at v5.4-rc4 43 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/types.h> 18#include <linux/scatterlist.h> 19#include <linux/list.h> 20#include <linux/timer.h> 21#include <linux/completion.h> 22#include <linux/device.h> 23#include <linux/mod_devicetable.h> 24#include <linux/interrupt.h> 25#include <linux/reciprocal_div.h> 26 27#define MAX_PAGE_BUFFER_COUNT 32 28#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 29 30#pragma pack(push, 1) 31 32/* Single-page buffer */ 33struct hv_page_buffer { 34 u32 len; 35 u32 offset; 36 u64 pfn; 37}; 38 39/* Multiple-page buffer */ 40struct hv_multipage_buffer { 41 /* Length and Offset determines the # of pfns in the array */ 42 u32 len; 43 u32 offset; 44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 45}; 46 47/* 48 * Multiple-page buffer array; the pfn array is variable size: 49 * The number of entries in the PFN array is determined by 50 * "len" and "offset". 51 */ 52struct hv_mpb_array { 53 /* Length and Offset determines the # of pfns in the array */ 54 u32 len; 55 u32 offset; 56 u64 pfn_array[]; 57}; 58 59/* 0x18 includes the proprietary packet header */ 60#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 61 (sizeof(struct hv_page_buffer) * \ 62 MAX_PAGE_BUFFER_COUNT)) 63#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 64 sizeof(struct hv_multipage_buffer)) 65 66 67#pragma pack(pop) 68 69struct hv_ring_buffer { 70 /* Offset in bytes from the start of ring data below */ 71 u32 write_index; 72 73 /* Offset in bytes from the start of ring data below */ 74 u32 read_index; 75 76 u32 interrupt_mask; 77 78 /* 79 * WS2012/Win8 and later versions of Hyper-V implement interrupt 80 * driven flow management. The feature bit feat_pending_send_sz 81 * is set by the host on the host->guest ring buffer, and by the 82 * guest on the guest->host ring buffer. 83 * 84 * The meaning of the feature bit is a bit complex in that it has 85 * semantics that apply to both ring buffers. If the guest sets 86 * the feature bit in the guest->host ring buffer, the guest is 87 * telling the host that: 88 * 1) It will set the pending_send_sz field in the guest->host ring 89 * buffer when it is waiting for space to become available, and 90 * 2) It will read the pending_send_sz field in the host->guest 91 * ring buffer and interrupt the host when it frees enough space 92 * 93 * Similarly, if the host sets the feature bit in the host->guest 94 * ring buffer, the host is telling the guest that: 95 * 1) It will set the pending_send_sz field in the host->guest ring 96 * buffer when it is waiting for space to become available, and 97 * 2) It will read the pending_send_sz field in the guest->host 98 * ring buffer and interrupt the guest when it frees enough space 99 * 100 * If either the guest or host does not set the feature bit that it 101 * owns, that guest or host must do polling if it encounters a full 102 * ring buffer, and not signal the other end with an interrupt. 103 */ 104 u32 pending_send_sz; 105 u32 reserved1[12]; 106 union { 107 struct { 108 u32 feat_pending_send_sz:1; 109 }; 110 u32 value; 111 } feature_bits; 112 113 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 114 u8 reserved2[4028]; 115 116 /* 117 * Ring data starts here + RingDataStartOffset 118 * !!! DO NOT place any fields below this !!! 119 */ 120 u8 buffer[0]; 121} __packed; 122 123struct hv_ring_buffer_info { 124 struct hv_ring_buffer *ring_buffer; 125 u32 ring_size; /* Include the shared header */ 126 struct reciprocal_value ring_size_div10_reciprocal; 127 spinlock_t ring_lock; 128 129 u32 ring_datasize; /* < ring_size */ 130 u32 priv_read_index; 131 /* 132 * The ring buffer mutex lock. This lock prevents the ring buffer from 133 * being freed while the ring buffer is being accessed. 134 */ 135 struct mutex ring_buffer_mutex; 136}; 137 138 139static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 140{ 141 u32 read_loc, write_loc, dsize, read; 142 143 dsize = rbi->ring_datasize; 144 read_loc = rbi->ring_buffer->read_index; 145 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 146 147 read = write_loc >= read_loc ? (write_loc - read_loc) : 148 (dsize - read_loc) + write_loc; 149 150 return read; 151} 152 153static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 154{ 155 u32 read_loc, write_loc, dsize, write; 156 157 dsize = rbi->ring_datasize; 158 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 159 write_loc = rbi->ring_buffer->write_index; 160 161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 162 read_loc - write_loc; 163 return write; 164} 165 166static inline u32 hv_get_avail_to_write_percent( 167 const struct hv_ring_buffer_info *rbi) 168{ 169 u32 avail_write = hv_get_bytes_to_write(rbi); 170 171 return reciprocal_divide( 172 (avail_write << 3) + (avail_write << 1), 173 rbi->ring_size_div10_reciprocal); 174} 175 176/* 177 * VMBUS version is 32 bit entity broken up into 178 * two 16 bit quantities: major_number. minor_number. 179 * 180 * 0 . 13 (Windows Server 2008) 181 * 1 . 1 (Windows 7) 182 * 2 . 4 (Windows 8) 183 * 3 . 0 (Windows 8 R2) 184 * 4 . 0 (Windows 10) 185 * 5 . 0 (Newer Windows 10) 186 */ 187 188#define VERSION_WS2008 ((0 << 16) | (13)) 189#define VERSION_WIN7 ((1 << 16) | (1)) 190#define VERSION_WIN8 ((2 << 16) | (4)) 191#define VERSION_WIN8_1 ((3 << 16) | (0)) 192#define VERSION_WIN10 ((4 << 16) | (0)) 193#define VERSION_WIN10_V5 ((5 << 16) | (0)) 194 195#define VERSION_INVAL -1 196 197#define VERSION_CURRENT VERSION_WIN10_V5 198 199/* Make maximum size of pipe payload of 16K */ 200#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 201 202/* Define PipeMode values. */ 203#define VMBUS_PIPE_TYPE_BYTE 0x00000000 204#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 205 206/* The size of the user defined data buffer for non-pipe offers. */ 207#define MAX_USER_DEFINED_BYTES 120 208 209/* The size of the user defined data buffer for pipe offers. */ 210#define MAX_PIPE_USER_DEFINED_BYTES 116 211 212/* 213 * At the center of the Channel Management library is the Channel Offer. This 214 * struct contains the fundamental information about an offer. 