Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#include <bpf/libbpf.h>
23#include <perf/cpumap.h>
24
25#include "dso.h"
26#include "evlist.h"
27#include "evsel.h"
28#include "util/evsel_fprintf.h"
29#include "header.h"
30#include "memswap.h"
31#include "trace-event.h"
32#include "session.h"
33#include "symbol.h"
34#include "debug.h"
35#include "cpumap.h"
36#include "pmu.h"
37#include "vdso.h"
38#include "strbuf.h"
39#include "build-id.h"
40#include "data.h"
41#include <api/fs/fs.h>
42#include "asm/bug.h"
43#include "tool.h"
44#include "time-utils.h"
45#include "units.h"
46#include "util/util.h" // perf_exe()
47#include "cputopo.h"
48#include "bpf-event.h"
49
50#include <linux/ctype.h>
51#include <internal/lib.h>
52
53/*
54 * magic2 = "PERFILE2"
55 * must be a numerical value to let the endianness
56 * determine the memory layout. That way we are able
57 * to detect endianness when reading the perf.data file
58 * back.
59 *
60 * we check for legacy (PERFFILE) format.
61 */
62static const char *__perf_magic1 = "PERFFILE";
63static const u64 __perf_magic2 = 0x32454c4946524550ULL;
64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66#define PERF_MAGIC __perf_magic2
67
68const char perf_version_string[] = PERF_VERSION;
69
70struct perf_file_attr {
71 struct perf_event_attr attr;
72 struct perf_file_section ids;
73};
74
75void perf_header__set_feat(struct perf_header *header, int feat)
76{
77 set_bit(feat, header->adds_features);
78}
79
80void perf_header__clear_feat(struct perf_header *header, int feat)
81{
82 clear_bit(feat, header->adds_features);
83}
84
85bool perf_header__has_feat(const struct perf_header *header, int feat)
86{
87 return test_bit(feat, header->adds_features);
88}
89
90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91{
92 ssize_t ret = writen(ff->fd, buf, size);
93
94 if (ret != (ssize_t)size)
95 return ret < 0 ? (int)ret : -1;
96 return 0;
97}
98
99static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
100{
101 /* struct perf_event_header::size is u16 */
102 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 size_t new_size = ff->size;
104 void *addr;
105
106 if (size + ff->offset > max_size)
107 return -E2BIG;
108
109 while (size > (new_size - ff->offset))
110 new_size <<= 1;
111 new_size = min(max_size, new_size);
112
113 if (ff->size < new_size) {
114 addr = realloc(ff->buf, new_size);
115 if (!addr)
116 return -ENOMEM;
117 ff->buf = addr;
118 ff->size = new_size;
119 }
120
121 memcpy(ff->buf + ff->offset, buf, size);
122 ff->offset += size;
123
124 return 0;
125}
126
127/* Return: 0 if succeded, -ERR if failed. */
128int do_write(struct feat_fd *ff, const void *buf, size_t size)
129{
130 if (!ff->buf)
131 return __do_write_fd(ff, buf, size);
132 return __do_write_buf(ff, buf, size);
133}
134
135/* Return: 0 if succeded, -ERR if failed. */
136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137{
138 u64 *p = (u64 *) set;
139 int i, ret;
140
141 ret = do_write(ff, &size, sizeof(size));
142 if (ret < 0)
143 return ret;
144
145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 ret = do_write(ff, p + i, sizeof(*p));
147 if (ret < 0)
148 return ret;
149 }
150
151 return 0;
152}
153
154/* Return: 0 if succeded, -ERR if failed. */
155int write_padded(struct feat_fd *ff, const void *bf,
156 size_t count, size_t count_aligned)
157{
158 static const char zero_buf[NAME_ALIGN];
159 int err = do_write(ff, bf, count);
160
161 if (!err)
162 err = do_write(ff, zero_buf, count_aligned - count);
163
164 return err;
165}
166
167#define string_size(str) \
168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170/* Return: 0 if succeded, -ERR if failed. */
171static int do_write_string(struct feat_fd *ff, const char *str)
172{
173 u32 len, olen;
174 int ret;
175
176 olen = strlen(str) + 1;
177 len = PERF_ALIGN(olen, NAME_ALIGN);
178
179 /* write len, incl. \0 */
180 ret = do_write(ff, &len, sizeof(len));
181 if (ret < 0)
182 return ret;
183
184 return write_padded(ff, str, olen, len);
185}
186
187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188{
189 ssize_t ret = readn(ff->fd, addr, size);
190
191 if (ret != size)
192 return ret < 0 ? (int)ret : -1;
193 return 0;
194}
195
196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197{
198 if (size > (ssize_t)ff->size - ff->offset)
199 return -1;
200
201 memcpy(addr, ff->buf + ff->offset, size);
202 ff->offset += size;
203
204 return 0;
205
206}
207
208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209{
210 if (!ff->buf)
211 return __do_read_fd(ff, addr, size);
212 return __do_read_buf(ff, addr, size);
213}
214
215static int do_read_u32(struct feat_fd *ff, u32 *addr)
216{
217 int ret;
218
219 ret = __do_read(ff, addr, sizeof(*addr));
220 if (ret)
221 return ret;
222
223 if (ff->ph->needs_swap)
224 *addr = bswap_32(*addr);
225 return 0;
226}
227
228static int do_read_u64(struct feat_fd *ff, u64 *addr)
229{
230 int ret;
231
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
235
236 if (ff->ph->needs_swap)
237 *addr = bswap_64(*addr);
238 return 0;
239}
240
241static char *do_read_string(struct feat_fd *ff)
242{
243 u32 len;
244 char *buf;
245
246 if (do_read_u32(ff, &len))
247 return NULL;
248
249 buf = malloc(len);
250 if (!buf)
251 return NULL;
252
253 if (!__do_read(ff, buf, len)) {
254 /*
255 * strings are padded by zeroes
256 * thus the actual strlen of buf
257 * may be less than len
258 */
259 return buf;
260 }
261
262 free(buf);
263 return NULL;
264}
265
266/* Return: 0 if succeded, -ERR if failed. */
267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268{
269 unsigned long *set;
270 u64 size, *p;
271 int i, ret;
272
273 ret = do_read_u64(ff, &size);
274 if (ret)
275 return ret;
276
277 set = bitmap_alloc(size);
278 if (!set)
279 return -ENOMEM;
280
281 p = (u64 *) set;
282
283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 ret = do_read_u64(ff, p + i);
285 if (ret < 0) {
286 free(set);
287 return ret;
288 }
289 }
290
291 *pset = set;
292 *psize = size;
293 return 0;
294}
295
296static int write_tracing_data(struct feat_fd *ff,
297 struct evlist *evlist)
298{
299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 return -1;
301
302 return read_tracing_data(ff->fd, &evlist->core.entries);
303}
304
305static int write_build_id(struct feat_fd *ff,
306 struct evlist *evlist __maybe_unused)
307{
308 struct perf_session *session;
309 int err;
310
311 session = container_of(ff->ph, struct perf_session, header);
312
313 if (!perf_session__read_build_ids(session, true))
314 return -1;
315
316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 return -1;
318
319 err = perf_session__write_buildid_table(session, ff);
320 if (err < 0) {
321 pr_debug("failed to write buildid table\n");
322 return err;
323 }
324 perf_session__cache_build_ids(session);
325
326 return 0;
327}
328
329static int write_hostname(struct feat_fd *ff,
330 struct evlist *evlist __maybe_unused)
331{
332 struct utsname uts;
333 int ret;
334
335 ret = uname(&uts);
336 if (ret < 0)
337 return -1;
338
339 return do_write_string(ff, uts.nodename);
340}
341
342static int write_osrelease(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344{
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.release);
353}
354
355static int write_arch(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357{
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.machine);
366}
367
368static int write_version(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370{
371 return do_write_string(ff, perf_version_string);
372}
373
374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375{
376 FILE *file;
377 char *buf = NULL;
378 char *s, *p;
379 const char *search = cpuinfo_proc;
380 size_t len = 0;
381 int ret = -1;
382
383 if (!search)
384 return -1;
385
386 file = fopen("/proc/cpuinfo", "r");
387 if (!file)
388 return -1;
389
390 while (getline(&buf, &len, file) > 0) {
391 ret = strncmp(buf, search, strlen(search));
392 if (!ret)
393 break;
394 }
395
396 if (ret) {
397 ret = -1;
398 goto done;
399 }
400
401 s = buf;
402
403 p = strchr(buf, ':');
404 if (p && *(p+1) == ' ' && *(p+2))
405 s = p + 2;
406 p = strchr(s, '\n');
407 if (p)
408 *p = '\0';
409
410 /* squash extra space characters (branding string) */
411 p = s;
412 while (*p) {
413 if (isspace(*p)) {
414 char *r = p + 1;
415 char *q = skip_spaces(r);
416 *p = ' ';
417 if (q != (p+1))
418 while ((*r++ = *q++));
419 }
420 p++;
421 }
422 ret = do_write_string(ff, s);
423done:
424 free(buf);
425 fclose(file);
426 return ret;
427}
428
429static int write_cpudesc(struct feat_fd *ff,
430 struct evlist *evlist __maybe_unused)
431{
432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433#define CPUINFO_PROC { "cpu", }
434#elif defined(__s390__)
435#define CPUINFO_PROC { "vendor_id", }
436#elif defined(__sh__)
437#define CPUINFO_PROC { "cpu type", }
438#elif defined(__alpha__) || defined(__mips__)
439#define CPUINFO_PROC { "cpu model", }
440#elif defined(__arm__)
441#define CPUINFO_PROC { "model name", "Processor", }
442#elif defined(__arc__)
443#define CPUINFO_PROC { "Processor", }
444#elif defined(__xtensa__)
445#define CPUINFO_PROC { "core ID", }
446#else
447#define CPUINFO_PROC { "model name", }
448#endif
449 const char *cpuinfo_procs[] = CPUINFO_PROC;
450#undef CPUINFO_PROC
451 unsigned int i;
452
453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 int ret;
455 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 if (ret >= 0)
457 return ret;
458 }
459 return -1;
460}
461
462
463static int write_nrcpus(struct feat_fd *ff,
464 struct evlist *evlist __maybe_unused)
465{
466 long nr;
467 u32 nrc, nra;
468 int ret;
469
470 nrc = cpu__max_present_cpu();
471
472 nr = sysconf(_SC_NPROCESSORS_ONLN);
473 if (nr < 0)
474 return -1;
475
476 nra = (u32)(nr & UINT_MAX);
477
478 ret = do_write(ff, &nrc, sizeof(nrc));
479 if (ret < 0)
480 return ret;
481
482 return do_write(ff, &nra, sizeof(nra));
483}
484
485static int write_event_desc(struct feat_fd *ff,
486 struct evlist *evlist)
487{
488 struct evsel *evsel;
489 u32 nre, nri, sz;
490 int ret;
491
492 nre = evlist->core.nr_entries;
493
494 /*
495 * write number of events
496 */
497 ret = do_write(ff, &nre, sizeof(nre));
498 if (ret < 0)
499 return ret;
500
501 /*
502 * size of perf_event_attr struct
503 */
504 sz = (u32)sizeof(evsel->core.attr);
505 ret = do_write(ff, &sz, sizeof(sz));
506 if (ret < 0)
507 return ret;
508
509 evlist__for_each_entry(evlist, evsel) {
510 ret = do_write(ff, &evsel->core.attr, sz);
511 if (ret < 0)
512 return ret;
513 /*
514 * write number of unique id per event
515 * there is one id per instance of an event
516 *
517 * copy into an nri to be independent of the
518 * type of ids,
519 */
520 nri = evsel->core.ids;
521 ret = do_write(ff, &nri, sizeof(nri));
522 if (ret < 0)
523 return ret;
524
525 /*
526 * write event string as passed on cmdline
527 */
528 ret = do_write_string(ff, perf_evsel__name(evsel));
529 if (ret < 0)
530 return ret;
531 /*
532 * write unique ids for this event
533 */
534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 if (ret < 0)
536 return ret;
537 }
538 return 0;
539}
540
541static int write_cmdline(struct feat_fd *ff,
542 struct evlist *evlist __maybe_unused)
543{
544 char pbuf[MAXPATHLEN], *buf;
545 int i, ret, n;
546
547 /* actual path to perf binary */
548 buf = perf_exe(pbuf, MAXPATHLEN);
549
550 /* account for binary path */
551 n = perf_env.nr_cmdline + 1;
552
553 ret = do_write(ff, &n, sizeof(n));
554 if (ret < 0)
555 return ret;
556
557 ret = do_write_string(ff, buf);
558 if (ret < 0)
559 return ret;
560
