Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108static void _regulator_put(struct regulator *regulator);
109
110const char *rdev_get_name(struct regulator_dev *rdev)
111{
112 if (rdev->constraints && rdev->constraints->name)
113 return rdev->constraints->name;
114 else if (rdev->desc->name)
115 return rdev->desc->name;
116 else
117 return "";
118}
119
120static bool have_full_constraints(void)
121{
122 return has_full_constraints || of_have_populated_dt();
123}
124
125static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
126{
127 if (!rdev->constraints) {
128 rdev_err(rdev, "no constraints\n");
129 return false;
130 }
131
132 if (rdev->constraints->valid_ops_mask & ops)
133 return true;
134
135 return false;
136}
137
138/**
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
142 *
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
147 * wait on mutex.
148 */
149static inline int regulator_lock_nested(struct regulator_dev *rdev,
150 struct ww_acquire_ctx *ww_ctx)
151{
152 bool lock = false;
153 int ret = 0;
154
155 mutex_lock(®ulator_nesting_mutex);
156
157 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
158 if (rdev->mutex_owner == current)
159 rdev->ref_cnt++;
160 else
161 lock = true;
162
163 if (lock) {
164 mutex_unlock(®ulator_nesting_mutex);
165 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
166 mutex_lock(®ulator_nesting_mutex);
167 }
168 } else {
169 lock = true;
170 }
171
172 if (lock && ret != -EDEADLK) {
173 rdev->ref_cnt++;
174 rdev->mutex_owner = current;
175 }
176
177 mutex_unlock(®ulator_nesting_mutex);
178
179 return ret;
180}
181
182/**
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
185 *
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
190 * wait on mutex.
191 */
192void regulator_lock(struct regulator_dev *rdev)
193{
194 regulator_lock_nested(rdev, NULL);
195}
196EXPORT_SYMBOL_GPL(regulator_lock);
197
198/**
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
201 *
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
204 */
205void regulator_unlock(struct regulator_dev *rdev)
206{
207 mutex_lock(®ulator_nesting_mutex);
208
209 if (--rdev->ref_cnt == 0) {
210 rdev->mutex_owner = NULL;
211 ww_mutex_unlock(&rdev->mutex);
212 }
213
214 WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216 mutex_unlock(®ulator_nesting_mutex);
217}
218EXPORT_SYMBOL_GPL(regulator_unlock);
219
220static bool regulator_supply_is_couple(struct regulator_dev *rdev)
221{
222 struct regulator_dev *c_rdev;
223 int i;
224
225 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
226 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
227
228 if (rdev->supply->rdev == c_rdev)
229 return true;
230 }
231
232 return false;
233}
234
235static void regulator_unlock_recursive(struct regulator_dev *rdev,
236 unsigned int n_coupled)
237{
238 struct regulator_dev *c_rdev;
239 int i;
240
241 for (i = n_coupled; i > 0; i--) {
242 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
243
244 if (!c_rdev)
245 continue;
246
247 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
248 regulator_unlock_recursive(
249 c_rdev->supply->rdev,
250 c_rdev->coupling_desc.n_coupled);
251
252 regulator_unlock(c_rdev);
253 }
254}
255
256static int regulator_lock_recursive(struct regulator_dev *rdev,
257 struct regulator_dev **new_contended_rdev,
258 struct regulator_dev **old_contended_rdev,
259 struct ww_acquire_ctx *ww_ctx)
260{
261 struct regulator_dev *c_rdev;
262 int i, err;
263
264 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
265 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
266
267 if (!c_rdev)
268 continue;
269
270 if (c_rdev != *old_contended_rdev) {
271 err = regulator_lock_nested(c_rdev, ww_ctx);
272 if (err) {
273 if (err == -EDEADLK) {
274 *new_contended_rdev = c_rdev;
275 goto err_unlock;
276 }
277
278 /* shouldn't happen */
279 WARN_ON_ONCE(err != -EALREADY);
280 }
281 } else {
282 *old_contended_rdev = NULL;
283 }
284
285 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
286 err = regulator_lock_recursive(c_rdev->supply->rdev,
287 new_contended_rdev,
288 old_contended_rdev,
289 ww_ctx);
290 if (err) {
291 regulator_unlock(c_rdev);
292 goto err_unlock;
293 }
294 }
295 }
296
297 return 0;
298
299err_unlock:
300 regulator_unlock_recursive(rdev, i);
301
302 return err;
303}
304
305/**
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
307 * regulators
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
310 *
311 * Unlock all regulators related with rdev by coupling or supplying.
312 */
313static void regulator_unlock_dependent(struct regulator_dev *rdev,
314 struct ww_acquire_ctx *ww_ctx)
315{
316 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
317 ww_acquire_fini(ww_ctx);
318}
319
320/**
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
324 *
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
327 */
328static void regulator_lock_dependent(struct regulator_dev *rdev,
329 struct ww_acquire_ctx *ww_ctx)
330{
331 struct regulator_dev *new_contended_rdev = NULL;
332 struct regulator_dev *old_contended_rdev = NULL;
333 int err;
334
335 mutex_lock(®ulator_list_mutex);
336
337 ww_acquire_init(ww_ctx, ®ulator_ww_class);
338
339 do {
340 if (new_contended_rdev) {
341 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
342 old_contended_rdev = new_contended_rdev;
343 old_contended_rdev->ref_cnt++;
344 }
345
346 err = regulator_lock_recursive(rdev,
347 &new_contended_rdev,
348 &old_contended_rdev,
349 ww_ctx);
350
351 if (old_contended_rdev)
352 regulator_unlock(old_contended_rdev);
353
354 } while (err == -EDEADLK);
355
356 ww_acquire_done(ww_ctx);
357
358 mutex_unlock(®ulator_list_mutex);
359}
360
361/**
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
366 *
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
370 * returns NULL.
371 */
372static struct device_node *of_get_child_regulator(struct device_node *parent,
373 const char *prop_name)
374{
375 struct device_node *regnode = NULL;
376 struct device_node *child = NULL;
377
378 for_each_child_of_node(parent, child) {
379 regnode = of_parse_phandle(child, prop_name, 0);
380
381 if (!regnode) {
382 regnode = of_get_child_regulator(child, prop_name);
383 if (regnode)
384 goto err_node_put;
385 } else {
386 goto err_node_put;
387 }
388 }
389 return NULL;
390
391err_node_put:
392 of_node_put(child);
393 return regnode;
394}
395
396/**
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
400 *
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
403 * returns NULL.
404 */
405static struct device_node *of_get_regulator(struct device *dev, const char *supply)
406{
407 struct device_node *regnode = NULL;
408 char prop_name[32]; /* 32 is max size of property name */
409
410 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
411
412 snprintf(prop_name, 32, "%s-supply", supply);
413 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
414
415 if (!regnode) {
416 regnode = of_get_child_regulator(dev->of_node, prop_name);
417 if (regnode)
418 return regnode;
419
420 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
421 prop_name, dev->of_node);
422 return NULL;
423 }
424 return regnode;
425}
426
427/* Platform voltage constraint check */
428int regulator_check_voltage(struct regulator_dev *rdev,
429 int *min_uV, int *max_uV)
430{
431 BUG_ON(*min_uV > *max_uV);
432
433 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
434 rdev_err(rdev, "voltage operation not allowed\n");
435 return -EPERM;
436 }
437
438 if (*max_uV > rdev->constraints->max_uV)
439 *max_uV = rdev->constraints->max_uV;
440 if (*min_uV < rdev->constraints->min_uV)
441 *min_uV = rdev->constraints->min_uV;
442
443 if (*min_uV > *max_uV) {
444 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
445 *min_uV, *max_uV);
446 return -EINVAL;
447 }
448
449 return 0;
450}
451
452/* return 0 if the state is valid */
453static int regulator_check_states(suspend_state_t state)
454{
455 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
456}
457
458/* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
460 */
461int regulator_check_consumers(struct regulator_dev *rdev,
462 int *min_uV, int *max_uV,
463 suspend_state_t state)
464{
465 struct regulator *regulator;
466 struct regulator_voltage *voltage;
467
468 list_for_each_entry(regulator, &rdev->consumer_list, list) {
469 voltage = ®ulator->voltage[state];
470 /*
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
473 */
474 if (!voltage->min_uV && !voltage->max_uV)
475 continue;
476
477 if (*max_uV > voltage->max_uV)
478 *max_uV = voltage->max_uV;
479 if (*min_uV < voltage->min_uV)
480 *min_uV = voltage->min_uV;
481 }
482
483 if (*min_uV > *max_uV) {
484 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
485 *min_uV, *max_uV);
486 return -EINVAL;
487 }
488
489 return 0;
490}
491
492/* current constraint check */
493static int regulator_check_current_limit(struct regulator_dev *rdev,
494 int *min_uA, int *max_uA)
495{
496 BUG_ON(*min_uA > *max_uA);
497
498 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
499 rdev_err(rdev, "current operation not allowed\n");
500 return -EPERM;
501 }
502
503 if (*max_uA > rdev->constraints->max_uA)
504 *max_uA = rdev->constraints->max_uA;
505 if (*min_uA < rdev->constraints->min_uA)
506 *min_uA = rdev->constraints->min_uA;
507
508 if (*min_uA > *max_uA) {
509 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
510 *min_uA, *max_uA);
511 return -EINVAL;
512 }
513
514 return 0;
515}
516
517/* operating mode constraint check */
518static int regulator_mode_constrain(struct regulator_dev *rdev,
519 unsigned int *mode)
520{
521 switch (*mode) {
522 case REGULATOR_MODE_FAST:
523 case REGULATOR_MODE_NORMAL:
524 case REGULATOR_MODE_IDLE:
525 case REGULATOR_MODE_STANDBY:
526 break;
527 default:
528 rdev_err(rdev, "invalid mode %x specified\n", *mode);
529 return -EINVAL;
530 }
531
532 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
533 rdev_err(rdev, "mode operation not allowed\n");
534 return -EPERM;
535 }
536
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
540 while (*mode) {
541 if (rdev->constraints->valid_modes_mask & *mode)
542 return 0;
543 *mode /= 2;
544 }
545
546 return -EINVAL;
547}
548
549static inline struct regulator_state *
550regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
551{
552 if (rdev->constraints == NULL)
553 return NULL;
554
555 switch (state) {
556 case PM_SUSPEND_STANDBY:
557 return &rdev->constraints->state_standby;
558 case PM_SUSPEND_MEM:
559 return &rdev->constraints->state_mem;
560 case PM_SUSPEND_MAX:
561 return &rdev->constraints->state_disk;
562 default:
563 return NULL;
564 }
565}
566
567static ssize_t regulator_uV_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
569{
570 struct regulator_dev *rdev = dev_get_drvdata(dev);
571 int uV;
572
573 regulator_lock(rdev);
574 uV = regulator_get_voltage_rdev(rdev);
575 regulator_unlock(rdev);
576
577 if (uV < 0)
578 return uV;
579 return sprintf(buf, "%d\n", uV);
580}
581static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
582
583static ssize_t regulator_uA_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585{
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
589}
590static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
591
592static ssize_t name_show(struct device *dev, struct device_attribute *attr,
593 char *buf)
594{
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596
597 return sprintf(buf, "%s\n", rdev_get_name(rdev));
598}
599static DEVICE_ATTR_RO(name);
600
601static const char *regulator_opmode_to_str(int mode)
602{
603 switch (mode) {
604 case REGULATOR_MODE_FAST:
605 return "fast";
606 case REGULATOR_MODE_NORMAL:
607 return "normal";
608 case REGULATOR_MODE_IDLE:
609 return "idle";
610 case REGULATOR_MODE_STANDBY:
611 return "standby";
612 }
613 return "unknown";
614}
615
616static ssize_t regulator_print_opmode(char *buf, int mode)
617{
618 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
619}
620
621static ssize_t regulator_opmode_show(struct device *dev,
622 struct device_attribute *attr, char *buf)
623{
624 struct regulator_dev *rdev = dev_get_drvdata(dev);
625
626 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
627}
628static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
629
630static ssize_t regulator_print_state(char *buf, int state)
631{
632 if (state > 0)
633 return sprintf(buf, "enabled\n");
634 else if (state == 0)
635 return sprintf(buf, "disabled\n");
636 else
637 return sprintf(buf, "unknown\n");
638}
639
640static ssize_t regulator_state_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
642{
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
644 ssize_t ret;
645
646 regulator_lock(rdev);
647 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
648 regulator_unlock(rdev);
649
650 return ret;
651}
652static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
653
654static ssize_t regulator_status_show(struct device *dev,
655 struct device_attribute *attr, char *buf)
656{
657 struct regulator_dev *rdev = dev_get_drvdata(dev);
658 int status;
659 char *label;
660
661 status = rdev->desc->ops->get_status(rdev);
662 if (status < 0)
663 return status;
664
665 switch (status) {
666 case REGULATOR_STATUS_OFF:
667 label = "off";
668 break;
669 case REGULATOR_STATUS_ON:
670 label = "on";
671 break;
672 case REGULATOR_STATUS_ERROR:
673 label = "error";
674 break;
675 case REGULATOR_STATUS_FAST:
676 label = "fast";
677 break;
678 case REGULATOR_STATUS_NORMAL:
679 label = "normal";
680 break;
681 case REGULATOR_STATUS_IDLE:
682 label = "idle";
683 break;
684 case REGULATOR_STATUS_STANDBY:
685 label = "standby";
686 break;
687 case REGULATOR_STATUS_BYPASS:
688 label = "bypass";
689 break;
690 case REGULATOR_STATUS_UNDEFINED:
691 label = "undefined";
692 break;
693 default:
694 return -ERANGE;
695 }
696
697 return sprintf(buf, "%s\n", label);
698}
699static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
700
701static ssize_t regulator_min_uA_show(struct device *dev,
702 struct device_attribute *attr, char *buf)
703{
704 struct regulator_dev *rdev = dev_get_drvdata(dev);
705
706 if (!rdev->constraints)
707 return sprintf(buf, "constraint not defined\n");
708
709 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
710}
711static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
712
713static ssize_t regulator_max_uA_show(struct device *dev,
714 struct device_attribute *attr, char *buf)
715{
716 struct regulator_dev *rdev = dev_get_drvdata(dev);
717
718 if (!rdev->constraints)
719 return sprintf(buf, "constraint not defined\n");
720
721 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
722}
723static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
724
725static ssize_t regulator_min_uV_show(struct device *dev,
726 struct device_attribute *attr, char *buf)
727{
728 struct regulator_dev *rdev = dev_get_drvdata(dev);
729
730 if (!rdev->constraints)
731 return sprintf(buf, "constraint not defined\n");
732
733 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
734}
735static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
736
737static ssize_t regulator_max_uV_show(struct device *dev,
738 struct device_attribute *attr, char *buf)
739{
740 struct regulator_dev *rdev = dev_get_drvdata(dev);
741
742 if (!rdev->constraints)
743 return sprintf(buf, "constraint not defined\n");
744
745 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
746}
747static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
748
749static ssize_t regulator_total_uA_show(struct device *dev,
750 struct device_attribute *attr, char *buf)
751{
752 struct regulator_dev *rdev = dev_get_drvdata(dev);
753 struct regulator *regulator;
754 int uA = 0;
755
756 regulator_lock(rdev);
757 list_for_each_entry(regulator, &rdev->consumer_list, list) {
758 if (regulator->enable_count)
759 uA += regulator->uA_load;
760 }
761 regulator_unlock(rdev);
762 return sprintf(buf, "%d\n", uA);
763}
764static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
765
766static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
767 char *buf)
768{
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 return sprintf(buf, "%d\n", rdev->use_count);
771}
772static DEVICE_ATTR_RO(num_users);
773
774static ssize_t type_show(struct device *dev, struct device_attribute *attr,
775 char *buf)
776{
777 struct regulator_dev *rdev = dev_get_drvdata(dev);
778
779 switch (rdev->desc->type) {
780 case REGULATOR_VOLTAGE:
781 return sprintf(buf, "voltage\n");
782 case REGULATOR_CURRENT:
783 return sprintf(buf, "current\n");
784 }
785 return sprintf(buf, "unknown\n");
786}
787static DEVICE_ATTR_RO(type);
788
789static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
790 struct device_attribute *attr, char *buf)
791{
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793
794 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
795}
796static DEVICE_ATTR(suspend_mem_microvolts, 0444,
797 regulator_suspend_mem_uV_show, NULL);
798
799static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
805}
806static DEVICE_ATTR(suspend_disk_microvolts, 0444,
807 regulator_suspend_disk_uV_show, NULL);
808
809static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811{
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
815}
816static DEVICE_ATTR(suspend_standby_microvolts, 0444,
817 regulator_suspend_standby_uV_show, NULL);
818
819static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
820 struct device_attribute *attr, char *buf)
821{
822 struct regulator_dev *rdev = dev_get_drvdata(dev);
823
824 return regulator_print_opmode(buf,
825 rdev->constraints->state_mem.mode);
826}
827static DEVICE_ATTR(suspend_mem_mode, 0444,
828 regulator_suspend_mem_mode_show, NULL);
829
830static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832{
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return regulator_print_opmode(buf,
836 rdev->constraints->state_disk.mode);
837}
838static DEVICE_ATTR(suspend_disk_mode, 0444,
839 regulator_suspend_disk_mode_show, NULL);
840
841static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
843{
844 struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846 return regulator_print_opmode(buf,
847 rdev->constraints->state_standby.mode);
848}
849static DEVICE_ATTR(suspend_standby_mode, 0444,
850 regulator_suspend_standby_mode_show, NULL);
851
852static ssize_t regulator_suspend_mem_state_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856
857 return regulator_print_state(buf,
858 rdev->constraints->state_mem.enabled);
859}
860static DEVICE_ATTR(suspend_mem_state, 0444,
861 regulator_suspend_mem_state_show, NULL);
862
863static ssize_t regulator_suspend_disk_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865{
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_disk.enabled);
870}
871static DEVICE_ATTR(suspend_disk_state, 0444,
872 regulator_suspend_disk_state_show, NULL);
873
874static ssize_t regulator_suspend_standby_state_show(struct device *dev,
875 struct device_attribute *attr, char *buf)
876{
877 struct regulator_dev *rdev = dev_get_drvdata(dev);
878
879 return regulator_print_state(buf,
880 rdev->constraints->state_standby.enabled);
881}
882static DEVICE_ATTR(suspend_standby_state, 0444,
883 regulator_suspend_standby_state_show, NULL);
884
885static ssize_t regulator_bypass_show(struct device *dev,
886 struct device_attribute *attr, char *buf)
887{
888 struct regulator_dev *rdev = dev_get_drvdata(dev);
889 const char *report;
890 bool bypass;
891 int ret;
892
893 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
894
895 if (ret != 0)
896 report = "unknown";
897 else if (bypass)
898 report = "enabled";
899 else
900 report = "disabled";
901
902 return sprintf(buf, "%s\n", report);
903}
904static DEVICE_ATTR(bypass, 0444,
905 regulator_bypass_show, NULL);
906
907/* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909static int drms_uA_update(struct regulator_dev *rdev)
910{
911 struct regulator *sibling;
912 int current_uA = 0, output_uV, input_uV, err;
913 unsigned int mode;
914
915 /*
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
918 */
919 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
920 rdev_dbg(rdev, "DRMS operation not allowed\n");
921 return 0;
922 }
923
924 if (!rdev->desc->ops->get_optimum_mode &&
925 !rdev->desc->ops->set_load)
926 return 0;
927
928 if (!rdev->desc->ops->set_mode &&
929 !rdev->desc->ops->set_load)
930 return -EINVAL;
931
932 /* calc total requested load */
933 list_for_each_entry(sibling, &rdev->consumer_list, list) {
934 if (sibling->enable_count)
935 current_uA += sibling->uA_load;
936 }
937
938 current_uA += rdev->constraints->system_load;
939
940 if (rdev->desc->ops->set_load) {
941 /* set the optimum mode for our new total regulator load */
942 err = rdev->desc->ops->set_load(rdev, current_uA);
943 if (err < 0)
944 rdev_err(rdev, "failed to set load %d\n", current_uA);