215 */ 216struct vmbus_channel_offer { 217 guid_t if_type; 218 guid_t if_instance; 219 220 /* 221 * These two fields are not currently used. 222 */ 223 u64 reserved1; 224 u64 reserved2; 225 226 u16 chn_flags; 227 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 228 229 union { 230 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 231 struct { 232 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 233 } std; 234 235 /* 236 * Pipes: 237 * The following sructure is an integrated pipe protocol, which 238 * is implemented on top of standard user-defined data. Pipe 239 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 240 * use. 241 */ 242 struct { 243 u32 pipe_mode; 244 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 245 } pipe; 246 } u; 247 /* 248 * The sub_channel_index is defined in Win8: a value of zero means a 249 * primary channel and a value of non-zero means a sub-channel. 250 * 251 * Before Win8, the field is reserved, meaning it's always zero. 252 */ 253 u16 sub_channel_index; 254 u16 reserved3; 255} __packed; 256 257/* Server Flags */ 258#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 259#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 260#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 261#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 262#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 263#define VMBUS_CHANNEL_PARENT_OFFER 0x200 264#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 265#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 266 267struct vmpacket_descriptor { 268 u16 type; 269 u16 offset8; 270 u16 len8; 271 u16 flags; 272 u64 trans_id; 273} __packed; 274 275struct vmpacket_header { 276 u32 prev_pkt_start_offset; 277 struct vmpacket_descriptor descriptor; 278} __packed; 279 280struct vmtransfer_page_range { 281 u32 byte_count; 282 u32 byte_offset; 283} __packed; 284 285struct vmtransfer_page_packet_header { 286 struct vmpacket_descriptor d; 287 u16 xfer_pageset_id; 288 u8 sender_owns_set; 289 u8 reserved; 290 u32 range_cnt; 291 struct vmtransfer_page_range ranges[1]; 292} __packed; 293 294struct vmgpadl_packet_header { 295 struct vmpacket_descriptor d; 296 u32 gpadl; 297 u32 reserved; 298} __packed; 299 300struct vmadd_remove_transfer_page_set { 301 struct vmpacket_descriptor d; 302 u32 gpadl; 303 u16 xfer_pageset_id; 304 u16 reserved; 305} __packed; 306 307/* 308 * This structure defines a range in guest physical space that can be made to 309 * look virtually contiguous. 310 */ 311struct gpa_range { 312 u32 byte_count; 313 u32 byte_offset; 314 u64 pfn_array[0]; 315}; 316 317/* 318 * This is the format for an Establish Gpadl packet, which contains a handle by 319 * which this GPADL will be known and a set of GPA ranges associated with it. 320 * This can be converted to a MDL by the guest OS. If there are multiple GPA 321 * ranges, then the resulting MDL will be "chained," representing multiple VA 322 * ranges. 323 */ 324struct vmestablish_gpadl { 325 struct vmpacket_descriptor d; 326 u32 gpadl; 327 u32 range_cnt; 328 struct gpa_range range[1]; 329} __packed; 330 331/* 332 * This is the format for a Teardown Gpadl packet, which indicates that the 333 * GPADL handle in the Establish Gpadl packet will never be referenced again. 334 */ 335struct vmteardown_gpadl { 336 struct vmpacket_descriptor d; 337 u32 gpadl; 338 u32 reserved; /* for alignment to a 8-byte boundary */ 339} __packed; 340 341/* 342 * This is the format for a GPA-Direct packet, which contains a set of GPA 343 * ranges, in addition to commands and/or data. 344 */ 345struct vmdata_gpa_direct { 346 struct vmpacket_descriptor d; 347 u32 reserved; 348 u32 range_cnt; 349 struct gpa_range range[1]; 350} __packed; 351 352/* This is the format for a Additional Data Packet. */ 353struct vmadditional_data { 354 struct vmpacket_descriptor d; 355 u64 total_bytes; 356 u32 offset; 357 u32 byte_cnt; 358 unsigned char data[1]; 359} __packed; 360 361union vmpacket_largest_possible_header { 362 struct vmpacket_descriptor simple_hdr; 363 struct vmtransfer_page_packet_header xfer_page_hdr; 364 struct vmgpadl_packet_header gpadl_hdr; 365 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 366 struct vmestablish_gpadl establish_gpadl_hdr; 367 struct vmteardown_gpadl teardown_gpadl_hdr; 368 struct vmdata_gpa_direct data_gpa_direct_hdr; 369}; 370 371#define VMPACKET_DATA_START_ADDRESS(__packet) \ 372 (void *)(((unsigned char *)__packet) + \ 373 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 374 375#define VMPACKET_DATA_LENGTH(__packet) \ 376 ((((struct vmpacket_descriptor)__packet)->len8 - \ 377 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 378 379#define VMPACKET_TRANSFER_MODE(__packet) \ 380 (((struct IMPACT)__packet)->type) 381 382enum vmbus_packet_type { 383 VM_PKT_INVALID = 0x0, 384 VM_PKT_SYNCH = 0x1, 385 VM_PKT_ADD_XFER_PAGESET = 0x2, 386 VM_PKT_RM_XFER_PAGESET = 0x3, 387 VM_PKT_ESTABLISH_GPADL = 0x4, 388 VM_PKT_TEARDOWN_GPADL = 0x5, 389 VM_PKT_DATA_INBAND = 0x6, 390 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 391 VM_PKT_DATA_USING_GPADL = 0x8, 392 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 393 VM_PKT_CANCEL_REQUEST = 0xa, 394 VM_PKT_COMP = 0xb, 395 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 396 VM_PKT_ADDITIONAL_DATA = 0xd 397}; 398 399#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 400 401 402/* Version 1 messages */ 403enum vmbus_channel_message_type { 404 CHANNELMSG_INVALID = 0, 405 CHANNELMSG_OFFERCHANNEL = 1, 406 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 407 CHANNELMSG_REQUESTOFFERS = 3, 408 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 409 CHANNELMSG_OPENCHANNEL = 5, 410 CHANNELMSG_OPENCHANNEL_RESULT = 6, 411 CHANNELMSG_CLOSECHANNEL = 7, 412 CHANNELMSG_GPADL_HEADER = 8, 413 CHANNELMSG_GPADL_BODY = 9, 414 CHANNELMSG_GPADL_CREATED = 10, 415 CHANNELMSG_GPADL_TEARDOWN = 11, 416 CHANNELMSG_GPADL_TORNDOWN = 12, 417 CHANNELMSG_RELID_RELEASED = 13, 418 CHANNELMSG_INITIATE_CONTACT = 14, 419 CHANNELMSG_VERSION_RESPONSE = 15, 420 CHANNELMSG_UNLOAD = 16, 421 CHANNELMSG_UNLOAD_RESPONSE = 17, 422 CHANNELMSG_18 = 18, 423 CHANNELMSG_19 = 19, 424 CHANNELMSG_20 = 20, 425 CHANNELMSG_TL_CONNECT_REQUEST = 21, 426 CHANNELMSG_COUNT 427}; 428 429/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 430#define INVALID_RELID U32_MAX 431 432struct vmbus_channel_message_header { 433 enum vmbus_channel_message_type msgtype; 434 u32 padding; 435} __packed; 436 437/* Query VMBus Version parameters */ 438struct vmbus_channel_query_vmbus_version { 439 struct vmbus_channel_message_header header; 440 u32 version; 441} __packed; 442 443/* VMBus Version Supported parameters */ 444struct vmbus_channel_version_supported { 445 struct vmbus_channel_message_header header; 446 u8 version_supported; 447} __packed; 448 449/* Offer Channel parameters */ 450struct vmbus_channel_offer_channel { 451 struct vmbus_channel_message_header header; 452 struct vmbus_channel_offer offer; 453 u32 child_relid; 454 u8 monitorid; 455 /* 456 * win7 and beyond splits this field into a bit field. 457 */ 458 u8 monitor_allocated:1; 459 u8 reserved:7; 460 /* 461 * These are new fields added in win7 and later. 462 * Do not access these fields without checking the 463 * negotiated protocol. 464 * 465 * If "is_dedicated_interrupt" is set, we must not set the 466 * associated bit in the channel bitmap while sending the 467 * interrupt to the host. 468 * 469 * connection_id is to be used in signaling the host. 470 */ 471 u16 is_dedicated_interrupt:1; 472 u16 reserved1:15; 473 u32 connection_id; 474} __packed; 475 476/* Rescind Offer parameters */ 477struct vmbus_channel_rescind_offer { 478 struct vmbus_channel_message_header header; 479 u32 child_relid; 480} __packed; 481 482static inline u32 483hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi) 484{ 485 return rbi->ring_buffer->pending_send_sz; 486} 487 488/* 489 * Request Offer -- no parameters, SynIC message contains the partition ID 490 * Set Snoop -- no parameters, SynIC message contains the partition ID 491 * Clear Snoop -- no parameters, SynIC message contains the partition ID 492 * All Offers Delivered -- no parameters, SynIC message contains the partition 493 * ID 494 * Flush Client -- no parameters, SynIC message contains the partition ID 495 */ 496 497/* Open Channel parameters */ 498struct vmbus_channel_open_channel { 499 struct vmbus_channel_message_header header; 500 501 /* Identifies the specific VMBus channel that is being opened. */ 502 u32 child_relid; 503 504 /* ID making a particular open request at a channel offer unique. */ 505 u32 openid; 506 507 /* GPADL for the channel's ring buffer. */ 508 u32 ringbuffer_gpadlhandle; 509 510 /* 511 * Starting with win8, this field will be used to specify 512 * the target virtual processor on which to deliver the interrupt for 513 * the host to guest communication. 514 * Prior to win8, incoming channel interrupts would only 515 * be delivered on cpu 0. Setting this value to 0 would 516 * preserve the earlier behavior. 517 */ 518 u32 target_vp; 519 520 /* 521 * The upstream ring buffer begins at offset zero in the memory 522 * described by RingBufferGpadlHandle. The downstream ring buffer 523 * follows it at this offset (in pages). 524 */ 525 u32 downstream_ringbuffer_pageoffset; 526 527 /* User-specific data to be passed along to the server endpoint. */ 528 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 529} __packed; 530 531/* Open Channel Result parameters */ 532struct vmbus_channel_open_result { 533 struct vmbus_channel_message_header header; 534 u32 child_relid; 535 u32 openid; 536 u32 status; 537} __packed; 538 539/* Close channel parameters; */ 540struct vmbus_channel_close_channel { 541 struct vmbus_channel_message_header header; 542 u32 child_relid; 543} __packed; 544 545/* Channel Message GPADL */ 546#define GPADL_TYPE_RING_BUFFER 1 547#define GPADL_TYPE_SERVER_SAVE_AREA 2 548#define GPADL_TYPE_TRANSACTION 8 549 550/* 551 * The number of PFNs in a GPADL message is defined by the number of 552 * pages that would be spanned by ByteCount and ByteOffset. If the 553 * implied number of PFNs won't fit in this packet, there will be a 554 * follow-up packet that contains more. 555 */ 556struct vmbus_channel_gpadl_header { 557 struct vmbus_channel_message_header header; 558 u32 child_relid; 559 u32 gpadl; 560 u16 range_buflen; 561 u16 rangecount; 562 struct gpa_range range[0]; 563} __packed; 564 565/* This is the followup packet that contains more PFNs. */ 566struct vmbus_channel_gpadl_body { 567 struct vmbus_channel_message_header header; 568 u32 msgnumber; 569 u32 gpadl; 570 u64 pfn[0]; 571} __packed; 572 573struct vmbus_channel_gpadl_created { 574 struct vmbus_channel_message_header header; 575 u32 child_relid; 576 u32 gpadl; 577 u32 creation_status; 578} __packed; 579 580struct vmbus_channel_gpadl_teardown { 581 struct vmbus_channel_message_header header; 582 u32 child_relid; 583 u32 gpadl; 584} __packed; 585 586struct vmbus_channel_gpadl_torndown { 587 struct vmbus_channel_message_header header; 588 u32 gpadl; 589} __packed; 590 591struct vmbus_channel_relid_released { 592 struct vmbus_channel_message_header header; 593 u32 child_relid; 594} __packed; 595 596struct vmbus_channel_initiate_contact { 597 struct vmbus_channel_message_header header; 598 u32 vmbus_version_requested; 599 u32 target_vcpu; /* The VCPU the host should respond to */ 600 union { 601 u64 interrupt_page; 602 struct { 603 u8 msg_sint; 604 u8 padding1[3]; 605 u32 padding2; 606 }; 607 }; 608 u64 monitor_page1; 609 u64 monitor_page2; 610} __packed; 611 612/* Hyper-V socket: guest's connect()-ing to host */ 613struct vmbus_channel_tl_connect_request { 614 struct vmbus_channel_message_header header; 615 guid_t guest_endpoint_id; 616 guid_t host_service_id; 617} __packed; 618 619struct vmbus_channel_version_response { 620 struct vmbus_channel_message_header header; 621 u8 version_supported; 622 623 u8 connection_state; 624 u16 padding; 625 626 /* 627 * On new hosts that support VMBus protocol 5.0, we must use 628 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 629 * and for subsequent messages, we must use the Message Connection ID 630 * field in the host-returned Version Response Message. 