use for allocations that
7458 * can be reclaimed or migrated.
7459 */
7460static int __init cmdline_parse_movablecore(char *p)
7461{
7462 return cmdline_parse_core(p, &required_movablecore,
7463 &required_movablecore_percent);
7464}
7465
7466early_param("kernelcore", cmdline_parse_kernelcore);
7467early_param("movablecore", cmdline_parse_movablecore);
7468
7469#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7470
7471void adjust_managed_page_count(struct page *page, long count)
7472{
7473 atomic_long_add(count, &page_zone(page)->managed_pages);
7474 totalram_pages_add(count);
7475#ifdef CONFIG_HIGHMEM
7476 if (PageHighMem(page))
7477 totalhigh_pages_add(count);
7478#endif
7479}
7480EXPORT_SYMBOL(adjust_managed_page_count);
7481
7482unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7483{
7484 void *pos;
7485 unsigned long pages = 0;
7486
7487 start = (void *)PAGE_ALIGN((unsigned long)start);
7488 end = (void *)((unsigned long)end & PAGE_MASK);
7489 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7490 struct page *page = virt_to_page(pos);
7491 void *direct_map_addr;
7492
7493 /*
7494 * 'direct_map_addr' might be different from 'pos'
7495 * because some architectures' virt_to_page()
7496 * work with aliases. Getting the direct map
7497 * address ensures that we get a _writeable_
7498 * alias for the memset().
7499 */
7500 direct_map_addr = page_address(page);
7501 if ((unsigned int)poison <= 0xFF)
7502 memset(direct_map_addr, poison, PAGE_SIZE);
7503
7504 free_reserved_page(page);
7505 }
7506
7507 if (pages && s)
7508 pr_info("Freeing %s memory: %ldK\n",
7509 s, pages << (PAGE_SHIFT - 10));
7510
7511 return pages;
7512}
7513
7514#ifdef CONFIG_HIGHMEM
7515void free_highmem_page(struct page *page)
7516{
7517 __free_reserved_page(page);
7518 totalram_pages_inc();
7519 atomic_long_inc(&page_zone(page)->managed_pages);
7520 totalhigh_pages_inc();
7521}
7522#endif
7523
7524
7525void __init mem_init_print_info(const char *str)
7526{
7527 unsigned long physpages, codesize, datasize, rosize, bss_size;
7528 unsigned long init_code_size, init_data_size;
7529
7530 physpages = get_num_physpages();
7531 codesize = _etext - _stext;
7532 datasize = _edata - _sdata;
7533 rosize = __end_rodata - __start_rodata;
7534 bss_size = __bss_stop - __bss_start;
7535 init_data_size = __init_end - __init_begin;
7536 init_code_size = _einittext - _sinittext;
7537
7538 /*
7539 * Detect special cases and adjust section sizes accordingly:
7540 * 1) .init.* may be embedded into .data sections
7541 * 2) .init.text.* may be out of [__init_begin, __init_end],
7542 * please refer to arch/tile/kernel/vmlinux.lds.S.
7543 * 3) .rodata.* may be embedded into .text or .data sections.
7544 */
7545#define adj_init_size(start, end, size, pos, adj) \
7546 do { \
7547 if (start <= pos && pos < end && size > adj) \
7548 size -= adj; \
7549 } while (0)
7550
7551 adj_init_size(__init_begin, __init_end, init_data_size,
7552 _sinittext, init_code_size);
7553 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7554 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7555 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7556 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7557
7558#undef adj_init_size
7559
7560 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7561#ifdef CONFIG_HIGHMEM
7562 ", %luK highmem"
7563#endif
7564 "%s%s)\n",
7565 nr_free_pages() << (PAGE_SHIFT - 10),
7566 physpages << (PAGE_SHIFT - 10),
7567 codesize >> 10, datasize >> 10, rosize >> 10,
7568 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7569 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7570 totalcma_pages << (PAGE_SHIFT - 10),
7571#ifdef CONFIG_HIGHMEM
7572 totalhigh_pages() << (PAGE_SHIFT - 10),
7573#endif
7574 str ? ", " : "", str ? str : "");
7575}
7576
7577/**
7578 * set_dma_reserve - set the specified number of pages reserved in the first zone
7579 * @new_dma_reserve: The number of pages to mark reserved
7580 *
7581 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7582 * In the DMA zone, a significant percentage may be consumed by kernel image
7583 * and other unfreeable allocations which can skew the watermarks badly. This
7584 * function may optionally be used to account for unfreeable pages in the
7585 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7586 * smaller per-cpu batchsize.