945 } else {
946 /* get output voltage */
947 output_uV = regulator_get_voltage_rdev(rdev);
948 if (output_uV <= 0) {
949 rdev_err(rdev, "invalid output voltage found\n");
950 return -EINVAL;
951 }
952
953 /* get input voltage */
954 input_uV = 0;
955 if (rdev->supply)
956 input_uV = regulator_get_voltage(rdev->supply);
957 if (input_uV <= 0)
958 input_uV = rdev->constraints->input_uV;
959 if (input_uV <= 0) {
960 rdev_err(rdev, "invalid input voltage found\n");
961 return -EINVAL;
962 }
963
964 /* now get the optimum mode for our new total regulator load */
965 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
966 output_uV, current_uA);
967
968 /* check the new mode is allowed */
969 err = regulator_mode_constrain(rdev, &mode);
970 if (err < 0) {
971 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA, input_uV, output_uV);
973 return err;
974 }
975
976 err = rdev->desc->ops->set_mode(rdev, mode);
977 if (err < 0)
978 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
979 }
980
981 return err;
982}
983
984static int suspend_set_state(struct regulator_dev *rdev,
985 suspend_state_t state)
986{
987 int ret = 0;
988 struct regulator_state *rstate;
989
990 rstate = regulator_get_suspend_state(rdev, state);
991 if (rstate == NULL)
992 return 0;
993
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
997 */
998 if (rstate->enabled != ENABLE_IN_SUSPEND &&
999 rstate->enabled != DISABLE_IN_SUSPEND) {
1000 if (rdev->desc->ops->set_suspend_voltage ||
1001 rdev->desc->ops->set_suspend_mode)
1002 rdev_warn(rdev, "No configuration\n");
1003 return 0;
1004 }
1005
1006 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007 rdev->desc->ops->set_suspend_enable)
1008 ret = rdev->desc->ops->set_suspend_enable(rdev);
1009 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010 rdev->desc->ops->set_suspend_disable)
1011 ret = rdev->desc->ops->set_suspend_disable(rdev);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013 ret = 0;
1014
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to enabled/disable\n");
1017 return ret;
1018 }
1019
1020 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022 if (ret < 0) {
1023 rdev_err(rdev, "failed to set voltage\n");
1024 return ret;
1025 }
1026 }
1027
1028 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030 if (ret < 0) {
1031 rdev_err(rdev, "failed to set mode\n");
1032 return ret;
1033 }
1034 }
1035
1036 return ret;
1037}
1038
1039static void print_constraints(struct regulator_dev *rdev)
1040{
1041 struct regulation_constraints *constraints = rdev->constraints;
1042 char buf[160] = "";
1043 size_t len = sizeof(buf) - 1;
1044 int count = 0;
1045 int ret;
1046
1047 if (constraints->min_uV && constraints->max_uV) {
1048 if (constraints->min_uV == constraints->max_uV)
1049 count += scnprintf(buf + count, len - count, "%d mV ",
1050 constraints->min_uV / 1000);
1051 else
1052 count += scnprintf(buf + count, len - count,
1053 "%d <--> %d mV ",
1054 constraints->min_uV / 1000,
1055 constraints->max_uV / 1000);
1056 }
1057
1058 if (!constraints->min_uV ||
1059 constraints->min_uV != constraints->max_uV) {
1060 ret = regulator_get_voltage_rdev(rdev);
1061 if (ret > 0)
1062 count += scnprintf(buf + count, len - count,
1063 "at %d mV ", ret / 1000);
1064 }
1065
1066 if (constraints->uV_offset)
1067 count += scnprintf(buf + count, len - count, "%dmV offset ",
1068 constraints->uV_offset / 1000);
1069
1070 if (constraints->min_uA && constraints->max_uA) {
1071 if (constraints->min_uA == constraints->max_uA)
1072 count += scnprintf(buf + count, len - count, "%d mA ",
1073 constraints->min_uA / 1000);
1074 else
1075 count += scnprintf(buf + count, len - count,
1076 "%d <--> %d mA ",
1077 constraints->min_uA / 1000,
1078 constraints->max_uA / 1000);
1079 }
1080
1081 if (!constraints->min_uA ||
1082 constraints->min_uA != constraints->max_uA) {
1083 ret = _regulator_get_current_limit(rdev);
1084 if (ret > 0)
1085 count += scnprintf(buf + count, len - count,
1086 "at %d mA ", ret / 1000);
1087 }
1088
1089 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090 count += scnprintf(buf + count, len - count, "fast ");
1091 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092 count += scnprintf(buf + count, len - count, "normal ");
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094 count += scnprintf(buf + count, len - count, "idle ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096 count += scnprintf(buf + count, len - count, "standby");
1097
1098 if (!count)
1099 scnprintf(buf, len, "no parameters");
1100
1101 rdev_dbg(rdev, "%s\n", buf);
1102
1103 if ((constraints->min_uV != constraints->max_uV) &&
1104 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105 rdev_warn(rdev,
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107}
1108
1109static int machine_constraints_voltage(struct regulator_dev *rdev,
1110 struct regulation_constraints *constraints)
1111{
1112 const struct regulator_ops *ops = rdev->desc->ops;
1113 int ret;
1114
1115 /* do we need to apply the constraint voltage */
1116 if (rdev->constraints->apply_uV &&
1117 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118 int target_min, target_max;
1119 int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121 if (current_uV == -ENOTRECOVERABLE) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev, "Setting %d-%duV\n",
1124 rdev->constraints->min_uV,
1125 rdev->constraints->max_uV);
1126 _regulator_do_set_voltage(rdev,
1127 rdev->constraints->min_uV,
1128 rdev->constraints->max_uV);
1129 current_uV = regulator_get_voltage_rdev(rdev);
1130 }
1131
1132 if (current_uV < 0) {
1133 rdev_err(rdev,
1134 "failed to get the current voltage(%d)\n",
1135 current_uV);
1136 return current_uV;
1137 }
1138
1139 /*
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1143 */
1144 target_min = current_uV;
1145 target_max = current_uV;
1146
1147 if (current_uV < rdev->constraints->min_uV) {
1148 target_min = rdev->constraints->min_uV;
1149 target_max = rdev->constraints->min_uV;
1150 }
1151
1152 if (current_uV > rdev->constraints->max_uV) {
1153 target_min = rdev->constraints->max_uV;
1154 target_max = rdev->constraints->max_uV;
1155 }
1156
1157 if (target_min != current_uV || target_max != current_uV) {
1158 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159 current_uV, target_min, target_max);
1160 ret = _regulator_do_set_voltage(
1161 rdev, target_min, target_max);
1162 if (ret < 0) {
1163 rdev_err(rdev,
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min, target_max, ret);
1166 return ret;
1167 }
1168 }
1169 }
1170
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1173 */
1174 if (ops->list_voltage && rdev->desc->n_voltages) {
1175 int count = rdev->desc->n_voltages;
1176 int i;
1177 int min_uV = INT_MAX;
1178 int max_uV = INT_MIN;
1179 int cmin = constraints->min_uV;
1180 int cmax = constraints->max_uV;
1181
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count == 1 && !cmin) {
1185 cmin = 1;
1186 cmax = INT_MAX;
1187 constraints->min_uV = cmin;
1188 constraints->max_uV = cmax;
1189 }
1190
1191 /* voltage constraints are optional */
1192 if ((cmin == 0) && (cmax == 0))
1193 return 0;
1194
1195 /* else require explicit machine-level constraints */
1196 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197 rdev_err(rdev, "invalid voltage constraints\n");
1198 return -EINVAL;
1199 }
1200
1201 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202 for (i = 0; i < count; i++) {
1203 int value;
1204
1205 value = ops->list_voltage(rdev, i);
1206 if (value <= 0)
1207 continue;
1208
1209 /* maybe adjust [min_uV..max_uV] */
1210 if (value >= cmin && value < min_uV)
1211 min_uV = value;
1212 if (value <= cmax && value > max_uV)
1213 max_uV = value;
1214 }
1215
1216 /* final: [min_uV..max_uV] valid iff constraints valid */
1217 if (max_uV < min_uV) {
1218 rdev_err(rdev,
1219 "unsupportable voltage constraints %u-%uuV\n",
1220 min_uV, max_uV);
1221 return -EINVAL;
1222 }
1223
1224 /* use regulator's subset of machine constraints */
1225 if (constraints->min_uV < min_uV) {
1226 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227 constraints->min_uV, min_uV);
1228 constraints->min_uV = min_uV;
1229 }
1230 if (constraints->max_uV > max_uV) {
1231 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232 constraints->max_uV, max_uV);
1233 constraints->max_uV = max_uV;
1234 }
1235 }
1236
1237 return 0;
1238}
1239
1240static int machine_constraints_current(struct regulator_dev *rdev,
1241 struct regulation_constraints *constraints)
1242{
1243 const struct regulator_ops *ops = rdev->desc->ops;
1244 int ret;
1245
1246 if (!constraints->min_uA && !constraints->max_uA)
1247 return 0;
1248
1249 if (constraints->min_uA > constraints->max_uA) {
1250 rdev_err(rdev, "Invalid current constraints\n");
1251 return -EINVAL;
1252 }
1253
1254 if (!ops->set_current_limit || !ops->get_current_limit) {
1255 rdev_warn(rdev, "Operation of current configuration missing\n");
1256 return 0;
1257 }
1258
1259 /* Set regulator current in constraints range */
1260 ret = ops->set_current_limit(rdev, constraints->min_uA,
1261 constraints->max_uA);
1262 if (ret < 0) {
1263 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264 return ret;
1265 }
1266
1267 return 0;
1268}
1269
1270static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272/**
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1276 *
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281 * set_mode.
1282 */
1283static int set_machine_constraints(struct regulator_dev *rdev,
1284 const struct regulation_constraints *constraints)
1285{
1286 int ret = 0;
1287 const struct regulator_ops *ops = rdev->desc->ops;
1288
1289 if (constraints)
1290 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291 GFP_KERNEL);
1292 else
1293 rdev->constraints = kzalloc(sizeof(*constraints),
1294 GFP_KERNEL);
1295 if (!rdev->constraints)
1296 return -ENOMEM;
1297
1298 ret = machine_constraints_voltage(rdev, rdev->constraints);
1299 if (ret != 0)
1300 return ret;
1301
1302 ret = machine_constraints_current(rdev, rdev->constraints);
1303 if (ret != 0)
1304 return ret;
1305
1306 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307 ret = ops->set_input_current_limit(rdev,
1308 rdev->constraints->ilim_uA);
1309 if (ret < 0) {
1310 rdev_err(rdev, "failed to set input limit\n");
1311 return ret;
1312 }
1313 }
1314
1315 /* do we need to setup our suspend state */
1316 if (rdev->constraints->initial_state) {
1317 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318 if (ret < 0) {
1319 rdev_err(rdev, "failed to set suspend state\n");
1320 return ret;
1321 }
1322 }
1323
1324 if (rdev->constraints->initial_mode) {
1325 if (!ops->set_mode) {
1326 rdev_err(rdev, "no set_mode operation\n");
1327 return -EINVAL;
1328 }
1329
1330 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331 if (ret < 0) {
1332 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333 return ret;
1334 }
1335 } else if (rdev->constraints->system_load) {
1336 /*
1337 * We'll only apply the initial system load if an
1338 * initial mode wasn't specified.
1339 */
1340 drms_uA_update(rdev);
1341 }
1342
1343 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344 && ops->set_ramp_delay) {
1345 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346 if (ret < 0) {
1347 rdev_err(rdev, "failed to set ramp_delay\n");
1348 return ret;
1349 }
1350 }
1351
1352 if (rdev->constraints->pull_down && ops->set_pull_down) {
1353 ret = ops->set_pull_down(rdev);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set pull down\n");
1356 return ret;
1357 }
1358 }
1359
1360 if (rdev->constraints->soft_start && ops->set_soft_start) {
1361 ret = ops->set_soft_start(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set soft start\n");
1364 return ret;
1365 }
1366 }
1367
1368 if (rdev->constraints->over_current_protection
1369 && ops->set_over_current_protection) {
1370 ret = ops->set_over_current_protection(rdev);
1371 if (ret < 0) {
1372 rdev_err(rdev, "failed to set over current protection\n");
1373 return ret;
1374 }
1375 }
1376
1377 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378 bool ad_state = (rdev->constraints->active_discharge ==
1379 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381 ret = ops->set_active_discharge(rdev, ad_state);
1382 if (ret < 0) {
1383 rdev_err(rdev, "failed to set active discharge\n");
1384 return ret;
1385 }
1386 }
1387
1388 /* If the constraints say the regulator should be on at this point
1389 * and we have control then make sure it is enabled.
1390 */
1391 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392 if (rdev->supply) {
1393 ret = regulator_enable(rdev->supply);
1394 if (ret < 0) {
1395 _regulator_put(rdev->supply);
1396 rdev->supply = NULL;
1397 return ret;
1398 }
1399 }
1400
1401 ret = _regulator_do_enable(rdev);
1402 if (ret < 0 && ret != -EINVAL) {
1403 rdev_err(rdev, "failed to enable\n");
1404 return ret;
1405 }
1406 rdev->use_count++;
1407 }
1408
1409 print_constraints(rdev);
1410 return 0;
1411}
1412
1413/**
1414 * set_supply - set regulator supply regulator
1415 * @rdev: regulator name
1416 * @supply_rdev: supply regulator name
1417 *
1418 * Called by platform initialisation code to set the supply regulator for this
1419 * regulator. This ensures that a regulators supply will also be enabled by the
1420 * core if it's child is enabled.
1421 */
1422static int set_supply(struct regulator_dev *rdev,
1423 struct regulator_dev *supply_rdev)
1424{
1425 int err;
1426
1427 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428
1429 if (!try_module_get(supply_rdev->owner))
1430 return -ENODEV;
1431
1432 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433 if (rdev->supply == NULL) {
1434 err = -ENOMEM;
1435 return err;
1436 }
1437 supply_rdev->open_count++;
1438
1439 return 0;
1440}
1441
1442/**
1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444 * @rdev: regulator source
1445 * @consumer_dev_name: dev_name() string for device supply applies to
1446 * @supply: symbolic name for supply
1447 *
1448 * Allows platform initialisation code to map physical regulator
1449 * sources to symbolic names for supplies for use by devices. Devices
1450 * should use these symbolic names to request regulators, avoiding the
1451 * need to provide board-specific regulator names as platform data.
1452 */
1453static int set_consumer_device_supply(struct regulator_dev *rdev,
1454 const char *consumer_dev_name,
1455 const char *supply)
1456{
1457 struct regulator_map *node;
1458 int has_dev;
1459
1460 if (supply == NULL)
1461 return -EINVAL;
1462
1463 if (consumer_dev_name != NULL)
1464 has_dev = 1;
1465 else
1466 has_dev = 0;
1467
1468 list_for_each_entry(node, ®ulator_map_list, list) {
1469 if (node->dev_name && consumer_dev_name) {
1470 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471 continue;
1472 } else if (node->dev_name || consumer_dev_name) {
1473 continue;
1474 }
1475
1476 if (strcmp(node->supply, supply) != 0)
1477 continue;
1478
1479 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480 consumer_dev_name,
1481 dev_name(&node->regulator->dev),
1482 node->regulator->desc->name,
1483 supply,
1484 dev_name(&rdev->dev), rdev_get_name(rdev));
1485 return -EBUSY;
1486 }
1487
1488 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489 if (node == NULL)
1490 return -ENOMEM;
1491
1492 node->regulator = rdev;
1493 node->supply = supply;
1494
1495 if (has_dev) {
1496 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497 if (node->dev_name == NULL) {
1498 kfree(node);
1499 return -ENOMEM;
1500 }
1501 }
1502
1503 list_add(&node->list, ®ulator_map_list);
1504 return 0;
1505}
1506
1507static void unset_regulator_supplies(struct regulator_dev *rdev)
1508{
1509 struct regulator_map *node, *n;
1510
1511 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1512 if (rdev == node->regulator) {
1513 list_del(&node->list);
1514 kfree(node->dev_name);
1515 kfree(node);
1516 }
1517 }
1518}
1519
1520#ifdef CONFIG_DEBUG_FS
1521static ssize_t constraint_flags_read_file(struct file *file,
1522 char __user *user_buf,
1523 size_t count, loff_t *ppos)
1524{
1525 const struct regulator *regulator = file->private_data;
1526 const struct regulation_constraints *c = regulator->rdev->constraints;
1527 char *buf;
1528 ssize_t ret;
1529
1530 if (!c)
1531 return 0;
1532
1533 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534 if (!buf)
1535 return -ENOMEM;
1536
1537 ret = snprintf(buf, PAGE_SIZE,
1538 "always_on: %u\n"
1539 "boot_on: %u\n"
1540 "apply_uV: %u\n"
1541 "ramp_disable: %u\n"
1542 "soft_start: %u\n"
1543 "pull_down: %u\n"
1544 "over_current_protection: %u\n",
1545 c->always_on,
1546 c->boot_on,
1547 c->apply_uV,
1548 c->ramp_disable,
1549 c->soft_start,
1550 c->pull_down,
1551 c->over_current_protection);
1552
1553 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554 kfree(buf);
1555
1556 return ret;
1557}
1558
1559#endif
1560
1561static const struct file_operations constraint_flags_fops = {
1562#ifdef CONFIG_DEBUG_FS
1563 .open = simple_open,
1564 .read = constraint_flags_read_file,
1565 .llseek = default_llseek,
1566#endif
1567};
1568
1569#define REG_STR_SIZE 64
1570
1571static struct regulator *create_regulator(struct regulator_dev *rdev,
1572 struct device *dev,
1573 const char *supply_name)
1574{
1575 struct regulator *regulator;
1576 char buf[REG_STR_SIZE];
1577 int err, size;
1578
1579 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580 if (regulator == NULL)
1581 return NULL;
1582
1583 regulator_lock(rdev);
1584 regulator->rdev = rdev;
1585 list_add(®ulator->list, &rdev->consumer_list);
1586
1587 if (dev) {
1588 regulator->dev = dev;
1589
1590 /* Add a link to the device sysfs entry */
1591 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592 dev->kobj.name, supply_name);
1593 if (size >= REG_STR_SIZE)
1594 goto overflow_err;
1595
1596 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597 if (regulator->supply_name == NULL)
1598 goto overflow_err;
1599
1600 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601 buf);
1602 if (err) {
1603 rdev_dbg(rdev, "could not add device link %s err %d\n",
1604 dev->kobj.name, err);
1605 /* non-fatal */
1606 }
1607 } else {
1608 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609 if (regulator->supply_name == NULL)
1610 goto overflow_err;
1611 }
1612
1613 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614 rdev->debugfs);
1615 if (!regulator->debugfs) {
1616 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617 } else {
1618 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619 ®ulator->uA_load);
1620 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1622 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1624 debugfs_create_file("constraint_flags", 0444,
1625 regulator->debugfs, regulator,
1626 &constraint_flags_fops);
1627 }
1628
1629 /*
1630 * Check now if the regulator is an always on regulator - if
1631 * it is then we don't need to do nearly so much work for
1632 * enable/disable calls.
1633 */
1634 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635 _regulator_is_enabled(rdev))
1636 regulator->always_on = true;
1637
1638 regulator_unlock(rdev);
1639 return regulator;
1640overflow_err:
1641 list_del(®ulator->list);
1642 kfree(regulator);
1643 regulator_unlock(rdev);
1644 return NULL;
1645}
1646
1647static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648{
1649 if (rdev->constraints && rdev->constraints->enable_time)
1650 return rdev->constraints->enable_time;
1651 if (rdev->desc->ops->enable_time)
1652 return rdev->desc->ops->enable_time(rdev);
1653 return rdev->desc->enable_time;
1654}
1655
1656static struct regulator_supply_alias *regulator_find_supply_alias(
1657 struct device *dev, const char *supply)
1658{
1659 struct regulator_supply_alias *map;
1660
1661 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1662 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663 return map;
1664
1665 return NULL;
1666}
1667
1668static void regulator_supply_alias(struct device **dev, const char **supply)
1669{
1670 struct regulator_supply_alias *map;
1671
1672 map = regulator_find_supply_alias(*dev, *supply);
1673 if (map) {
1674 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675 *supply, map->alias_supply,
1676 dev_name(map->alias_dev));
1677 *dev = map->alias_dev;
1678 *supply = map->alias_supply;
1679 }
1680}
1681
1682static int regulator_match(struct device *dev, const void *data)
1683{
1684 struct regulator_dev *r = dev_to_rdev(dev);
1685
1686 return strcmp(rdev_get_name(r), data) == 0;
1687}
1688
1689static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690{
1691 struct device *dev;
1692
1693 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1694
1695 return dev ? dev_to_rdev(dev) : NULL;
1696}
1697
1698/**
1699 * regulator_dev_lookup - lookup a regulator device.