561 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 if (ret < 0)
564 return ret;
565 }
566 return 0;
567}
568
569
570static int write_cpu_topology(struct feat_fd *ff,
571 struct evlist *evlist __maybe_unused)
572{
573 struct cpu_topology *tp;
574 u32 i;
575 int ret, j;
576
577 tp = cpu_topology__new();
578 if (!tp)
579 return -1;
580
581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 if (ret < 0)
583 goto done;
584
585 for (i = 0; i < tp->core_sib; i++) {
586 ret = do_write_string(ff, tp->core_siblings[i]);
587 if (ret < 0)
588 goto done;
589 }
590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 if (ret < 0)
592 goto done;
593
594 for (i = 0; i < tp->thread_sib; i++) {
595 ret = do_write_string(ff, tp->thread_siblings[i]);
596 if (ret < 0)
597 break;
598 }
599
600 ret = perf_env__read_cpu_topology_map(&perf_env);
601 if (ret < 0)
602 goto done;
603
604 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 ret = do_write(ff, &perf_env.cpu[j].core_id,
606 sizeof(perf_env.cpu[j].core_id));
607 if (ret < 0)
608 return ret;
609 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 sizeof(perf_env.cpu[j].socket_id));
611 if (ret < 0)
612 return ret;
613 }
614
615 if (!tp->die_sib)
616 goto done;
617
618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 if (ret < 0)
620 goto done;
621
622 for (i = 0; i < tp->die_sib; i++) {
623 ret = do_write_string(ff, tp->die_siblings[i]);
624 if (ret < 0)
625 goto done;
626 }
627
628 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 ret = do_write(ff, &perf_env.cpu[j].die_id,
630 sizeof(perf_env.cpu[j].die_id));
631 if (ret < 0)
632 return ret;
633 }
634
635done:
636 cpu_topology__delete(tp);
637 return ret;
638}
639
640
641
642static int write_total_mem(struct feat_fd *ff,
643 struct evlist *evlist __maybe_unused)
644{
645 char *buf = NULL;
646 FILE *fp;
647 size_t len = 0;
648 int ret = -1, n;
649 uint64_t mem;
650
651 fp = fopen("/proc/meminfo", "r");
652 if (!fp)
653 return -1;
654
655 while (getline(&buf, &len, fp) > 0) {
656 ret = strncmp(buf, "MemTotal:", 9);
657 if (!ret)
658 break;
659 }
660 if (!ret) {
661 n = sscanf(buf, "%*s %"PRIu64, &mem);
662 if (n == 1)
663 ret = do_write(ff, &mem, sizeof(mem));
664 } else
665 ret = -1;
666 free(buf);
667 fclose(fp);
668 return ret;
669}
670
671static int write_numa_topology(struct feat_fd *ff,
672 struct evlist *evlist __maybe_unused)
673{
674 struct numa_topology *tp;
675 int ret = -1;
676 u32 i;
677
678 tp = numa_topology__new();
679 if (!tp)
680 return -ENOMEM;
681
682 ret = do_write(ff, &tp->nr, sizeof(u32));
683 if (ret < 0)
684 goto err;
685
686 for (i = 0; i < tp->nr; i++) {
687 struct numa_topology_node *n = &tp->nodes[i];
688
689 ret = do_write(ff, &n->node, sizeof(u32));
690 if (ret < 0)
691 goto err;
692
693 ret = do_write(ff, &n->mem_total, sizeof(u64));
694 if (ret)
695 goto err;
696
697 ret = do_write(ff, &n->mem_free, sizeof(u64));
698 if (ret)
699 goto err;
700
701 ret = do_write_string(ff, n->cpus);
702 if (ret < 0)
703 goto err;
704 }
705
706 ret = 0;
707
708err:
709 numa_topology__delete(tp);
710 return ret;
711}
712
713/*
714 * File format:
715 *
716 * struct pmu_mappings {
717 * u32 pmu_num;
718 * struct pmu_map {
719 * u32 type;
720 * char name[];
721 * }[pmu_num];
722 * };
723 */
724
725static int write_pmu_mappings(struct feat_fd *ff,
726 struct evlist *evlist __maybe_unused)
727{
728 struct perf_pmu *pmu = NULL;
729 u32 pmu_num = 0;
730 int ret;
731
732 /*
733 * Do a first pass to count number of pmu to avoid lseek so this
734 * works in pipe mode as well.
735 */
736 while ((pmu = perf_pmu__scan(pmu))) {
737 if (!pmu->name)
738 continue;
739 pmu_num++;
740 }
741
742 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 if (ret < 0)
744 return ret;
745
746 while ((pmu = perf_pmu__scan(pmu))) {
747 if (!pmu->name)
748 continue;
749
750 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 if (ret < 0)
752 return ret;
753
754 ret = do_write_string(ff, pmu->name);
755 if (ret < 0)
756 return ret;
757 }
758
759 return 0;
760}
761
762/*
763 * File format:
764 *
765 * struct group_descs {
766 * u32 nr_groups;
767 * struct group_desc {
768 * char name[];
769 * u32 leader_idx;
770 * u32 nr_members;
771 * }[nr_groups];
772 * };
773 */
774static int write_group_desc(struct feat_fd *ff,
775 struct evlist *evlist)
776{
777 u32 nr_groups = evlist->nr_groups;
778 struct evsel *evsel;
779 int ret;
780
781 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 if (ret < 0)
783 return ret;
784
785 evlist__for_each_entry(evlist, evsel) {
786 if (perf_evsel__is_group_leader(evsel) &&
787 evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
791
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
795
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
803 }
804 }
805 return 0;
806}
807
808/*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815{
816 return NULL;
817}
818
819/* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824{
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
828
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
833 }
834
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
843 }
844 return 1;
845}
846
847/*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852{
853 return -1;
854}
855
856static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
858{
859 char buffer[64];
860 int ret;
861
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
865
866 return do_write_string(ff, buffer);
867}
868
869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
871{
872 return 0;
873}
874
875static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
877{
878 struct perf_session *session;
879 int err;
880
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
883
884 session = container_of(ff->ph, struct perf_session, header);
885
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
890}
891
892static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
894{
895 return do_write(ff, &ff->ph->env.clockid_res_ns,
896 sizeof(ff->ph->env.clockid_res_ns));
897}
898
899static int write_dir_format(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
901{
902 struct perf_session *session;
903 struct perf_data *data;
904
905 session = container_of(ff->ph, struct perf_session, header);
906 data = session->data;
907
908 if (WARN_ON(!perf_data__is_dir(data)))
909 return -1;
910
911 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912}
913
914#ifdef HAVE_LIBBPF_SUPPORT
915static int write_bpf_prog_info(struct feat_fd *ff,
916 struct evlist *evlist __maybe_unused)
917{
918 struct perf_env *env = &ff->ph->env;
919 struct rb_root *root;
920 struct rb_node *next;
921 int ret;
922
923 down_read(&env->bpf_progs.lock);
924
925 ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 sizeof(env->bpf_progs.infos_cnt));
927 if (ret < 0)
928 goto out;
929
930 root = &env->bpf_progs.infos;
931 next = rb_first(root);
932 while (next) {
933 struct bpf_prog_info_node *node;
934 size_t len;
935
936 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 next = rb_next(&node->rb_node);
938 len = sizeof(struct bpf_prog_info_linear) +
939 node->info_linear->data_len;
940
941 /* before writing to file, translate address to offset */
942 bpf_program__bpil_addr_to_offs(node->info_linear);
943 ret = do_write(ff, node->info_linear, len);
944 /*
945 * translate back to address even when do_write() fails,
946 * so that this function never changes the data.
947 */
948 bpf_program__bpil_offs_to_addr(node->info_linear);
949 if (ret < 0)
950 goto out;
951 }
952out:
953 up_read(&env->bpf_progs.lock);
954 return ret;
955}
956#else // HAVE_LIBBPF_SUPPORT
957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 struct evlist *evlist __maybe_unused)
959{
960 return 0;
961}
962#endif // HAVE_LIBBPF_SUPPORT
963
964static int write_bpf_btf(struct feat_fd *ff,
965 struct evlist *evlist __maybe_unused)
966{
967 struct perf_env *env = &ff->ph->env;
968 struct rb_root *root;
969 struct rb_node *next;
970 int ret;
971
972 down_read(&env->bpf_progs.lock);
973
974 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 sizeof(env->bpf_progs.btfs_cnt));
976
977 if (ret < 0)
978 goto out;
979
980 root = &env->bpf_progs.btfs;
981 next = rb_first(root);
982 while (next) {
983 struct btf_node *node;
984
985 node = rb_entry(next, struct btf_node, rb_node);
986 next = rb_next(&node->rb_node);
987 ret = do_write(ff, &node->id,
988 sizeof(u32) * 2 + node->data_size);
989 if (ret < 0)
990 goto out;
991 }
992out:
993 up_read(&env->bpf_progs.lock);
994 return ret;
995}
996
997static int cpu_cache_level__sort(const void *a, const void *b)
998{
999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002 return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007 if (a->level != b->level)
1008 return false;
1009
1010 if (a->line_size != b->line_size)
1011 return false;
1012
1013 if (a->sets != b->sets)
1014 return false;
1015
1016 if (a->ways != b->ways)
1017 return false;
1018
1019 if (strcmp(a->type, b->type))
1020 return false;
1021
1022 if (strcmp(a->size, b->size))
1023 return false;
1024
1025 if (strcmp(a->map, b->map))
1026 return false;
1027
1028 return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033 char path[PATH_MAX], file[PATH_MAX];
1034 struct stat st;
1035 size_t len;
1036
1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040 if (stat(file, &st))
1041 return 1;
1042
1043 scnprintf(file, PATH_MAX, "%s/level", path);
1044 if (sysfs__read_int(file, (int *) &cache->level))
1045 return -1;
1046
1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 if (sysfs__read_int(file, (int *) &cache->line_size))
1049 return -1;
1050
1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 if (sysfs__read_int(file, (int *) &cache->sets))
1053 return -1;
1054
1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 if (sysfs__read_int(file, (int *) &cache->ways))
1057 return -1;
1058
1059 scnprintf(file, PATH_MAX, "%s/type", path);
1060 if (sysfs__read_str(file, &cache->type, &len))
1061 return -1;
1062
1063 cache->type[len] = 0;
1064 cache->type = strim(cache->type);
1065
1066 scnprintf(file, PATH_MAX, "%s/size", path);
1067 if (sysfs__read_str(file, &cache->size, &len)) {
1068 zfree(&cache->type);
1069 return -1;
1070 }
1071
1072 cache->size[len] = 0;
1073 cache->size = strim(cache->size);
1074
1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 if (sysfs__read_str(file, &cache->map, &len)) {
1077 zfree(&cache->size);
1078 zfree(&cache->type);
1079 return -1;
1080 }
1081
1082 cache->map[len] = 0;
1083 cache->map = strim(cache->map);
1084 return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093{
1094 u32 i, cnt = 0;
1095 long ncpus;
1096 u32 nr, cpu;
1097 u16 level;
1098
1099 ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100 if (ncpus < 0)
1101 return -1;
1102
1103 nr = (u32)(ncpus & UINT_MAX);
1104
1105 for (cpu = 0; cpu < nr; cpu++) {
1106 for (level = 0; level < 10; level++) {
1107 struct cpu_cache_level c;
1108 int err;
1109
1110 err = cpu_cache_level__read(&c, cpu, level);
1111 if (err < 0)
1112 return err;
1113
1114 if (err == 1)
1115 break;
1116
1117 for (i = 0; i < cnt; i++) {
1118 if (cpu_cache_level__cmp(&c, &caches[i]))
1119 break;
1120 }
1121
1122 if (i == cnt)
1123 caches[cnt++] = c;
1124 else
1125 cpu_cache_level__free(&c);
1126
1127 if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128 goto out;
1129 }
1130 }
1131 out:
1132 *cntp = cnt;
1133 return 0;
1134}
1135
1136#define MAX_CACHE_LVL 4
1137
1138static int write_cache(struct feat_fd *ff,
1139 struct evlist *evlist __maybe_unused)
1140{
1141 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142 struct cpu_cache_level caches[max_caches];
