at v5.4-rc2 2882 lines 91 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30 31struct mempolicy; 32struct anon_vma; 33struct anon_vma_chain; 34struct file_ra_state; 35struct user_struct; 36struct writeback_control; 37struct bdi_writeback; 38 39void init_mm_internals(void); 40 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42extern unsigned long max_mapnr; 43 44static inline void set_max_mapnr(unsigned long limit) 45{ 46 max_mapnr = limit; 47} 48#else 49static inline void set_max_mapnr(unsigned long limit) { } 50#endif 51 52extern atomic_long_t _totalram_pages; 53static inline unsigned long totalram_pages(void) 54{ 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56} 57 58static inline void totalram_pages_inc(void) 59{ 60 atomic_long_inc(&_totalram_pages); 61} 62 63static inline void totalram_pages_dec(void) 64{ 65 atomic_long_dec(&_totalram_pages); 66} 67 68static inline void totalram_pages_add(long count) 69{ 70 atomic_long_add(count, &_totalram_pages); 71} 72 73static inline void totalram_pages_set(long val) 74{ 75 atomic_long_set(&_totalram_pages, val); 76} 77 78extern void * high_memory; 79extern int page_cluster; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/pgtable.h> 100#include <asm/processor.h> 101 102/* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109#ifndef untagged_addr 110#define untagged_addr(addr) (addr) 111#endif 112 113#ifndef __pa_symbol 114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115#endif 116 117#ifndef page_to_virt 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119#endif 120 121#ifndef lm_alias 122#define lm_alias(x) __va(__pa_symbol(x)) 123#endif 124 125/* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132#ifndef mm_forbids_zeropage 133#define mm_forbids_zeropage(X) (0) 134#endif 135 136/* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142#if BITS_PER_LONG == 64 143/* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150static inline void __mm_zero_struct_page(struct page *page) 151{ 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175} 176#else 177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178#endif 179 180/* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196#define MAPCOUNT_ELF_CORE_MARGIN (5) 197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199extern int sysctl_max_map_count; 200 201extern unsigned long sysctl_user_reserve_kbytes; 202extern unsigned long sysctl_admin_reserve_kbytes; 203 204extern int sysctl_overcommit_memory; 205extern int sysctl_overcommit_ratio; 206extern unsigned long sysctl_overcommit_kbytes; 207 208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215/* to align the pointer to the (next) page boundary */ 216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223/* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234void vm_area_free(struct vm_area_struct *); 235 236#ifndef CONFIG_MMU 237extern struct rb_root nommu_region_tree; 238extern struct rw_semaphore nommu_region_sem; 239 240extern unsigned int kobjsize(const void *objp); 241#endif 242 243/* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247#define VM_NONE 0x00000000 248 249#define VM_READ 0x00000001 /* currently active flags */ 250#define VM_WRITE 0x00000002 251#define VM_EXEC 0x00000004 252#define VM_SHARED 0x00000008 253 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256#define VM_MAYWRITE 0x00000020 257#define VM_MAYEXEC 0x00000040 258#define VM_MAYSHARE 0x00000080 259 260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266#define VM_LOCKED 0x00002000 267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279#define VM_SYNC 0x00800000 /* Synchronous page faults */ 280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284#ifdef CONFIG_MEM_SOFT_DIRTY 285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286#else 287# define VM_SOFTDIRTY 0 288#endif 289 290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308#ifdef CONFIG_ARCH_HAS_PKEYS 309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314#ifdef CONFIG_PPC 315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316#else 317# define VM_PKEY_BIT4 0 318#endif 319#endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321#if defined(CONFIG_X86) 322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323#elif defined(CONFIG_PPC) 324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325#elif defined(CONFIG_PARISC) 326# define VM_GROWSUP VM_ARCH_1 327#elif defined(CONFIG_IA64) 328# define VM_GROWSUP VM_ARCH_1 329#elif defined(CONFIG_SPARC64) 330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331# define VM_ARCH_CLEAR VM_SPARC_ADI 