1700 * @dev: device for regulator "consumer".
1701 * @supply: Supply name or regulator ID.
1702 *
1703 * If successful, returns a struct regulator_dev that corresponds to the name
1704 * @supply and with the embedded struct device refcount incremented by one.
1705 * The refcount must be dropped by calling put_device().
1706 * On failure one of the following ERR-PTR-encoded values is returned:
1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708 * in the future.
1709 */
1710static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711 const char *supply)
1712{
1713 struct regulator_dev *r = NULL;
1714 struct device_node *node;
1715 struct regulator_map *map;
1716 const char *devname = NULL;
1717
1718 regulator_supply_alias(&dev, &supply);
1719
1720 /* first do a dt based lookup */
1721 if (dev && dev->of_node) {
1722 node = of_get_regulator(dev, supply);
1723 if (node) {
1724 r = of_find_regulator_by_node(node);
1725 if (r)
1726 return r;
1727
1728 /*
1729 * We have a node, but there is no device.
1730 * assume it has not registered yet.
1731 */
1732 return ERR_PTR(-EPROBE_DEFER);
1733 }
1734 }
1735
1736 /* if not found, try doing it non-dt way */
1737 if (dev)
1738 devname = dev_name(dev);
1739
1740 mutex_lock(®ulator_list_mutex);
1741 list_for_each_entry(map, ®ulator_map_list, list) {
1742 /* If the mapping has a device set up it must match */
1743 if (map->dev_name &&
1744 (!devname || strcmp(map->dev_name, devname)))
1745 continue;
1746
1747 if (strcmp(map->supply, supply) == 0 &&
1748 get_device(&map->regulator->dev)) {
1749 r = map->regulator;
1750 break;
1751 }
1752 }
1753 mutex_unlock(®ulator_list_mutex);
1754
1755 if (r)
1756 return r;
1757
1758 r = regulator_lookup_by_name(supply);
1759 if (r)
1760 return r;
1761
1762 return ERR_PTR(-ENODEV);
1763}
1764
1765static int regulator_resolve_supply(struct regulator_dev *rdev)
1766{
1767 struct regulator_dev *r;
1768 struct device *dev = rdev->dev.parent;
1769 int ret;
1770
1771 /* No supply to resolve? */
1772 if (!rdev->supply_name)
1773 return 0;
1774
1775 /* Supply already resolved? */
1776 if (rdev->supply)
1777 return 0;
1778
1779 r = regulator_dev_lookup(dev, rdev->supply_name);
1780 if (IS_ERR(r)) {
1781 ret = PTR_ERR(r);
1782
1783 /* Did the lookup explicitly defer for us? */
1784 if (ret == -EPROBE_DEFER)
1785 return ret;
1786
1787 if (have_full_constraints()) {
1788 r = dummy_regulator_rdev;
1789 get_device(&r->dev);
1790 } else {
1791 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792 rdev->supply_name, rdev->desc->name);
1793 return -EPROBE_DEFER;
1794 }
1795 }
1796
1797 /*
1798 * If the supply's parent device is not the same as the
1799 * regulator's parent device, then ensure the parent device
1800 * is bound before we resolve the supply, in case the parent
1801 * device get probe deferred and unregisters the supply.
1802 */
1803 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804 if (!device_is_bound(r->dev.parent)) {
1805 put_device(&r->dev);
1806 return -EPROBE_DEFER;
1807 }
1808 }
1809
1810 /* Recursively resolve the supply of the supply */
1811 ret = regulator_resolve_supply(r);
1812 if (ret < 0) {
1813 put_device(&r->dev);
1814 return ret;
1815 }
1816
1817 ret = set_supply(rdev, r);
1818 if (ret < 0) {
1819 put_device(&r->dev);
1820 return ret;
1821 }
1822
1823 /*
1824 * In set_machine_constraints() we may have turned this regulator on
1825 * but we couldn't propagate to the supply if it hadn't been resolved
1826 * yet. Do it now.
1827 */
1828 if (rdev->use_count) {
1829 ret = regulator_enable(rdev->supply);
1830 if (ret < 0) {
1831 _regulator_put(rdev->supply);
1832 rdev->supply = NULL;
1833 return ret;
1834 }
1835 }
1836
1837 return 0;
1838}
1839
1840/* Internal regulator request function */
1841struct regulator *_regulator_get(struct device *dev, const char *id,
1842 enum regulator_get_type get_type)
1843{
1844 struct regulator_dev *rdev;
1845 struct regulator *regulator;
1846 const char *devname = dev ? dev_name(dev) : "deviceless";
1847 int ret;
1848
1849 if (get_type >= MAX_GET_TYPE) {
1850 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851 return ERR_PTR(-EINVAL);
1852 }
1853
1854 if (id == NULL) {
1855 pr_err("get() with no identifier\n");
1856 return ERR_PTR(-EINVAL);
1857 }
1858
1859 rdev = regulator_dev_lookup(dev, id);
1860 if (IS_ERR(rdev)) {
1861 ret = PTR_ERR(rdev);
1862
1863 /*
1864 * If regulator_dev_lookup() fails with error other
1865 * than -ENODEV our job here is done, we simply return it.
1866 */
1867 if (ret != -ENODEV)
1868 return ERR_PTR(ret);
1869
1870 if (!have_full_constraints()) {
1871 dev_warn(dev,
1872 "incomplete constraints, dummy supplies not allowed\n");
1873 return ERR_PTR(-ENODEV);
1874 }
1875
1876 switch (get_type) {
1877 case NORMAL_GET:
1878 /*
1879 * Assume that a regulator is physically present and
1880 * enabled, even if it isn't hooked up, and just
1881 * provide a dummy.
1882 */
1883 dev_warn(dev,
1884 "%s supply %s not found, using dummy regulator\n",
1885 devname, id);
1886 rdev = dummy_regulator_rdev;
1887 get_device(&rdev->dev);
1888 break;
1889
1890 case EXCLUSIVE_GET:
1891 dev_warn(dev,
1892 "dummy supplies not allowed for exclusive requests\n");
1893 /* fall through */
1894
1895 default:
1896 return ERR_PTR(-ENODEV);
1897 }
1898 }
1899
1900 if (rdev->exclusive) {
1901 regulator = ERR_PTR(-EPERM);
1902 put_device(&rdev->dev);
1903 return regulator;
1904 }
1905
1906 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907 regulator = ERR_PTR(-EBUSY);
1908 put_device(&rdev->dev);
1909 return regulator;
1910 }
1911
1912 mutex_lock(®ulator_list_mutex);
1913 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914 mutex_unlock(®ulator_list_mutex);
1915
1916 if (ret != 0) {
1917 regulator = ERR_PTR(-EPROBE_DEFER);
1918 put_device(&rdev->dev);
1919 return regulator;
1920 }
1921
1922 ret = regulator_resolve_supply(rdev);
1923 if (ret < 0) {
1924 regulator = ERR_PTR(ret);
1925 put_device(&rdev->dev);
1926 return regulator;
1927 }
1928
1929 if (!try_module_get(rdev->owner)) {
1930 regulator = ERR_PTR(-EPROBE_DEFER);
1931 put_device(&rdev->dev);
1932 return regulator;
1933 }
1934
1935 regulator = create_regulator(rdev, dev, id);
1936 if (regulator == NULL) {
1937 regulator = ERR_PTR(-ENOMEM);
1938 put_device(&rdev->dev);
1939 module_put(rdev->owner);
1940 return regulator;
1941 }
1942
1943 rdev->open_count++;
1944 if (get_type == EXCLUSIVE_GET) {
1945 rdev->exclusive = 1;
1946
1947 ret = _regulator_is_enabled(rdev);
1948 if (ret > 0)
1949 rdev->use_count = 1;
1950 else
1951 rdev->use_count = 0;
1952 }
1953
1954 device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1955
1956 return regulator;
1957}
1958
1959/**
1960 * regulator_get - lookup and obtain a reference to a regulator.
1961 * @dev: device for regulator "consumer"
1962 * @id: Supply name or regulator ID.
1963 *
1964 * Returns a struct regulator corresponding to the regulator producer,
1965 * or IS_ERR() condition containing errno.
1966 *
1967 * Use of supply names configured via regulator_set_device_supply() is
1968 * strongly encouraged. It is recommended that the supply name used
1969 * should match the name used for the supply and/or the relevant
1970 * device pins in the datasheet.
1971 */
1972struct regulator *regulator_get(struct device *dev, const char *id)
1973{
1974 return _regulator_get(dev, id, NORMAL_GET);
1975}
1976EXPORT_SYMBOL_GPL(regulator_get);
1977
1978/**
1979 * regulator_get_exclusive - obtain exclusive access to a regulator.
1980 * @dev: device for regulator "consumer"
1981 * @id: Supply name or regulator ID.
1982 *
1983 * Returns a struct regulator corresponding to the regulator producer,
1984 * or IS_ERR() condition containing errno. Other consumers will be
1985 * unable to obtain this regulator while this reference is held and the
1986 * use count for the regulator will be initialised to reflect the current
1987 * state of the regulator.
1988 *
1989 * This is intended for use by consumers which cannot tolerate shared
1990 * use of the regulator such as those which need to force the
1991 * regulator off for correct operation of the hardware they are
1992 * controlling.
1993 *
1994 * Use of supply names configured via regulator_set_device_supply() is
1995 * strongly encouraged. It is recommended that the supply name used
1996 * should match the name used for the supply and/or the relevant
1997 * device pins in the datasheet.
1998 */
1999struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000{
2001 return _regulator_get(dev, id, EXCLUSIVE_GET);
2002}
2003EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004
2005/**
2006 * regulator_get_optional - obtain optional access to a regulator.
2007 * @dev: device for regulator "consumer"
2008 * @id: Supply name or regulator ID.
2009 *
2010 * Returns a struct regulator corresponding to the regulator producer,
2011 * or IS_ERR() condition containing errno.
2012 *
2013 * This is intended for use by consumers for devices which can have
2014 * some supplies unconnected in normal use, such as some MMC devices.
2015 * It can allow the regulator core to provide stub supplies for other
2016 * supplies requested using normal regulator_get() calls without
2017 * disrupting the operation of drivers that can handle absent
2018 * supplies.
2019 *
2020 * Use of supply names configured via regulator_set_device_supply() is
2021 * strongly encouraged. It is recommended that the supply name used
2022 * should match the name used for the supply and/or the relevant
2023 * device pins in the datasheet.
2024 */
2025struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026{
2027 return _regulator_get(dev, id, OPTIONAL_GET);
2028}
2029EXPORT_SYMBOL_GPL(regulator_get_optional);
2030
2031/* regulator_list_mutex lock held by regulator_put() */
2032static void _regulator_put(struct regulator *regulator)
2033{
2034 struct regulator_dev *rdev;
2035
2036 if (IS_ERR_OR_NULL(regulator))
2037 return;
2038
2039 lockdep_assert_held_once(®ulator_list_mutex);
2040
2041 /* Docs say you must disable before calling regulator_put() */
2042 WARN_ON(regulator->enable_count);
2043
2044 rdev = regulator->rdev;
2045
2046 debugfs_remove_recursive(regulator->debugfs);
2047
2048 if (regulator->dev) {
2049 device_link_remove(regulator->dev, &rdev->dev);
2050
2051 /* remove any sysfs entries */
2052 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053 }
2054
2055 regulator_lock(rdev);
2056 list_del(®ulator->list);
2057
2058 rdev->open_count--;
2059 rdev->exclusive = 0;
2060 put_device(&rdev->dev);
2061 regulator_unlock(rdev);
2062
2063 kfree_const(regulator->supply_name);
2064 kfree(regulator);
2065
2066 module_put(rdev->owner);
2067}
2068
2069/**
2070 * regulator_put - "free" the regulator source
2071 * @regulator: regulator source
2072 *
2073 * Note: drivers must ensure that all regulator_enable calls made on this
2074 * regulator source are balanced by regulator_disable calls prior to calling
2075 * this function.
2076 */
2077void regulator_put(struct regulator *regulator)
2078{
2079 mutex_lock(®ulator_list_mutex);
2080 _regulator_put(regulator);
2081 mutex_unlock(®ulator_list_mutex);
2082}
2083EXPORT_SYMBOL_GPL(regulator_put);
2084
2085/**
2086 * regulator_register_supply_alias - Provide device alias for supply lookup
2087 *
2088 * @dev: device that will be given as the regulator "consumer"
2089 * @id: Supply name or regulator ID
2090 * @alias_dev: device that should be used to lookup the supply
2091 * @alias_id: Supply name or regulator ID that should be used to lookup the
2092 * supply
2093 *
2094 * All lookups for id on dev will instead be conducted for alias_id on
2095 * alias_dev.
2096 */
2097int regulator_register_supply_alias(struct device *dev, const char *id,
2098 struct device *alias_dev,
2099 const char *alias_id)
2100{
2101 struct regulator_supply_alias *map;
2102
2103 map = regulator_find_supply_alias(dev, id);
2104 if (map)
2105 return -EEXIST;
2106
2107 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108 if (!map)
2109 return -ENOMEM;
2110
2111 map->src_dev = dev;
2112 map->src_supply = id;
2113 map->alias_dev = alias_dev;
2114 map->alias_supply = alias_id;
2115
2116 list_add(&map->list, ®ulator_supply_alias_list);
2117
2118 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119 id, dev_name(dev), alias_id, dev_name(alias_dev));
2120
2121 return 0;
2122}
2123EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124
2125/**
2126 * regulator_unregister_supply_alias - Remove device alias
2127 *
2128 * @dev: device that will be given as the regulator "consumer"
2129 * @id: Supply name or regulator ID
2130 *
2131 * Remove a lookup alias if one exists for id on dev.
2132 */
2133void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134{
2135 struct regulator_supply_alias *map;
2136
2137 map = regulator_find_supply_alias(dev, id);
2138 if (map) {
2139 list_del(&map->list);
2140 kfree(map);
2141 }
2142}
2143EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144
2145/**
2146 * regulator_bulk_register_supply_alias - register multiple aliases
2147 *
2148 * @dev: device that will be given as the regulator "consumer"
2149 * @id: List of supply names or regulator IDs
2150 * @alias_dev: device that should be used to lookup the supply
2151 * @alias_id: List of supply names or regulator IDs that should be used to
2152 * lookup the supply
2153 * @num_id: Number of aliases to register
2154 *
2155 * @return 0 on success, an errno on failure.
2156 *
2157 * This helper function allows drivers to register several supply
2158 * aliases in one operation. If any of the aliases cannot be
2159 * registered any aliases that were registered will be removed
2160 * before returning to the caller.
2161 */
2162int regulator_bulk_register_supply_alias(struct device *dev,
2163 const char *const *id,
2164 struct device *alias_dev,
2165 const char *const *alias_id,
2166 int num_id)
2167{
2168 int i;
2169 int ret;
2170
2171 for (i = 0; i < num_id; ++i) {
2172 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173 alias_id[i]);
2174 if (ret < 0)
2175 goto err;
2176 }
2177
2178 return 0;
2179
2180err:
2181 dev_err(dev,
2182 "Failed to create supply alias %s,%s -> %s,%s\n",
2183 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184
2185 while (--i >= 0)
2186 regulator_unregister_supply_alias(dev, id[i]);
2187
2188 return ret;
2189}
2190EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191
2192/**
2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194 *
2195 * @dev: device that will be given as the regulator "consumer"
2196 * @id: List of supply names or regulator IDs
2197 * @num_id: Number of aliases to unregister
2198 *
2199 * This helper function allows drivers to unregister several supply
2200 * aliases in one operation.
2201 */
2202void regulator_bulk_unregister_supply_alias(struct device *dev,
2203 const char *const *id,
2204 int num_id)
2205{
2206 int i;
2207
2208 for (i = 0; i < num_id; ++i)
2209 regulator_unregister_supply_alias(dev, id[i]);
2210}
2211EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212
2213
2214/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216 const struct regulator_config *config)
2217{
2218 struct regulator_enable_gpio *pin;
2219 struct gpio_desc *gpiod;
2220
2221 gpiod = config->ena_gpiod;
2222
2223 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2224 if (pin->gpiod == gpiod) {
2225 rdev_dbg(rdev, "GPIO is already used\n");
2226 goto update_ena_gpio_to_rdev;
2227 }
2228 }
2229
2230 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231 if (pin == NULL)
2232 return -ENOMEM;
2233
2234 pin->gpiod = gpiod;
2235 list_add(&pin->list, ®ulator_ena_gpio_list);
2236
2237update_ena_gpio_to_rdev:
2238 pin->request_count++;
2239 rdev->ena_pin = pin;
2240 return 0;
2241}
2242
2243static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244{
2245 struct regulator_enable_gpio *pin, *n;
2246
2247 if (!rdev->ena_pin)
2248 return;
2249
2250 /* Free the GPIO only in case of no use */
2251 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2252 if (pin->gpiod == rdev->ena_pin->gpiod) {
2253 if (pin->request_count <= 1) {
2254 pin->request_count = 0;
2255 gpiod_put(pin->gpiod);
2256 list_del(&pin->list);
2257 kfree(pin);
2258 rdev->ena_pin = NULL;
2259 return;
2260 } else {
2261 pin->request_count--;
2262 }
2263 }
2264 }
2265}
2266
2267/**
2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269 * @rdev: regulator_dev structure
2270 * @enable: enable GPIO at initial use?
2271 *
2272 * GPIO is enabled in case of initial use. (enable_count is 0)
2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274 */
2275static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276{
2277 struct regulator_enable_gpio *pin = rdev->ena_pin;
2278
2279 if (!pin)
2280 return -EINVAL;
2281
2282 if (enable) {
2283 /* Enable GPIO at initial use */
2284 if (pin->enable_count == 0)
2285 gpiod_set_value_cansleep(pin->gpiod, 1);
2286
2287 pin->enable_count++;
2288 } else {
2289 if (pin->enable_count > 1) {
2290 pin->enable_count--;
2291 return 0;
2292 }
2293
2294 /* Disable GPIO if not used */
2295 if (pin->enable_count <= 1) {
2296 gpiod_set_value_cansleep(pin->gpiod, 0);
2297 pin->enable_count = 0;
2298 }
2299 }
2300
2301 return 0;
2302}
2303
2304/**
2305 * _regulator_enable_delay - a delay helper function
2306 * @delay: time to delay in microseconds
2307 *
2308 * Delay for the requested amount of time as per the guidelines in:
2309 *
2310 * Documentation/timers/timers-howto.rst
2311 *
2312 * The assumption here is that regulators will never be enabled in
2313 * atomic context and therefore sleeping functions can be used.
2314 */
2315static void _regulator_enable_delay(unsigned int delay)
2316{
2317 unsigned int ms = delay / 1000;
2318 unsigned int us = delay % 1000;
2319
2320 if (ms > 0) {
2321 /*
2322 * For small enough values, handle super-millisecond
2323 * delays in the usleep_range() call below.
2324 */
2325 if (ms < 20)
2326 us += ms * 1000;
2327 else
2328 msleep(ms);
2329 }
2330
2331 /*
2332 * Give the scheduler some room to coalesce with any other
2333 * wakeup sources. For delays shorter than 10 us, don't even
2334 * bother setting up high-resolution timers and just busy-
2335 * loop.
2336 */
2337 if (us >= 10)
2338 usleep_range(us, us + 100);
2339 else
2340 udelay(us);
2341}
2342
2343static int _regulator_do_enable(struct regulator_dev *rdev)
2344{
2345 int ret, delay;
2346
2347 /* Query before enabling in case configuration dependent. */
2348 ret = _regulator_get_enable_time(rdev);
2349 if (ret >= 0) {
2350 delay = ret;
2351 } else {
2352 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353 delay = 0;
2354 }
2355
2356 trace_regulator_enable(rdev_get_name(rdev));
2357
2358 if (rdev->desc->off_on_delay) {
2359 /* if needed, keep a distance of off_on_delay from last time
2360 * this regulator was disabled.