1143 u32 cnt = 0, i, version = 1;
1144 int ret;
1145
1146 ret = build_caches(caches, max_caches, &cnt);
1147 if (ret)
1148 goto out;
1149
1150 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152 ret = do_write(ff, &version, sizeof(u32));
1153 if (ret < 0)
1154 goto out;
1155
1156 ret = do_write(ff, &cnt, sizeof(u32));
1157 if (ret < 0)
1158 goto out;
1159
1160 for (i = 0; i < cnt; i++) {
1161 struct cpu_cache_level *c = &caches[i];
1162
1163 #define _W(v) \
1164 ret = do_write(ff, &c->v, sizeof(u32)); \
1165 if (ret < 0) \
1166 goto out;
1167
1168 _W(level)
1169 _W(line_size)
1170 _W(sets)
1171 _W(ways)
1172 #undef _W
1173
1174 #define _W(v) \
1175 ret = do_write_string(ff, (const char *) c->v); \
1176 if (ret < 0) \
1177 goto out;
1178
1179 _W(type)
1180 _W(size)
1181 _W(map)
1182 #undef _W
1183 }
1184
1185out:
1186 for (i = 0; i < cnt; i++)
1187 cpu_cache_level__free(&caches[i]);
1188 return ret;
1189}
1190
1191static int write_stat(struct feat_fd *ff __maybe_unused,
1192 struct evlist *evlist __maybe_unused)
1193{
1194 return 0;
1195}
1196
1197static int write_sample_time(struct feat_fd *ff,
1198 struct evlist *evlist)
1199{
1200 int ret;
1201
1202 ret = do_write(ff, &evlist->first_sample_time,
1203 sizeof(evlist->first_sample_time));
1204 if (ret < 0)
1205 return ret;
1206
1207 return do_write(ff, &evlist->last_sample_time,
1208 sizeof(evlist->last_sample_time));
1209}
1210
1211
1212static int memory_node__read(struct memory_node *n, unsigned long idx)
1213{
1214 unsigned int phys, size = 0;
1215 char path[PATH_MAX];
1216 struct dirent *ent;
1217 DIR *dir;
1218
1219#define for_each_memory(mem, dir) \
1220 while ((ent = readdir(dir))) \
1221 if (strcmp(ent->d_name, ".") && \
1222 strcmp(ent->d_name, "..") && \
1223 sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225 scnprintf(path, PATH_MAX,
1226 "%s/devices/system/node/node%lu",
1227 sysfs__mountpoint(), idx);
1228
1229 dir = opendir(path);
1230 if (!dir) {
1231 pr_warning("failed: cant' open memory sysfs data\n");
1232 return -1;
1233 }
1234
1235 for_each_memory(phys, dir) {
1236 size = max(phys, size);
1237 }
1238
1239 size++;
1240
1241 n->set = bitmap_alloc(size);
1242 if (!n->set) {
1243 closedir(dir);
1244 return -ENOMEM;
1245 }
1246
1247 n->node = idx;
1248 n->size = size;
1249
1250 rewinddir(dir);
1251
1252 for_each_memory(phys, dir) {
1253 set_bit(phys, n->set);
1254 }
1255
1256 closedir(dir);
1257 return 0;
1258}
1259
1260static int memory_node__sort(const void *a, const void *b)
1261{
1262 const struct memory_node *na = a;
1263 const struct memory_node *nb = b;
1264
1265 return na->node - nb->node;
1266}
1267
1268static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269{
1270 char path[PATH_MAX];
1271 struct dirent *ent;
1272 DIR *dir;
1273 u64 cnt = 0;
1274 int ret = 0;
1275
1276 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277 sysfs__mountpoint());
1278
1279 dir = opendir(path);
1280 if (!dir) {
1281 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282 __func__, path);
1283 return -1;
1284 }
1285
1286 while (!ret && (ent = readdir(dir))) {
1287 unsigned int idx;
1288 int r;
1289
1290 if (!strcmp(ent->d_name, ".") ||
1291 !strcmp(ent->d_name, ".."))
1292 continue;
1293
1294 r = sscanf(ent->d_name, "node%u", &idx);
1295 if (r != 1)
1296 continue;
1297
1298 if (WARN_ONCE(cnt >= size,
1299 "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1300 return -1;
1301
1302 ret = memory_node__read(&nodes[cnt++], idx);
1303 }
1304
1305 *cntp = cnt;
1306 closedir(dir);
1307
1308 if (!ret)
1309 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1310
1311 return ret;
1312}
1313
1314#define MAX_MEMORY_NODES 2000
1315
1316/*
1317 * The MEM_TOPOLOGY holds physical memory map for every
1318 * node in system. The format of data is as follows:
1319 *
1320 * 0 - version | for future changes
1321 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1322 * 16 - count | number of nodes
1323 *
1324 * For each node we store map of physical indexes for
1325 * each node:
1326 *
1327 * 32 - node id | node index
1328 * 40 - size | size of bitmap
1329 * 48 - bitmap | bitmap of memory indexes that belongs to node
1330 */
1331static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1332 struct evlist *evlist __maybe_unused)
1333{
1334 static struct memory_node nodes[MAX_MEMORY_NODES];
1335 u64 bsize, version = 1, i, nr;
1336 int ret;
1337
1338 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1339 (unsigned long long *) &bsize);
1340 if (ret)
1341 return ret;
1342
1343 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1344 if (ret)
1345 return ret;
1346
1347 ret = do_write(ff, &version, sizeof(version));
1348 if (ret < 0)
1349 goto out;
1350
1351 ret = do_write(ff, &bsize, sizeof(bsize));
1352 if (ret < 0)
1353 goto out;
1354
1355 ret = do_write(ff, &nr, sizeof(nr));
1356 if (ret < 0)
1357 goto out;
1358
1359 for (i = 0; i < nr; i++) {
1360 struct memory_node *n = &nodes[i];
1361
1362 #define _W(v) \
1363 ret = do_write(ff, &n->v, sizeof(n->v)); \
1364 if (ret < 0) \
1365 goto out;
1366
1367 _W(node)
1368 _W(size)
1369
1370 #undef _W
1371
1372 ret = do_write_bitmap(ff, n->set, n->size);
1373 if (ret < 0)
1374 goto out;
1375 }
1376
1377out:
1378 return ret;
1379}
1380
1381static int write_compressed(struct feat_fd *ff __maybe_unused,
1382 struct evlist *evlist __maybe_unused)
1383{
1384 int ret;
1385
1386 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1387 if (ret)
1388 return ret;
1389
1390 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1391 if (ret)
1392 return ret;
1393
1394 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1395 if (ret)
1396 return ret;
1397
1398 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1399 if (ret)
1400 return ret;
1401
1402 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1403}
1404
1405static void print_hostname(struct feat_fd *ff, FILE *fp)
1406{
1407 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1408}
1409
1410static void print_osrelease(struct feat_fd *ff, FILE *fp)
1411{
1412 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1413}
1414
1415static void print_arch(struct feat_fd *ff, FILE *fp)
1416{
1417 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1418}
1419
1420static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1421{
1422 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1423}
1424
1425static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1426{
1427 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1428 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1429}
1430
1431static void print_version(struct feat_fd *ff, FILE *fp)
1432{
1433 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1434}
1435
1436static void print_cmdline(struct feat_fd *ff, FILE *fp)
1437{
1438 int nr, i;
1439
1440 nr = ff->ph->env.nr_cmdline;
1441
1442 fprintf(fp, "# cmdline : ");
1443
1444 for (i = 0; i < nr; i++) {
1445 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1446 if (!argv_i) {
1447 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1448 } else {
1449 char *mem = argv_i;
1450 do {
1451 char *quote = strchr(argv_i, '\'');
1452 if (!quote)
1453 break;
1454 *quote++ = '\0';
1455 fprintf(fp, "%s\\\'", argv_i);
1456 argv_i = quote;
1457 } while (1);
1458 fprintf(fp, "%s ", argv_i);
1459 free(mem);
1460 }
1461 }
1462 fputc('\n', fp);
1463}
1464
1465static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1466{
1467 struct perf_header *ph = ff->ph;
1468 int cpu_nr = ph->env.nr_cpus_avail;
1469 int nr, i;
1470 char *str;
1471
1472 nr = ph->env.nr_sibling_cores;
1473 str = ph->env.sibling_cores;
1474
1475 for (i = 0; i < nr; i++) {
1476 fprintf(fp, "# sibling sockets : %s\n", str);
1477 str += strlen(str) + 1;
1478 }
1479
1480 if (ph->env.nr_sibling_dies) {
1481 nr = ph->env.nr_sibling_dies;
1482 str = ph->env.sibling_dies;
1483
1484 for (i = 0; i < nr; i++) {
1485 fprintf(fp, "# sibling dies : %s\n", str);
1486 str += strlen(str) + 1;
1487 }
1488 }
1489
1490 nr = ph->env.nr_sibling_threads;
1491 str = ph->env.sibling_threads;
1492
1493 for (i = 0; i < nr; i++) {
1494 fprintf(fp, "# sibling threads : %s\n", str);
1495 str += strlen(str) + 1;
1496 }
1497
1498 if (ph->env.nr_sibling_dies) {
1499 if (ph->env.cpu != NULL) {
1500 for (i = 0; i < cpu_nr; i++)
1501 fprintf(fp, "# CPU %d: Core ID %d, "
1502 "Die ID %d, Socket ID %d\n",
1503 i, ph->env.cpu[i].core_id,
1504 ph->env.cpu[i].die_id,
1505 ph->env.cpu[i].socket_id);
1506 } else
1507 fprintf(fp, "# Core ID, Die ID and Socket ID "
1508 "information is not available\n");
1509 } else {
1510 if (ph->env.cpu != NULL) {
1511 for (i = 0; i < cpu_nr; i++)
1512 fprintf(fp, "# CPU %d: Core ID %d, "
1513 "Socket ID %d\n",
1514 i, ph->env.cpu[i].core_id,
1515 ph->env.cpu[i].socket_id);
1516 } else
1517 fprintf(fp, "# Core ID and Socket ID "
1518 "information is not available\n");
1519 }
1520}
1521
1522static void print_clockid(struct feat_fd *ff, FILE *fp)
1523{
1524 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1525 ff->ph->env.clockid_res_ns * 1000);
1526}
1527
1528static void print_dir_format(struct feat_fd *ff, FILE *fp)
1529{
1530 struct perf_session *session;
1531 struct perf_data *data;
1532
1533 session = container_of(ff->ph, struct perf_session, header);
1534 data = session->data;
1535
1536 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1537}
1538
1539static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1540{
1541 struct perf_env *env = &ff->ph->env;
1542 struct rb_root *root;
1543 struct rb_node *next;
1544
1545 down_read(&env->bpf_progs.lock);
1546
1547 root = &env->bpf_progs.infos;
1548 next = rb_first(root);
1549
1550 while (next) {
1551 struct bpf_prog_info_node *node;
1552
1553 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1554 next = rb_next(&node->rb_node);
1555
1556 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1557 env, fp);
1558 }
1559
1560 up_read(&env->bpf_progs.lock);
1561}
1562
1563static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1564{
1565 struct perf_env *env = &ff->ph->env;
1566 struct rb_root *root;
1567 struct rb_node *next;
1568
1569 down_read(&env->bpf_progs.lock);
1570
1571 root = &env->bpf_progs.btfs;
1572 next = rb_first(root);
1573
1574 while (next) {
1575 struct btf_node *node;
1576
1577 node = rb_entry(next, struct btf_node, rb_node);
1578 next = rb_next(&node->rb_node);
1579 fprintf(fp, "# btf info of id %u\n", node->id);
1580 }
1581
1582 up_read(&env->bpf_progs.lock);
1583}
1584
1585static void free_event_desc(struct evsel *events)
1586{
1587 struct evsel *evsel;
1588
1589 if (!events)
1590 return;
1591
1592 for (evsel = events; evsel->core.attr.size; evsel++) {
1593 zfree(&evsel->name);
1594 zfree(&evsel->core.id);
1595 }
1596
1597 free(events);
1598}
1599
1600static struct evsel *read_event_desc(struct feat_fd *ff)
1601{
1602 struct evsel *evsel, *events = NULL;
1603 u64 *id;
1604 void *buf = NULL;
1605 u32 nre, sz, nr, i, j;
1606 size_t msz;
1607
1608 /* number of events */
1609 if (do_read_u32(ff, &nre))
1610 goto error;
1611
1612 if (do_read_u32(ff, &sz))
1613 goto error;
1614
1615 /* buffer to hold on file attr struct */
1616 buf = malloc(sz);
1617 if (!buf)
1618 goto error;
1619
1620 /* the last event terminates with evsel->core.attr.size == 0: */
1621 events = calloc(nre + 1, sizeof(*events));
1622 if (!events)
1623 goto error;
1624
1625 msz = sizeof(evsel->core.attr);
1626 if (sz < msz)
1627 msz = sz;
1628
1629 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1630 evsel->idx = i;
1631
1632 /*
1633 * must read entire on-file attr struct to
1634 * sync up with layout.