332#elif !defined(CONFIG_MMU) 333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334#endif 335 336#if defined(CONFIG_X86_INTEL_MPX) 337/* MPX specific bounds table or bounds directory */ 338# define VM_MPX VM_HIGH_ARCH_4 339#else 340# define VM_MPX VM_NONE 341#endif 342 343#ifndef VM_GROWSUP 344# define VM_GROWSUP VM_NONE 345#endif 346 347/* Bits set in the VMA until the stack is in its final location */ 348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352#endif 353 354#ifdef CONFIG_STACK_GROWSUP 355#define VM_STACK VM_GROWSUP 356#else 357#define VM_STACK VM_GROWSDOWN 358#endif 359 360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362/* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368/* This mask defines which mm->def_flags a process can inherit its parent */ 369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371/* This mask is used to clear all the VMA flags used by mlock */ 372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374/* Arch-specific flags to clear when updating VM flags on protection change */ 375#ifndef VM_ARCH_CLEAR 376# define VM_ARCH_CLEAR VM_NONE 377#endif 378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380/* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384extern pgprot_t protection_map[16]; 385 386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391#define FAULT_FLAG_TRIED 0x20 /* Second try */ 392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396#define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407/* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453}; 454 455/* page entry size for vm->huge_fault() */ 456enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460}; 461 462/* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497#ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519#endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527}; 528 529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530{ 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537} 538 539static inline void vma_set_anonymous(struct vm_area_struct *vma) 540{ 541 vma->vm_ops = NULL; 542} 543 544static inline bool vma_is_anonymous(struct vm_area_struct *vma) 545{ 546 return !vma->vm_ops; 547} 548 549#ifdef CONFIG_SHMEM 550/* 551 * The vma_is_shmem is not inline because it is used only by slow 552 * paths in userfault. 553 */ 554bool vma_is_shmem(struct vm_area_struct *vma); 555#else 556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 557#endif 558 559int vma_is_stack_for_current(struct vm_area_struct *vma); 560 561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 563 564struct mmu_gather; 565struct inode; 566 567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 568static inline int pmd_devmap(pmd_t pmd) 569{ 570 return 0; 571} 572static inline int pud_devmap(pud_t pud) 573{ 574 return 0; 575} 576static inline int pgd_devmap(pgd_t pgd) 577{ 578 return 0; 579} 580#endif 581 582/* 583 * FIXME: take this include out, include page-flags.h in 584 * files which need it (119 of them) 585 */ 586#include <linux/page-flags.h> 587#include <linux/huge_mm.h> 588 589/* 590 * Methods to modify the page usage count. 591 * 592 * What counts for a page usage: 593 * - cache mapping (page->mapping) 594 * - private data (page->private) 595 * - page mapped in a task's page tables, each mapping 596 * is counted separately 597 * 598 * Also, many kernel routines increase the page count before a critical 599 * routine so they can be sure the page doesn't go away from under them. 600 */ 601 602/* 603 * Drop a ref, return true if the refcount fell to zero (the page has no users) 604 */ 605static inline int put_page_testzero(struct page *page) 606{ 607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 608 return page_ref_dec_and_test(page); 609} 610 611/* 612 * Try to grab a ref unless the page has a refcount of zero, return false if 613 * that is the case. 614 * This can be called when MMU is off so it must not access 615 * any of the virtual mappings. 616 */ 617static inline int get_page_unless_zero(struct page *page) 618{ 619 return page_ref_add_unless(page, 1, 0); 620} 621 622extern int page_is_ram(unsigned long pfn); 623 624enum { 625 REGION_INTERSECTS, 626 REGION_DISJOINT, 627 REGION_MIXED, 628}; 629 630int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 631 unsigned long desc); 632 633/* Support for virtually mapped pages */ 634struct page *vmalloc_to_page(const void *addr); 635unsigned long vmalloc_to_pfn(const void *addr); 636 637/* 638 * Determine if an address is within the vmalloc range 639 * 640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 641 * is no special casing required. 