2361 */
2362 unsigned long start_jiffy = jiffies;
2363 unsigned long intended, max_delay, remaining;
2364
2365 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366 intended = rdev->last_off_jiffy + max_delay;
2367
2368 if (time_before(start_jiffy, intended)) {
2369 /* calc remaining jiffies to deal with one-time
2370 * timer wrapping.
2371 * in case of multiple timer wrapping, either it can be
2372 * detected by out-of-range remaining, or it cannot be
2373 * detected and we get a penalty of
2374 * _regulator_enable_delay().
2375 */
2376 remaining = intended - start_jiffy;
2377 if (remaining <= max_delay)
2378 _regulator_enable_delay(
2379 jiffies_to_usecs(remaining));
2380 }
2381 }
2382
2383 if (rdev->ena_pin) {
2384 if (!rdev->ena_gpio_state) {
2385 ret = regulator_ena_gpio_ctrl(rdev, true);
2386 if (ret < 0)
2387 return ret;
2388 rdev->ena_gpio_state = 1;
2389 }
2390 } else if (rdev->desc->ops->enable) {
2391 ret = rdev->desc->ops->enable(rdev);
2392 if (ret < 0)
2393 return ret;
2394 } else {
2395 return -EINVAL;
2396 }
2397
2398 /* Allow the regulator to ramp; it would be useful to extend
2399 * this for bulk operations so that the regulators can ramp
2400 * together. */
2401 trace_regulator_enable_delay(rdev_get_name(rdev));
2402
2403 _regulator_enable_delay(delay);
2404
2405 trace_regulator_enable_complete(rdev_get_name(rdev));
2406
2407 return 0;
2408}
2409
2410/**
2411 * _regulator_handle_consumer_enable - handle that a consumer enabled
2412 * @regulator: regulator source
2413 *
2414 * Some things on a regulator consumer (like the contribution towards total
2415 * load on the regulator) only have an effect when the consumer wants the
2416 * regulator enabled. Explained in example with two consumers of the same
2417 * regulator:
2418 * consumer A: set_load(100); => total load = 0
2419 * consumer A: regulator_enable(); => total load = 100
2420 * consumer B: set_load(1000); => total load = 100
2421 * consumer B: regulator_enable(); => total load = 1100
2422 * consumer A: regulator_disable(); => total_load = 1000
2423 *
2424 * This function (together with _regulator_handle_consumer_disable) is
2425 * responsible for keeping track of the refcount for a given regulator consumer
2426 * and applying / unapplying these things.
2427 *
2428 * Returns 0 upon no error; -error upon error.
2429 */
2430static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431{
2432 struct regulator_dev *rdev = regulator->rdev;
2433
2434 lockdep_assert_held_once(&rdev->mutex.base);
2435
2436 regulator->enable_count++;
2437 if (regulator->uA_load && regulator->enable_count == 1)
2438 return drms_uA_update(rdev);
2439
2440 return 0;
2441}
2442
2443/**
2444 * _regulator_handle_consumer_disable - handle that a consumer disabled
2445 * @regulator: regulator source
2446 *
2447 * The opposite of _regulator_handle_consumer_enable().
2448 *
2449 * Returns 0 upon no error; -error upon error.
2450 */
2451static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452{
2453 struct regulator_dev *rdev = regulator->rdev;
2454
2455 lockdep_assert_held_once(&rdev->mutex.base);
2456
2457 if (!regulator->enable_count) {
2458 rdev_err(rdev, "Underflow of regulator enable count\n");
2459 return -EINVAL;
2460 }
2461
2462 regulator->enable_count--;
2463 if (regulator->uA_load && regulator->enable_count == 0)
2464 return drms_uA_update(rdev);
2465
2466 return 0;
2467}
2468
2469/* locks held by regulator_enable() */
2470static int _regulator_enable(struct regulator *regulator)
2471{
2472 struct regulator_dev *rdev = regulator->rdev;
2473 int ret;
2474
2475 lockdep_assert_held_once(&rdev->mutex.base);
2476
2477 if (rdev->use_count == 0 && rdev->supply) {
2478 ret = _regulator_enable(rdev->supply);
2479 if (ret < 0)
2480 return ret;
2481 }
2482
2483 /* balance only if there are regulators coupled */
2484 if (rdev->coupling_desc.n_coupled > 1) {
2485 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486 if (ret < 0)
2487 goto err_disable_supply;
2488 }
2489
2490 ret = _regulator_handle_consumer_enable(regulator);
2491 if (ret < 0)
2492 goto err_disable_supply;
2493
2494 if (rdev->use_count == 0) {
2495 /* The regulator may on if it's not switchable or left on */
2496 ret = _regulator_is_enabled(rdev);
2497 if (ret == -EINVAL || ret == 0) {
2498 if (!regulator_ops_is_valid(rdev,
2499 REGULATOR_CHANGE_STATUS)) {
2500 ret = -EPERM;
2501 goto err_consumer_disable;
2502 }
2503
2504 ret = _regulator_do_enable(rdev);
2505 if (ret < 0)
2506 goto err_consumer_disable;
2507
2508 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509 NULL);
2510 } else if (ret < 0) {
2511 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512 goto err_consumer_disable;
2513 }
2514 /* Fallthrough on positive return values - already enabled */
2515 }
2516
2517 rdev->use_count++;
2518
2519 return 0;
2520
2521err_consumer_disable:
2522 _regulator_handle_consumer_disable(regulator);
2523
2524err_disable_supply:
2525 if (rdev->use_count == 0 && rdev->supply)
2526 _regulator_disable(rdev->supply);
2527
2528 return ret;
2529}
2530
2531/**
2532 * regulator_enable - enable regulator output
2533 * @regulator: regulator source
2534 *
2535 * Request that the regulator be enabled with the regulator output at
2536 * the predefined voltage or current value. Calls to regulator_enable()
2537 * must be balanced with calls to regulator_disable().
2538 *
2539 * NOTE: the output value can be set by other drivers, boot loader or may be
2540 * hardwired in the regulator.
2541 */
2542int regulator_enable(struct regulator *regulator)
2543{
2544 struct regulator_dev *rdev = regulator->rdev;
2545 struct ww_acquire_ctx ww_ctx;
2546 int ret;
2547
2548 regulator_lock_dependent(rdev, &ww_ctx);
2549 ret = _regulator_enable(regulator);
2550 regulator_unlock_dependent(rdev, &ww_ctx);
2551
2552 return ret;
2553}
2554EXPORT_SYMBOL_GPL(regulator_enable);
2555
2556static int _regulator_do_disable(struct regulator_dev *rdev)
2557{
2558 int ret;
2559
2560 trace_regulator_disable(rdev_get_name(rdev));
2561
2562 if (rdev->ena_pin) {
2563 if (rdev->ena_gpio_state) {
2564 ret = regulator_ena_gpio_ctrl(rdev, false);
2565 if (ret < 0)
2566 return ret;
2567 rdev->ena_gpio_state = 0;
2568 }
2569
2570 } else if (rdev->desc->ops->disable) {
2571 ret = rdev->desc->ops->disable(rdev);
2572 if (ret != 0)
2573 return ret;
2574 }
2575
2576 /* cares about last_off_jiffy only if off_on_delay is required by
2577 * device.
2578 */
2579 if (rdev->desc->off_on_delay)
2580 rdev->last_off_jiffy = jiffies;
2581
2582 trace_regulator_disable_complete(rdev_get_name(rdev));
2583
2584 return 0;
2585}
2586
2587/* locks held by regulator_disable() */
2588static int _regulator_disable(struct regulator *regulator)
2589{
2590 struct regulator_dev *rdev = regulator->rdev;
2591 int ret = 0;
2592
2593 lockdep_assert_held_once(&rdev->mutex.base);
2594
2595 if (WARN(rdev->use_count <= 0,
2596 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597 return -EIO;
2598
2599 /* are we the last user and permitted to disable ? */
2600 if (rdev->use_count == 1 &&
2601 (rdev->constraints && !rdev->constraints->always_on)) {
2602
2603 /* we are last user */
2604 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605 ret = _notifier_call_chain(rdev,
2606 REGULATOR_EVENT_PRE_DISABLE,
2607 NULL);
2608 if (ret & NOTIFY_STOP_MASK)
2609 return -EINVAL;
2610
2611 ret = _regulator_do_disable(rdev);
2612 if (ret < 0) {
2613 rdev_err(rdev, "failed to disable\n");
2614 _notifier_call_chain(rdev,
2615 REGULATOR_EVENT_ABORT_DISABLE,
2616 NULL);
2617 return ret;
2618 }
2619 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620 NULL);
2621 }
2622
2623 rdev->use_count = 0;
2624 } else if (rdev->use_count > 1) {
2625 rdev->use_count--;
2626 }
2627
2628 if (ret == 0)
2629 ret = _regulator_handle_consumer_disable(regulator);
2630
2631 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633
2634 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635 ret = _regulator_disable(rdev->supply);
2636
2637 return ret;
2638}
2639
2640/**
2641 * regulator_disable - disable regulator output
2642 * @regulator: regulator source
2643 *
2644 * Disable the regulator output voltage or current. Calls to
2645 * regulator_enable() must be balanced with calls to
2646 * regulator_disable().
2647 *
2648 * NOTE: this will only disable the regulator output if no other consumer
2649 * devices have it enabled, the regulator device supports disabling and
2650 * machine constraints permit this operation.
2651 */
2652int regulator_disable(struct regulator *regulator)
2653{
2654 struct regulator_dev *rdev = regulator->rdev;
2655 struct ww_acquire_ctx ww_ctx;
2656 int ret;
2657
2658 regulator_lock_dependent(rdev, &ww_ctx);
2659 ret = _regulator_disable(regulator);
2660 regulator_unlock_dependent(rdev, &ww_ctx);
2661
2662 return ret;
2663}
2664EXPORT_SYMBOL_GPL(regulator_disable);
2665
2666/* locks held by regulator_force_disable() */
2667static int _regulator_force_disable(struct regulator_dev *rdev)
2668{
2669 int ret = 0;
2670
2671 lockdep_assert_held_once(&rdev->mutex.base);
2672
2673 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674 REGULATOR_EVENT_PRE_DISABLE, NULL);
2675 if (ret & NOTIFY_STOP_MASK)
2676 return -EINVAL;
2677
2678 ret = _regulator_do_disable(rdev);
2679 if (ret < 0) {
2680 rdev_err(rdev, "failed to force disable\n");
2681 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683 return ret;
2684 }
2685
2686 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687 REGULATOR_EVENT_DISABLE, NULL);
2688
2689 return 0;
2690}
2691
2692/**
2693 * regulator_force_disable - force disable regulator output
2694 * @regulator: regulator source
2695 *
2696 * Forcibly disable the regulator output voltage or current.
2697 * NOTE: this *will* disable the regulator output even if other consumer
2698 * devices have it enabled. This should be used for situations when device
2699 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700 */
2701int regulator_force_disable(struct regulator *regulator)
2702{
2703 struct regulator_dev *rdev = regulator->rdev;
2704 struct ww_acquire_ctx ww_ctx;
2705 int ret;
2706
2707 regulator_lock_dependent(rdev, &ww_ctx);
2708
2709 ret = _regulator_force_disable(regulator->rdev);
2710
2711 if (rdev->coupling_desc.n_coupled > 1)
2712 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713
2714 if (regulator->uA_load) {
2715 regulator->uA_load = 0;
2716 ret = drms_uA_update(rdev);
2717 }
2718
2719 if (rdev->use_count != 0 && rdev->supply)
2720 _regulator_disable(rdev->supply);
2721
2722 regulator_unlock_dependent(rdev, &ww_ctx);
2723
2724 return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_force_disable);
2727
2728static void regulator_disable_work(struct work_struct *work)
2729{
2730 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731 disable_work.work);
2732 struct ww_acquire_ctx ww_ctx;
2733 int count, i, ret;
2734 struct regulator *regulator;
2735 int total_count = 0;
2736
2737 regulator_lock_dependent(rdev, &ww_ctx);
2738
2739 /*
2740 * Workqueue functions queue the new work instance while the previous
2741 * work instance is being processed. Cancel the queued work instance
2742 * as the work instance under processing does the job of the queued
2743 * work instance.
2744 */
2745 cancel_delayed_work(&rdev->disable_work);
2746
2747 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748 count = regulator->deferred_disables;
2749
2750 if (!count)
2751 continue;
2752
2753 total_count += count;
2754 regulator->deferred_disables = 0;
2755
2756 for (i = 0; i < count; i++) {
2757 ret = _regulator_disable(regulator);
2758 if (ret != 0)
2759 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2760 }
2761 }
2762 WARN_ON(!total_count);
2763
2764 if (rdev->coupling_desc.n_coupled > 1)
2765 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766
2767 regulator_unlock_dependent(rdev, &ww_ctx);
2768}
2769
2770/**
2771 * regulator_disable_deferred - disable regulator output with delay
2772 * @regulator: regulator source
2773 * @ms: milliseconds until the regulator is disabled
2774 *
2775 * Execute regulator_disable() on the regulator after a delay. This
2776 * is intended for use with devices that require some time to quiesce.
2777 *
2778 * NOTE: this will only disable the regulator output if no other consumer
2779 * devices have it enabled, the regulator device supports disabling and
2780 * machine constraints permit this operation.
2781 */
2782int regulator_disable_deferred(struct regulator *regulator, int ms)
2783{
2784 struct regulator_dev *rdev = regulator->rdev;
2785
2786 if (!ms)
2787 return regulator_disable(regulator);
2788
2789 regulator_lock(rdev);
2790 regulator->deferred_disables++;
2791 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792 msecs_to_jiffies(ms));
2793 regulator_unlock(rdev);
2794
2795 return 0;
2796}
2797EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798
2799static int _regulator_is_enabled(struct regulator_dev *rdev)
2800{
2801 /* A GPIO control always takes precedence */
2802 if (rdev->ena_pin)
2803 return rdev->ena_gpio_state;
2804
2805 /* If we don't know then assume that the regulator is always on */
2806 if (!rdev->desc->ops->is_enabled)
2807 return 1;
2808
2809 return rdev->desc->ops->is_enabled(rdev);
2810}
2811
2812static int _regulator_list_voltage(struct regulator_dev *rdev,
2813 unsigned selector, int lock)
2814{
2815 const struct regulator_ops *ops = rdev->desc->ops;
2816 int ret;
2817
2818 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819 return rdev->desc->fixed_uV;
2820
2821 if (ops->list_voltage) {
2822 if (selector >= rdev->desc->n_voltages)
2823 return -EINVAL;
2824 if (lock)
2825 regulator_lock(rdev);
2826 ret = ops->list_voltage(rdev, selector);
2827 if (lock)
2828 regulator_unlock(rdev);
2829 } else if (rdev->is_switch && rdev->supply) {
2830 ret = _regulator_list_voltage(rdev->supply->rdev,
2831 selector, lock);
2832 } else {
2833 return -EINVAL;
2834 }
2835
2836 if (ret > 0) {
2837 if (ret < rdev->constraints->min_uV)
2838 ret = 0;
2839 else if (ret > rdev->constraints->max_uV)
2840 ret = 0;
2841 }
2842
2843 return ret;
2844}
2845
2846/**
2847 * regulator_is_enabled - is the regulator output enabled
2848 * @regulator: regulator source
2849 *
2850 * Returns positive if the regulator driver backing the source/client
2851 * has requested that the device be enabled, zero if it hasn't, else a
2852 * negative errno code.
2853 *
2854 * Note that the device backing this regulator handle can have multiple
2855 * users, so it might be enabled even if regulator_enable() was never
2856 * called for this particular source.
2857 */
2858int regulator_is_enabled(struct regulator *regulator)
2859{
2860 int ret;
2861
2862 if (regulator->always_on)
2863 return 1;
2864
2865 regulator_lock(regulator->rdev);
2866 ret = _regulator_is_enabled(regulator->rdev);
2867 regulator_unlock(regulator->rdev);
2868
2869 return ret;
2870}
2871EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872
2873/**
2874 * regulator_count_voltages - count regulator_list_voltage() selectors
2875 * @regulator: regulator source
2876 *
2877 * Returns number of selectors, or negative errno. Selectors are
2878 * numbered starting at zero, and typically correspond to bitfields
2879 * in hardware registers.
2880 */
2881int regulator_count_voltages(struct regulator *regulator)
2882{
2883 struct regulator_dev *rdev = regulator->rdev;
2884
2885 if (rdev->desc->n_voltages)
2886 return rdev->desc->n_voltages;
2887
2888 if (!rdev->is_switch || !rdev->supply)
2889 return -EINVAL;
2890
2891 return regulator_count_voltages(rdev->supply);
2892}
2893EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894
2895/**
2896 * regulator_list_voltage - enumerate supported voltages
2897 * @regulator: regulator source
2898 * @selector: identify voltage to list
2899 * Context: can sleep
2900 *
2901 * Returns a voltage that can be passed to @regulator_set_voltage(),
2902 * zero if this selector code can't be used on this system, or a
2903 * negative errno.
2904 */
2905int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906{
2907 return _regulator_list_voltage(regulator->rdev, selector, 1);
2908}
2909EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910
2911/**
2912 * regulator_get_regmap - get the regulator's register map
2913 * @regulator: regulator source
2914 *
2915 * Returns the register map for the given regulator, or an ERR_PTR value
2916 * if the regulator doesn't use regmap.
2917 */
2918struct regmap *regulator_get_regmap(struct regulator *regulator)
2919{
2920 struct regmap *map = regulator->rdev->regmap;
2921
2922 return map ? map : ERR_PTR(-EOPNOTSUPP);
2923}
2924
2925/**
2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927 * @regulator: regulator source
2928 * @vsel_reg: voltage selector register, output parameter
2929 * @vsel_mask: mask for voltage selector bitfield, output parameter
2930 *
2931 * Returns the hardware register offset and bitmask used for setting the
2932 * regulator voltage. This might be useful when configuring voltage-scaling
2933 * hardware or firmware that can make I2C requests behind the kernel's back,
2934 * for example.
2935 *
2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937 * and 0 is returned, otherwise a negative errno is returned.
2938 */
2939int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940 unsigned *vsel_reg,
2941 unsigned *vsel_mask)
2942{
2943 struct regulator_dev *rdev = regulator->rdev;
2944 const struct regulator_ops *ops = rdev->desc->ops;
2945
2946 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947 return -EOPNOTSUPP;
2948
2949 *vsel_reg = rdev->desc->vsel_reg;
2950 *vsel_mask = rdev->desc->vsel_mask;
2951
2952 return 0;
2953}
2954EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955
2956/**
2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958 * @regulator: regulator source
2959 * @selector: identify voltage to list
2960 *
2961 * Converts the selector to a hardware-specific voltage selector that can be
2962 * directly written to the regulator registers. The address of the voltage
2963 * register can be determined by calling @regulator_get_hardware_vsel_register.
2964 *
2965 * On error a negative errno is returned.
2966 */
2967int regulator_list_hardware_vsel(struct regulator *regulator,
2968 unsigned selector)
2969{
2970 struct regulator_dev *rdev = regulator->rdev;
2971 const struct regulator_ops *ops = rdev->desc->ops;
2972
2973 if (selector >= rdev->desc->n_voltages)
2974 return -EINVAL;
2975 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976 return -EOPNOTSUPP;
2977
2978 return selector;
2979}
2980EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981
2982/**
2983 * regulator_get_linear_step - return the voltage step size between VSEL values
2984 * @regulator: regulator source
2985 *
2986 * Returns the voltage step size between VSEL values for linear
2987 * regulators, or return 0 if the regulator isn't a linear regulator.
2988 */
2989unsigned int regulator_get_linear_step(struct regulator *regulator)
2990{
2991 struct regulator_dev *rdev = regulator->rdev;
2992
2993 return rdev->desc->uV_step;
2994}
2995EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996
2997/**
2998 * regulator_is_supported_voltage - check if a voltage range can be supported
2999 *
3000 * @regulator: Regulator to check.
3001 * @min_uV: Minimum required voltage in uV.
3002 * @max_uV: Maximum required voltage in uV.
3003 *
3004 * Returns a boolean.