1635 */
1636 if (__do_read(ff, buf, sz))
1637 goto error;
1638
1639 if (ff->ph->needs_swap)
1640 perf_event__attr_swap(buf);
1641
1642 memcpy(&evsel->core.attr, buf, msz);
1643
1644 if (do_read_u32(ff, &nr))
1645 goto error;
1646
1647 if (ff->ph->needs_swap)
1648 evsel->needs_swap = true;
1649
1650 evsel->name = do_read_string(ff);
1651 if (!evsel->name)
1652 goto error;
1653
1654 if (!nr)
1655 continue;
1656
1657 id = calloc(nr, sizeof(*id));
1658 if (!id)
1659 goto error;
1660 evsel->core.ids = nr;
1661 evsel->core.id = id;
1662
1663 for (j = 0 ; j < nr; j++) {
1664 if (do_read_u64(ff, id))
1665 goto error;
1666 id++;
1667 }
1668 }
1669out:
1670 free(buf);
1671 return events;
1672error:
1673 free_event_desc(events);
1674 events = NULL;
1675 goto out;
1676}
1677
1678static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1679 void *priv __maybe_unused)
1680{
1681 return fprintf(fp, ", %s = %s", name, val);
1682}
1683
1684static void print_event_desc(struct feat_fd *ff, FILE *fp)
1685{
1686 struct evsel *evsel, *events;
1687 u32 j;
1688 u64 *id;
1689
1690 if (ff->events)
1691 events = ff->events;
1692 else
1693 events = read_event_desc(ff);
1694
1695 if (!events) {
1696 fprintf(fp, "# event desc: not available or unable to read\n");
1697 return;
1698 }
1699
1700 for (evsel = events; evsel->core.attr.size; evsel++) {
1701 fprintf(fp, "# event : name = %s, ", evsel->name);
1702
1703 if (evsel->core.ids) {
1704 fprintf(fp, ", id = {");
1705 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1706 if (j)
1707 fputc(',', fp);
1708 fprintf(fp, " %"PRIu64, *id);
1709 }
1710 fprintf(fp, " }");
1711 }
1712
1713 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1714
1715 fputc('\n', fp);
1716 }
1717
1718 free_event_desc(events);
1719 ff->events = NULL;
1720}
1721
1722static void print_total_mem(struct feat_fd *ff, FILE *fp)
1723{
1724 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1725}
1726
1727static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1728{
1729 int i;
1730 struct numa_node *n;
1731
1732 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1733 n = &ff->ph->env.numa_nodes[i];
1734
1735 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1736 " free = %"PRIu64" kB\n",
1737 n->node, n->mem_total, n->mem_free);
1738
1739 fprintf(fp, "# node%u cpu list : ", n->node);
1740 cpu_map__fprintf(n->map, fp);
1741 }
1742}
1743
1744static void print_cpuid(struct feat_fd *ff, FILE *fp)
1745{
1746 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1747}
1748
1749static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1750{
1751 fprintf(fp, "# contains samples with branch stack\n");
1752}
1753
1754static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1755{
1756 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1757}
1758
1759static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1760{
1761 fprintf(fp, "# contains stat data\n");
1762}
1763
1764static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1765{
1766 int i;
1767
1768 fprintf(fp, "# CPU cache info:\n");
1769 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1770 fprintf(fp, "# ");
1771 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1772 }
1773}
1774
1775static void print_compressed(struct feat_fd *ff, FILE *fp)
1776{
1777 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1778 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1779 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1780}
1781
1782static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1783{
1784 const char *delimiter = "# pmu mappings: ";
1785 char *str, *tmp;
1786 u32 pmu_num;
1787 u32 type;
1788
1789 pmu_num = ff->ph->env.nr_pmu_mappings;
1790 if (!pmu_num) {
1791 fprintf(fp, "# pmu mappings: not available\n");
1792 return;
1793 }
1794
1795 str = ff->ph->env.pmu_mappings;
1796
1797 while (pmu_num) {
1798 type = strtoul(str, &tmp, 0);
1799 if (*tmp != ':')
1800 goto error;
1801
1802 str = tmp + 1;
1803 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1804
1805 delimiter = ", ";
1806 str += strlen(str) + 1;
1807 pmu_num--;
1808 }
1809
1810 fprintf(fp, "\n");
1811
1812 if (!pmu_num)
1813 return;
1814error:
1815 fprintf(fp, "# pmu mappings: unable to read\n");
1816}
1817
1818static void print_group_desc(struct feat_fd *ff, FILE *fp)
1819{
1820 struct perf_session *session;
1821 struct evsel *evsel;
1822 u32 nr = 0;
1823
1824 session = container_of(ff->ph, struct perf_session, header);
1825
1826 evlist__for_each_entry(session->evlist, evsel) {
1827 if (perf_evsel__is_group_leader(evsel) &&
1828 evsel->core.nr_members > 1) {
1829 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1830 perf_evsel__name(evsel));
1831
1832 nr = evsel->core.nr_members - 1;
1833 } else if (nr) {
1834 fprintf(fp, ",%s", perf_evsel__name(evsel));
1835
1836 if (--nr == 0)
1837 fprintf(fp, "}\n");
1838 }
1839 }
1840}
1841
1842static void print_sample_time(struct feat_fd *ff, FILE *fp)
1843{
1844 struct perf_session *session;
1845 char time_buf[32];
1846 double d;
1847
1848 session = container_of(ff->ph, struct perf_session, header);
1849
1850 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1851 time_buf, sizeof(time_buf));
1852 fprintf(fp, "# time of first sample : %s\n", time_buf);
1853
1854 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1855 time_buf, sizeof(time_buf));
1856 fprintf(fp, "# time of last sample : %s\n", time_buf);
1857
1858 d = (double)(session->evlist->last_sample_time -
1859 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1860
1861 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1862}
1863
1864static void memory_node__fprintf(struct memory_node *n,
1865 unsigned long long bsize, FILE *fp)
1866{
1867 char buf_map[100], buf_size[50];
1868 unsigned long long size;
1869
1870 size = bsize * bitmap_weight(n->set, n->size);
1871 unit_number__scnprintf(buf_size, 50, size);
1872
1873 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1874 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1875}
1876
1877static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1878{
1879 struct memory_node *nodes;
1880 int i, nr;
1881
1882 nodes = ff->ph->env.memory_nodes;
1883 nr = ff->ph->env.nr_memory_nodes;
1884
1885 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1886 nr, ff->ph->env.memory_bsize);
1887
1888 for (i = 0; i < nr; i++) {
1889 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1890 }
1891}
1892
1893static int __event_process_build_id(struct perf_record_header_build_id *bev,
1894 char *filename,
1895 struct perf_session *session)
1896{
1897 int err = -1;
1898 struct machine *machine;
1899 u16 cpumode;
1900 struct dso *dso;
1901 enum dso_kernel_type dso_type;
1902
1903 machine = perf_session__findnew_machine(session, bev->pid);
1904 if (!machine)
1905 goto out;
1906
1907 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1908
1909 switch (cpumode) {
1910 case PERF_RECORD_MISC_KERNEL:
1911 dso_type = DSO_TYPE_KERNEL;
1912 break;
1913 case PERF_RECORD_MISC_GUEST_KERNEL:
1914 dso_type = DSO_TYPE_GUEST_KERNEL;
1915 break;
1916 case PERF_RECORD_MISC_USER:
1917 case PERF_RECORD_MISC_GUEST_USER:
1918 dso_type = DSO_TYPE_USER;
1919 break;
1920 default:
1921 goto out;
1922 }
1923
1924 dso = machine__findnew_dso(machine, filename);
1925 if (dso != NULL) {
1926 char sbuild_id[SBUILD_ID_SIZE];
1927
1928 dso__set_build_id(dso, &bev->build_id);
1929
1930 if (dso_type != DSO_TYPE_USER) {
1931 struct kmod_path m = { .name = NULL, };
1932
1933 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1934 dso__set_module_info(dso, &m, machine);
1935 else
1936 dso->kernel = dso_type;
1937
1938 free(m.name);
1939 }
1940
1941 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1942 sbuild_id);
1943 pr_debug("build id event received for %s: %s\n",
1944 dso->long_name, sbuild_id);
1945 dso__put(dso);
1946 }
1947
1948 err = 0;
1949out:
1950 return err;
1951}
1952
1953static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1954 int input, u64 offset, u64 size)
1955{
1956 struct perf_session *session = container_of(header, struct perf_session, header);
1957 struct {
1958 struct perf_event_header header;
1959 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1960 char filename[0];
1961 } old_bev;
1962 struct perf_record_header_build_id bev;
1963 char filename[PATH_MAX];
1964 u64 limit = offset + size;
1965
1966 while (offset < limit) {
1967 ssize_t len;
1968
1969 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1970 return -1;
1971
1972 if (header->needs_swap)
1973 perf_event_header__bswap(&old_bev.header);
1974
1975 len = old_bev.header.size - sizeof(old_bev);
1976 if (readn(input, filename, len) != len)
1977 return -1;
1978
1979 bev.header = old_bev.header;
1980
1981 /*
1982 * As the pid is the missing value, we need to fill
1983 * it properly. The header.misc value give us nice hint.
1984 */
1985 bev.pid = HOST_KERNEL_ID;
1986 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1987 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1988 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1989
1990 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1991 __event_process_build_id(&bev, filename, session);
1992
1993 offset += bev.header.size;
1994 }
1995
1996 return 0;
1997}
1998
1999static int perf_header__read_build_ids(struct perf_header *header,
2000 int input, u64 offset, u64 size)
2001{
2002 struct perf_session *session = container_of(header, struct perf_session, header);
2003 struct perf_record_header_build_id bev;
2004 char filename[PATH_MAX];
2005 u64 limit = offset + size, orig_offset = offset;
2006 int err = -1;
2007
2008 while (offset < limit) {
2009 ssize_t len;
2010
2011 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2012 goto out;
2013
2014 if (header->needs_swap)
2015 perf_event_header__bswap(&bev.header);
2016
2017 len = bev.header.size - sizeof(bev);
2018 if (readn(input, filename, len) != len)
2019 goto out;
2020 /*
2021 * The a1645ce1 changeset:
2022 *
2023 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2024 *
2025 * Added a field to struct perf_record_header_build_id that broke the file
2026 * format.
2027 *
2028 * Since the kernel build-id is the first entry, process the
2029 * table using the old format if the well known
2030 * '[kernel.kallsyms]' string for the kernel build-id has the
2031 * first 4 characters chopped off (where the pid_t sits).