7587 */
7588void __init set_dma_reserve(unsigned long new_dma_reserve)
7589{
7590 dma_reserve = new_dma_reserve;
7591}
7592
7593void __init free_area_init(unsigned long *zones_size)
7594{
7595 zero_resv_unavail();
7596 free_area_init_node(0, zones_size,
7597 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7598}
7599
7600static int page_alloc_cpu_dead(unsigned int cpu)
7601{
7602
7603 lru_add_drain_cpu(cpu);
7604 drain_pages(cpu);
7605
7606 /*
7607 * Spill the event counters of the dead processor
7608 * into the current processors event counters.
7609 * This artificially elevates the count of the current
7610 * processor.
7611 */
7612 vm_events_fold_cpu(cpu);
7613
7614 /*
7615 * Zero the differential counters of the dead processor
7616 * so that the vm statistics are consistent.
7617 *
7618 * This is only okay since the processor is dead and cannot
7619 * race with what we are doing.
7620 */
7621 cpu_vm_stats_fold(cpu);
7622 return 0;
7623}
7624
7625#ifdef CONFIG_NUMA
7626int hashdist = HASHDIST_DEFAULT;
7627
7628static int __init set_hashdist(char *str)
7629{
7630 if (!str)
7631 return 0;
7632 hashdist = simple_strtoul(str, &str, 0);
7633 return 1;
7634}
7635__setup("hashdist=", set_hashdist);
7636#endif
7637
7638void __init page_alloc_init(void)
7639{
7640 int ret;
7641
7642#ifdef CONFIG_NUMA
7643 if (num_node_state(N_MEMORY) == 1)
7644 hashdist = 0;
7645#endif
7646
7647 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7648 "mm/page_alloc:dead", NULL,
7649 page_alloc_cpu_dead);
7650 WARN_ON(ret < 0);
7651}
7652
7653/*
7654 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7655 * or min_free_kbytes changes.
7656 */
7657static void calculate_totalreserve_pages(void)
7658{
7659 struct pglist_data *pgdat;
7660 unsigned long reserve_pages = 0;
7661 enum zone_type i, j;
7662
7663 for_each_online_pgdat(pgdat) {
7664
7665 pgdat->totalreserve_pages = 0;
7666
7667 for (i = 0; i < MAX_NR_ZONES; i++) {
7668 struct zone *zone = pgdat->node_zones + i;
7669 long max = 0;
7670 unsigned long managed_pages = zone_managed_pages(zone);
7671
7672 /* Find valid and maximum lowmem_reserve in the zone */
7673 for (j = i; j < MAX_NR_ZONES; j++) {
7674 if (zone->lowmem_reserve[j] > max)
7675 max = zone->lowmem_reserve[j];
7676 }
7677
7678 /* we treat the high watermark as reserved pages. */
7679 max += high_wmark_pages(zone);
7680
7681 if (max > managed_pages)
7682 max = managed_pages;
7683
7684 pgdat->totalreserve_pages += max;
7685
7686 reserve_pages += max;
7687 }
7688 }
7689 totalreserve_pages = reserve_pages;
7690}
7691
7692/*
7693 * setup_per_zone_lowmem_reserve - called whenever
7694 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7695 * has a correct pages reserved value, so an adequate number of
7696 * pages are left in the zone after a successful __alloc_pages().
7697 */
7698static void setup_per_zone_lowmem_reserve(void)
7699{
7700 struct pglist_data *pgdat;
7701 enum zone_type j, idx;
7702
7703 for_each_online_pgdat(pgdat) {
7704 for (j = 0; j < MAX_NR_ZONES; j++) {
7705 struct zone *zone = pgdat->node_zones + j;
7706 unsigned long managed_pages = zone_managed_pages(zone);
7707
7708 zone->lowmem_reserve[j] = 0;
7709
7710 idx = j;
7711 while (idx) {
7712 struct zone *lower_zone;
7713
7714 idx--;
7715 lower_zone = pgdat->node_zones + idx;
7716
7717 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7718 sysctl_lowmem_reserve_ratio[idx] = 0;
7719 lower_zone->lowmem_reserve[j] = 0;
7720 } else {
7721 lower_zone->lowmem_reserve[j] =
7722 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7723 }
7724 managed_pages += zone_managed_pages(lower_zone);
7725 }
7726 }
7727 }
7728
7729 /* update totalreserve_pages */
7730 calculate_totalreserve_pages();
7731}
7732
7733static void __setup_per_zone_wmarks(void)
7734{
7735 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7736 unsigned long lowmem_pages = 0;
7737 struct zone *zone;
7738 unsigned long flags;
7739
7740 /* Calculate total number of !ZONE_HIGHMEM pages */
7741 for_each_zone(zone) {
7742 if (!is_highmem(zone))
7743 lowmem_pages += zone_managed_pages(zone);
7744 }
7745
7746 for_each_zone(zone) {
7747 u64 tmp;
7748
7749 spin_lock_irqsave(&zone->lock, flags);
7750 tmp = (u64)pages_min * zone_managed_pages(zone);
7751 do_div(tmp, lowmem_pages);
7752 if (is_highmem(zone)) {
7753 /*
7754 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7755 * need highmem pages, so cap pages_min to a small
7756 * value here.