3005 */
3006int regulator_is_supported_voltage(struct regulator *regulator,
3007 int min_uV, int max_uV)
3008{
3009 struct regulator_dev *rdev = regulator->rdev;
3010 int i, voltages, ret;
3011
3012 /* If we can't change voltage check the current voltage */
3013 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014 ret = regulator_get_voltage(regulator);
3015 if (ret >= 0)
3016 return min_uV <= ret && ret <= max_uV;
3017 else
3018 return ret;
3019 }
3020
3021 /* Any voltage within constrains range is fine? */
3022 if (rdev->desc->continuous_voltage_range)
3023 return min_uV >= rdev->constraints->min_uV &&
3024 max_uV <= rdev->constraints->max_uV;
3025
3026 ret = regulator_count_voltages(regulator);
3027 if (ret < 0)
3028 return 0;
3029 voltages = ret;
3030
3031 for (i = 0; i < voltages; i++) {
3032 ret = regulator_list_voltage(regulator, i);
3033
3034 if (ret >= min_uV && ret <= max_uV)
3035 return 1;
3036 }
3037
3038 return 0;
3039}
3040EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041
3042static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043 int max_uV)
3044{
3045 const struct regulator_desc *desc = rdev->desc;
3046
3047 if (desc->ops->map_voltage)
3048 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049
3050 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052
3053 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055
3056 if (desc->ops->list_voltage ==
3057 regulator_list_voltage_pickable_linear_range)
3058 return regulator_map_voltage_pickable_linear_range(rdev,
3059 min_uV, max_uV);
3060
3061 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062}
3063
3064static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065 int min_uV, int max_uV,
3066 unsigned *selector)
3067{
3068 struct pre_voltage_change_data data;
3069 int ret;
3070
3071 data.old_uV = regulator_get_voltage_rdev(rdev);
3072 data.min_uV = min_uV;
3073 data.max_uV = max_uV;
3074 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075 &data);
3076 if (ret & NOTIFY_STOP_MASK)
3077 return -EINVAL;
3078
3079 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080 if (ret >= 0)
3081 return ret;
3082
3083 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084 (void *)data.old_uV);
3085
3086 return ret;
3087}
3088
3089static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090 int uV, unsigned selector)
3091{
3092 struct pre_voltage_change_data data;
3093 int ret;
3094
3095 data.old_uV = regulator_get_voltage_rdev(rdev);
3096 data.min_uV = uV;
3097 data.max_uV = uV;
3098 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099 &data);
3100 if (ret & NOTIFY_STOP_MASK)
3101 return -EINVAL;
3102
3103 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104 if (ret >= 0)
3105 return ret;
3106
3107 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108 (void *)data.old_uV);
3109
3110 return ret;
3111}
3112
3113static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114 int uV, int new_selector)
3115{
3116 const struct regulator_ops *ops = rdev->desc->ops;
3117 int diff, old_sel, curr_sel, ret;
3118
3119 /* Stepping is only needed if the regulator is enabled. */
3120 if (!_regulator_is_enabled(rdev))
3121 goto final_set;
3122
3123 if (!ops->get_voltage_sel)
3124 return -EINVAL;
3125
3126 old_sel = ops->get_voltage_sel(rdev);
3127 if (old_sel < 0)
3128 return old_sel;
3129
3130 diff = new_selector - old_sel;
3131 if (diff == 0)
3132 return 0; /* No change needed. */
3133
3134 if (diff > 0) {
3135 /* Stepping up. */
3136 for (curr_sel = old_sel + rdev->desc->vsel_step;
3137 curr_sel < new_selector;
3138 curr_sel += rdev->desc->vsel_step) {
3139 /*
3140 * Call the callback directly instead of using
3141 * _regulator_call_set_voltage_sel() as we don't
3142 * want to notify anyone yet. Same in the branch
3143 * below.
3144 */
3145 ret = ops->set_voltage_sel(rdev, curr_sel);
3146 if (ret)
3147 goto try_revert;
3148 }
3149 } else {
3150 /* Stepping down. */
3151 for (curr_sel = old_sel - rdev->desc->vsel_step;
3152 curr_sel > new_selector;
3153 curr_sel -= rdev->desc->vsel_step) {
3154 ret = ops->set_voltage_sel(rdev, curr_sel);
3155 if (ret)
3156 goto try_revert;
3157 }
3158 }
3159
3160final_set:
3161 /* The final selector will trigger the notifiers. */
3162 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163
3164try_revert:
3165 /*
3166 * At least try to return to the previous voltage if setting a new
3167 * one failed.
3168 */
3169 (void)ops->set_voltage_sel(rdev, old_sel);
3170 return ret;
3171}
3172
3173static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174 int old_uV, int new_uV)
3175{
3176 unsigned int ramp_delay = 0;
3177
3178 if (rdev->constraints->ramp_delay)
3179 ramp_delay = rdev->constraints->ramp_delay;
3180 else if (rdev->desc->ramp_delay)
3181 ramp_delay = rdev->desc->ramp_delay;
3182 else if (rdev->constraints->settling_time)
3183 return rdev->constraints->settling_time;
3184 else if (rdev->constraints->settling_time_up &&
3185 (new_uV > old_uV))
3186 return rdev->constraints->settling_time_up;
3187 else if (rdev->constraints->settling_time_down &&
3188 (new_uV < old_uV))
3189 return rdev->constraints->settling_time_down;
3190
3191 if (ramp_delay == 0) {
3192 rdev_dbg(rdev, "ramp_delay not set\n");
3193 return 0;
3194 }
3195
3196 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197}
3198
3199static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200 int min_uV, int max_uV)
3201{
3202 int ret;
3203 int delay = 0;
3204 int best_val = 0;
3205 unsigned int selector;
3206 int old_selector = -1;
3207 const struct regulator_ops *ops = rdev->desc->ops;
3208 int old_uV = regulator_get_voltage_rdev(rdev);
3209
3210 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211
3212 min_uV += rdev->constraints->uV_offset;
3213 max_uV += rdev->constraints->uV_offset;
3214
3215 /*
3216 * If we can't obtain the old selector there is not enough
3217 * info to call set_voltage_time_sel().
3218 */
3219 if (_regulator_is_enabled(rdev) &&
3220 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221 old_selector = ops->get_voltage_sel(rdev);
3222 if (old_selector < 0)
3223 return old_selector;
3224 }
3225
3226 if (ops->set_voltage) {
3227 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228 &selector);
3229
3230 if (ret >= 0) {
3231 if (ops->list_voltage)
3232 best_val = ops->list_voltage(rdev,
3233 selector);
3234 else
3235 best_val = regulator_get_voltage_rdev(rdev);
3236 }
3237
3238 } else if (ops->set_voltage_sel) {
3239 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240 if (ret >= 0) {
3241 best_val = ops->list_voltage(rdev, ret);
3242 if (min_uV <= best_val && max_uV >= best_val) {
3243 selector = ret;
3244 if (old_selector == selector)
3245 ret = 0;
3246 else if (rdev->desc->vsel_step)
3247 ret = _regulator_set_voltage_sel_step(
3248 rdev, best_val, selector);
3249 else
3250 ret = _regulator_call_set_voltage_sel(
3251 rdev, best_val, selector);
3252 } else {
3253 ret = -EINVAL;
3254 }
3255 }
3256 } else {
3257 ret = -EINVAL;
3258 }
3259
3260 if (ret)
3261 goto out;
3262
3263 if (ops->set_voltage_time_sel) {
3264 /*
3265 * Call set_voltage_time_sel if successfully obtained
3266 * old_selector
3267 */
3268 if (old_selector >= 0 && old_selector != selector)
3269 delay = ops->set_voltage_time_sel(rdev, old_selector,
3270 selector);
3271 } else {
3272 if (old_uV != best_val) {
3273 if (ops->set_voltage_time)
3274 delay = ops->set_voltage_time(rdev, old_uV,
3275 best_val);
3276 else
3277 delay = _regulator_set_voltage_time(rdev,
3278 old_uV,
3279 best_val);
3280 }
3281 }
3282
3283 if (delay < 0) {
3284 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285 delay = 0;
3286 }
3287
3288 /* Insert any necessary delays */
3289 if (delay >= 1000) {
3290 mdelay(delay / 1000);
3291 udelay(delay % 1000);
3292 } else if (delay) {
3293 udelay(delay);
3294 }
3295
3296 if (best_val >= 0) {
3297 unsigned long data = best_val;
3298
3299 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300 (void *)data);
3301 }
3302
3303out:
3304 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305
3306 return ret;
3307}
3308
3309static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310 int min_uV, int max_uV, suspend_state_t state)
3311{
3312 struct regulator_state *rstate;
3313 int uV, sel;
3314
3315 rstate = regulator_get_suspend_state(rdev, state);
3316 if (rstate == NULL)
3317 return -EINVAL;
3318
3319 if (min_uV < rstate->min_uV)
3320 min_uV = rstate->min_uV;
3321 if (max_uV > rstate->max_uV)
3322 max_uV = rstate->max_uV;
3323
3324 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325 if (sel < 0)
3326 return sel;
3327
3328 uV = rdev->desc->ops->list_voltage(rdev, sel);
3329 if (uV >= min_uV && uV <= max_uV)
3330 rstate->uV = uV;
3331
3332 return 0;
3333}
3334
3335static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336 int min_uV, int max_uV,
3337 suspend_state_t state)
3338{
3339 struct regulator_dev *rdev = regulator->rdev;
3340 struct regulator_voltage *voltage = ®ulator->voltage[state];
3341 int ret = 0;
3342 int old_min_uV, old_max_uV;
3343 int current_uV;
3344
3345 /* If we're setting the same range as last time the change
3346 * should be a noop (some cpufreq implementations use the same
3347 * voltage for multiple frequencies, for example).
3348 */
3349 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350 goto out;
3351
3352 /* If we're trying to set a range that overlaps the current voltage,
3353 * return successfully even though the regulator does not support
3354 * changing the voltage.
3355 */
3356 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357 current_uV = regulator_get_voltage_rdev(rdev);
3358 if (min_uV <= current_uV && current_uV <= max_uV) {
3359 voltage->min_uV = min_uV;
3360 voltage->max_uV = max_uV;
3361 goto out;
3362 }
3363 }
3364
3365 /* sanity check */
3366 if (!rdev->desc->ops->set_voltage &&
3367 !rdev->desc->ops->set_voltage_sel) {
3368 ret = -EINVAL;
3369 goto out;
3370 }
3371
3372 /* constraints check */
3373 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374 if (ret < 0)
3375 goto out;
3376
3377 /* restore original values in case of error */
3378 old_min_uV = voltage->min_uV;
3379 old_max_uV = voltage->max_uV;
3380 voltage->min_uV = min_uV;
3381 voltage->max_uV = max_uV;
3382
3383 /* for not coupled regulators this will just set the voltage */
3384 ret = regulator_balance_voltage(rdev, state);
3385 if (ret < 0) {
3386 voltage->min_uV = old_min_uV;
3387 voltage->max_uV = old_max_uV;
3388 }
3389
3390out:
3391 return ret;
3392}
3393
3394int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395 int max_uV, suspend_state_t state)
3396{
3397 int best_supply_uV = 0;
3398 int supply_change_uV = 0;
3399 int ret;
3400
3401 if (rdev->supply &&
3402 regulator_ops_is_valid(rdev->supply->rdev,
3403 REGULATOR_CHANGE_VOLTAGE) &&
3404 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405 rdev->desc->ops->get_voltage_sel))) {
3406 int current_supply_uV;
3407 int selector;
3408
3409 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410 if (selector < 0) {
3411 ret = selector;
3412 goto out;
3413 }
3414
3415 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416 if (best_supply_uV < 0) {
3417 ret = best_supply_uV;
3418 goto out;
3419 }
3420
3421 best_supply_uV += rdev->desc->min_dropout_uV;
3422
3423 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424 if (current_supply_uV < 0) {
3425 ret = current_supply_uV;
3426 goto out;
3427 }
3428
3429 supply_change_uV = best_supply_uV - current_supply_uV;
3430 }
3431
3432 if (supply_change_uV > 0) {
3433 ret = regulator_set_voltage_unlocked(rdev->supply,
3434 best_supply_uV, INT_MAX, state);
3435 if (ret) {
3436 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437 ret);
3438 goto out;
3439 }
3440 }
3441
3442 if (state == PM_SUSPEND_ON)
3443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444 else
3445 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446 max_uV, state);
3447 if (ret < 0)
3448 goto out;
3449
3450 if (supply_change_uV < 0) {
3451 ret = regulator_set_voltage_unlocked(rdev->supply,
3452 best_supply_uV, INT_MAX, state);
3453 if (ret)
3454 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455 ret);
3456 /* No need to fail here */
3457 ret = 0;
3458 }
3459
3460out:
3461 return ret;
3462}
3463
3464static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465 int *current_uV, int *min_uV)
3466{
3467 struct regulation_constraints *constraints = rdev->constraints;
3468
3469 /* Limit voltage change only if necessary */
3470 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471 return 1;
3472
3473 if (*current_uV < 0) {
3474 *current_uV = regulator_get_voltage_rdev(rdev);
3475
3476 if (*current_uV < 0)
3477 return *current_uV;
3478 }
3479
3480 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481 return 1;
3482
3483 /* Clamp target voltage within the given step */
3484 if (*current_uV < *min_uV)
3485 *min_uV = min(*current_uV + constraints->max_uV_step,
3486 *min_uV);
3487 else
3488 *min_uV = max(*current_uV - constraints->max_uV_step,
3489 *min_uV);
3490
3491 return 0;
3492}
3493
3494static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495 int *current_uV,
3496 int *min_uV, int *max_uV,
3497 suspend_state_t state,
3498 int n_coupled)
3499{
3500 struct coupling_desc *c_desc = &rdev->coupling_desc;
3501 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502 struct regulation_constraints *constraints = rdev->constraints;
3503 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504 int max_current_uV = 0, min_current_uV = INT_MAX;
3505 int highest_min_uV = 0, target_uV, possible_uV;
3506 int i, ret, max_spread;
3507 bool done;
3508
3509 *current_uV = -1;
3510
3511 /*
3512 * If there are no coupled regulators, simply set the voltage
3513 * demanded by consumers.
3514 */
3515 if (n_coupled == 1) {
3516 /*
3517 * If consumers don't provide any demands, set voltage
3518 * to min_uV
3519 */
3520 desired_min_uV = constraints->min_uV;
3521 desired_max_uV = constraints->max_uV;
3522
3523 ret = regulator_check_consumers(rdev,
3524 &desired_min_uV,
3525 &desired_max_uV, state);
3526 if (ret < 0)
3527 return ret;
3528
3529 possible_uV = desired_min_uV;
3530 done = true;
3531
3532 goto finish;
3533 }
3534
3535 /* Find highest min desired voltage */
3536 for (i = 0; i < n_coupled; i++) {
3537 int tmp_min = 0;
3538 int tmp_max = INT_MAX;
3539
3540 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541
3542 ret = regulator_check_consumers(c_rdevs[i],
3543 &tmp_min,
3544 &tmp_max, state);
3545 if (ret < 0)
3546 return ret;
3547
3548 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549 if (ret < 0)
3550 return ret;
3551
3552 highest_min_uV = max(highest_min_uV, tmp_min);
3553
3554 if (i == 0) {
3555 desired_min_uV = tmp_min;
3556 desired_max_uV = tmp_max;
3557 }
3558 }
3559
3560 max_spread = constraints->max_spread[0];
3561
3562 /*
3563 * Let target_uV be equal to the desired one if possible.
3564 * If not, set it to minimum voltage, allowed by other coupled
3565 * regulators.
3566 */
3567 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568
3569 /*
3570 * Find min and max voltages, which currently aren't violating
3571 * max_spread.
3572 */
3573 for (i = 1; i < n_coupled; i++) {
3574 int tmp_act;
3575
3576 if (!_regulator_is_enabled(c_rdevs[i]))
3577 continue;
3578
3579 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580 if (tmp_act < 0)
3581 return tmp_act;
3582
3583 min_current_uV = min(tmp_act, min_current_uV);
3584 max_current_uV = max(tmp_act, max_current_uV);
3585 }
3586
3587 /* There aren't any other regulators enabled */
3588 if (max_current_uV == 0) {
3589 possible_uV = target_uV;
3590 } else {
3591 /*
3592 * Correct target voltage, so as it currently isn't
3593 * violating max_spread
3594 */
3595 possible_uV = max(target_uV, max_current_uV - max_spread);
3596 possible_uV = min(possible_uV, min_current_uV + max_spread);
3597 }
3598
3599 if (possible_uV > desired_max_uV)
3600 return -EINVAL;
3601
3602 done = (possible_uV == target_uV);
3603 desired_min_uV = possible_uV;
3604
3605finish:
3606 /* Apply max_uV_step constraint if necessary */
3607 if (state == PM_SUSPEND_ON) {
3608 ret = regulator_limit_voltage_step(rdev, current_uV,
3609 &desired_min_uV);
3610 if (ret < 0)
3611 return ret;
3612
3613 if (ret == 0)
3614 done = false;
3615 }
3616
3617 /* Set current_uV if wasn't done earlier in the code and if necessary */
3618 if (n_coupled > 1 && *current_uV == -1) {
3619
3620 if (_regulator_is_enabled(rdev)) {
3621 ret = regulator_get_voltage_rdev(rdev);
3622 if (ret < 0)
3623 return ret;
3624
3625 *current_uV = ret;
3626 } else {
3627 *current_uV = desired_min_uV;
3628 }
3629 }
3630
3631 *min_uV = desired_min_uV;
3632 *max_uV = desired_max_uV;
3633
3634 return done;
3635}
3636
3637static int regulator_balance_voltage(struct regulator_dev *rdev,
3638 suspend_state_t state)
3639{
3640 struct regulator_dev **c_rdevs;
3641 struct regulator_dev *best_rdev;
3642 struct coupling_desc *c_desc = &rdev->coupling_desc;
3643 struct regulator_coupler *coupler = c_desc->coupler;
3644 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645 unsigned int delta, best_delta;
3646 unsigned long c_rdev_done = 0;
3647 bool best_c_rdev_done;
3648
3649 c_rdevs = c_desc->coupled_rdevs;
3650 n_coupled = c_desc->n_coupled;
3651
3652 /*
3653 * If system is in a state other than PM_SUSPEND_ON, don't check
3654 * other coupled regulators.
3655 */
3656 if (state != PM_SUSPEND_ON)
3657 n_coupled = 1;
3658
3659 if (c_desc->n_resolved < n_coupled) {
3660 rdev_err(rdev, "Not all coupled regulators registered\n");
3661 return -EPERM;
3662 }
3663
3664 /* Invoke custom balancer for customized couplers */
3665 if (coupler && coupler->balance_voltage)
3666 return coupler->balance_voltage(coupler, rdev, state);
3667
3668 /*
3669 * Find the best possible voltage change on each loop. Leave the loop
3670 * if there isn't any possible change.
3671 */
3672 do {
3673 best_c_rdev_done = false;
3674 best_delta = 0;
3675 best_min_uV = 0;
3676 best_max_uV = 0;
3677 best_c_rdev = 0;
3678 best_rdev = NULL;
3679
3680 /*
3681 * Find highest difference between optimal voltage
3682 * and current voltage.
3683 */
3684 for (i = 0; i < n_coupled; i++) {
3685 /*
3686 * optimal_uV is the best voltage that can be set for
3687 * i-th regulator at the moment without violating
3688 * max_spread constraint in order to balance
3689 * the coupled voltages.
3690 */
3691 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692
3693 if (test_bit(i, &c_rdev_done))
3694 continue;
3695
3696 ret = regulator_get_optimal_voltage(c_rdevs[i],
3697 ¤t_uV,
3698 &optimal_uV,
3699 &optimal_max_uV,
3700 state, n_coupled);
3701 if (ret < 0)
3702 goto out;
3703
3704 delta = abs(optimal_uV - current_uV);
3705
3706 if (delta && best_delta <= delta) {
3707 best_c_rdev_done = ret;
3708 best_delta = delta;
3709 best_rdev = c_rdevs[i];
3710 best_min_uV = optimal_uV;
3711 best_max_uV = optimal_max_uV;
3712 best_c_rdev = i;
3713 }
3714 }
3715
3716 /* Nothing to change, return successfully */
3717 if (!best_rdev) {
3718 ret = 0;
3719 goto out;
3720 }
3721
3722 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723 best_max_uV, state);
3724
3725 if (ret < 0)
3726 goto out;
3727
3728 if (best_c_rdev_done)
3729 set_bit(best_c_rdev, &c_rdev_done);
3730
3731 } while (n_coupled > 1);
3732
3733out:
3734 return ret;
3735}
3736
3737/**
3738 * regulator_set_voltage - set regulator output voltage
3739 * @regulator: regulator source
3740 * @min_uV: Minimum required voltage in uV
3741 * @max_uV: Maximum acceptable voltage in uV
3742 *
3743 * Sets a voltage regulator to the desired output voltage. This can be set
3744 * during any regulator state. IOW, regulator can be disabled or enabled.