631 * 632 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 633 */ 634 u32 msg_conn_id; 635} __packed; 636 637enum vmbus_channel_state { 638 CHANNEL_OFFER_STATE, 639 CHANNEL_OPENING_STATE, 640 CHANNEL_OPEN_STATE, 641 CHANNEL_OPENED_STATE, 642}; 643 644/* 645 * Represents each channel msg on the vmbus connection This is a 646 * variable-size data structure depending on the msg type itself 647 */ 648struct vmbus_channel_msginfo { 649 /* Bookkeeping stuff */ 650 struct list_head msglistentry; 651 652 /* So far, this is only used to handle gpadl body message */ 653 struct list_head submsglist; 654 655 /* Synchronize the request/response if needed */ 656 struct completion waitevent; 657 struct vmbus_channel *waiting_channel; 658 union { 659 struct vmbus_channel_version_supported version_supported; 660 struct vmbus_channel_open_result open_result; 661 struct vmbus_channel_gpadl_torndown gpadl_torndown; 662 struct vmbus_channel_gpadl_created gpadl_created; 663 struct vmbus_channel_version_response version_response; 664 } response; 665 666 u32 msgsize; 667 /* 668 * The channel message that goes out on the "wire". 669 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 670 */ 671 unsigned char msg[0]; 672}; 673 674struct vmbus_close_msg { 675 struct vmbus_channel_msginfo info; 676 struct vmbus_channel_close_channel msg; 677}; 678 679/* Define connection identifier type. */ 680union hv_connection_id { 681 u32 asu32; 682 struct { 683 u32 id:24; 684 u32 reserved:8; 685 } u; 686}; 687 688enum hv_numa_policy { 689 HV_BALANCED = 0, 690 HV_LOCALIZED, 691}; 692 693enum vmbus_device_type { 694 HV_IDE = 0, 695 HV_SCSI, 696 HV_FC, 697 HV_NIC, 698 HV_ND, 699 HV_PCIE, 700 HV_FB, 701 HV_KBD, 702 HV_MOUSE, 703 HV_KVP, 704 HV_TS, 705 HV_HB, 706 HV_SHUTDOWN, 707 HV_FCOPY, 708 HV_BACKUP, 709 HV_DM, 710 HV_UNKNOWN, 711}; 712 713struct vmbus_device { 714 u16 dev_type; 715 guid_t guid; 716 bool perf_device; 717}; 718 719struct vmbus_channel { 720 struct list_head listentry; 721 722 struct hv_device *device_obj; 723 724 enum vmbus_channel_state state; 725 726 struct vmbus_channel_offer_channel offermsg; 727 /* 728 * These are based on the OfferMsg.MonitorId. 729 * Save it here for easy access. 730 */ 731 u8 monitor_grp; 732 u8 monitor_bit; 733 734 bool rescind; /* got rescind msg */ 735 struct completion rescind_event; 736 737 u32 ringbuffer_gpadlhandle; 738 739 /* Allocated memory for ring buffer */ 740 struct page *ringbuffer_page; 741 u32 ringbuffer_pagecount; 742 u32 ringbuffer_send_offset; 743 struct hv_ring_buffer_info outbound; /* send to parent */ 744 struct hv_ring_buffer_info inbound; /* receive from parent */ 745 746 struct vmbus_close_msg close_msg; 747 748 /* Statistics */ 749 u64 interrupts; /* Host to Guest interrupts */ 750 u64 sig_events; /* Guest to Host events */ 751 752 /* 753 * Guest to host interrupts caused by the outbound ring buffer changing 754 * from empty to not empty. 755 */ 756 u64 intr_out_empty; 757 758 /* 759 * Indicates that a full outbound ring buffer was encountered. The flag 760 * is set to true when a full outbound ring buffer is encountered and 761 * set to false when a write to the outbound ring buffer is completed. 762 */ 763 bool out_full_flag; 764 765 /* Channel callback's invoked in softirq context */ 766 struct tasklet_struct callback_event; 767 void (*onchannel_callback)(void *context); 768 void *channel_callback_context; 769 770 /* 771 * A channel can be marked for one of three modes of reading: 772 * BATCHED - callback called from taslket and should read 773 * channel until empty. Interrupts from the host 774 * are masked while read is in process (default). 775 * DIRECT - callback called from tasklet (softirq). 776 * ISR - callback called in interrupt context and must 777 * invoke its own deferred processing. 778 * Host interrupts are disabled and must be re-enabled 779 * when ring is empty. 780 */ 781 enum hv_callback_mode { 782 HV_CALL_BATCHED, 783 HV_CALL_DIRECT, 784 HV_CALL_ISR 785 } callback_mode; 786 787 bool is_dedicated_interrupt; 788 u64 sig_event; 789 790 /* 791 * Starting with win8, this field will be used to specify 792 * the target virtual processor on which to deliver the interrupt for 793 * the host to guest communication. 794 * Prior to win8, incoming channel interrupts would only 795 * be delivered on cpu 0. Setting this value to 0 would 796 * preserve the earlier behavior. 797 */ 798 u32 target_vp; 799 /* The corresponding CPUID in the guest */ 800 u32 target_cpu; 801 /* 802 * State to manage the CPU affiliation of channels. 803 */ 804 struct cpumask alloced_cpus_in_node; 805 int numa_node; 806 /* 807 * Support for sub-channels. For high performance devices, 808 * it will be useful to have multiple sub-channels to support 809 * a scalable communication infrastructure with the host. 810 * The support for sub-channels is implemented as an extention 811 * to the current infrastructure. 812 * The initial offer is considered the primary channel and this 813 * offer message will indicate if the host supports sub-channels. 814 * The guest is free to ask for sub-channels to be offerred and can 815 * open these sub-channels as a normal "primary" channel. However, 816 * all sub-channels will have the same type and instance guids as the 817 * primary channel. Requests sent on a given channel will result in a 818 * response on the same channel. 