7757 *
7758 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7759 * deltas control async page reclaim, and so should
7760 * not be capped for highmem.
7761 */
7762 unsigned long min_pages;
7763
7764 min_pages = zone_managed_pages(zone) / 1024;
7765 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7766 zone->_watermark[WMARK_MIN] = min_pages;
7767 } else {
7768 /*
7769 * If it's a lowmem zone, reserve a number of pages
7770 * proportionate to the zone's size.
7771 */
7772 zone->_watermark[WMARK_MIN] = tmp;
7773 }
7774
7775 /*
7776 * Set the kswapd watermarks distance according to the
7777 * scale factor in proportion to available memory, but
7778 * ensure a minimum size on small systems.
7779 */
7780 tmp = max_t(u64, tmp >> 2,
7781 mult_frac(zone_managed_pages(zone),
7782 watermark_scale_factor, 10000));
7783
7784 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7785 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7786 zone->watermark_boost = 0;
7787
7788 spin_unlock_irqrestore(&zone->lock, flags);
7789 }
7790
7791 /* update totalreserve_pages */
7792 calculate_totalreserve_pages();
7793}
7794
7795/**
7796 * setup_per_zone_wmarks - called when min_free_kbytes changes
7797 * or when memory is hot-{added|removed}
7798 *
7799 * Ensures that the watermark[min,low,high] values for each zone are set
7800 * correctly with respect to min_free_kbytes.
7801 */
7802void setup_per_zone_wmarks(void)
7803{
7804 static DEFINE_SPINLOCK(lock);
7805
7806 spin_lock(&lock);
7807 __setup_per_zone_wmarks();
7808 spin_unlock(&lock);
7809}
7810
7811/*
7812 * Initialise min_free_kbytes.
7813 *
7814 * For small machines we want it small (128k min). For large machines
7815 * we want it large (64MB max). But it is not linear, because network
7816 * bandwidth does not increase linearly with machine size. We use
7817 *
7818 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7819 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7820 *
7821 * which yields
7822 *
7823 * 16MB: 512k
7824 * 32MB: 724k
7825 * 64MB: 1024k
7826 * 128MB: 1448k
7827 * 256MB: 2048k
7828 * 512MB: 2896k
7829 * 1024MB: 4096k
7830 * 2048MB: 5792k
7831 * 4096MB: 8192k
7832 * 8192MB: 11584k
7833 * 16384MB: 16384k
7834 */
7835int __meminit init_per_zone_wmark_min(void)
7836{
7837 unsigned long lowmem_kbytes;
7838 int new_min_free_kbytes;
7839
7840 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7841 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7842
7843 if (new_min_free_kbytes > user_min_free_kbytes) {
7844 min_free_kbytes = new_min_free_kbytes;
7845 if (min_free_kbytes < 128)
7846 min_free_kbytes = 128;
7847 if (min_free_kbytes > 65536)
7848 min_free_kbytes = 65536;
7849 } else {
7850 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7851 new_min_free_kbytes, user_min_free_kbytes);
7852 }
7853 setup_per_zone_wmarks();
7854 refresh_zone_stat_thresholds();
7855 setup_per_zone_lowmem_reserve();
7856
7857#ifdef CONFIG_NUMA
7858 setup_min_unmapped_ratio();
7859 setup_min_slab_ratio();
7860#endif
7861
7862 return 0;
7863}
7864core_initcall(init_per_zone_wmark_min)
7865
7866/*
7867 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7868 * that we can call two helper functions whenever min_free_kbytes
7869 * changes.