3745 *
3746 * If the regulator is enabled then the voltage will change to the new value
3747 * immediately otherwise if the regulator is disabled the regulator will
3748 * output at the new voltage when enabled.
3749 *
3750 * NOTE: If the regulator is shared between several devices then the lowest
3751 * request voltage that meets the system constraints will be used.
3752 * Regulator system constraints must be set for this regulator before
3753 * calling this function otherwise this call will fail.
3754 */
3755int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756{
3757 struct ww_acquire_ctx ww_ctx;
3758 int ret;
3759
3760 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761
3762 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763 PM_SUSPEND_ON);
3764
3765 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766
3767 return ret;
3768}
3769EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770
3771static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772 suspend_state_t state, bool en)
3773{
3774 struct regulator_state *rstate;
3775
3776 rstate = regulator_get_suspend_state(rdev, state);
3777 if (rstate == NULL)
3778 return -EINVAL;
3779
3780 if (!rstate->changeable)
3781 return -EPERM;
3782
3783 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784
3785 return 0;
3786}
3787
3788int regulator_suspend_enable(struct regulator_dev *rdev,
3789 suspend_state_t state)
3790{
3791 return regulator_suspend_toggle(rdev, state, true);
3792}
3793EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794
3795int regulator_suspend_disable(struct regulator_dev *rdev,
3796 suspend_state_t state)
3797{
3798 struct regulator *regulator;
3799 struct regulator_voltage *voltage;
3800
3801 /*
3802 * if any consumer wants this regulator device keeping on in
3803 * suspend states, don't set it as disabled.
3804 */
3805 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806 voltage = ®ulator->voltage[state];
3807 if (voltage->min_uV || voltage->max_uV)
3808 return 0;
3809 }
3810
3811 return regulator_suspend_toggle(rdev, state, false);
3812}
3813EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814
3815static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816 int min_uV, int max_uV,
3817 suspend_state_t state)
3818{
3819 struct regulator_dev *rdev = regulator->rdev;
3820 struct regulator_state *rstate;
3821
3822 rstate = regulator_get_suspend_state(rdev, state);
3823 if (rstate == NULL)
3824 return -EINVAL;
3825
3826 if (rstate->min_uV == rstate->max_uV) {
3827 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828 return -EPERM;
3829 }
3830
3831 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832}
3833
3834int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835 int max_uV, suspend_state_t state)
3836{
3837 struct ww_acquire_ctx ww_ctx;
3838 int ret;
3839
3840 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842 return -EINVAL;
3843
3844 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845
3846 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847 max_uV, state);
3848
3849 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850
3851 return ret;
3852}
3853EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854
3855/**
3856 * regulator_set_voltage_time - get raise/fall time
3857 * @regulator: regulator source
3858 * @old_uV: starting voltage in microvolts
3859 * @new_uV: target voltage in microvolts
3860 *
3861 * Provided with the starting and ending voltage, this function attempts to
3862 * calculate the time in microseconds required to rise or fall to this new
3863 * voltage.
3864 */
3865int regulator_set_voltage_time(struct regulator *regulator,
3866 int old_uV, int new_uV)
3867{
3868 struct regulator_dev *rdev = regulator->rdev;
3869 const struct regulator_ops *ops = rdev->desc->ops;
3870 int old_sel = -1;
3871 int new_sel = -1;
3872 int voltage;
3873 int i;
3874
3875 if (ops->set_voltage_time)
3876 return ops->set_voltage_time(rdev, old_uV, new_uV);
3877 else if (!ops->set_voltage_time_sel)
3878 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879
3880 /* Currently requires operations to do this */
3881 if (!ops->list_voltage || !rdev->desc->n_voltages)
3882 return -EINVAL;
3883
3884 for (i = 0; i < rdev->desc->n_voltages; i++) {
3885 /* We only look for exact voltage matches here */
3886 voltage = regulator_list_voltage(regulator, i);
3887 if (voltage < 0)
3888 return -EINVAL;
3889 if (voltage == 0)
3890 continue;
3891 if (voltage == old_uV)
3892 old_sel = i;
3893 if (voltage == new_uV)
3894 new_sel = i;
3895 }
3896
3897 if (old_sel < 0 || new_sel < 0)
3898 return -EINVAL;
3899
3900 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901}
3902EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903
3904/**
3905 * regulator_set_voltage_time_sel - get raise/fall time
3906 * @rdev: regulator source device
3907 * @old_selector: selector for starting voltage
3908 * @new_selector: selector for target voltage
3909 *
3910 * Provided with the starting and target voltage selectors, this function
3911 * returns time in microseconds required to rise or fall to this new voltage
3912 *
3913 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914 * set_voltage_time_sel() operation.
3915 */
3916int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917 unsigned int old_selector,
3918 unsigned int new_selector)
3919{
3920 int old_volt, new_volt;
3921
3922 /* sanity check */
3923 if (!rdev->desc->ops->list_voltage)
3924 return -EINVAL;
3925
3926 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928
3929 if (rdev->desc->ops->set_voltage_time)
3930 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931 new_volt);
3932 else
3933 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934}
3935EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936
3937/**
3938 * regulator_sync_voltage - re-apply last regulator output voltage
3939 * @regulator: regulator source
3940 *
3941 * Re-apply the last configured voltage. This is intended to be used
3942 * where some external control source the consumer is cooperating with
3943 * has caused the configured voltage to change.
3944 */
3945int regulator_sync_voltage(struct regulator *regulator)
3946{
3947 struct regulator_dev *rdev = regulator->rdev;
3948 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
3949 int ret, min_uV, max_uV;
3950
3951 regulator_lock(rdev);
3952
3953 if (!rdev->desc->ops->set_voltage &&
3954 !rdev->desc->ops->set_voltage_sel) {
3955 ret = -EINVAL;
3956 goto out;
3957 }
3958
3959 /* This is only going to work if we've had a voltage configured. */
3960 if (!voltage->min_uV && !voltage->max_uV) {
3961 ret = -EINVAL;
3962 goto out;
3963 }
3964
3965 min_uV = voltage->min_uV;
3966 max_uV = voltage->max_uV;
3967
3968 /* This should be a paranoia check... */
3969 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970 if (ret < 0)
3971 goto out;
3972
3973 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974 if (ret < 0)
3975 goto out;
3976
3977 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978
3979out:
3980 regulator_unlock(rdev);
3981 return ret;
3982}
3983EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984
3985int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986{
3987 int sel, ret;
3988 bool bypassed;
3989
3990 if (rdev->desc->ops->get_bypass) {
3991 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992 if (ret < 0)
3993 return ret;
3994 if (bypassed) {
3995 /* if bypassed the regulator must have a supply */
3996 if (!rdev->supply) {
3997 rdev_err(rdev,
3998 "bypassed regulator has no supply!\n");
3999 return -EPROBE_DEFER;
4000 }
4001
4002 return regulator_get_voltage_rdev(rdev->supply->rdev);
4003 }
4004 }
4005
4006 if (rdev->desc->ops->get_voltage_sel) {
4007 sel = rdev->desc->ops->get_voltage_sel(rdev);
4008 if (sel < 0)
4009 return sel;
4010 ret = rdev->desc->ops->list_voltage(rdev, sel);
4011 } else if (rdev->desc->ops->get_voltage) {
4012 ret = rdev->desc->ops->get_voltage(rdev);
4013 } else if (rdev->desc->ops->list_voltage) {
4014 ret = rdev->desc->ops->list_voltage(rdev, 0);
4015 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016 ret = rdev->desc->fixed_uV;
4017 } else if (rdev->supply) {
4018 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019 } else {
4020 return -EINVAL;
4021 }
4022
4023 if (ret < 0)
4024 return ret;
4025 return ret - rdev->constraints->uV_offset;
4026}
4027
4028/**
4029 * regulator_get_voltage - get regulator output voltage
4030 * @regulator: regulator source
4031 *
4032 * This returns the current regulator voltage in uV.
4033 *
4034 * NOTE: If the regulator is disabled it will return the voltage value. This
4035 * function should not be used to determine regulator state.
4036 */
4037int regulator_get_voltage(struct regulator *regulator)
4038{
4039 struct ww_acquire_ctx ww_ctx;
4040 int ret;
4041
4042 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043 ret = regulator_get_voltage_rdev(regulator->rdev);
4044 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4045
4046 return ret;
4047}
4048EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049
4050/**
4051 * regulator_set_current_limit - set regulator output current limit
4052 * @regulator: regulator source
4053 * @min_uA: Minimum supported current in uA
4054 * @max_uA: Maximum supported current in uA
4055 *
4056 * Sets current sink to the desired output current. This can be set during
4057 * any regulator state. IOW, regulator can be disabled or enabled.
4058 *
4059 * If the regulator is enabled then the current will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new current when enabled.
4062 *
4063 * NOTE: Regulator system constraints must be set for this regulator before
4064 * calling this function otherwise this call will fail.
4065 */
4066int regulator_set_current_limit(struct regulator *regulator,
4067 int min_uA, int max_uA)
4068{
4069 struct regulator_dev *rdev = regulator->rdev;
4070 int ret;
4071
4072 regulator_lock(rdev);
4073
4074 /* sanity check */
4075 if (!rdev->desc->ops->set_current_limit) {
4076 ret = -EINVAL;
4077 goto out;
4078 }
4079
4080 /* constraints check */
4081 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082 if (ret < 0)
4083 goto out;
4084
4085 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086out:
4087 regulator_unlock(rdev);
4088 return ret;
4089}
4090EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091
4092static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093{
4094 /* sanity check */
4095 if (!rdev->desc->ops->get_current_limit)
4096 return -EINVAL;
4097
4098 return rdev->desc->ops->get_current_limit(rdev);
4099}
4100
4101static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102{
4103 int ret;
4104
4105 regulator_lock(rdev);
4106 ret = _regulator_get_current_limit_unlocked(rdev);
4107 regulator_unlock(rdev);
4108
4109 return ret;
4110}
4111
4112/**
4113 * regulator_get_current_limit - get regulator output current
4114 * @regulator: regulator source
4115 *
4116 * This returns the current supplied by the specified current sink in uA.
4117 *
4118 * NOTE: If the regulator is disabled it will return the current value. This
4119 * function should not be used to determine regulator state.
4120 */
4121int regulator_get_current_limit(struct regulator *regulator)
4122{
4123 return _regulator_get_current_limit(regulator->rdev);
4124}
4125EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126
4127/**
4128 * regulator_set_mode - set regulator operating mode
4129 * @regulator: regulator source
4130 * @mode: operating mode - one of the REGULATOR_MODE constants
4131 *
4132 * Set regulator operating mode to increase regulator efficiency or improve
4133 * regulation performance.
4134 *
4135 * NOTE: Regulator system constraints must be set for this regulator before
4136 * calling this function otherwise this call will fail.
4137 */
4138int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139{
4140 struct regulator_dev *rdev = regulator->rdev;
4141 int ret;
4142 int regulator_curr_mode;
4143
4144 regulator_lock(rdev);
4145
4146 /* sanity check */
4147 if (!rdev->desc->ops->set_mode) {
4148 ret = -EINVAL;
4149 goto out;
4150 }
4151
4152 /* return if the same mode is requested */
4153 if (rdev->desc->ops->get_mode) {
4154 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155 if (regulator_curr_mode == mode) {
4156 ret = 0;
4157 goto out;
4158 }
4159 }
4160
4161 /* constraints check */
4162 ret = regulator_mode_constrain(rdev, &mode);
4163 if (ret < 0)
4164 goto out;
4165
4166 ret = rdev->desc->ops->set_mode(rdev, mode);
4167out:
4168 regulator_unlock(rdev);
4169 return ret;
4170}
4171EXPORT_SYMBOL_GPL(regulator_set_mode);
4172
4173static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174{
4175 /* sanity check */
4176 if (!rdev->desc->ops->get_mode)
4177 return -EINVAL;
4178
4179 return rdev->desc->ops->get_mode(rdev);
4180}
4181
4182static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183{
4184 int ret;
4185
4186 regulator_lock(rdev);
4187 ret = _regulator_get_mode_unlocked(rdev);
4188 regulator_unlock(rdev);
4189
4190 return ret;
4191}
4192
4193/**
4194 * regulator_get_mode - get regulator operating mode
4195 * @regulator: regulator source
4196 *
4197 * Get the current regulator operating mode.
4198 */
4199unsigned int regulator_get_mode(struct regulator *regulator)
4200{
4201 return _regulator_get_mode(regulator->rdev);
4202}
4203EXPORT_SYMBOL_GPL(regulator_get_mode);
4204
4205static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206 unsigned int *flags)
4207{
4208 int ret;
4209
4210 regulator_lock(rdev);
4211
4212 /* sanity check */
4213 if (!rdev->desc->ops->get_error_flags) {
4214 ret = -EINVAL;
4215 goto out;
4216 }
4217
4218 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219out:
4220 regulator_unlock(rdev);
4221 return ret;
4222}
4223
4224/**
4225 * regulator_get_error_flags - get regulator error information
4226 * @regulator: regulator source
4227 * @flags: pointer to store error flags
4228 *
4229 * Get the current regulator error information.
4230 */
4231int regulator_get_error_flags(struct regulator *regulator,
4232 unsigned int *flags)
4233{
4234 return _regulator_get_error_flags(regulator->rdev, flags);
4235}
4236EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237
4238/**
4239 * regulator_set_load - set regulator load
4240 * @regulator: regulator source
4241 * @uA_load: load current
4242 *
4243 * Notifies the regulator core of a new device load. This is then used by
4244 * DRMS (if enabled by constraints) to set the most efficient regulator
4245 * operating mode for the new regulator loading.
4246 *
4247 * Consumer devices notify their supply regulator of the maximum power
4248 * they will require (can be taken from device datasheet in the power
4249 * consumption tables) when they change operational status and hence power
4250 * state. Examples of operational state changes that can affect power
4251 * consumption are :-
4252 *
4253 * o Device is opened / closed.
4254 * o Device I/O is about to begin or has just finished.
4255 * o Device is idling in between work.
4256 *
4257 * This information is also exported via sysfs to userspace.
4258 *
4259 * DRMS will sum the total requested load on the regulator and change
4260 * to the most efficient operating mode if platform constraints allow.
4261 *
4262 * NOTE: when a regulator consumer requests to have a regulator
4263 * disabled then any load that consumer requested no longer counts
4264 * toward the total requested load. If the regulator is re-enabled
4265 * then the previously requested load will start counting again.
4266 *
4267 * If a regulator is an always-on regulator then an individual consumer's
4268 * load will still be removed if that consumer is fully disabled.
4269 *
4270 * On error a negative errno is returned.
4271 */
4272int regulator_set_load(struct regulator *regulator, int uA_load)
4273{
4274 struct regulator_dev *rdev = regulator->rdev;
4275 int old_uA_load;
4276 int ret = 0;
4277
4278 regulator_lock(rdev);
4279 old_uA_load = regulator->uA_load;
4280 regulator->uA_load = uA_load;
4281 if (regulator->enable_count && old_uA_load != uA_load) {
4282 ret = drms_uA_update(rdev);
4283 if (ret < 0)
4284 regulator->uA_load = old_uA_load;
4285 }
4286 regulator_unlock(rdev);
4287
4288 return ret;
4289}
4290EXPORT_SYMBOL_GPL(regulator_set_load);
4291
4292/**
4293 * regulator_allow_bypass - allow the regulator to go into bypass mode
4294 *
4295 * @regulator: Regulator to configure
4296 * @enable: enable or disable bypass mode
4297 *
4298 * Allow the regulator to go into bypass mode if all other consumers
4299 * for the regulator also enable bypass mode and the machine
4300 * constraints allow this. Bypass mode means that the regulator is
4301 * simply passing the input directly to the output with no regulation.
4302 */
4303int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304{
4305 struct regulator_dev *rdev = regulator->rdev;
4306 int ret = 0;
4307
4308 if (!rdev->desc->ops->set_bypass)
4309 return 0;
4310
4311 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312 return 0;
4313
4314 regulator_lock(rdev);
4315
4316 if (enable && !regulator->bypass) {
4317 rdev->bypass_count++;
4318
4319 if (rdev->bypass_count == rdev->open_count) {
4320 ret = rdev->desc->ops->set_bypass(rdev, enable);
4321 if (ret != 0)
4322 rdev->bypass_count--;
4323 }
4324
4325 } else if (!enable && regulator->bypass) {
4326 rdev->bypass_count--;
4327
4328 if (rdev->bypass_count != rdev->open_count) {
4329 ret = rdev->desc->ops->set_bypass(rdev, enable);
4330 if (ret != 0)
4331 rdev->bypass_count++;
4332 }
4333 }
4334
4335 if (ret == 0)
4336 regulator->bypass = enable;
4337
4338 regulator_unlock(rdev);
4339
4340 return ret;
4341}
4342EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343
4344/**
4345 * regulator_register_notifier - register regulator event notifier
4346 * @regulator: regulator source
4347 * @nb: notifier block
4348 *
4349 * Register notifier block to receive regulator events.
4350 */
4351int regulator_register_notifier(struct regulator *regulator,
4352 struct notifier_block *nb)
4353{
4354 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4355 nb);
4356}
4357EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358
4359/**
4360 * regulator_unregister_notifier - unregister regulator event notifier
4361 * @regulator: regulator source
4362 * @nb: notifier block
4363 *
4364 * Unregister regulator event notifier block.
4365 */
4366int regulator_unregister_notifier(struct regulator *regulator,
4367 struct notifier_block *nb)
4368{
4369 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4370 nb);
4371}
4372EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373
4374/* notify regulator consumers and downstream regulator consumers.
4375 * Note mutex must be held by caller.
4376 */
4377static int _notifier_call_chain(struct regulator_dev *rdev,
4378 unsigned long event, void *data)
4379{
4380 /* call rdev chain first */
4381 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382}
4383
4384/**
4385 * regulator_bulk_get - get multiple regulator consumers
4386 *
4387 * @dev: Device to supply
4388 * @num_consumers: Number of consumers to register
4389 * @consumers: Configuration of consumers; clients are stored here.
4390 *
4391 * @return 0 on success, an errno on failure.
4392 *
4393 * This helper function allows drivers to get several regulator
4394 * consumers in one operation. If any of the regulators cannot be
4395 * acquired then any regulators that were allocated will be freed
4396 * before returning to the caller.
4397 */
4398int regulator_bulk_get(struct device *dev, int num_consumers,
4399 struct regulator_bulk_data *consumers)
4400{
4401 int i;
4402 int ret;
4403
4404 for (i = 0; i < num_consumers; i++)
4405 consumers[i].consumer = NULL;
4406
4407 for (i = 0; i < num_consumers; i++) {
4408 consumers[i].consumer = regulator_get(dev,
4409 consumers[i].supply);
4410 if (IS_ERR(consumers[i].consumer)) {
4411 ret = PTR_ERR(consumers[i].consumer);
4412 consumers[i].consumer = NULL;
4413 goto err;
4414 }
4415 }
4416
4417 return 0;
4418
4419err:
4420 if (ret != -EPROBE_DEFER)
4421 dev_err(dev, "Failed to get supply '%s': %d\n",
4422 consumers[i].supply, ret);
4423 else
4424 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425 consumers[i].supply);
4426
4427 while (--i >= 0)
4428 regulator_put(consumers[i].consumer);
4429
4430 return ret;
4431}
4432EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433
4434static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435{
4436 struct regulator_bulk_data *bulk = data;
4437
4438 bulk->ret = regulator_enable(bulk->consumer);
4439}
4440
4441/**
4442 * regulator_bulk_enable - enable multiple regulator consumers
4443 *
4444 * @num_consumers: Number of consumers
4445 * @consumers: Consumer data; clients are stored here.
4446 * @return 0 on success, an errno on failure
4447 *
4448 * This convenience API allows consumers to enable multiple regulator
4449 * clients in a single API call. If any consumers cannot be enabled
4450 * then any others that were enabled will be disabled again prior to
4451 * return.