819 */ 820 821 /* 822 * Sub-channel creation callback. This callback will be called in 823 * process context when a sub-channel offer is received from the host. 824 * The guest can open the sub-channel in the context of this callback. 825 */ 826 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 827 828 /* 829 * Channel rescind callback. Some channels (the hvsock ones), need to 830 * register a callback which is invoked in vmbus_onoffer_rescind(). 831 */ 832 void (*chn_rescind_callback)(struct vmbus_channel *channel); 833 834 /* 835 * The spinlock to protect the structure. It is being used to protect 836 * test-and-set access to various attributes of the structure as well 837 * as all sc_list operations. 838 */ 839 spinlock_t lock; 840 /* 841 * All Sub-channels of a primary channel are linked here. 842 */ 843 struct list_head sc_list; 844 /* 845 * The primary channel this sub-channel belongs to. 846 * This will be NULL for the primary channel. 847 */ 848 struct vmbus_channel *primary_channel; 849 /* 850 * Support per-channel state for use by vmbus drivers. 851 */ 852 void *per_channel_state; 853 /* 854 * To support per-cpu lookup mapping of relid to channel, 855 * link up channels based on their CPU affinity. 856 */ 857 struct list_head percpu_list; 858 859 /* 860 * Defer freeing channel until after all cpu's have 861 * gone through grace period. 862 */ 863 struct rcu_head rcu; 864 865 /* 866 * For sysfs per-channel properties. 867 */ 868 struct kobject kobj; 869 870 /* 871 * For performance critical channels (storage, networking 872 * etc,), Hyper-V has a mechanism to enhance the throughput 873 * at the expense of latency: 874 * When the host is to be signaled, we just set a bit in a shared page 875 * and this bit will be inspected by the hypervisor within a certain 876 * window and if the bit is set, the host will be signaled. The window 877 * of time is the monitor latency - currently around 100 usecs. This 878 * mechanism improves throughput by: 879 * 880 * A) Making the host more efficient - each time it wakes up, 881 * potentially it will process morev number of packets. The 882 * monitor latency allows a batch to build up. 883 * B) By deferring the hypercall to signal, we will also minimize 884 * the interrupts. 885 * 886 * Clearly, these optimizations improve throughput at the expense of 887 * latency. Furthermore, since the channel is shared for both 888 * control and data messages, control messages currently suffer 889 * unnecessary latency adversley impacting performance and boot 890 * time. To fix this issue, permit tagging the channel as being 891 * in "low latency" mode. In this mode, we will bypass the monitor 892 * mechanism. 893 */ 894 bool low_latency; 895 896 /* 897 * NUMA distribution policy: 898 * We support two policies: 899 * 1) Balanced: Here all performance critical channels are 900 * distributed evenly amongst all the NUMA nodes. 901 * This policy will be the default policy. 902 * 2) Localized: All channels of a given instance of a 903 * performance critical service will be assigned CPUs 904 * within a selected NUMA node. 905 */ 906 enum hv_numa_policy affinity_policy; 907 908 bool probe_done; 909 910 /* 911 * We must offload the handling of the primary/sub channels 912 * from the single-threaded vmbus_connection.work_queue to 913 * two different workqueue, otherwise we can block 914 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 915 */ 916 struct work_struct add_channel_work; 917 918 /* 919 * Guest to host interrupts caused by the inbound ring buffer changing 920 * from full to not full while a packet is waiting. 921 */ 922 u64 intr_in_full; 923 924 /* 925 * The total number of write operations that encountered a full 926 * outbound ring buffer. 927 */ 928 u64 out_full_total; 929 930 /* 931 * The number of write operations that were the first to encounter a 932 * full outbound ring buffer. 933 */ 934 u64 out_full_first; 935}; 936 937static inline bool is_hvsock_channel(const struct vmbus_channel *c) 938{ 939 return !!(c->offermsg.offer.chn_flags & 940 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 941} 942 943static inline bool is_sub_channel(const struct vmbus_channel *c) 944{ 945 return c->offermsg.offer.sub_channel_index != 0; 946} 947 948static inline void set_channel_affinity_state(struct vmbus_channel *c, 949 enum hv_numa_policy policy) 950{ 951 c->affinity_policy = policy; 952} 953 954static inline void set_channel_read_mode(struct vmbus_channel *c, 955 enum hv_callback_mode mode) 956{ 957 c->callback_mode = mode; 958} 959 960static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 961{ 962 c->per_channel_state = s; 963} 964 965static inline void *get_per_channel_state(struct vmbus_channel *c) 966{ 967 return c->per_channel_state; 968} 969 970static inline void set_channel_pending_send_size(struct vmbus_channel *c, 971 u32 size) 972{ 973 unsigned long flags; 974 975 if (size) { 976 spin_lock_irqsave(&c->outbound.ring_lock, flags); 977 ++c->out_full_total; 978 979 if (!c->out_full_flag) { 980 ++c->out_full_first; 981 c->out_full_flag = true; 982 } 983 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 984 } else { 985 c->out_full_flag = false; 986 } 987 988 c->outbound.ring_buffer->pending_send_sz = size; 989} 990 991static inline void set_low_latency_mode(struct vmbus_channel *c) 992{ 993 c->low_latency = true; 994} 995 996static inline void clear_low_latency_mode(struct vmbus_channel *c) 997{ 998 c->low_latency = false; 999} 1000 1001void vmbus_onmessage(void *context); 1002 1003int vmbus_request_offers(void); 1004 1005/* 1006 * APIs for managing sub-channels. 1007 */ 1008 1009void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1010 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1011 1012void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1013 void (*chn_rescind_cb)(struct vmbus_channel *)); 1014 1015/* 1016 * Check if sub-channels have already been offerred. This API will be useful 1017 * when the driver is unloaded after establishing sub-channels. In this case, 1018 * when the driver is re-loaded, the driver would have to check if the 1019 * subchannels have already been established before attempting to request 1020 * the creation of sub-channels. 