7870 */
7871int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7872 void __user *buffer, size_t *length, loff_t *ppos)
7873{
7874 int rc;
7875
7876 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7877 if (rc)
7878 return rc;
7879
7880 if (write) {
7881 user_min_free_kbytes = min_free_kbytes;
7882 setup_per_zone_wmarks();
7883 }
7884 return 0;
7885}
7886
7887int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7888 void __user *buffer, size_t *length, loff_t *ppos)
7889{
7890 int rc;
7891
7892 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7893 if (rc)
7894 return rc;
7895
7896 return 0;
7897}
7898
7899int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7900 void __user *buffer, size_t *length, loff_t *ppos)
7901{
7902 int rc;
7903
7904 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7905 if (rc)
7906 return rc;
7907
7908 if (write)
7909 setup_per_zone_wmarks();
7910
7911 return 0;
7912}
7913
7914#ifdef CONFIG_NUMA
7915static void setup_min_unmapped_ratio(void)
7916{
7917 pg_data_t *pgdat;
7918 struct zone *zone;
7919
7920 for_each_online_pgdat(pgdat)
7921 pgdat->min_unmapped_pages = 0;
7922
7923 for_each_zone(zone)
7924 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7925 sysctl_min_unmapped_ratio) / 100;
7926}
7927
7928
7929int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7930 void __user *buffer, size_t *length, loff_t *ppos)
7931{
7932 int rc;
7933
7934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7935 if (rc)
7936 return rc;
7937
7938 setup_min_unmapped_ratio();
7939
7940 return 0;
7941}
7942
7943static void setup_min_slab_ratio(void)
7944{
7945 pg_data_t *pgdat;
7946 struct zone *zone;
7947
7948 for_each_online_pgdat(pgdat)
7949 pgdat->min_slab_pages = 0;
7950
7951 for_each_zone(zone)
7952 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7953 sysctl_min_slab_ratio) / 100;
7954}
7955
7956int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7957 void __user *buffer, size_t *length, loff_t *ppos)
7958{
7959 int rc;
7960
7961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7962 if (rc)
7963 return rc;
7964
7965 setup_min_slab_ratio();
7966
7967 return 0;
7968}
7969#endif
7970
7971/*
7972 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7973 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7974 * whenever sysctl_lowmem_reserve_ratio changes.
7975 *
7976 * The reserve ratio obviously has absolutely no relation with the
7977 * minimum watermarks. The lowmem reserve ratio can only make sense
7978 * if in function of the boot time zone sizes.
7979 */
7980int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7981 void __user *buffer, size_t *length, loff_t *ppos)
7982{
7983 proc_dointvec_minmax(table, write, buffer, length, ppos);
7984 setup_per_zone_lowmem_reserve();
7985 return 0;
7986}
7987
7988/*
7989 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7990 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7991 * pagelist can have before it gets flushed back to buddy allocator.
7992 */
7993int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7994 void __user *buffer, size_t *length, loff_t *ppos)
7995{
7996 struct zone *zone;
7997 int old_percpu_pagelist_fraction;
7998 int ret;
7999
8000 mutex_lock(&pcp_batch_high_lock);
8001 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8002
8003 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8004 if (!write || ret < 0)
8005 goto out;
8006
8007 /* Sanity checking to avoid pcp imbalance */
8008 if (percpu_pagelist_fraction &&
8009 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8010 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8011 ret = -EINVAL;
8012 goto out;
8013 }
8014
8015 /* No change? */
8016 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8017 goto out;
8018
8019 for_each_populated_zone(zone) {
8020 unsigned int cpu;
8021
8022 for_each_possible_cpu(cpu)
8023 pageset_set_high_and_batch(zone,
8024 per_cpu_ptr(zone->pageset, cpu));
8025 }
8026out:
8027 mutex_unlock(&pcp_batch_high_lock);
8028 return ret;
8029}
8030
8031#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8032/*
8033 * Returns the number of pages that arch has reserved but
8034 * is not known to alloc_large_system_hash().
8035 */
8036static unsigned long __init arch_reserved_kernel_pages(void)
8037{
8038 return 0;
8039}
8040#endif
8041
8042/*
8043 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8044 * machines. As memory size is increased the scale is also increased but at
8045 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8046 * quadruples the scale is increased by one, which means the size of hash table
8047 * only doubles, instead of quadrupling as well.
8048 * Because 32-bit systems cannot have large physical memory, where this scaling
8049 * makes sense, it is disabled on such platforms.