4452 */
4453int regulator_bulk_enable(int num_consumers,
4454 struct regulator_bulk_data *consumers)
4455{
4456 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457 int i;
4458 int ret = 0;
4459
4460 for (i = 0; i < num_consumers; i++) {
4461 async_schedule_domain(regulator_bulk_enable_async,
4462 &consumers[i], &async_domain);
4463 }
4464
4465 async_synchronize_full_domain(&async_domain);
4466
4467 /* If any consumer failed we need to unwind any that succeeded */
4468 for (i = 0; i < num_consumers; i++) {
4469 if (consumers[i].ret != 0) {
4470 ret = consumers[i].ret;
4471 goto err;
4472 }
4473 }
4474
4475 return 0;
4476
4477err:
4478 for (i = 0; i < num_consumers; i++) {
4479 if (consumers[i].ret < 0)
4480 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481 consumers[i].ret);
4482 else
4483 regulator_disable(consumers[i].consumer);
4484 }
4485
4486 return ret;
4487}
4488EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489
4490/**
4491 * regulator_bulk_disable - disable multiple regulator consumers
4492 *
4493 * @num_consumers: Number of consumers
4494 * @consumers: Consumer data; clients are stored here.
4495 * @return 0 on success, an errno on failure
4496 *
4497 * This convenience API allows consumers to disable multiple regulator
4498 * clients in a single API call. If any consumers cannot be disabled
4499 * then any others that were disabled will be enabled again prior to
4500 * return.
4501 */
4502int regulator_bulk_disable(int num_consumers,
4503 struct regulator_bulk_data *consumers)
4504{
4505 int i;
4506 int ret, r;
4507
4508 for (i = num_consumers - 1; i >= 0; --i) {
4509 ret = regulator_disable(consumers[i].consumer);
4510 if (ret != 0)
4511 goto err;
4512 }
4513
4514 return 0;
4515
4516err:
4517 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518 for (++i; i < num_consumers; ++i) {
4519 r = regulator_enable(consumers[i].consumer);
4520 if (r != 0)
4521 pr_err("Failed to re-enable %s: %d\n",
4522 consumers[i].supply, r);
4523 }
4524
4525 return ret;
4526}
4527EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528
4529/**
4530 * regulator_bulk_force_disable - force disable multiple regulator consumers
4531 *
4532 * @num_consumers: Number of consumers
4533 * @consumers: Consumer data; clients are stored here.
4534 * @return 0 on success, an errno on failure
4535 *
4536 * This convenience API allows consumers to forcibly disable multiple regulator
4537 * clients in a single API call.
4538 * NOTE: This should be used for situations when device damage will
4539 * likely occur if the regulators are not disabled (e.g. over temp).
4540 * Although regulator_force_disable function call for some consumers can
4541 * return error numbers, the function is called for all consumers.
4542 */
4543int regulator_bulk_force_disable(int num_consumers,
4544 struct regulator_bulk_data *consumers)
4545{
4546 int i;
4547 int ret = 0;
4548
4549 for (i = 0; i < num_consumers; i++) {
4550 consumers[i].ret =
4551 regulator_force_disable(consumers[i].consumer);
4552
4553 /* Store first error for reporting */
4554 if (consumers[i].ret && !ret)
4555 ret = consumers[i].ret;
4556 }
4557
4558 return ret;
4559}
4560EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561
4562/**
4563 * regulator_bulk_free - free multiple regulator consumers
4564 *
4565 * @num_consumers: Number of consumers
4566 * @consumers: Consumer data; clients are stored here.
4567 *
4568 * This convenience API allows consumers to free multiple regulator
4569 * clients in a single API call.
4570 */
4571void regulator_bulk_free(int num_consumers,
4572 struct regulator_bulk_data *consumers)
4573{
4574 int i;
4575
4576 for (i = 0; i < num_consumers; i++) {
4577 regulator_put(consumers[i].consumer);
4578 consumers[i].consumer = NULL;
4579 }
4580}
4581EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582
4583/**
4584 * regulator_notifier_call_chain - call regulator event notifier
4585 * @rdev: regulator source
4586 * @event: notifier block
4587 * @data: callback-specific data.
4588 *
4589 * Called by regulator drivers to notify clients a regulator event has
4590 * occurred. We also notify regulator clients downstream.
4591 * Note lock must be held by caller.
4592 */
4593int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594 unsigned long event, void *data)
4595{
4596 lockdep_assert_held_once(&rdev->mutex.base);
4597
4598 _notifier_call_chain(rdev, event, data);
4599 return NOTIFY_DONE;
4600
4601}
4602EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603
4604/**
4605 * regulator_mode_to_status - convert a regulator mode into a status
4606 *
4607 * @mode: Mode to convert
4608 *
4609 * Convert a regulator mode into a status.
4610 */
4611int regulator_mode_to_status(unsigned int mode)
4612{
4613 switch (mode) {
4614 case REGULATOR_MODE_FAST:
4615 return REGULATOR_STATUS_FAST;
4616 case REGULATOR_MODE_NORMAL:
4617 return REGULATOR_STATUS_NORMAL;
4618 case REGULATOR_MODE_IDLE:
4619 return REGULATOR_STATUS_IDLE;
4620 case REGULATOR_MODE_STANDBY:
4621 return REGULATOR_STATUS_STANDBY;
4622 default:
4623 return REGULATOR_STATUS_UNDEFINED;
4624 }
4625}
4626EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627
4628static struct attribute *regulator_dev_attrs[] = {
4629 &dev_attr_name.attr,
4630 &dev_attr_num_users.attr,
4631 &dev_attr_type.attr,
4632 &dev_attr_microvolts.attr,
4633 &dev_attr_microamps.attr,
4634 &dev_attr_opmode.attr,
4635 &dev_attr_state.attr,
4636 &dev_attr_status.attr,
4637 &dev_attr_bypass.attr,
4638 &dev_attr_requested_microamps.attr,
4639 &dev_attr_min_microvolts.attr,
4640 &dev_attr_max_microvolts.attr,
4641 &dev_attr_min_microamps.attr,
4642 &dev_attr_max_microamps.attr,
4643 &dev_attr_suspend_standby_state.attr,
4644 &dev_attr_suspend_mem_state.attr,
4645 &dev_attr_suspend_disk_state.attr,
4646 &dev_attr_suspend_standby_microvolts.attr,
4647 &dev_attr_suspend_mem_microvolts.attr,
4648 &dev_attr_suspend_disk_microvolts.attr,
4649 &dev_attr_suspend_standby_mode.attr,
4650 &dev_attr_suspend_mem_mode.attr,
4651 &dev_attr_suspend_disk_mode.attr,
4652 NULL
4653};
4654
4655/*
4656 * To avoid cluttering sysfs (and memory) with useless state, only
4657 * create attributes that can be meaningfully displayed.
4658 */
4659static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660 struct attribute *attr, int idx)
4661{
4662 struct device *dev = kobj_to_dev(kobj);
4663 struct regulator_dev *rdev = dev_to_rdev(dev);
4664 const struct regulator_ops *ops = rdev->desc->ops;
4665 umode_t mode = attr->mode;
4666
4667 /* these three are always present */
4668 if (attr == &dev_attr_name.attr ||
4669 attr == &dev_attr_num_users.attr ||
4670 attr == &dev_attr_type.attr)
4671 return mode;
4672
4673 /* some attributes need specific methods to be displayed */
4674 if (attr == &dev_attr_microvolts.attr) {
4675 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679 return mode;
4680 return 0;
4681 }
4682
4683 if (attr == &dev_attr_microamps.attr)
4684 return ops->get_current_limit ? mode : 0;
4685
4686 if (attr == &dev_attr_opmode.attr)
4687 return ops->get_mode ? mode : 0;
4688
4689 if (attr == &dev_attr_state.attr)
4690 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691
4692 if (attr == &dev_attr_status.attr)
4693 return ops->get_status ? mode : 0;
4694
4695 if (attr == &dev_attr_bypass.attr)
4696 return ops->get_bypass ? mode : 0;
4697
4698 /* constraints need specific supporting methods */
4699 if (attr == &dev_attr_min_microvolts.attr ||
4700 attr == &dev_attr_max_microvolts.attr)
4701 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702
4703 if (attr == &dev_attr_min_microamps.attr ||
4704 attr == &dev_attr_max_microamps.attr)
4705 return ops->set_current_limit ? mode : 0;
4706
4707 if (attr == &dev_attr_suspend_standby_state.attr ||
4708 attr == &dev_attr_suspend_mem_state.attr ||
4709 attr == &dev_attr_suspend_disk_state.attr)
4710 return mode;
4711
4712 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713 attr == &dev_attr_suspend_mem_microvolts.attr ||
4714 attr == &dev_attr_suspend_disk_microvolts.attr)
4715 return ops->set_suspend_voltage ? mode : 0;
4716
4717 if (attr == &dev_attr_suspend_standby_mode.attr ||
4718 attr == &dev_attr_suspend_mem_mode.attr ||
4719 attr == &dev_attr_suspend_disk_mode.attr)
4720 return ops->set_suspend_mode ? mode : 0;
4721
4722 return mode;
4723}
4724
4725static const struct attribute_group regulator_dev_group = {
4726 .attrs = regulator_dev_attrs,
4727 .is_visible = regulator_attr_is_visible,
4728};
4729
4730static const struct attribute_group *regulator_dev_groups[] = {
4731 ®ulator_dev_group,
4732 NULL
4733};
4734
4735static void regulator_dev_release(struct device *dev)
4736{
4737 struct regulator_dev *rdev = dev_get_drvdata(dev);
4738
4739 kfree(rdev->constraints);
4740 of_node_put(rdev->dev.of_node);
4741 kfree(rdev);
4742}
4743
4744static void rdev_init_debugfs(struct regulator_dev *rdev)
4745{
4746 struct device *parent = rdev->dev.parent;
4747 const char *rname = rdev_get_name(rdev);
4748 char name[NAME_MAX];
4749
4750 /* Avoid duplicate debugfs directory names */
4751 if (parent && rname == rdev->desc->name) {
4752 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753 rname);
4754 rname = name;
4755 }
4756
4757 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758 if (!rdev->debugfs) {
4759 rdev_warn(rdev, "Failed to create debugfs directory\n");
4760 return;
4761 }
4762
4763 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764 &rdev->use_count);
4765 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766 &rdev->open_count);
4767 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768 &rdev->bypass_count);
4769}
4770
4771static int regulator_register_resolve_supply(struct device *dev, void *data)
4772{
4773 struct regulator_dev *rdev = dev_to_rdev(dev);
4774
4775 if (regulator_resolve_supply(rdev))
4776 rdev_dbg(rdev, "unable to resolve supply\n");
4777
4778 return 0;
4779}
4780
4781int regulator_coupler_register(struct regulator_coupler *coupler)
4782{
4783 mutex_lock(®ulator_list_mutex);
4784 list_add_tail(&coupler->list, ®ulator_coupler_list);
4785 mutex_unlock(®ulator_list_mutex);
4786
4787 return 0;
4788}
4789
4790static struct regulator_coupler *
4791regulator_find_coupler(struct regulator_dev *rdev)
4792{
4793 struct regulator_coupler *coupler;
4794 int err;
4795
4796 /*
4797 * Note that regulators are appended to the list and the generic
4798 * coupler is registered first, hence it will be attached at last
4799 * if nobody cared.
4800 */
4801 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4802 err = coupler->attach_regulator(coupler, rdev);
4803 if (!err) {
4804 if (!coupler->balance_voltage &&
4805 rdev->coupling_desc.n_coupled > 2)
4806 goto err_unsupported;
4807
4808 return coupler;
4809 }
4810
4811 if (err < 0)
4812 return ERR_PTR(err);
4813
4814 if (err == 1)
4815 continue;
4816
4817 break;
4818 }
4819
4820 return ERR_PTR(-EINVAL);
4821
4822err_unsupported:
4823 if (coupler->detach_regulator)
4824 coupler->detach_regulator(coupler, rdev);
4825
4826 rdev_err(rdev,
4827 "Voltage balancing for multiple regulator couples is unimplemented\n");
4828
4829 return ERR_PTR(-EPERM);
4830}
4831
4832static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833{
4834 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835 struct coupling_desc *c_desc = &rdev->coupling_desc;
4836 int n_coupled = c_desc->n_coupled;
4837 struct regulator_dev *c_rdev;
4838 int i;
4839
4840 for (i = 1; i < n_coupled; i++) {
4841 /* already resolved */
4842 if (c_desc->coupled_rdevs[i])
4843 continue;
4844
4845 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846
4847 if (!c_rdev)
4848 continue;
4849
4850 if (c_rdev->coupling_desc.coupler != coupler) {
4851 rdev_err(rdev, "coupler mismatch with %s\n",
4852 rdev_get_name(c_rdev));
4853 return;
4854 }
4855
4856 regulator_lock(c_rdev);
4857
4858 c_desc->coupled_rdevs[i] = c_rdev;
4859 c_desc->n_resolved++;
4860
4861 regulator_unlock(c_rdev);
4862
4863 regulator_resolve_coupling(c_rdev);
4864 }
4865}
4866
4867static void regulator_remove_coupling(struct regulator_dev *rdev)
4868{
4869 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871 struct regulator_dev *__c_rdev, *c_rdev;
4872 unsigned int __n_coupled, n_coupled;
4873 int i, k;
4874 int err;
4875
4876 n_coupled = c_desc->n_coupled;
4877
4878 for (i = 1; i < n_coupled; i++) {
4879 c_rdev = c_desc->coupled_rdevs[i];
4880
4881 if (!c_rdev)
4882 continue;
4883
4884 regulator_lock(c_rdev);
4885
4886 __c_desc = &c_rdev->coupling_desc;
4887 __n_coupled = __c_desc->n_coupled;
4888
4889 for (k = 1; k < __n_coupled; k++) {
4890 __c_rdev = __c_desc->coupled_rdevs[k];
4891
4892 if (__c_rdev == rdev) {
4893 __c_desc->coupled_rdevs[k] = NULL;
4894 __c_desc->n_resolved--;
4895 break;
4896 }
4897 }
4898
4899 regulator_unlock(c_rdev);
4900
4901 c_desc->coupled_rdevs[i] = NULL;
4902 c_desc->n_resolved--;
4903 }
4904
4905 if (coupler && coupler->detach_regulator) {
4906 err = coupler->detach_regulator(coupler, rdev);
4907 if (err)
4908 rdev_err(rdev, "failed to detach from coupler: %d\n",
4909 err);
4910 }
4911
4912 kfree(rdev->coupling_desc.coupled_rdevs);
4913 rdev->coupling_desc.coupled_rdevs = NULL;
4914}
4915
4916static int regulator_init_coupling(struct regulator_dev *rdev)
4917{
4918 int err, n_phandles;
4919 size_t alloc_size;
4920
4921 if (!IS_ENABLED(CONFIG_OF))
4922 n_phandles = 0;
4923 else
4924 n_phandles = of_get_n_coupled(rdev);
4925
4926 alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927
4928 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929 if (!rdev->coupling_desc.coupled_rdevs)
4930 return -ENOMEM;
4931
4932 /*
4933 * Every regulator should always have coupling descriptor filled with
4934 * at least pointer to itself.
4935 */
4936 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937 rdev->coupling_desc.n_coupled = n_phandles + 1;
4938 rdev->coupling_desc.n_resolved++;
4939
4940 /* regulator isn't coupled */
4941 if (n_phandles == 0)
4942 return 0;
4943
4944 if (!of_check_coupling_data(rdev))
4945 return -EPERM;
4946
4947 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
4948 if (IS_ERR(rdev->coupling_desc.coupler)) {
4949 err = PTR_ERR(rdev->coupling_desc.coupler);
4950 rdev_err(rdev, "failed to get coupler: %d\n", err);
4951 return err;
4952 }
4953
4954 return 0;
4955}
4956
4957static int generic_coupler_attach(struct regulator_coupler *coupler,
4958 struct regulator_dev *rdev)
4959{
4960 if (rdev->coupling_desc.n_coupled > 2) {
4961 rdev_err(rdev,
4962 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963 return -EPERM;
4964 }
4965
4966 return 0;
4967}
4968
4969static struct regulator_coupler generic_regulator_coupler = {
4970 .attach_regulator = generic_coupler_attach,
4971};
4972
4973/**
4974 * regulator_register - register regulator
4975 * @regulator_desc: regulator to register
4976 * @cfg: runtime configuration for regulator
4977 *
4978 * Called by regulator drivers to register a regulator.
4979 * Returns a valid pointer to struct regulator_dev on success
4980 * or an ERR_PTR() on error.
4981 */
4982struct regulator_dev *
4983regulator_register(const struct regulator_desc *regulator_desc,
4984 const struct regulator_config *cfg)
4985{
4986 const struct regulation_constraints *constraints = NULL;
4987 const struct regulator_init_data *init_data;
4988 struct regulator_config *config = NULL;
4989 static atomic_t regulator_no = ATOMIC_INIT(-1);
4990 struct regulator_dev *rdev;
4991 bool dangling_cfg_gpiod = false;
4992 bool dangling_of_gpiod = false;
4993 struct device *dev;
4994 int ret, i;
4995
4996 if (cfg == NULL)
4997 return ERR_PTR(-EINVAL);
4998 if (cfg->ena_gpiod)
4999 dangling_cfg_gpiod = true;
5000 if (regulator_desc == NULL) {
5001 ret = -EINVAL;
5002 goto rinse;
5003 }
5004
5005 dev = cfg->dev;
5006 WARN_ON(!dev);
5007
5008 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009 ret = -EINVAL;
5010 goto rinse;
5011 }
5012
5013 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014 regulator_desc->type != REGULATOR_CURRENT) {
5015 ret = -EINVAL;
5016 goto rinse;
5017 }
5018
5019 /* Only one of each should be implemented */
5020 WARN_ON(regulator_desc->ops->get_voltage &&
5021 regulator_desc->ops->get_voltage_sel);
5022 WARN_ON(regulator_desc->ops->set_voltage &&
5023 regulator_desc->ops->set_voltage_sel);
5024
5025 /* If we're using selectors we must implement list_voltage. */
5026 if (regulator_desc->ops->get_voltage_sel &&
5027 !regulator_desc->ops->list_voltage) {
5028 ret = -EINVAL;
5029 goto rinse;
5030 }
5031 if (regulator_desc->ops->set_voltage_sel &&
5032 !regulator_desc->ops->list_voltage) {
5033 ret = -EINVAL;
5034 goto rinse;
5035 }
5036
5037 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038 if (rdev == NULL) {
5039 ret = -ENOMEM;
5040 goto rinse;
5041 }
5042
5043 /*
5044 * Duplicate the config so the driver could override it after
5045 * parsing init data.
5046 */
5047 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048 if (config == NULL) {
5049 kfree(rdev);
5050 ret = -ENOMEM;
5051 goto rinse;
5052 }
5053
5054 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055 &rdev->dev.of_node);
5056 /*
5057 * We need to keep track of any GPIO descriptor coming from the
5058 * device tree until we have handled it over to the core. If the
5059 * config that was passed in to this function DOES NOT contain
5060 * a descriptor, and the config after this call DOES contain
5061 * a descriptor, we definitely got one from parsing the device
5062 * tree.
5063 */
5064 if (!cfg->ena_gpiod && config->ena_gpiod)
5065 dangling_of_gpiod = true;
5066 if (!init_data) {
5067 init_data = config->init_data;
5068 rdev->dev.of_node = of_node_get(config->of_node);
5069 }
5070
5071 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5072 rdev->reg_data = config->driver_data;
5073 rdev->owner = regulator_desc->owner;
5074 rdev->desc = regulator_desc;
5075 if (config->regmap)
5076 rdev->regmap = config->regmap;
5077 else if (dev_get_regmap(dev, NULL))
5078 rdev->regmap = dev_get_regmap(dev, NULL);
5079 else if (dev->parent)
5080 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5081 INIT_LIST_HEAD(&rdev->consumer_list);
5082 INIT_LIST_HEAD(&rdev->list);
5083 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5084 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5085
5086 /* preform any regulator specific init */
5087 if (init_data && init_data->regulator_init) {
5088 ret = init_data->regulator_init(rdev->reg_data);
5089 if (ret < 0)
5090 goto clean;
5091 }
5092
5093 if (config->ena_gpiod) {
5094 mutex_lock(®ulator_list_mutex);
5095 ret = regulator_ena_gpio_request(rdev, config);
5096 mutex_unlock(®ulator_list_mutex);
5097 if (ret != 0) {
5098 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5099 ret);
5100 goto clean;
5101 }
5102 /* The regulator core took over the GPIO descriptor */
5103 dangling_cfg_gpiod = false;
5104 dangling_of_gpiod = false;
5105 }
5106
5107 /* register with sysfs */
5108 rdev->dev.class = ®ulator_class;
5109 rdev->dev.parent = dev;
5110 dev_set_name(&rdev->dev, "regulator.%lu",
5111 (unsigned long) atomic_inc_return(®ulator_no));
5112
5113 /* set regulator constraints */
5114 if (init_data)
5115 constraints = &init_data->constraints;
5116
5117 if (init_data && init_data->supply_regulator)
5118 rdev->supply_name = init_data->supply_regulator;
5119 else if (regulator_desc->supply_name)
5120 rdev->supply_name = regulator_desc->supply_name;
5121
5122 /*
5123 * Attempt to resolve the regulator supply, if specified,
5124 * but don't return an error if we fail because we will try
5125 * to resolve it again later as more regulators are added.