1021 * This function returns TRUE to indicate that subchannels have already been 1022 * created. 1023 * This function should be invoked after setting the callback function for 1024 * sub-channel creation. 1025 */ 1026bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1027 1028/* The format must be the same as struct vmdata_gpa_direct */ 1029struct vmbus_channel_packet_page_buffer { 1030 u16 type; 1031 u16 dataoffset8; 1032 u16 length8; 1033 u16 flags; 1034 u64 transactionid; 1035 u32 reserved; 1036 u32 rangecount; 1037 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1038} __packed; 1039 1040/* The format must be the same as struct vmdata_gpa_direct */ 1041struct vmbus_channel_packet_multipage_buffer { 1042 u16 type; 1043 u16 dataoffset8; 1044 u16 length8; 1045 u16 flags; 1046 u64 transactionid; 1047 u32 reserved; 1048 u32 rangecount; /* Always 1 in this case */ 1049 struct hv_multipage_buffer range; 1050} __packed; 1051 1052/* The format must be the same as struct vmdata_gpa_direct */ 1053struct vmbus_packet_mpb_array { 1054 u16 type; 1055 u16 dataoffset8; 1056 u16 length8; 1057 u16 flags; 1058 u64 transactionid; 1059 u32 reserved; 1060 u32 rangecount; /* Always 1 in this case */ 1061 struct hv_mpb_array range; 1062} __packed; 1063 1064int vmbus_alloc_ring(struct vmbus_channel *channel, 1065 u32 send_size, u32 recv_size); 1066void vmbus_free_ring(struct vmbus_channel *channel); 1067 1068int vmbus_connect_ring(struct vmbus_channel *channel, 1069 void (*onchannel_callback)(void *context), 1070 void *context); 1071int vmbus_disconnect_ring(struct vmbus_channel *channel); 1072 1073extern int vmbus_open(struct vmbus_channel *channel, 1074 u32 send_ringbuffersize, 1075 u32 recv_ringbuffersize, 1076 void *userdata, 1077 u32 userdatalen, 1078 void (*onchannel_callback)(void *context), 1079 void *context); 1080 1081extern void vmbus_close(struct vmbus_channel *channel); 1082 1083extern int vmbus_sendpacket(struct vmbus_channel *channel, 1084 void *buffer, 1085 u32 bufferLen, 1086 u64 requestid, 1087 enum vmbus_packet_type type, 1088 u32 flags); 1089 1090extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1091 struct hv_page_buffer pagebuffers[], 1092 u32 pagecount, 1093 void *buffer, 1094 u32 bufferlen, 1095 u64 requestid); 1096 1097extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1098 struct vmbus_packet_mpb_array *mpb, 1099 u32 desc_size, 1100 void *buffer, 1101 u32 bufferlen, 1102 u64 requestid); 1103 1104extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1105 void *kbuffer, 1106 u32 size, 1107 u32 *gpadl_handle); 1108 1109extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1110 u32 gpadl_handle); 1111 1112void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1113 1114extern int vmbus_recvpacket(struct vmbus_channel *channel, 1115 void *buffer, 1116 u32 bufferlen, 1117 u32 *buffer_actual_len, 1118 u64 *requestid); 1119 1120extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1121 void *buffer, 1122 u32 bufferlen, 1123 u32 *buffer_actual_len, 1124 u64 *requestid); 1125 1126 1127extern void vmbus_ontimer(unsigned long data); 1128 1129/* Base driver object */ 1130struct hv_driver { 1131 const char *name; 1132 1133 /* 1134 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1135 * channel flag, actually doesn't mean a synthetic device because the 1136 * offer's if_type/if_instance can change for every new hvsock 1137 * connection. 1138 * 1139 * However, to facilitate the notification of new-offer/rescind-offer 1140 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1141 * a special vmbus device, and hence we need the below flag to 1142 * indicate if the driver is the hvsock driver or not: we need to 1143 * specially treat the hvosck offer & driver in vmbus_match(). 1144 */ 1145 bool hvsock; 1146 1147 /* the device type supported by this driver */ 1148 guid_t dev_type; 1149 const struct hv_vmbus_device_id *id_table; 1150 1151 struct device_driver driver; 1152 1153 /* dynamic device GUID's */ 1154 struct { 1155 spinlock_t lock; 1156 struct list_head list; 1157 } dynids; 1158 1159 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1160 int (*remove)(struct hv_device *); 1161 void (*shutdown)(struct hv_device *); 1162 1163 int (*suspend)(struct hv_device *); 1164 int (*resume)(struct hv_device *); 1165 1166}; 1167 1168/* Base device object */ 1169struct hv_device { 1170 /* the device type id of this device */ 1171 guid_t dev_type; 1172 1173 /* the device instance id of this device */ 1174 guid_t dev_instance; 1175 u16 vendor_id; 1176 u16 device_id; 1177 1178 struct device device; 1179 char *driver_override; /* Driver name to force a match */ 1180 1181 struct vmbus_channel *channel; 1182 struct kset *channels_kset; 1183}; 1184 1185 1186static inline struct hv_device *device_to_hv_device(struct device *d) 1187{ 1188 return container_of(d, struct hv_device, device); 1189} 1190 1191static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1192{ 1193 return container_of(d, struct hv_driver, driver); 1194} 1195 1196static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1197{ 1198 dev_set_drvdata(&dev->device, data); 1199} 1200 1201static inline void *hv_get_drvdata(struct hv_device *dev) 1202{ 1203 return dev_get_drvdata(&dev->device); 1204} 1205 1206struct hv_ring_buffer_debug_info { 1207 u32 current_interrupt_mask; 1208 u32 current_read_index; 1209 u32 current_write_index; 1210 u32 bytes_avail_toread; 1211 u32 bytes_avail_towrite; 1212}; 1213 1214 1215int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1216 struct hv_ring_buffer_debug_info *debug_info); 1217 1218/* Vmbus interface */ 1219#define vmbus_driver_register(driver) \ 1220 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1221int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1222 struct module *owner, 1223 const char *mod_name); 1224void vmbus_driver_unregister(struct hv_driver *hv_driver); 1225 1226void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1227 1228int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1229 resource_size_t min, resource_size_t max, 1230 resource_size_t size, resource_size_t align, 1231 bool fb_overlap_ok); 1232void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1233 1234/* 1235 * GUID definitions of various offer types - services offered to the guest. 