8050 */
8051#if __BITS_PER_LONG > 32
8052#define ADAPT_SCALE_BASE (64ul << 30)
8053#define ADAPT_SCALE_SHIFT 2
8054#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8055#endif
8056
8057/*
8058 * allocate a large system hash table from bootmem
8059 * - it is assumed that the hash table must contain an exact power-of-2
8060 * quantity of entries
8061 * - limit is the number of hash buckets, not the total allocation size
8062 */
8063void *__init alloc_large_system_hash(const char *tablename,
8064 unsigned long bucketsize,
8065 unsigned long numentries,
8066 int scale,
8067 int flags,
8068 unsigned int *_hash_shift,
8069 unsigned int *_hash_mask,
8070 unsigned long low_limit,
8071 unsigned long high_limit)
8072{
8073 unsigned long long max = high_limit;
8074 unsigned long log2qty, size;
8075 void *table = NULL;
8076 gfp_t gfp_flags;
8077 bool virt;
8078
8079 /* allow the kernel cmdline to have a say */
8080 if (!numentries) {
8081 /* round applicable memory size up to nearest megabyte */
8082 numentries = nr_kernel_pages;
8083 numentries -= arch_reserved_kernel_pages();
8084
8085 /* It isn't necessary when PAGE_SIZE >= 1MB */
8086 if (PAGE_SHIFT < 20)
8087 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8088
8089#if __BITS_PER_LONG > 32
8090 if (!high_limit) {
8091 unsigned long adapt;
8092
8093 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8094 adapt <<= ADAPT_SCALE_SHIFT)
8095 scale++;
8096 }
8097#endif
8098
8099 /* limit to 1 bucket per 2^scale bytes of low memory */
8100 if (scale > PAGE_SHIFT)
8101 numentries >>= (scale - PAGE_SHIFT);
8102 else
8103 numentries <<= (PAGE_SHIFT - scale);
8104
8105 /* Make sure we've got at least a 0-order allocation.. */
8106 if (unlikely(flags & HASH_SMALL)) {
8107 /* Makes no sense without HASH_EARLY */
8108 WARN_ON(!(flags & HASH_EARLY));
8109 if (!(numentries >> *_hash_shift)) {
8110 numentries = 1UL << *_hash_shift;
8111 BUG_ON(!numentries);
8112 }
8113 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8114 numentries = PAGE_SIZE / bucketsize;
8115 }
8116 numentries = roundup_pow_of_two(numentries);
8117
8118 /* limit allocation size to 1/16 total memory by default */
8119 if (max == 0) {
8120 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8121 do_div(max, bucketsize);
8122 }
8123 max = min(max, 0x80000000ULL);
8124
8125 if (numentries < low_limit)
8126 numentries = low_limit;
8127 if (numentries > max)
8128 numentries = max;
8129
8130 log2qty = ilog2(numentries);
8131
8132 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8133 do {
8134 virt = false;
8135 size = bucketsize << log2qty;
8136 if (flags & HASH_EARLY) {
8137 if (flags & HASH_ZERO)
8138 table = memblock_alloc(size, SMP_CACHE_BYTES);
8139 else
8140 table = memblock_alloc_raw(size,
8141 SMP_CACHE_BYTES);
8142 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8143 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8144 virt = true;
8145 } else {
8146 /*
8147 * If bucketsize is not a power-of-two, we may free
8148 * some pages at the end of hash table which
8149 * alloc_pages_exact() automatically does
8150 */
8151 table = alloc_pages_exact(size, gfp_flags);
8152 kmemleak_alloc(table, size, 1, gfp_flags);
8153 }
8154 } while (!table && size > PAGE_SIZE && --log2qty);
8155
8156 if (!table)
8157 panic("Failed to allocate %s hash table\n", tablename);
8158
8159 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8160 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8161 virt ? "vmalloc" : "linear");
8162
8163 if (_hash_shift)
8164 *_hash_shift = log2qty;
8165 if (_hash_mask)
8166 *_hash_mask = (1 << log2qty) - 1;
8167
8168 return table;
8169}
8170
8171/*
8172 * This function checks whether pageblock includes unmovable pages or not.
8173 * If @count is not zero, it is okay to include less @count unmovable pages
8174 *
8175 * PageLRU check without isolation or lru_lock could race so that
8176 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8177 * check without lock_page also may miss some movable non-lru pages at
8178 * race condition. So you can't expect this function should be exact.
8179 */
8180bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8181 int migratetype, int flags)
8182{
8183 unsigned long found;
8184 unsigned long iter = 0;
8185 unsigned long pfn = page_to_pfn(page);
8186 const char *reason = "unmovable page";
8187
8188 /*
8189 * TODO we could make this much more efficient by not checking every
8190 * page in the range if we know all of them are in MOVABLE_ZONE and
8191 * that the movable zone guarantees that pages are migratable but
8192 * the later is not the case right now unfortunatelly. E.g. movablecore
8193 * can still lead to having bootmem allocations in zone_movable.
8194 */
8195
8196 if (is_migrate_cma_page(page)) {
8197 /*
8198 * CMA allocations (alloc_contig_range) really need to mark
8199 * isolate CMA pageblocks even when they are not movable in fact
8200 * so consider them movable here.
8201 */
8202 if (is_migrate_cma(migratetype))
8203 return false;
8204
8205 reason = "CMA page";
8206 goto unmovable;
8207 }
8208
8209 for (found = 0; iter < pageblock_nr_pages; iter++) {
8210 unsigned long check = pfn + iter;
8211
8212 if (!pfn_valid_within(check))
8213 continue;
8214
8215 page = pfn_to_page(check);
8216
8217 if (PageReserved(page))
8218 goto unmovable;
8219
8220 /*
8221 * If the zone is movable and we have ruled out all reserved
8222 * pages then it should be reasonably safe to assume the rest
8223 * is movable.
8224 */
8225 if (zone_idx(zone) == ZONE_MOVABLE)
8226 continue;
8227
8228 /*
8229 * Hugepages are not in LRU lists, but they're movable.