2032 */
2033 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2034 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2035 return -1;
2036 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2037 }
2038
2039 __event_process_build_id(&bev, filename, session);
2040
2041 offset += bev.header.size;
2042 }
2043 err = 0;
2044out:
2045 return err;
2046}
2047
2048/* Macro for features that simply need to read and store a string. */
2049#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2050static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2051{\
2052 ff->ph->env.__feat_env = do_read_string(ff); \
2053 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2054}
2055
2056FEAT_PROCESS_STR_FUN(hostname, hostname);
2057FEAT_PROCESS_STR_FUN(osrelease, os_release);
2058FEAT_PROCESS_STR_FUN(version, version);
2059FEAT_PROCESS_STR_FUN(arch, arch);
2060FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2061FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2062
2063static int process_tracing_data(struct feat_fd *ff, void *data)
2064{
2065 ssize_t ret = trace_report(ff->fd, data, false);
2066
2067 return ret < 0 ? -1 : 0;
2068}
2069
2070static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2071{
2072 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2073 pr_debug("Failed to read buildids, continuing...\n");
2074 return 0;
2075}
2076
2077static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2078{
2079 int ret;
2080 u32 nr_cpus_avail, nr_cpus_online;
2081
2082 ret = do_read_u32(ff, &nr_cpus_avail);
2083 if (ret)
2084 return ret;
2085
2086 ret = do_read_u32(ff, &nr_cpus_online);
2087 if (ret)
2088 return ret;
2089 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2090 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2091 return 0;
2092}
2093
2094static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2095{
2096 u64 total_mem;
2097 int ret;
2098
2099 ret = do_read_u64(ff, &total_mem);
2100 if (ret)
2101 return -1;
2102 ff->ph->env.total_mem = (unsigned long long)total_mem;
2103 return 0;
2104}
2105
2106static struct evsel *
2107perf_evlist__find_by_index(struct evlist *evlist, int idx)
2108{
2109 struct evsel *evsel;
2110
2111 evlist__for_each_entry(evlist, evsel) {
2112 if (evsel->idx == idx)
2113 return evsel;
2114 }
2115
2116 return NULL;
2117}
2118
2119static void
2120perf_evlist__set_event_name(struct evlist *evlist,
2121 struct evsel *event)
2122{
2123 struct evsel *evsel;
2124
2125 if (!event->name)
2126 return;
2127
2128 evsel = perf_evlist__find_by_index(evlist, event->idx);
2129 if (!evsel)
2130 return;
2131
2132 if (evsel->name)
2133 return;
2134
2135 evsel->name = strdup(event->name);
2136}
2137
2138static int
2139process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2140{
2141 struct perf_session *session;
2142 struct evsel *evsel, *events = read_event_desc(ff);
2143
2144 if (!events)
2145 return 0;
2146
2147 session = container_of(ff->ph, struct perf_session, header);
2148
2149 if (session->data->is_pipe) {
2150 /* Save events for reading later by print_event_desc,
2151 * since they can't be read again in pipe mode. */
2152 ff->events = events;
2153 }
2154
2155 for (evsel = events; evsel->core.attr.size; evsel++)
2156 perf_evlist__set_event_name(session->evlist, evsel);
2157
2158 if (!session->data->is_pipe)
2159 free_event_desc(events);
2160
2161 return 0;
2162}
2163
2164static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2165{
2166 char *str, *cmdline = NULL, **argv = NULL;
2167 u32 nr, i, len = 0;
2168
2169 if (do_read_u32(ff, &nr))
2170 return -1;
2171
2172 ff->ph->env.nr_cmdline = nr;
2173
2174 cmdline = zalloc(ff->size + nr + 1);
2175 if (!cmdline)
2176 return -1;
2177
2178 argv = zalloc(sizeof(char *) * (nr + 1));
2179 if (!argv)
2180 goto error;
2181
2182 for (i = 0; i < nr; i++) {
2183 str = do_read_string(ff);
2184 if (!str)
2185 goto error;
2186
2187 argv[i] = cmdline + len;
2188 memcpy(argv[i], str, strlen(str) + 1);
2189 len += strlen(str) + 1;
2190 free(str);
2191 }
2192 ff->ph->env.cmdline = cmdline;
2193 ff->ph->env.cmdline_argv = (const char **) argv;
2194 return 0;
2195
2196error:
2197 free(argv);
2198 free(cmdline);
2199 return -1;
2200}
2201
2202static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2203{
2204 u32 nr, i;
2205 char *str;
2206 struct strbuf sb;
2207 int cpu_nr = ff->ph->env.nr_cpus_avail;
2208 u64 size = 0;
2209 struct perf_header *ph = ff->ph;
2210 bool do_core_id_test = true;
2211
2212 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2213 if (!ph->env.cpu)
2214 return -1;
2215
2216 if (do_read_u32(ff, &nr))
2217 goto free_cpu;
2218
2219 ph->env.nr_sibling_cores = nr;
2220 size += sizeof(u32);
2221 if (strbuf_init(&sb, 128) < 0)
2222 goto free_cpu;
2223
2224 for (i = 0; i < nr; i++) {
2225 str = do_read_string(ff);
2226 if (!str)
2227 goto error;
2228
2229 /* include a NULL character at the end */
2230 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2231 goto error;
2232 size += string_size(str);
2233 free(str);
2234 }
2235 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2236
2237 if (do_read_u32(ff, &nr))
2238 return -1;
2239
2240 ph->env.nr_sibling_threads = nr;
2241 size += sizeof(u32);
2242
2243 for (i = 0; i < nr; i++) {
2244 str = do_read_string(ff);
2245 if (!str)
2246 goto error;
2247
2248 /* include a NULL character at the end */
2249 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2250 goto error;
2251 size += string_size(str);
2252 free(str);
2253 }
2254 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2255
2256 /*
2257 * The header may be from old perf,
2258 * which doesn't include core id and socket id information.
2259 */
2260 if (ff->size <= size) {
2261 zfree(&ph->env.cpu);
2262 return 0;
2263 }
2264
2265 /* On s390 the socket_id number is not related to the numbers of cpus.
2266 * The socket_id number might be higher than the numbers of cpus.
2267 * This depends on the configuration.
2268 * AArch64 is the same.
2269 */
2270 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2271 || !strncmp(ph->env.arch, "aarch64", 7)))
2272 do_core_id_test = false;
2273
2274 for (i = 0; i < (u32)cpu_nr; i++) {
2275 if (do_read_u32(ff, &nr))
2276 goto free_cpu;
2277
2278 ph->env.cpu[i].core_id = nr;
2279 size += sizeof(u32);
2280
2281 if (do_read_u32(ff, &nr))
2282 goto free_cpu;
2283
2284 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2285 pr_debug("socket_id number is too big."
2286 "You may need to upgrade the perf tool.\n");
2287 goto free_cpu;
2288 }
2289
2290 ph->env.cpu[i].socket_id = nr;
2291 size += sizeof(u32);
2292 }
2293
2294 /*
2295 * The header may be from old perf,
2296 * which doesn't include die information.
2297 */
2298 if (ff->size <= size)
2299 return 0;
2300
2301 if (do_read_u32(ff, &nr))
2302 return -1;
2303
2304 ph->env.nr_sibling_dies = nr;
2305 size += sizeof(u32);
2306
2307 for (i = 0; i < nr; i++) {
2308 str = do_read_string(ff);
2309 if (!str)
2310 goto error;
2311
2312 /* include a NULL character at the end */
2313 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2314 goto error;
2315 size += string_size(str);
2316 free(str);
2317 }
2318 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2319
2320 for (i = 0; i < (u32)cpu_nr; i++) {
2321 if (do_read_u32(ff, &nr))
2322 goto free_cpu;
2323
2324 ph->env.cpu[i].die_id = nr;
2325 }
2326
2327 return 0;
2328
2329error:
2330 strbuf_release(&sb);
2331free_cpu:
2332 zfree(&ph->env.cpu);
2333 return -1;
2334}
2335
2336static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2337{
2338 struct numa_node *nodes, *n;
2339 u32 nr, i;
2340 char *str;
2341
2342 /* nr nodes */
2343 if (do_read_u32(ff, &nr))
2344 return -1;
2345
2346 nodes = zalloc(sizeof(*nodes) * nr);
2347 if (!nodes)
2348 return -ENOMEM;
2349
2350 for (i = 0; i < nr; i++) {
2351 n = &nodes[i];
2352
2353 /* node number */
2354 if (do_read_u32(ff, &n->node))
2355 goto error;
2356
2357 if (do_read_u64(ff, &n->mem_total))
2358 goto error;
2359
2360 if (do_read_u64(ff, &n->mem_free))
2361 goto error;
2362
2363 str = do_read_string(ff);
2364 if (!str)
2365 goto error;
2366
2367 n->map = perf_cpu_map__new(str);
2368 if (!n->map)
2369 goto error;
2370
2371 free(str);
2372 }
2373 ff->ph->env.nr_numa_nodes = nr;
2374 ff->ph->env.numa_nodes = nodes;
2375 return 0;
2376
2377error:
2378 free(nodes);
2379 return -1;
2380}
2381
2382static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2383{
2384 char *name;
2385 u32 pmu_num;
2386 u32 type;
2387 struct strbuf sb;
2388
2389 if (do_read_u32(ff, &pmu_num))
2390 return -1;
2391
2392 if (!pmu_num) {
2393 pr_debug("pmu mappings not available\n");
2394 return 0;
2395 }
2396
2397 ff->ph->env.nr_pmu_mappings = pmu_num;
2398 if (strbuf_init(&sb, 128) < 0)
2399 return -1;
2400
2401 while (pmu_num) {
2402 if (do_read_u32(ff, &type))
2403 goto error;
2404
2405 name = do_read_string(ff);
2406 if (!name)
2407 goto error;
2408
2409 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2410 goto error;
2411 /* include a NULL character at the end */
2412 if (strbuf_add(&sb, "", 1) < 0)
2413 goto error;
2414
2415 if (!strcmp(name, "msr"))
2416 ff->ph->env.msr_pmu_type = type;
2417
2418 free(name);
2419 pmu_num--;
2420 }
2421 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2422 return 0;
2423
2424error:
2425 strbuf_release(&sb);
2426 return -1;
2427}
2428
2429static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2430{
2431 size_t ret = -1;
2432 u32 i, nr, nr_groups;
2433 struct perf_session *session;
2434 struct evsel *evsel, *leader = NULL;
2435 struct group_desc {
2436 char *name;
2437 u32 leader_idx;
2438 u32 nr_members;
2439 } *desc;
2440
2441 if (do_read_u32(ff, &nr_groups))
2442 return -1;
2443
2444 ff->ph->env.nr_groups = nr_groups;
2445 if (!nr_groups) {
2446 pr_debug("group desc not available\n");
2447 return 0;
2448 }
2449
2450 desc = calloc(nr_groups, sizeof(*desc));
2451 if (!desc)
2452 return -1;
2453
2454 for (i = 0; i < nr_groups; i++) {
2455 desc[i].name = do_read_string(ff);
2456 if (!desc[i].name)
2457 goto out_free;
2458
2459 if (do_read_u32(ff, &desc[i].leader_idx))
2460 goto out_free;
2461
2462 if (do_read_u32(ff, &desc[i].nr_members))
2463 goto out_free;
2464 }
2465
2466 /*
2467 * Rebuild group relationship based on the group_desc
2468 */
2469 session = container_of(ff->ph, struct perf_session, header);
2470 session->evlist->nr_groups = nr_groups;
2471
2472 i = nr = 0;
2473 evlist__for_each_entry(session->evlist, evsel) {
2474 if (evsel->idx == (int) desc[i].leader_idx) {
2475 evsel->leader = evsel;
2476 /* {anon_group} is a dummy name */
2477 if (strcmp(desc[i].name, "{anon_group}")) {
2478 evsel->group_name = desc[i].name;
2479 desc[i].name = NULL;
2480 }
2481 evsel->core.nr_members = desc[i].nr_members;
2482
2483 if (i >= nr_groups || nr > 0) {
2484 pr_debug("invalid group desc\n");
2485 goto out_free;
2486 }
2487
2488 leader = evsel;
2489 nr = evsel->core.nr_members - 1;
2490 i++;
2491 } else if (nr) {
2492 /* This is a group member */
2493 evsel->leader = leader;
2494
2495 nr--;
2496 }
2497 }
2498