1236 */ 1237 1238/* 1239 * Network GUID 1240 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1241 */ 1242#define HV_NIC_GUID \ 1243 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1244 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1245 1246/* 1247 * IDE GUID 1248 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1249 */ 1250#define HV_IDE_GUID \ 1251 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1252 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1253 1254/* 1255 * SCSI GUID 1256 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1257 */ 1258#define HV_SCSI_GUID \ 1259 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1260 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1261 1262/* 1263 * Shutdown GUID 1264 * {0e0b6031-5213-4934-818b-38d90ced39db} 1265 */ 1266#define HV_SHUTDOWN_GUID \ 1267 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1268 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1269 1270/* 1271 * Time Synch GUID 1272 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1273 */ 1274#define HV_TS_GUID \ 1275 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1276 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1277 1278/* 1279 * Heartbeat GUID 1280 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1281 */ 1282#define HV_HEART_BEAT_GUID \ 1283 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1284 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1285 1286/* 1287 * KVP GUID 1288 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1289 */ 1290#define HV_KVP_GUID \ 1291 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1292 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1293 1294/* 1295 * Dynamic memory GUID 1296 * {525074dc-8985-46e2-8057-a307dc18a502} 1297 */ 1298#define HV_DM_GUID \ 1299 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1300 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1301 1302/* 1303 * Mouse GUID 1304 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1305 */ 1306#define HV_MOUSE_GUID \ 1307 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1308 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1309 1310/* 1311 * Keyboard GUID 1312 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1313 */ 1314#define HV_KBD_GUID \ 1315 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1316 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1317 1318/* 1319 * VSS (Backup/Restore) GUID 1320 */ 1321#define HV_VSS_GUID \ 1322 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1323 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1324/* 1325 * Synthetic Video GUID 1326 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1327 */ 1328#define HV_SYNTHVID_GUID \ 1329 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1330 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1331 1332/* 1333 * Synthetic FC GUID 1334 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1335 */ 1336#define HV_SYNTHFC_GUID \ 1337 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1338 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1339 1340/* 1341 * Guest File Copy Service 1342 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1343 */ 1344 1345#define HV_FCOPY_GUID \ 1346 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1347 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1348 1349/* 1350 * NetworkDirect. This is the guest RDMA service. 1351 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1352 */ 1353#define HV_ND_GUID \ 1354 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1355 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1356 1357/* 1358 * PCI Express Pass Through 1359 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1360 */ 1361 1362#define HV_PCIE_GUID \ 1363 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1364 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1365 1366/* 1367 * Linux doesn't support the 3 devices: the first two are for 1368 * Automatic Virtual Machine Activation, and the third is for 1369 * Remote Desktop Virtualization. 1370 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1371 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1372 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1373 */ 1374 1375#define HV_AVMA1_GUID \ 1376 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1377 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1378 1379#define HV_AVMA2_GUID \ 1380 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1381 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1382 1383#define HV_RDV_GUID \ 1384 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1385 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1386 1387/* 1388 * Common header for Hyper-V ICs 1389 */ 1390 1391#define ICMSGTYPE_NEGOTIATE 0 1392#define ICMSGTYPE_HEARTBEAT 1 1393#define ICMSGTYPE_KVPEXCHANGE 2 1394#define ICMSGTYPE_SHUTDOWN 3 1395#define ICMSGTYPE_TIMESYNC 4 1396#define ICMSGTYPE_VSS 5 1397 1398#define ICMSGHDRFLAG_TRANSACTION 1 1399#define ICMSGHDRFLAG_REQUEST 2 1400#define ICMSGHDRFLAG_RESPONSE 4 1401 1402 1403/* 1404 * While we want to handle util services as regular devices, 1405 * there is only one instance of each of these services; so 1406 * we statically allocate the service specific state. 