8230 * We need not scan over tail pages because we don't
8231 * handle each tail page individually in migration.
8232 */
8233 if (PageHuge(page)) {
8234 struct page *head = compound_head(page);
8235 unsigned int skip_pages;
8236
8237 if (!hugepage_migration_supported(page_hstate(head)))
8238 goto unmovable;
8239
8240 skip_pages = compound_nr(head) - (page - head);
8241 iter += skip_pages - 1;
8242 continue;
8243 }
8244
8245 /*
8246 * We can't use page_count without pin a page
8247 * because another CPU can free compound page.
8248 * This check already skips compound tails of THP
8249 * because their page->_refcount is zero at all time.
8250 */
8251 if (!page_ref_count(page)) {
8252 if (PageBuddy(page))
8253 iter += (1 << page_order(page)) - 1;
8254 continue;
8255 }
8256
8257 /*
8258 * The HWPoisoned page may be not in buddy system, and
8259 * page_count() is not 0.
8260 */
8261 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8262 continue;
8263
8264 if (__PageMovable(page))
8265 continue;
8266
8267 if (!PageLRU(page))
8268 found++;
8269 /*
8270 * If there are RECLAIMABLE pages, we need to check
8271 * it. But now, memory offline itself doesn't call
8272 * shrink_node_slabs() and it still to be fixed.
8273 */
8274 /*
8275 * If the page is not RAM, page_count()should be 0.
8276 * we don't need more check. This is an _used_ not-movable page.
8277 *
8278 * The problematic thing here is PG_reserved pages. PG_reserved
8279 * is set to both of a memory hole page and a _used_ kernel
8280 * page at boot.
8281 */
8282 if (found > count)
8283 goto unmovable;
8284 }
8285 return false;
8286unmovable:
8287 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8288 if (flags & REPORT_FAILURE)
8289 dump_page(pfn_to_page(pfn + iter), reason);
8290 return true;
8291}
8292
8293#ifdef CONFIG_CONTIG_ALLOC
8294static unsigned long pfn_max_align_down(unsigned long pfn)
8295{
8296 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8297 pageblock_nr_pages) - 1);
8298}
8299
8300static unsigned long pfn_max_align_up(unsigned long pfn)
8301{
8302 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8303 pageblock_nr_pages));
8304}
8305
8306/* [start, end) must belong to a single zone. */
8307static int __alloc_contig_migrate_range(struct compact_control *cc,
8308 unsigned long start, unsigned long end)
8309{
8310 /* This function is based on compact_zone() from compaction.c. */
8311 unsigned long nr_reclaimed;
8312 unsigned long pfn = start;
8313 unsigned int tries = 0;
8314 int ret = 0;
8315
8316 migrate_prep();
8317
8318 while (pfn < end || !list_empty(&cc->migratepages)) {
8319 if (fatal_signal_pending(current)) {
8320 ret = -EINTR;
8321 break;
8322 }
8323
8324 if (list_empty(&cc->migratepages)) {
8325 cc->nr_migratepages = 0;
8326 pfn = isolate_migratepages_range(cc, pfn, end);
8327 if (!pfn) {
8328 ret = -EINTR;
8329 break;
8330 }
8331 tries = 0;
8332 } else if (++tries == 5) {
8333 ret = ret < 0 ? ret : -EBUSY;
8334 break;
8335 }
8336
8337 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8338 &cc->migratepages);
8339 cc->nr_migratepages -= nr_reclaimed;
8340
8341 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8342 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8343 }
8344 if (ret < 0) {
8345 putback_movable_pages(&cc->migratepages);
8346 return ret;
8347 }
8348 return 0;
8349}
8350
8351/**
8352 * alloc_contig_range() -- tries to allocate given range of pages
8353 * @start: start PFN to allocate
8354 * @end: one-past-the-last PFN to allocate
8355 * @migratetype: migratetype of the underlaying pageblocks (either
8356 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8357 * in range must have the same migratetype and it must
8358 * be either of the two.
8359 * @gfp_mask: GFP mask to use during compaction
8360 *
8361 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8362 * aligned. The PFN range must belong to a single zone.
8363 *
8364 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8365 * pageblocks in the range. Once isolated, the pageblocks should not
8366 * be modified by others.
8367 *
8368 * Return: zero on success or negative error code. On success all
8369 * pages which PFN is in [start, end) are allocated for the caller and
8370 * need to be freed with free_contig_range().