2499 if (i != nr_groups || nr != 0) {
2500 pr_debug("invalid group desc\n");
2501 goto out_free;
2502 }
2503
2504 ret = 0;
2505out_free:
2506 for (i = 0; i < nr_groups; i++)
2507 zfree(&desc[i].name);
2508 free(desc);
2509
2510 return ret;
2511}
2512
2513static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2514{
2515 struct perf_session *session;
2516 int err;
2517
2518 session = container_of(ff->ph, struct perf_session, header);
2519
2520 err = auxtrace_index__process(ff->fd, ff->size, session,
2521 ff->ph->needs_swap);
2522 if (err < 0)
2523 pr_err("Failed to process auxtrace index\n");
2524 return err;
2525}
2526
2527static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2528{
2529 struct cpu_cache_level *caches;
2530 u32 cnt, i, version;
2531
2532 if (do_read_u32(ff, &version))
2533 return -1;
2534
2535 if (version != 1)
2536 return -1;
2537
2538 if (do_read_u32(ff, &cnt))
2539 return -1;
2540
2541 caches = zalloc(sizeof(*caches) * cnt);
2542 if (!caches)
2543 return -1;
2544
2545 for (i = 0; i < cnt; i++) {
2546 struct cpu_cache_level c;
2547
2548 #define _R(v) \
2549 if (do_read_u32(ff, &c.v))\
2550 goto out_free_caches; \
2551
2552 _R(level)
2553 _R(line_size)
2554 _R(sets)
2555 _R(ways)
2556 #undef _R
2557
2558 #define _R(v) \
2559 c.v = do_read_string(ff); \
2560 if (!c.v) \
2561 goto out_free_caches;
2562
2563 _R(type)
2564 _R(size)
2565 _R(map)
2566 #undef _R
2567
2568 caches[i] = c;
2569 }
2570
2571 ff->ph->env.caches = caches;
2572 ff->ph->env.caches_cnt = cnt;
2573 return 0;
2574out_free_caches:
2575 free(caches);
2576 return -1;
2577}
2578
2579static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2580{
2581 struct perf_session *session;
2582 u64 first_sample_time, last_sample_time;
2583 int ret;
2584
2585 session = container_of(ff->ph, struct perf_session, header);
2586
2587 ret = do_read_u64(ff, &first_sample_time);
2588 if (ret)
2589 return -1;
2590
2591 ret = do_read_u64(ff, &last_sample_time);
2592 if (ret)
2593 return -1;
2594
2595 session->evlist->first_sample_time = first_sample_time;
2596 session->evlist->last_sample_time = last_sample_time;
2597 return 0;
2598}
2599
2600static int process_mem_topology(struct feat_fd *ff,
2601 void *data __maybe_unused)
2602{
2603 struct memory_node *nodes;
2604 u64 version, i, nr, bsize;
2605 int ret = -1;
2606
2607 if (do_read_u64(ff, &version))
2608 return -1;
2609
2610 if (version != 1)
2611 return -1;
2612
2613 if (do_read_u64(ff, &bsize))
2614 return -1;
2615
2616 if (do_read_u64(ff, &nr))
2617 return -1;
2618
2619 nodes = zalloc(sizeof(*nodes) * nr);
2620 if (!nodes)
2621 return -1;
2622
2623 for (i = 0; i < nr; i++) {
2624 struct memory_node n;
2625
2626 #define _R(v) \
2627 if (do_read_u64(ff, &n.v)) \
2628 goto out; \
2629
2630 _R(node)
2631 _R(size)
2632
2633 #undef _R
2634
2635 if (do_read_bitmap(ff, &n.set, &n.size))
2636 goto out;
2637
2638 nodes[i] = n;
2639 }
2640
2641 ff->ph->env.memory_bsize = bsize;
2642 ff->ph->env.memory_nodes = nodes;
2643 ff->ph->env.nr_memory_nodes = nr;
2644 ret = 0;
2645
2646out:
2647 if (ret)
2648 free(nodes);
2649 return ret;
2650}
2651
2652static int process_clockid(struct feat_fd *ff,
2653 void *data __maybe_unused)
2654{
2655 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2656 return -1;
2657
2658 return 0;
2659}
2660
2661static int process_dir_format(struct feat_fd *ff,
2662 void *_data __maybe_unused)
2663{
2664 struct perf_session *session;
2665 struct perf_data *data;
2666
2667 session = container_of(ff->ph, struct perf_session, header);
2668 data = session->data;
2669
2670 if (WARN_ON(!perf_data__is_dir(data)))
2671 return -1;
2672
2673 return do_read_u64(ff, &data->dir.version);
2674}
2675
2676#ifdef HAVE_LIBBPF_SUPPORT
2677static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2678{
2679 struct bpf_prog_info_linear *info_linear;
2680 struct bpf_prog_info_node *info_node;
2681 struct perf_env *env = &ff->ph->env;
2682 u32 count, i;
2683 int err = -1;
2684
2685 if (ff->ph->needs_swap) {
2686 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2687 return 0;
2688 }
2689
2690 if (do_read_u32(ff, &count))
2691 return -1;
2692
2693 down_write(&env->bpf_progs.lock);
2694
2695 for (i = 0; i < count; ++i) {
2696 u32 info_len, data_len;
2697
2698 info_linear = NULL;
2699 info_node = NULL;
2700 if (do_read_u32(ff, &info_len))
2701 goto out;
2702 if (do_read_u32(ff, &data_len))
2703 goto out;
2704
2705 if (info_len > sizeof(struct bpf_prog_info)) {
2706 pr_warning("detected invalid bpf_prog_info\n");
2707 goto out;
2708 }
2709
2710 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2711 data_len);
2712 if (!info_linear)
2713 goto out;
2714 info_linear->info_len = sizeof(struct bpf_prog_info);
2715 info_linear->data_len = data_len;
2716 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2717 goto out;
2718 if (__do_read(ff, &info_linear->info, info_len))
2719 goto out;
2720 if (info_len < sizeof(struct bpf_prog_info))
2721 memset(((void *)(&info_linear->info)) + info_len, 0,
2722 sizeof(struct bpf_prog_info) - info_len);
2723
2724 if (__do_read(ff, info_linear->data, data_len))
2725 goto out;
2726
2727 info_node = malloc(sizeof(struct bpf_prog_info_node));
2728 if (!info_node)
2729 goto out;
2730
2731 /* after reading from file, translate offset to address */
2732 bpf_program__bpil_offs_to_addr(info_linear);
2733 info_node->info_linear = info_linear;
2734 perf_env__insert_bpf_prog_info(env, info_node);
2735 }
2736
2737 up_write(&env->bpf_progs.lock);
2738 return 0;
2739out:
2740 free(info_linear);
2741 free(info_node);
2742 up_write(&env->bpf_progs.lock);
2743 return err;
2744}
2745#else // HAVE_LIBBPF_SUPPORT
2746static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2747{
2748 return 0;
2749}
2750#endif // HAVE_LIBBPF_SUPPORT
2751
2752static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2753{
2754 struct perf_env *env = &ff->ph->env;
2755 struct btf_node *node = NULL;
2756 u32 count, i;
2757 int err = -1;
2758
2759 if (ff->ph->needs_swap) {
2760 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2761 return 0;
2762 }
2763
2764 if (do_read_u32(ff, &count))
2765 return -1;
2766
2767 down_write(&env->bpf_progs.lock);
2768
2769 for (i = 0; i < count; ++i) {
2770 u32 id, data_size;
2771
2772 if (do_read_u32(ff, &id))
2773 goto out;
2774 if (do_read_u32(ff, &data_size))
2775 goto out;
2776
2777 node = malloc(sizeof(struct btf_node) + data_size);
2778 if (!node)
2779 goto out;
2780
2781 node->id = id;
2782 node->data_size = data_size;
2783
2784 if (__do_read(ff, node->data, data_size))
2785 goto out;
2786
2787 perf_env__insert_btf(env, node);
2788 node = NULL;
2789 }
2790
2791 err = 0;
2792out:
2793 up_write(&env->bpf_progs.lock);
2794 free(node);
2795 return err;
2796}
2797
2798static int process_compressed(struct feat_fd *ff,
2799 void *data __maybe_unused)
2800{
2801 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2802 return -1;
2803
2804 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2805 return -1;
2806
2807 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2808 return -1;
2809
2810 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2811 return -1;
2812
2813 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2814 return -1;
2815
2816 return 0;
2817}
2818
2819#define FEAT_OPR(n, func, __full_only) \
2820 [HEADER_##n] = { \
2821 .name = __stringify(n), \
2822 .write = write_##func, \
2823 .print = print_##func, \
2824 .full_only = __full_only, \
2825 .process = process_##func, \
2826 .synthesize = true \
2827 }
2828
2829#define FEAT_OPN(n, func, __full_only) \
2830 [HEADER_##n] = { \
2831 .name = __stringify(n), \
2832 .write = write_##func, \
2833 .print = print_##func, \
2834 .full_only = __full_only, \
2835 .process = process_##func \
2836 }
2837
2838/* feature_ops not implemented: */
2839#define print_tracing_data NULL
2840#define print_build_id NULL
2841
2842#define process_branch_stack NULL
2843#define process_stat NULL
2844
2845// Only used in util/synthetic-events.c
2846const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2847
2848const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2849 FEAT_OPN(TRACING_DATA, tracing_data, false),
2850 FEAT_OPN(BUILD_ID, build_id, false),
2851 FEAT_OPR(HOSTNAME, hostname, false),
2852 FEAT_OPR(OSRELEASE, osrelease, false),
2853 FEAT_OPR(VERSION, version, false),
2854 FEAT_OPR(ARCH, arch, false),
2855 FEAT_OPR(NRCPUS, nrcpus, false),
2856 FEAT_OPR(CPUDESC, cpudesc, false),
2857 FEAT_OPR(CPUID, cpuid, false),
2858 FEAT_OPR(TOTAL_MEM, total_mem, false),
2859 FEAT_OPR(EVENT_DESC, event_desc, false),
2860 FEAT_OPR(CMDLINE, cmdline, false),
2861 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2862 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2863 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2864 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2865 FEAT_OPR(GROUP_DESC, group_desc, false),
2866 FEAT_OPN(AUXTRACE, auxtrace, false),
2867 FEAT_OPN(STAT, stat, false),
2868 FEAT_OPN(CACHE, cache, true),
2869 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2870 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2871 FEAT_OPR(CLOCKID, clockid, false),
2872 FEAT_OPN(DIR_FORMAT, dir_format, false),
2873 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2874 FEAT_OPR(BPF_BTF, bpf_btf, false),
2875 FEAT_OPR(COMPRESSED, compressed, false),
2876};
2877
2878struct header_print_data {
2879 FILE *fp;
2880 bool full; /* extended list of headers */
2881};
2882
2883static int perf_file_section__fprintf_info(struct perf_file_section *section,
2884 struct perf_header *ph,
2885 int feat, int fd, void *data)
2886{
2887 struct header_print_data *hd = data;
2888 struct feat_fd ff;
2889
2890 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2891 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2892 "%d, continuing...\n", section->offset, feat);
2893 return 0;
2894 }
2895 if (feat >= HEADER_LAST_FEATURE) {
2896 pr_warning("unknown feature %d\n", feat);
2897 return 0;
2898 }
2899 if (!feat_ops[feat].print)
2900 return 0;
2901
2902 ff = (struct feat_fd) {
2903 .fd = fd,
2904 .ph = ph,
2905 };
2906
2907 if (!feat_ops[feat].full_only || hd->full)
2908 feat_ops[feat].print(&ff, hd->fp);
2909 else
2910 fprintf(hd->fp, "# %s info available, use -I to display\n",
2911 feat_ops[feat].name);
2912
2913 return 0;
2914}
2915
2916int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2917{
2918 struct header_print_data hd;
2919 struct perf_header *header = &session->header;
2920 int fd = perf_data__fd(session->data);
2921 struct stat st;
2922 time_t stctime;
2923 int ret, bit;
2924
2925 hd.fp = fp;
2926 hd.full = full;
2927
2928 ret = fstat(fd, &st);
2929 if (ret == -1)
2930 return -1;
2931
2932 stctime = st.st_ctime;
2933 fprintf(fp, "# captured on : %s", ctime(&stctime));
2934
2935 fprintf(fp, "# header version : %u\n", header->version);
2936 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2937 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2938 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2939