1407 */ 1408 1409struct hv_util_service { 1410 u8 *recv_buffer; 1411 void *channel; 1412 void (*util_cb)(void *); 1413 int (*util_init)(struct hv_util_service *); 1414 void (*util_deinit)(void); 1415}; 1416 1417struct vmbuspipe_hdr { 1418 u32 flags; 1419 u32 msgsize; 1420} __packed; 1421 1422struct ic_version { 1423 u16 major; 1424 u16 minor; 1425} __packed; 1426 1427struct icmsg_hdr { 1428 struct ic_version icverframe; 1429 u16 icmsgtype; 1430 struct ic_version icvermsg; 1431 u16 icmsgsize; 1432 u32 status; 1433 u8 ictransaction_id; 1434 u8 icflags; 1435 u8 reserved[2]; 1436} __packed; 1437 1438struct icmsg_negotiate { 1439 u16 icframe_vercnt; 1440 u16 icmsg_vercnt; 1441 u32 reserved; 1442 struct ic_version icversion_data[1]; /* any size array */ 1443} __packed; 1444 1445struct shutdown_msg_data { 1446 u32 reason_code; 1447 u32 timeout_seconds; 1448 u32 flags; 1449 u8 display_message[2048]; 1450} __packed; 1451 1452struct heartbeat_msg_data { 1453 u64 seq_num; 1454 u32 reserved[8]; 1455} __packed; 1456 1457/* Time Sync IC defs */ 1458#define ICTIMESYNCFLAG_PROBE 0 1459#define ICTIMESYNCFLAG_SYNC 1 1460#define ICTIMESYNCFLAG_SAMPLE 2 1461 1462#ifdef __x86_64__ 1463#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1464#else 1465#define WLTIMEDELTA 116444736000000000LL 1466#endif 1467 1468struct ictimesync_data { 1469 u64 parenttime; 1470 u64 childtime; 1471 u64 roundtriptime; 1472 u8 flags; 1473} __packed; 1474 1475struct ictimesync_ref_data { 1476 u64 parenttime; 1477 u64 vmreferencetime; 1478 u8 flags; 1479 char leapflags; 1480 char stratum; 1481 u8 reserved[3]; 1482} __packed; 1483 1484struct hyperv_service_callback { 1485 u8 msg_type; 1486 char *log_msg; 1487 guid_t data; 1488 struct vmbus_channel *channel; 1489 void (*callback)(void *context); 1490}; 1491 1492#define MAX_SRV_VER 0x7ffffff 1493extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1494 const int *fw_version, int fw_vercnt, 1495 const int *srv_version, int srv_vercnt, 1496 int *nego_fw_version, int *nego_srv_version); 1497 1498void hv_process_channel_removal(struct vmbus_channel *channel); 1499 1500void vmbus_setevent(struct vmbus_channel *channel); 1501/* 1502 * Negotiated version with the Host. 1503 */ 1504 1505extern __u32 vmbus_proto_version; 1506 1507int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1508 const guid_t *shv_host_servie_id); 1509void vmbus_set_event(struct vmbus_channel *channel); 1510 1511/* Get the start of the ring buffer. */ 1512static inline void * 1513hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1514{ 1515 return ring_info->ring_buffer->buffer; 1516} 1517 1518/* 1519 * Mask off host interrupt callback notifications 1520 */ 1521static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1522{ 1523 rbi->ring_buffer->interrupt_mask = 1; 1524 1525 /* make sure mask update is not reordered */ 1526 virt_mb(); 1527} 1528 1529/* 1530 * Re-enable host callback and return number of outstanding bytes 1531 */ 1532static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1533{ 1534 1535 rbi->ring_buffer->interrupt_mask = 0; 1536 1537 /* make sure mask update is not reordered */ 1538 virt_mb(); 1539 1540 /* 1541 * Now check to see if the ring buffer is still empty. 1542 * If it is not, we raced and we need to process new 1543 * incoming messages. 1544 */ 1545 return hv_get_bytes_to_read(rbi); 1546} 1547 1548/* 1549 * An API to support in-place processing of incoming VMBUS packets. 1550 */ 1551 1552/* Get data payload associated with descriptor */ 1553static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1554{ 1555 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1556} 1557 1558/* Get data size associated with descriptor */ 1559static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1560{ 1561 return (desc->len8 << 3) - (desc->offset8 << 3); 1562} 1563 1564 1565struct vmpacket_descriptor * 1566hv_pkt_iter_first(struct vmbus_channel *channel); 1567 1568struct vmpacket_descriptor * 1569__hv_pkt_iter_next(struct vmbus_channel *channel, 1570 const struct vmpacket_descriptor *pkt); 1571 1572void hv_pkt_iter_close(struct vmbus_channel *channel); 1573 1574/* 1575 * Get next packet descriptor from iterator 1576 * If at end of list, return NULL and update host. 1577 */ 1578static inline struct vmpacket_descriptor * 1579hv_pkt_iter_next(struct vmbus_channel *channel, 1580 const struct vmpacket_descriptor *pkt) 1581{ 1582 struct vmpacket_descriptor *nxt; 1583 1584 nxt = __hv_pkt_iter_next(channel, pkt); 1585 if (!nxt) 1586 hv_pkt_iter_close(channel); 1587 1588 return nxt; 1589} 1590 1591#define foreach_vmbus_pkt(pkt, channel) \ 1592 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1593 pkt = hv_pkt_iter_next(channel, pkt)) 1594 1595/* 1596 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1597 * sends requests to read and write blocks. Each block must be 128 bytes or 1598 * smaller. Optionally, the VF driver can register a callback function which 1599 * will be invoked when the host says that one or more of the first 64 block 1600 * IDs is "invalid" which means that the VF driver should reread them. 1601 */ 1602#define HV_CONFIG_BLOCK_SIZE_MAX 128 1603 1604int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1605 unsigned int block_id, unsigned int *bytes_returned); 1606int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1607 unsigned int block_id); 1608int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1609 void (*block_invalidate)(void *context, 1610 u64 block_mask)); 1611 1612struct hyperv_pci_block_ops { 1613 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1614 unsigned int block_id, unsigned int *bytes_returned); 1615 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1616 unsigned int block_id); 1617 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1618 void (*block_invalidate)(void *context, 1619 u64 block_mask)); 1620}; 1621 1622extern struct hyperv_pci_block_ops hvpci_block_ops; 1623 1624#endif /* _HYPERV_H */