8371 */
8372int alloc_contig_range(unsigned long start, unsigned long end,
8373 unsigned migratetype, gfp_t gfp_mask)
8374{
8375 unsigned long outer_start, outer_end;
8376 unsigned int order;
8377 int ret = 0;
8378
8379 struct compact_control cc = {
8380 .nr_migratepages = 0,
8381 .order = -1,
8382 .zone = page_zone(pfn_to_page(start)),
8383 .mode = MIGRATE_SYNC,
8384 .ignore_skip_hint = true,
8385 .no_set_skip_hint = true,
8386 .gfp_mask = current_gfp_context(gfp_mask),
8387 };
8388 INIT_LIST_HEAD(&cc.migratepages);
8389
8390 /*
8391 * What we do here is we mark all pageblocks in range as
8392 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8393 * have different sizes, and due to the way page allocator
8394 * work, we align the range to biggest of the two pages so
8395 * that page allocator won't try to merge buddies from
8396 * different pageblocks and change MIGRATE_ISOLATE to some
8397 * other migration type.
8398 *
8399 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8400 * migrate the pages from an unaligned range (ie. pages that
8401 * we are interested in). This will put all the pages in
8402 * range back to page allocator as MIGRATE_ISOLATE.
8403 *
8404 * When this is done, we take the pages in range from page
8405 * allocator removing them from the buddy system. This way
8406 * page allocator will never consider using them.
8407 *
8408 * This lets us mark the pageblocks back as
8409 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8410 * aligned range but not in the unaligned, original range are
8411 * put back to page allocator so that buddy can use them.
8412 */
8413
8414 ret = start_isolate_page_range(pfn_max_align_down(start),
8415 pfn_max_align_up(end), migratetype, 0);
8416 if (ret < 0)
8417 return ret;
8418
8419 /*
8420 * In case of -EBUSY, we'd like to know which page causes problem.
8421 * So, just fall through. test_pages_isolated() has a tracepoint
8422 * which will report the busy page.
8423 *
8424 * It is possible that busy pages could become available before
8425 * the call to test_pages_isolated, and the range will actually be
8426 * allocated. So, if we fall through be sure to clear ret so that
8427 * -EBUSY is not accidentally used or returned to caller.
8428 */
8429 ret = __alloc_contig_migrate_range(&cc, start, end);
8430 if (ret && ret != -EBUSY)
8431 goto done;
8432 ret =0;
8433
8434 /*
8435 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8436 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8437 * more, all pages in [start, end) are free in page allocator.
8438 * What we are going to do is to allocate all pages from
8439 * [start, end) (that is remove them from page allocator).
8440 *
8441 * The only problem is that pages at the beginning and at the
8442 * end of interesting range may be not aligned with pages that
8443 * page allocator holds, ie. they can be part of higher order
8444 * pages. Because of this, we reserve the bigger range and
8445 * once this is done free the pages we are not interested in.
8446 *
8447 * We don't have to hold zone->lock here because the pages are
8448 * isolated thus they won't get removed from buddy.
8449 */
8450
8451 lru_add_drain_all();
8452
8453 order = 0;
8454 outer_start = start;
8455 while (!PageBuddy(pfn_to_page(outer_start))) {
8456 if (++order >= MAX_ORDER) {
8457 outer_start = start;
8458 break;
8459 }
8460 outer_start &= ~0UL << order;
8461 }
8462
8463 if (outer_start != start) {
8464 order = page_order(pfn_to_page(outer_start));
8465
8466 /*
8467 * outer_start page could be small order buddy page and
8468 * it doesn't include start page. Adjust outer_start
8469 * in this case to report failed page properly
8470 * on tracepoint in test_pages_isolated()
8471 */
8472 if (outer_start + (1UL << order) <= start)
8473 outer_start = start;
8474 }
8475
8476 /* Make sure the range is really isolated. */
8477 if (test_pages_isolated(outer_start, end, false)) {
8478 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8479 __func__, outer_start, end);
8480 ret = -EBUSY;
8481 goto done;
8482 }
8483
8484 /* Grab isolated pages from freelists. */
8485 outer_end = isolate_freepages_range(&cc, outer_start, end);
8486 if (!outer_end) {
8487 ret = -EBUSY;
8488 goto done;
8489 }
8490
8491 /* Free head and tail (if any) */
8492 if (start != outer_start)
8493 free_contig_range(outer_start, start - outer_start);
8494 if (end != outer_end)
8495 free_contig_range(end, outer_end - end);
8496
8497done:
8498 undo_isolate_page_range(pfn_max_align_down(start),
8499 pfn_max_align_up(end), migratetype);
8500 return ret;
8501}
8502#endif /* CONFIG_CONTIG_ALLOC */
8503
8504void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8505{
8506 unsigned int count = 0;
8507
8508 for (; nr_pages--; pfn++) {
8509 struct page *page = pfn_to_page(pfn);
8510
8511 count += page_count(page) != 1;
8512 __free_page(page);
8513 }
8514 WARN(count != 0, "%d pages are still in use!\n", count);
8515}
8516
8517#ifdef CONFIG_MEMORY_HOTPLUG
8518/*
8519 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8520 * page high values need to be recalulated.