2940 perf_header__process_sections(header, fd, &hd,
2941 perf_file_section__fprintf_info);
2942
2943 if (session->data->is_pipe)
2944 return 0;
2945
2946 fprintf(fp, "# missing features: ");
2947 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2948 if (bit)
2949 fprintf(fp, "%s ", feat_ops[bit].name);
2950 }
2951
2952 fprintf(fp, "\n");
2953 return 0;
2954}
2955
2956static int do_write_feat(struct feat_fd *ff, int type,
2957 struct perf_file_section **p,
2958 struct evlist *evlist)
2959{
2960 int err;
2961 int ret = 0;
2962
2963 if (perf_header__has_feat(ff->ph, type)) {
2964 if (!feat_ops[type].write)
2965 return -1;
2966
2967 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2968 return -1;
2969
2970 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2971
2972 err = feat_ops[type].write(ff, evlist);
2973 if (err < 0) {
2974 pr_debug("failed to write feature %s\n", feat_ops[type].name);
2975
2976 /* undo anything written */
2977 lseek(ff->fd, (*p)->offset, SEEK_SET);
2978
2979 return -1;
2980 }
2981 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2982 (*p)++;
2983 }
2984 return ret;
2985}
2986
2987static int perf_header__adds_write(struct perf_header *header,
2988 struct evlist *evlist, int fd)
2989{
2990 int nr_sections;
2991 struct feat_fd ff;
2992 struct perf_file_section *feat_sec, *p;
2993 int sec_size;
2994 u64 sec_start;
2995 int feat;
2996 int err;
2997
2998 ff = (struct feat_fd){
2999 .fd = fd,
3000 .ph = header,
3001 };
3002
3003 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3004 if (!nr_sections)
3005 return 0;
3006
3007 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3008 if (feat_sec == NULL)
3009 return -ENOMEM;
3010
3011 sec_size = sizeof(*feat_sec) * nr_sections;
3012
3013 sec_start = header->feat_offset;
3014 lseek(fd, sec_start + sec_size, SEEK_SET);
3015
3016 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3017 if (do_write_feat(&ff, feat, &p, evlist))
3018 perf_header__clear_feat(header, feat);
3019 }
3020
3021 lseek(fd, sec_start, SEEK_SET);
3022 /*
3023 * may write more than needed due to dropped feature, but
3024 * this is okay, reader will skip the missing entries
3025 */
3026 err = do_write(&ff, feat_sec, sec_size);
3027 if (err < 0)
3028 pr_debug("failed to write feature section\n");
3029 free(feat_sec);
3030 return err;
3031}
3032
3033int perf_header__write_pipe(int fd)
3034{
3035 struct perf_pipe_file_header f_header;
3036 struct feat_fd ff;
3037 int err;
3038
3039 ff = (struct feat_fd){ .fd = fd };
3040
3041 f_header = (struct perf_pipe_file_header){
3042 .magic = PERF_MAGIC,
3043 .size = sizeof(f_header),
3044 };
3045
3046 err = do_write(&ff, &f_header, sizeof(f_header));
3047 if (err < 0) {
3048 pr_debug("failed to write perf pipe header\n");
3049 return err;
3050 }
3051
3052 return 0;
3053}
3054
3055int perf_session__write_header(struct perf_session *session,
3056 struct evlist *evlist,
3057 int fd, bool at_exit)
3058{
3059 struct perf_file_header f_header;
3060 struct perf_file_attr f_attr;
3061 struct perf_header *header = &session->header;
3062 struct evsel *evsel;
3063 struct feat_fd ff;
3064 u64 attr_offset;
3065 int err;
3066
3067 ff = (struct feat_fd){ .fd = fd};
3068 lseek(fd, sizeof(f_header), SEEK_SET);
3069
3070 evlist__for_each_entry(session->evlist, evsel) {
3071 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3072 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3073 if (err < 0) {
3074 pr_debug("failed to write perf header\n");
3075 return err;
3076 }
3077 }
3078
3079 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3080
3081 evlist__for_each_entry(evlist, evsel) {
3082 f_attr = (struct perf_file_attr){
3083 .attr = evsel->core.attr,
3084 .ids = {
3085 .offset = evsel->id_offset,
3086 .size = evsel->core.ids * sizeof(u64),
3087 }
3088 };
3089 err = do_write(&ff, &f_attr, sizeof(f_attr));
3090 if (err < 0) {
3091 pr_debug("failed to write perf header attribute\n");
3092 return err;
3093 }
3094 }
3095
3096 if (!header->data_offset)
3097 header->data_offset = lseek(fd, 0, SEEK_CUR);
3098 header->feat_offset = header->data_offset + header->data_size;
3099
3100 if (at_exit) {
3101 err = perf_header__adds_write(header, evlist, fd);
3102 if (err < 0)
3103 return err;
3104 }
3105
3106 f_header = (struct perf_file_header){
3107 .magic = PERF_MAGIC,
3108 .size = sizeof(f_header),
3109 .attr_size = sizeof(f_attr),
3110 .attrs = {
3111 .offset = attr_offset,
3112 .size = evlist->core.nr_entries * sizeof(f_attr),
3113 },
3114 .data = {
3115 .offset = header->data_offset,
3116 .size = header->data_size,
3117 },
3118 /* event_types is ignored, store zeros */
3119 };
3120
3121 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3122
3123 lseek(fd, 0, SEEK_SET);
3124 err = do_write(&ff, &f_header, sizeof(f_header));
3125 if (err < 0) {
3126 pr_debug("failed to write perf header\n");
3127 return err;
3128 }
3129 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3130
3131 return 0;
3132}
3133
3134static int perf_header__getbuffer64(struct perf_header *header,
3135 int fd, void *buf, size_t size)
3136{
3137 if (readn(fd, buf, size) <= 0)
3138 return -1;
3139
3140 if (header->needs_swap)
3141 mem_bswap_64(buf, size);
3142
3143 return 0;
3144}
3145
3146int perf_header__process_sections(struct perf_header *header, int fd,
3147 void *data,
3148 int (*process)(struct perf_file_section *section,
3149 struct perf_header *ph,
3150 int feat, int fd, void *data))
3151{
3152 struct perf_file_section *feat_sec, *sec;
3153 int nr_sections;
3154 int sec_size;
3155 int feat;
3156 int err;
3157
3158 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3159 if (!nr_sections)
3160 return 0;
3161
3162 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3163 if (!feat_sec)
3164 return -1;
3165
3166 sec_size = sizeof(*feat_sec) * nr_sections;
3167
3168 lseek(fd, header->feat_offset, SEEK_SET);
3169
3170 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3171 if (err < 0)
3172 goto out_free;
3173
3174 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3175 err = process(sec++, header, feat, fd, data);
3176 if (err < 0)
3177 goto out_free;
3178 }
3179 err = 0;
3180out_free:
3181 free(feat_sec);
3182 return err;
3183}
3184
3185static const int attr_file_abi_sizes[] = {
3186 [0] = PERF_ATTR_SIZE_VER0,
3187 [1] = PERF_ATTR_SIZE_VER1,
3188 [2] = PERF_ATTR_SIZE_VER2,
3189 [3] = PERF_ATTR_SIZE_VER3,
3190 [4] = PERF_ATTR_SIZE_VER4,
3191 0,
3192};
3193
3194/*
3195 * In the legacy file format, the magic number is not used to encode endianness.
3196 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3197 * on ABI revisions, we need to try all combinations for all endianness to
3198 * detect the endianness.
3199 */
3200static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3201{
3202 uint64_t ref_size, attr_size;
3203 int i;
3204
3205 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3206 ref_size = attr_file_abi_sizes[i]
3207 + sizeof(struct perf_file_section);
3208 if (hdr_sz != ref_size) {
3209 attr_size = bswap_64(hdr_sz);
3210 if (attr_size != ref_size)
3211 continue;
3212
3213 ph->needs_swap = true;
3214 }
3215 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3216 i,
3217 ph->needs_swap);
3218 return 0;
3219 }
3220 /* could not determine endianness */
3221 return -1;
3222}
3223
3224#define PERF_PIPE_HDR_VER0 16
3225
3226static const size_t attr_pipe_abi_sizes[] = {
3227 [0] = PERF_PIPE_HDR_VER0,
3228 0,
3229};
3230
3231/*
3232 * In the legacy pipe format, there is an implicit assumption that endiannesss
3233 * between host recording the samples, and host parsing the samples is the
3234 * same. This is not always the case given that the pipe output may always be
3235 * redirected into a file and analyzed on a different machine with possibly a
3236 * different endianness and perf_event ABI revsions in the perf tool itself.
3237 */
3238static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3239{
3240 u64 attr_size;
3241 int i;
3242
3243 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3244 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3245 attr_size = bswap_64(hdr_sz);
3246 if (attr_size != hdr_sz)
3247 continue;
3248
3249 ph->needs_swap = true;
3250 }
3251 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3252 return 0;
3253 }
3254 return -1;
3255}
3256
3257bool is_perf_magic(u64 magic)
3258{
3259 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3260 || magic == __perf_magic2
3261 || magic == __perf_magic2_sw)
3262 return true;
3263
3264 return false;
3265}
3266
3267static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3268 bool is_pipe, struct perf_header *ph)
3269{
3270 int ret;
3271
3272 /* check for legacy format */
3273 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3274 if (ret == 0) {
3275 ph->version = PERF_HEADER_VERSION_1;
3276 pr_debug("legacy perf.data format\n");
3277 if (is_pipe)
3278 return try_all_pipe_abis(hdr_sz, ph);
3279
3280 return try_all_file_abis(hdr_sz, ph);
3281 }
3282 /*
3283 * the new magic number serves two purposes:
3284 * - unique number to identify actual perf.data files
3285 * - encode endianness of file
3286 */
3287 ph->version = PERF_HEADER_VERSION_2;
3288
3289 /* check magic number with one endianness */
3290 if (magic == __perf_magic2)
3291 return 0;
3292
3293 /* check magic number with opposite endianness */
3294 if (magic != __perf_magic2_sw)
3295 return -1;
3296
3297 ph->needs_swap = true;
3298
3299 return 0;
3300}
3301
3302int perf_file_header__read(struct perf_file_header *header,
3303 struct perf_header *ph, int fd)
3304{
3305 ssize_t ret;
3306
3307 lseek(fd, 0, SEEK_SET);
3308
3309 ret = readn(fd, header, sizeof(*header));
3310 if (ret <= 0)
3311 return -1;
3312
3313 if (check_magic_endian(header->magic,
3314 header->attr_size, false, ph) < 0) {
3315 pr_debug("magic/endian check failed\n");
3316 return -1;
3317 }
3318
3319 if (ph->needs_swap) {
3320 mem_bswap_64(header, offsetof(struct perf_file_header,
3321 adds_features));
3322 }
3323
3324 if (header->size != sizeof(*header)) {
3325 /* Support the previous format */
3326 if (header->size == offsetof(typeof(*header), adds_features))
3327 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3328 else
3329 return -1;
3330 } else if (ph->needs_swap) {
3331 /*
3332 * feature bitmap is declared as an array of unsigned longs --
3333 * not good since its size can differ between the host that
3334 * generated the data file and the host analyzing the file.
3335 *
3336 * We need to handle endianness, but we don't know the size of
3337 * the unsigned long where the file was generated. Take a best
3338 * guess at determining it: try 64-bit swap first (ie., file
3339 * created on a 64-bit host), and check if the hostname feature
3340 * bit is set (this feature bit is forced on as of fbe96f2).
3341 * If the bit is not, undo the 64-bit swap and try a 32-bit
3342 * swap. If the hostname bit is still not set (e.g., older data
3343 * file), punt and fallback to the original behavior --
3344 * clearing all feature bits and setting buildid.