5126 */
5127 if (regulator_resolve_supply(rdev))
5128 rdev_dbg(rdev, "unable to resolve supply\n");
5129
5130 ret = set_machine_constraints(rdev, constraints);
5131 if (ret < 0)
5132 goto wash;
5133
5134 mutex_lock(®ulator_list_mutex);
5135 ret = regulator_init_coupling(rdev);
5136 mutex_unlock(®ulator_list_mutex);
5137 if (ret < 0)
5138 goto wash;
5139
5140 /* add consumers devices */
5141 if (init_data) {
5142 mutex_lock(®ulator_list_mutex);
5143 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5144 ret = set_consumer_device_supply(rdev,
5145 init_data->consumer_supplies[i].dev_name,
5146 init_data->consumer_supplies[i].supply);
5147 if (ret < 0) {
5148 mutex_unlock(®ulator_list_mutex);
5149 dev_err(dev, "Failed to set supply %s\n",
5150 init_data->consumer_supplies[i].supply);
5151 goto unset_supplies;
5152 }
5153 }
5154 mutex_unlock(®ulator_list_mutex);
5155 }
5156
5157 if (!rdev->desc->ops->get_voltage &&
5158 !rdev->desc->ops->list_voltage &&
5159 !rdev->desc->fixed_uV)
5160 rdev->is_switch = true;
5161
5162 dev_set_drvdata(&rdev->dev, rdev);
5163 ret = device_register(&rdev->dev);
5164 if (ret != 0) {
5165 put_device(&rdev->dev);
5166 goto unset_supplies;
5167 }
5168
5169 rdev_init_debugfs(rdev);
5170
5171 /* try to resolve regulators coupling since a new one was registered */
5172 mutex_lock(®ulator_list_mutex);
5173 regulator_resolve_coupling(rdev);
5174 mutex_unlock(®ulator_list_mutex);
5175
5176 /* try to resolve regulators supply since a new one was registered */
5177 class_for_each_device(®ulator_class, NULL, NULL,
5178 regulator_register_resolve_supply);
5179 kfree(config);
5180 return rdev;
5181
5182unset_supplies:
5183 mutex_lock(®ulator_list_mutex);
5184 unset_regulator_supplies(rdev);
5185 regulator_remove_coupling(rdev);
5186 mutex_unlock(®ulator_list_mutex);
5187wash:
5188 kfree(rdev->constraints);
5189 mutex_lock(®ulator_list_mutex);
5190 regulator_ena_gpio_free(rdev);
5191 mutex_unlock(®ulator_list_mutex);
5192clean:
5193 if (dangling_of_gpiod)
5194 gpiod_put(config->ena_gpiod);
5195 kfree(rdev);
5196 kfree(config);
5197rinse:
5198 if (dangling_cfg_gpiod)
5199 gpiod_put(cfg->ena_gpiod);
5200 return ERR_PTR(ret);
5201}
5202EXPORT_SYMBOL_GPL(regulator_register);
5203
5204/**
5205 * regulator_unregister - unregister regulator
5206 * @rdev: regulator to unregister
5207 *
5208 * Called by regulator drivers to unregister a regulator.
5209 */
5210void regulator_unregister(struct regulator_dev *rdev)
5211{
5212 if (rdev == NULL)
5213 return;
5214
5215 if (rdev->supply) {
5216 while (rdev->use_count--)
5217 regulator_disable(rdev->supply);
5218 regulator_put(rdev->supply);
5219 }
5220
5221 flush_work(&rdev->disable_work.work);
5222
5223 mutex_lock(®ulator_list_mutex);
5224
5225 debugfs_remove_recursive(rdev->debugfs);
5226 WARN_ON(rdev->open_count);
5227 regulator_remove_coupling(rdev);
5228 unset_regulator_supplies(rdev);
5229 list_del(&rdev->list);
5230 regulator_ena_gpio_free(rdev);
5231 device_unregister(&rdev->dev);
5232
5233 mutex_unlock(®ulator_list_mutex);
5234}
5235EXPORT_SYMBOL_GPL(regulator_unregister);
5236
5237#ifdef CONFIG_SUSPEND
5238/**
5239 * regulator_suspend - prepare regulators for system wide suspend
5240 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5241 *
5242 * Configure each regulator with it's suspend operating parameters for state.
5243 */
5244static int regulator_suspend(struct device *dev)
5245{
5246 struct regulator_dev *rdev = dev_to_rdev(dev);
5247 suspend_state_t state = pm_suspend_target_state;
5248 int ret;
5249
5250 regulator_lock(rdev);
5251 ret = suspend_set_state(rdev, state);
5252 regulator_unlock(rdev);
5253
5254 return ret;
5255}
5256
5257static int regulator_resume(struct device *dev)
5258{
5259 suspend_state_t state = pm_suspend_target_state;
5260 struct regulator_dev *rdev = dev_to_rdev(dev);
5261 struct regulator_state *rstate;
5262 int ret = 0;
5263
5264 rstate = regulator_get_suspend_state(rdev, state);
5265 if (rstate == NULL)
5266 return 0;
5267
5268 regulator_lock(rdev);
5269
5270 if (rdev->desc->ops->resume &&
5271 (rstate->enabled == ENABLE_IN_SUSPEND ||
5272 rstate->enabled == DISABLE_IN_SUSPEND))
5273 ret = rdev->desc->ops->resume(rdev);
5274
5275 regulator_unlock(rdev);
5276
5277 return ret;
5278}
5279#else /* !CONFIG_SUSPEND */
5280
5281#define regulator_suspend NULL
5282#define regulator_resume NULL
5283
5284#endif /* !CONFIG_SUSPEND */
5285
5286#ifdef CONFIG_PM
5287static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5288 .suspend = regulator_suspend,
5289 .resume = regulator_resume,
5290};
5291#endif
5292
5293struct class regulator_class = {
5294 .name = "regulator",
5295 .dev_release = regulator_dev_release,
5296 .dev_groups = regulator_dev_groups,
5297#ifdef CONFIG_PM
5298 .pm = ®ulator_pm_ops,
5299#endif
5300};
5301/**
5302 * regulator_has_full_constraints - the system has fully specified constraints
5303 *
5304 * Calling this function will cause the regulator API to disable all
5305 * regulators which have a zero use count and don't have an always_on
5306 * constraint in a late_initcall.
5307 *
5308 * The intention is that this will become the default behaviour in a
5309 * future kernel release so users are encouraged to use this facility
5310 * now.
5311 */
5312void regulator_has_full_constraints(void)
5313{
5314 has_full_constraints = 1;
5315}
5316EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5317
5318/**
5319 * rdev_get_drvdata - get rdev regulator driver data
5320 * @rdev: regulator
5321 *
5322 * Get rdev regulator driver private data. This call can be used in the
5323 * regulator driver context.
5324 */
5325void *rdev_get_drvdata(struct regulator_dev *rdev)
5326{
5327 return rdev->reg_data;
5328}
5329EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5330
5331/**
5332 * regulator_get_drvdata - get regulator driver data
5333 * @regulator: regulator
5334 *
5335 * Get regulator driver private data. This call can be used in the consumer
5336 * driver context when non API regulator specific functions need to be called.
5337 */
5338void *regulator_get_drvdata(struct regulator *regulator)
5339{
5340 return regulator->rdev->reg_data;
5341}
5342EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5343
5344/**
5345 * regulator_set_drvdata - set regulator driver data
5346 * @regulator: regulator
5347 * @data: data
5348 */
5349void regulator_set_drvdata(struct regulator *regulator, void *data)
5350{
5351 regulator->rdev->reg_data = data;
5352}
5353EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5354
5355/**
5356 * regulator_get_id - get regulator ID
5357 * @rdev: regulator
5358 */
5359int rdev_get_id(struct regulator_dev *rdev)
5360{
5361 return rdev->desc->id;
5362}
5363EXPORT_SYMBOL_GPL(rdev_get_id);
5364
5365struct device *rdev_get_dev(struct regulator_dev *rdev)
5366{
5367 return &rdev->dev;
5368}
5369EXPORT_SYMBOL_GPL(rdev_get_dev);
5370
5371struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5372{
5373 return rdev->regmap;
5374}
5375EXPORT_SYMBOL_GPL(rdev_get_regmap);
5376
5377void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5378{
5379 return reg_init_data->driver_data;
5380}
5381EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5382
5383#ifdef CONFIG_DEBUG_FS
5384static int supply_map_show(struct seq_file *sf, void *data)
5385{
5386 struct regulator_map *map;
5387
5388 list_for_each_entry(map, ®ulator_map_list, list) {
5389 seq_printf(sf, "%s -> %s.%s\n",
5390 rdev_get_name(map->regulator), map->dev_name,
5391 map->supply);
5392 }
5393
5394 return 0;
5395}
5396DEFINE_SHOW_ATTRIBUTE(supply_map);
5397
5398struct summary_data {
5399 struct seq_file *s;
5400 struct regulator_dev *parent;
5401 int level;
5402};
5403
5404static void regulator_summary_show_subtree(struct seq_file *s,
5405 struct regulator_dev *rdev,
5406 int level);
5407
5408static int regulator_summary_show_children(struct device *dev, void *data)
5409{
5410 struct regulator_dev *rdev = dev_to_rdev(dev);
5411 struct summary_data *summary_data = data;
5412
5413 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5414 regulator_summary_show_subtree(summary_data->s, rdev,
5415 summary_data->level + 1);
5416
5417 return 0;
5418}
5419
5420static void regulator_summary_show_subtree(struct seq_file *s,
5421 struct regulator_dev *rdev,
5422 int level)
5423{
5424 struct regulation_constraints *c;
5425 struct regulator *consumer;
5426 struct summary_data summary_data;
5427 unsigned int opmode;
5428
5429 if (!rdev)
5430 return;
5431
5432 opmode = _regulator_get_mode_unlocked(rdev);
5433 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5434 level * 3 + 1, "",
5435 30 - level * 3, rdev_get_name(rdev),
5436 rdev->use_count, rdev->open_count, rdev->bypass_count,
5437 regulator_opmode_to_str(opmode));
5438
5439 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5440 seq_printf(s, "%5dmA ",
5441 _regulator_get_current_limit_unlocked(rdev) / 1000);
5442
5443 c = rdev->constraints;
5444 if (c) {
5445 switch (rdev->desc->type) {
5446 case REGULATOR_VOLTAGE:
5447 seq_printf(s, "%5dmV %5dmV ",
5448 c->min_uV / 1000, c->max_uV / 1000);
5449 break;
5450 case REGULATOR_CURRENT:
5451 seq_printf(s, "%5dmA %5dmA ",
5452 c->min_uA / 1000, c->max_uA / 1000);
5453 break;
5454 }
5455 }
5456
5457 seq_puts(s, "\n");
5458
5459 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5460 if (consumer->dev && consumer->dev->class == ®ulator_class)
5461 continue;
5462
5463 seq_printf(s, "%*s%-*s ",
5464 (level + 1) * 3 + 1, "",
5465 30 - (level + 1) * 3,
5466 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5467
5468 switch (rdev->desc->type) {
5469 case REGULATOR_VOLTAGE:
5470 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5471 consumer->enable_count,
5472 consumer->uA_load / 1000,
5473 consumer->uA_load && !consumer->enable_count ?
5474 '*' : ' ',
5475 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5476 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5477 break;
5478 case REGULATOR_CURRENT:
5479 break;
5480 }
5481
5482 seq_puts(s, "\n");
5483 }
5484
5485 summary_data.s = s;
5486 summary_data.level = level;
5487 summary_data.parent = rdev;
5488
5489 class_for_each_device(®ulator_class, NULL, &summary_data,
5490 regulator_summary_show_children);
5491}
5492
5493struct summary_lock_data {
5494 struct ww_acquire_ctx *ww_ctx;
5495 struct regulator_dev **new_contended_rdev;
5496 struct regulator_dev **old_contended_rdev;
5497};
5498
5499static int regulator_summary_lock_one(struct device *dev, void *data)
5500{
5501 struct regulator_dev *rdev = dev_to_rdev(dev);
5502 struct summary_lock_data *lock_data = data;
5503 int ret = 0;
5504
5505 if (rdev != *lock_data->old_contended_rdev) {
5506 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5507
5508 if (ret == -EDEADLK)
5509 *lock_data->new_contended_rdev = rdev;
5510 else
5511 WARN_ON_ONCE(ret);
5512 } else {
5513 *lock_data->old_contended_rdev = NULL;
5514 }
5515
5516 return ret;
5517}
5518
5519static int regulator_summary_unlock_one(struct device *dev, void *data)
5520{
5521 struct regulator_dev *rdev = dev_to_rdev(dev);
5522 struct summary_lock_data *lock_data = data;
5523
5524 if (lock_data) {
5525 if (rdev == *lock_data->new_contended_rdev)
5526 return -EDEADLK;
5527 }
5528
5529 regulator_unlock(rdev);
5530
5531 return 0;
5532}
5533
5534static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5535 struct regulator_dev **new_contended_rdev,
5536 struct regulator_dev **old_contended_rdev)
5537{
5538 struct summary_lock_data lock_data;
5539 int ret;
5540
5541 lock_data.ww_ctx = ww_ctx;
5542 lock_data.new_contended_rdev = new_contended_rdev;
5543 lock_data.old_contended_rdev = old_contended_rdev;
5544
5545 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5546 regulator_summary_lock_one);
5547 if (ret)
5548 class_for_each_device(®ulator_class, NULL, &lock_data,
5549 regulator_summary_unlock_one);
5550
5551 return ret;
5552}
5553
5554static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5555{
5556 struct regulator_dev *new_contended_rdev = NULL;
5557 struct regulator_dev *old_contended_rdev = NULL;
5558 int err;
5559
5560 mutex_lock(®ulator_list_mutex);
5561
5562 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5563
5564 do {
5565 if (new_contended_rdev) {
5566 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5567 old_contended_rdev = new_contended_rdev;
5568 old_contended_rdev->ref_cnt++;
5569 }
5570
5571 err = regulator_summary_lock_all(ww_ctx,
5572 &new_contended_rdev,
5573 &old_contended_rdev);
5574
5575 if (old_contended_rdev)
5576 regulator_unlock(old_contended_rdev);
5577
5578 } while (err == -EDEADLK);
5579
5580 ww_acquire_done(ww_ctx);
5581}
5582
5583static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5584{
5585 class_for_each_device(®ulator_class, NULL, NULL,
5586 regulator_summary_unlock_one);
5587 ww_acquire_fini(ww_ctx);
5588
5589 mutex_unlock(®ulator_list_mutex);
5590}
5591
5592static int regulator_summary_show_roots(struct device *dev, void *data)
5593{
5594 struct regulator_dev *rdev = dev_to_rdev(dev);
5595 struct seq_file *s = data;
5596
5597 if (!rdev->supply)
5598 regulator_summary_show_subtree(s, rdev, 0);
5599
5600 return 0;
5601}
5602
5603static int regulator_summary_show(struct seq_file *s, void *data)
5604{
5605 struct ww_acquire_ctx ww_ctx;
5606
5607 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5608 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5609
5610 regulator_summary_lock(&ww_ctx);
5611
5612 class_for_each_device(®ulator_class, NULL, s,
5613 regulator_summary_show_roots);
5614
5615 regulator_summary_unlock(&ww_ctx);
5616
5617 return 0;
5618}
5619DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5620#endif /* CONFIG_DEBUG_FS */
5621
5622static int __init regulator_init(void)
5623{
5624 int ret;
5625
5626 ret = class_register(®ulator_class);
5627
5628 debugfs_root = debugfs_create_dir("regulator", NULL);
5629 if (!debugfs_root)
5630 pr_warn("regulator: Failed to create debugfs directory\n");
5631
5632#ifdef CONFIG_DEBUG_FS
5633 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5634 &supply_map_fops);
5635
5636 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5637 NULL, ®ulator_summary_fops);
5638#endif
5639 regulator_dummy_init();
5640
5641 regulator_coupler_register(&generic_regulator_coupler);
5642
5643 return ret;
5644}
5645
5646/* init early to allow our consumers to complete system booting */
5647core_initcall(regulator_init);
5648
5649static int regulator_late_cleanup(struct device *dev, void *data)
5650{
5651 struct regulator_dev *rdev = dev_to_rdev(dev);
5652 const struct regulator_ops *ops = rdev->desc->ops;
5653 struct regulation_constraints *c = rdev->constraints;
5654 int enabled, ret;
5655
5656 if (c && c->always_on)
5657 return 0;
5658
5659 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5660 return 0;
5661
5662 regulator_lock(rdev);
5663
5664 if (rdev->use_count)
5665 goto unlock;
5666
5667 /* If we can't read the status assume it's on. */
5668 if (ops->is_enabled)
5669 enabled = ops->is_enabled(rdev);
5670 else
5671 enabled = 1;
5672
5673 if (!enabled)
5674 goto unlock;
5675
5676 if (have_full_constraints()) {
5677 /* We log since this may kill the system if it goes
5678 * wrong. */
5679 rdev_info(rdev, "disabling\n");
5680 ret = _regulator_do_disable(rdev);
5681 if (ret != 0)
5682 rdev_err(rdev, "couldn't disable: %d\n", ret);
5683 } else {
5684 /* The intention is that in future we will
5685 * assume that full constraints are provided
5686 * so warn even if we aren't going to do
5687 * anything here.
5688 */
5689 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5690 }
5691
5692unlock:
5693 regulator_unlock(rdev);
5694
5695 return 0;
5696}
5697
5698static void regulator_init_complete_work_function(struct work_struct *work)
5699{
5700 /*
5701 * Regulators may had failed to resolve their input supplies
5702 * when were registered, either because the input supply was
5703 * not registered yet or because its parent device was not
5704 * bound yet. So attempt to resolve the input supplies for
5705 * pending regulators before trying to disable unused ones.
5706 */
5707 class_for_each_device(®ulator_class, NULL, NULL,
5708 regulator_register_resolve_supply);
5709
5710 /* If we have a full configuration then disable any regulators
5711 * we have permission to change the status for and which are
5712 * not in use or always_on. This is effectively the default
5713 * for DT and ACPI as they have full constraints.
5714 */
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_late_cleanup);
5717}
5718
5719static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5720 regulator_init_complete_work_function);
5721
5722static int __init regulator_init_complete(void)
5723{
5724 /*
5725 * Since DT doesn't provide an idiomatic mechanism for
5726 * enabling full constraints and since it's much more natural
5727 * with DT to provide them just assume that a DT enabled
5728 * system has full constraints.
5729 */
5730 if (of_have_populated_dt())
5731 has_full_constraints = true;
5732
5733 /*
5734 * We punt completion for an arbitrary amount of time since
5735 * systems like distros will load many drivers from userspace
5736 * so consumers might not always be ready yet, this is
5737 * particularly an issue with laptops where this might bounce
5738 * the display off then on. Ideally we'd get a notification
5739 * from userspace when this happens but we don't so just wait
5740 * a bit and hope we waited long enough. It'd be better if
5741 * we'd only do this on systems that need it, and a kernel
5742 * command line option might be useful.
5743 */
5744 schedule_delayed_work(®ulator_init_complete_work,
5745 msecs_to_jiffies(30000));
5746
5747 return 0;
5748}
5749late_initcall_sync(regulator_init_complete);