8521 */
8522void __meminit zone_pcp_update(struct zone *zone)
8523{
8524 unsigned cpu;
8525 mutex_lock(&pcp_batch_high_lock);
8526 for_each_possible_cpu(cpu)
8527 pageset_set_high_and_batch(zone,
8528 per_cpu_ptr(zone->pageset, cpu));
8529 mutex_unlock(&pcp_batch_high_lock);
8530}
8531#endif
8532
8533void zone_pcp_reset(struct zone *zone)
8534{
8535 unsigned long flags;
8536 int cpu;
8537 struct per_cpu_pageset *pset;
8538
8539 /* avoid races with drain_pages() */
8540 local_irq_save(flags);
8541 if (zone->pageset != &boot_pageset) {
8542 for_each_online_cpu(cpu) {
8543 pset = per_cpu_ptr(zone->pageset, cpu);
8544 drain_zonestat(zone, pset);
8545 }
8546 free_percpu(zone->pageset);
8547 zone->pageset = &boot_pageset;
8548 }
8549 local_irq_restore(flags);
8550}
8551
8552#ifdef CONFIG_MEMORY_HOTREMOVE
8553/*
8554 * All pages in the range must be in a single zone and isolated
8555 * before calling this.
8556 */
8557unsigned long
8558__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8559{
8560 struct page *page;
8561 struct zone *zone;
8562 unsigned int order, i;
8563 unsigned long pfn;
8564 unsigned long flags;
8565 unsigned long offlined_pages = 0;
8566
8567 /* find the first valid pfn */
8568 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8569 if (pfn_valid(pfn))
8570 break;
8571 if (pfn == end_pfn)
8572 return offlined_pages;
8573
8574 offline_mem_sections(pfn, end_pfn);
8575 zone = page_zone(pfn_to_page(pfn));
8576 spin_lock_irqsave(&zone->lock, flags);
8577 pfn = start_pfn;
8578 while (pfn < end_pfn) {
8579 if (!pfn_valid(pfn)) {
8580 pfn++;
8581 continue;
8582 }
8583 page = pfn_to_page(pfn);
8584 /*
8585 * The HWPoisoned page may be not in buddy system, and
8586 * page_count() is not 0.
8587 */
8588 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8589 pfn++;
8590 SetPageReserved(page);
8591 offlined_pages++;
8592 continue;
8593 }
8594
8595 BUG_ON(page_count(page));
8596 BUG_ON(!PageBuddy(page));
8597 order = page_order(page);
8598 offlined_pages += 1 << order;
8599#ifdef CONFIG_DEBUG_VM
8600 pr_info("remove from free list %lx %d %lx\n",
8601 pfn, 1 << order, end_pfn);
8602#endif
8603 del_page_from_free_area(page, &zone->free_area[order]);
8604 for (i = 0; i < (1 << order); i++)
8605 SetPageReserved((page+i));
8606 pfn += (1 << order);
8607 }
8608 spin_unlock_irqrestore(&zone->lock, flags);
8609
8610 return offlined_pages;
8611}
8612#endif
8613
8614bool is_free_buddy_page(struct page *page)
8615{
8616 struct zone *zone = page_zone(page);
8617 unsigned long pfn = page_to_pfn(page);
8618 unsigned long flags;
8619 unsigned int order;
8620
8621 spin_lock_irqsave(&zone->lock, flags);
8622 for (order = 0; order < MAX_ORDER; order++) {
8623 struct page *page_head = page - (pfn & ((1 << order) - 1));
8624
8625 if (PageBuddy(page_head) && page_order(page_head) >= order)
8626 break;
8627 }
8628 spin_unlock_irqrestore(&zone->lock, flags);
8629
8630 return order < MAX_ORDER;
8631}
8632
8633#ifdef CONFIG_MEMORY_FAILURE
8634/*
8635 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8636 * test is performed under the zone lock to prevent a race against page
8637 * allocation.
8638 */
8639bool set_hwpoison_free_buddy_page(struct page *page)
8640{
8641 struct zone *zone = page_zone(page);
8642 unsigned long pfn = page_to_pfn(page);
8643 unsigned long flags;
8644 unsigned int order;
8645 bool hwpoisoned = false;
8646
8647 spin_lock_irqsave(&zone->lock, flags);
8648 for (order = 0; order < MAX_ORDER; order++) {
8649 struct page *page_head = page - (pfn & ((1 << order) - 1));
8650
8651 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8652 if (!TestSetPageHWPoison(page))
8653 hwpoisoned = true;
8654 break;
8655 }
8656 }
8657 spin_unlock_irqrestore(&zone->lock, flags);
8658
8659 return hwpoisoned;
8660}
8661#endif