3345 */
3346 mem_bswap_64(&header->adds_features,
3347 BITS_TO_U64(HEADER_FEAT_BITS));
3348
3349 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3350 /* unswap as u64 */
3351 mem_bswap_64(&header->adds_features,
3352 BITS_TO_U64(HEADER_FEAT_BITS));
3353
3354 /* unswap as u32 */
3355 mem_bswap_32(&header->adds_features,
3356 BITS_TO_U32(HEADER_FEAT_BITS));
3357 }
3358
3359 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3360 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3361 set_bit(HEADER_BUILD_ID, header->adds_features);
3362 }
3363 }
3364
3365 memcpy(&ph->adds_features, &header->adds_features,
3366 sizeof(ph->adds_features));
3367
3368 ph->data_offset = header->data.offset;
3369 ph->data_size = header->data.size;
3370 ph->feat_offset = header->data.offset + header->data.size;
3371 return 0;
3372}
3373
3374static int perf_file_section__process(struct perf_file_section *section,
3375 struct perf_header *ph,
3376 int feat, int fd, void *data)
3377{
3378 struct feat_fd fdd = {
3379 .fd = fd,
3380 .ph = ph,
3381 .size = section->size,
3382 .offset = section->offset,
3383 };
3384
3385 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3386 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3387 "%d, continuing...\n", section->offset, feat);
3388 return 0;
3389 }
3390
3391 if (feat >= HEADER_LAST_FEATURE) {
3392 pr_debug("unknown feature %d, continuing...\n", feat);
3393 return 0;
3394 }
3395
3396 if (!feat_ops[feat].process)
3397 return 0;
3398
3399 return feat_ops[feat].process(&fdd, data);
3400}
3401
3402static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3403 struct perf_header *ph, int fd,
3404 bool repipe)
3405{
3406 struct feat_fd ff = {
3407 .fd = STDOUT_FILENO,
3408 .ph = ph,
3409 };
3410 ssize_t ret;
3411
3412 ret = readn(fd, header, sizeof(*header));
3413 if (ret <= 0)
3414 return -1;
3415
3416 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3417 pr_debug("endian/magic failed\n");
3418 return -1;
3419 }
3420
3421 if (ph->needs_swap)
3422 header->size = bswap_64(header->size);
3423
3424 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3425 return -1;
3426
3427 return 0;
3428}
3429
3430static int perf_header__read_pipe(struct perf_session *session)
3431{
3432 struct perf_header *header = &session->header;
3433 struct perf_pipe_file_header f_header;
3434
3435 if (perf_file_header__read_pipe(&f_header, header,
3436 perf_data__fd(session->data),
3437 session->repipe) < 0) {
3438 pr_debug("incompatible file format\n");
3439 return -EINVAL;
3440 }
3441
3442 return 0;
3443}
3444
3445static int read_attr(int fd, struct perf_header *ph,
3446 struct perf_file_attr *f_attr)
3447{
3448 struct perf_event_attr *attr = &f_attr->attr;
3449 size_t sz, left;
3450 size_t our_sz = sizeof(f_attr->attr);
3451 ssize_t ret;
3452
3453 memset(f_attr, 0, sizeof(*f_attr));
3454
3455 /* read minimal guaranteed structure */
3456 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3457 if (ret <= 0) {
3458 pr_debug("cannot read %d bytes of header attr\n",
3459 PERF_ATTR_SIZE_VER0);
3460 return -1;
3461 }
3462
3463 /* on file perf_event_attr size */
3464 sz = attr->size;
3465
3466 if (ph->needs_swap)
3467 sz = bswap_32(sz);
3468
3469 if (sz == 0) {
3470 /* assume ABI0 */
3471 sz = PERF_ATTR_SIZE_VER0;
3472 } else if (sz > our_sz) {
3473 pr_debug("file uses a more recent and unsupported ABI"
3474 " (%zu bytes extra)\n", sz - our_sz);
3475 return -1;
3476 }
3477 /* what we have not yet read and that we know about */
3478 left = sz - PERF_ATTR_SIZE_VER0;
3479 if (left) {
3480 void *ptr = attr;
3481 ptr += PERF_ATTR_SIZE_VER0;
3482
3483 ret = readn(fd, ptr, left);
3484 }
3485 /* read perf_file_section, ids are read in caller */
3486 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3487
3488 return ret <= 0 ? -1 : 0;
3489}
3490
3491static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3492 struct tep_handle *pevent)
3493{
3494 struct tep_event *event;
3495 char bf[128];
3496
3497 /* already prepared */
3498 if (evsel->tp_format)
3499 return 0;
3500
3501 if (pevent == NULL) {
3502 pr_debug("broken or missing trace data\n");
3503 return -1;
3504 }
3505
3506 event = tep_find_event(pevent, evsel->core.attr.config);
3507 if (event == NULL) {
3508 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3509 return -1;
3510 }
3511
3512 if (!evsel->name) {
3513 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3514 evsel->name = strdup(bf);
3515 if (evsel->name == NULL)
3516 return -1;
3517 }
3518
3519 evsel->tp_format = event;
3520 return 0;
3521}
3522
3523static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3524 struct tep_handle *pevent)
3525{
3526 struct evsel *pos;
3527
3528 evlist__for_each_entry(evlist, pos) {
3529 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3530 perf_evsel__prepare_tracepoint_event(pos, pevent))
3531 return -1;
3532 }
3533
3534 return 0;
3535}
3536
3537int perf_session__read_header(struct perf_session *session)
3538{
3539 struct perf_data *data = session->data;
3540 struct perf_header *header = &session->header;
3541 struct perf_file_header f_header;
3542 struct perf_file_attr f_attr;
3543 u64 f_id;
3544 int nr_attrs, nr_ids, i, j;
3545 int fd = perf_data__fd(data);
3546
3547 session->evlist = evlist__new();
3548 if (session->evlist == NULL)
3549 return -ENOMEM;
3550
3551 session->evlist->env = &header->env;
3552 session->machines.host.env = &header->env;
3553 if (perf_data__is_pipe(data))
3554 return perf_header__read_pipe(session);
3555
3556 if (perf_file_header__read(&f_header, header, fd) < 0)
3557 return -EINVAL;
3558
3559 /*
3560 * Sanity check that perf.data was written cleanly; data size is
3561 * initialized to 0 and updated only if the on_exit function is run.
3562 * If data size is still 0 then the file contains only partial
3563 * information. Just warn user and process it as much as it can.
3564 */
3565 if (f_header.data.size == 0) {
3566 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3567 "Was the 'perf record' command properly terminated?\n",
3568 data->file.path);
3569 }
3570
3571 if (f_header.attr_size == 0) {
3572 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3573 "Was the 'perf record' command properly terminated?\n",
3574 data->file.path);
3575 return -EINVAL;
3576 }
3577
3578 nr_attrs = f_header.attrs.size / f_header.attr_size;
3579 lseek(fd, f_header.attrs.offset, SEEK_SET);
3580
3581 for (i = 0; i < nr_attrs; i++) {
3582 struct evsel *evsel;
3583 off_t tmp;
3584
3585 if (read_attr(fd, header, &f_attr) < 0)
3586 goto out_errno;
3587
3588 if (header->needs_swap) {
3589 f_attr.ids.size = bswap_64(f_attr.ids.size);
3590 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3591 perf_event__attr_swap(&f_attr.attr);
3592 }
3593
3594 tmp = lseek(fd, 0, SEEK_CUR);
3595 evsel = evsel__new(&f_attr.attr);
3596
3597 if (evsel == NULL)
3598 goto out_delete_evlist;
3599
3600 evsel->needs_swap = header->needs_swap;
3601 /*
3602 * Do it before so that if perf_evsel__alloc_id fails, this
3603 * entry gets purged too at evlist__delete().
3604 */
3605 evlist__add(session->evlist, evsel);
3606
3607 nr_ids = f_attr.ids.size / sizeof(u64);
3608 /*
3609 * We don't have the cpu and thread maps on the header, so
3610 * for allocating the perf_sample_id table we fake 1 cpu and
3611 * hattr->ids threads.
3612 */
3613 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3614 goto out_delete_evlist;
3615
3616 lseek(fd, f_attr.ids.offset, SEEK_SET);
3617
3618 for (j = 0; j < nr_ids; j++) {
3619 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3620 goto out_errno;
3621
3622 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3623 }
3624
3625 lseek(fd, tmp, SEEK_SET);
3626 }
3627
3628 perf_header__process_sections(header, fd, &session->tevent,
3629 perf_file_section__process);
3630
3631 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3632 session->tevent.pevent))
3633 goto out_delete_evlist;
3634
3635 return 0;
3636out_errno:
3637 return -errno;
3638
3639out_delete_evlist:
3640 evlist__delete(session->evlist);
3641 session->evlist = NULL;
3642 return -ENOMEM;
3643}
3644
3645int perf_event__process_feature(struct perf_session *session,
3646 union perf_event *event)
3647{
3648 struct perf_tool *tool = session->tool;
3649 struct feat_fd ff = { .fd = 0 };
3650 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3651 int type = fe->header.type;
3652 u64 feat = fe->feat_id;
3653
3654 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3655 pr_warning("invalid record type %d in pipe-mode\n", type);
3656 return 0;
3657 }
3658 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3659 pr_warning("invalid record type %d in pipe-mode\n", type);
3660 return -1;
3661 }
3662
3663 if (!feat_ops[feat].process)
3664 return 0;
3665
3666 ff.buf = (void *)fe->data;
3667 ff.size = event->header.size - sizeof(*fe);
3668 ff.ph = &session->header;
3669
3670 if (feat_ops[feat].process(&ff, NULL))
3671 return -1;
3672
3673 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3674 return 0;
3675
3676 if (!feat_ops[feat].full_only ||
3677 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3678 feat_ops[feat].print(&ff, stdout);
3679 } else {
3680 fprintf(stdout, "# %s info available, use -I to display\n",
3681 feat_ops[feat].name);
3682 }
3683
3684 return 0;
3685}
3686
3687size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3688{
3689 struct perf_record_event_update *ev = &event->event_update;
3690 struct perf_record_event_update_scale *ev_scale;
3691 struct perf_record_event_update_cpus *ev_cpus;
3692 struct perf_cpu_map *map;
3693 size_t ret;
3694
3695 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3696
3697 switch (ev->type) {
3698 case PERF_EVENT_UPDATE__SCALE:
3699 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3700 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3701 break;
3702 case PERF_EVENT_UPDATE__UNIT:
3703 ret += fprintf(fp, "... unit: %s\n", ev->data);
3704 break;
3705 case PERF_EVENT_UPDATE__NAME:
3706 ret += fprintf(fp, "... name: %s\n", ev->data);
3707 break;
3708 case PERF_EVENT_UPDATE__CPUS:
3709 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3710 ret += fprintf(fp, "... ");
3711
3712 map = cpu_map__new_data(&ev_cpus->cpus);
3713 if (map)
3714 ret += cpu_map__fprintf(map, fp);
3715 else
3716 ret += fprintf(fp, "failed to get cpus\n");
3717 break;
3718 default:
3719 ret += fprintf(fp, "... unknown type\n");
3720 break;
3721 }
3722
3723 return ret;
3724}
3725
3726int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3727 union perf_event *event,
3728 struct evlist **pevlist)
3729{
3730 u32 i, ids, n_ids;
3731 struct evsel *evsel;
3732 struct evlist *evlist = *pevlist;
3733
3734 if (evlist == NULL) {
3735 *pevlist = evlist = evlist__new();
3736 if (evlist == NULL)
3737 return -ENOMEM;
3738 }
3739
3740 evsel = evsel__new(&event->attr.attr);
3741 if (evsel == NULL)
3742 return -ENOMEM;
3743
3744 evlist__add(evlist, evsel);
3745
3746 ids = event->header.size;
3747 ids -= (void *)&event->attr.id - (void *)event;
3748 n_ids = ids / sizeof(u64);
3749 /*
3750 * We don't have the cpu and thread maps on the header, so
3751 * for allocating the perf_sample_id table we fake 1 cpu and
3752 * hattr->ids threads.
3753 */
3754 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3755 return -ENOMEM;
3756
3757 for (i = 0; i < n_ids; i++) {
3758 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3759 }
3760
3761 return 0;
3762}
3763
3764int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3765 union perf_event *event,
3766 struct evlist **pevlist)
3767{
3768 struct perf_record_event_update *ev = &event->event_update;
3769 struct perf_record_event_update_scale *ev_scale;
3770 struct perf_record_event_update_cpus *ev_cpus;
3771 struct evlist *evlist;
3772 struct evsel *evsel;
3773 struct perf_cpu_map *map;
3774
3775 if (!pevlist || *pevlist == NULL)
3776 return -EINVAL;
3777
3778 evlist = *pevlist;
3779
3780 evsel = perf_evlist__id2evsel(evlist, ev->id);
3781 if (evsel == NULL)
3782 return -EINVAL;
3783
3784 switch (ev->type) {
3785 case PERF_EVENT_UPDATE__UNIT:
3786 evsel->unit = strdup(ev->data);
3787 break;
3788 case PERF_EVENT_UPDATE__NAME:
3789 evsel->name = strdup(ev->data);
3790 break;
3791 case PERF_EVENT_UPDATE__SCALE:
3792 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3793 evsel->scale = ev_scale->scale;
3794 break;
3795 case PERF_EVENT_UPDATE__CPUS:
3796 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3797
3798 map = cpu_map__new_data(&ev_cpus->cpus);
3799 if (map)
3800 evsel->core.own_cpus = map;
3801 else
3802 pr_err("failed to get event_update cpus\n");
3803 default:
3804 break;
3805 }
3806
3807 return 0;
3808}
3809
3810int perf_event__process_tracing_data(struct perf_session *session,
3811 union perf_event *event)
3812{
3813 ssize_t size_read, padding, size = event->tracing_data.size;
3814 int fd = perf_data__fd(session->data);
3815 off_t offset = lseek(fd, 0, SEEK_CUR);
3816 char buf[BUFSIZ];
3817
3818 /* setup for reading amidst mmap */
3819 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3820 SEEK_SET);
3821
3822 size_read = trace_report(fd, &session->tevent,
3823 session->repipe);
3824 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3825
3826 if (readn(fd, buf, padding) < 0) {
3827 pr_err("%s: reading input file", __func__);
3828 return -1;
3829 }
3830 if (session->repipe) {
3831 int retw = write(STDOUT_FILENO, buf, padding);
3832 if (retw <= 0 || retw != padding) {
3833 pr_err("%s: repiping tracing data padding", __func__);
3834 return -1;
3835 }
3836 }
3837
3838 if (size_read + padding != size) {
3839 pr_err("%s: tracing data size mismatch", __func__);
3840 return -1;
3841 }
3842
3843 perf_evlist__prepare_tracepoint_events(session->evlist,
3844 session->tevent.pevent);
3845
3846 return size_read + padding;
3847}
3848
3849int perf_event__process_build_id(struct perf_session *session,
3850 union perf_event *event)
3851{
3852 __event_process_build_id(&event->build_id,
3853 event->build_id.filename,
3854 session);
3855 return 0;
3856}