642 */ 643static inline bool is_vmalloc_addr(const void *x) 644{ 645#ifdef CONFIG_MMU 646 unsigned long addr = (unsigned long)x; 647 648 return addr >= VMALLOC_START && addr < VMALLOC_END; 649#else 650 return false; 651#endif 652} 653 654#ifndef is_ioremap_addr 655#define is_ioremap_addr(x) is_vmalloc_addr(x) 656#endif 657 658#ifdef CONFIG_MMU 659extern int is_vmalloc_or_module_addr(const void *x); 660#else 661static inline int is_vmalloc_or_module_addr(const void *x) 662{ 663 return 0; 664} 665#endif 666 667extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 668static inline void *kvmalloc(size_t size, gfp_t flags) 669{ 670 return kvmalloc_node(size, flags, NUMA_NO_NODE); 671} 672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 673{ 674 return kvmalloc_node(size, flags | __GFP_ZERO, node); 675} 676static inline void *kvzalloc(size_t size, gfp_t flags) 677{ 678 return kvmalloc(size, flags | __GFP_ZERO); 679} 680 681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 682{ 683 size_t bytes; 684 685 if (unlikely(check_mul_overflow(n, size, &bytes))) 686 return NULL; 687 688 return kvmalloc(bytes, flags); 689} 690 691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 692{ 693 return kvmalloc_array(n, size, flags | __GFP_ZERO); 694} 695 696extern void kvfree(const void *addr); 697 698static inline atomic_t *compound_mapcount_ptr(struct page *page) 699{ 700 return &page[1].compound_mapcount; 701} 702 703static inline int compound_mapcount(struct page *page) 704{ 705 VM_BUG_ON_PAGE(!PageCompound(page), page); 706 page = compound_head(page); 707 return atomic_read(compound_mapcount_ptr(page)) + 1; 708} 709 710/* 711 * The atomic page->_mapcount, starts from -1: so that transitions 712 * both from it and to it can be tracked, using atomic_inc_and_test 713 * and atomic_add_negative(-1). 714 */ 715static inline void page_mapcount_reset(struct page *page) 716{ 717 atomic_set(&(page)->_mapcount, -1); 718} 719 720int __page_mapcount(struct page *page); 721 722static inline int page_mapcount(struct page *page) 723{ 724 VM_BUG_ON_PAGE(PageSlab(page), page); 725 726 if (unlikely(PageCompound(page))) 727 return __page_mapcount(page); 728 return atomic_read(&page->_mapcount) + 1; 729} 730 731#ifdef CONFIG_TRANSPARENT_HUGEPAGE 732int total_mapcount(struct page *page); 733int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 734#else 735static inline int total_mapcount(struct page *page) 736{ 737 return page_mapcount(page); 738} 739static inline int page_trans_huge_mapcount(struct page *page, 740 int *total_mapcount) 741{ 742 int mapcount = page_mapcount(page); 743 if (total_mapcount) 744 *total_mapcount = mapcount; 745 return mapcount; 746} 747#endif 748 749static inline struct page *virt_to_head_page(const void *x) 750{ 751 struct page *page = virt_to_page(x); 752 753 return compound_head(page); 754} 755 756void __put_page(struct page *page); 757 758void put_pages_list(struct list_head *pages); 759 760void split_page(struct page *page, unsigned int order); 761 762/* 763 * Compound pages have a destructor function. Provide a 764 * prototype for that function and accessor functions. 765 * These are _only_ valid on the head of a compound page. 766 */ 767typedef void compound_page_dtor(struct page *); 768 769/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 770enum compound_dtor_id { 771 NULL_COMPOUND_DTOR, 772 COMPOUND_PAGE_DTOR, 773#ifdef CONFIG_HUGETLB_PAGE 774 HUGETLB_PAGE_DTOR, 775#endif 776#ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 TRANSHUGE_PAGE_DTOR, 778#endif 779 NR_COMPOUND_DTORS, 780}; 781extern compound_page_dtor * const compound_page_dtors[]; 782 783static inline void set_compound_page_dtor(struct page *page, 784 enum compound_dtor_id compound_dtor) 785{ 786 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 787 page[1].compound_dtor = compound_dtor; 788} 789 790static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 791{ 792 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 793 return compound_page_dtors[page[1].compound_dtor]; 794} 795 796static inline unsigned int compound_order(struct page *page) 797{ 798 if (!PageHead(page)) 799 return 0; 800 return page[1].compound_order; 801} 802 803static inline void set_compound_order(struct page *page, unsigned int order) 804{ 805 page[1].compound_order = order; 806} 807 808/* Returns the number of pages in this potentially compound page. */ 809static inline unsigned long compound_nr(struct page *page) 810{ 811 return 1UL << compound_order(page); 812} 813 814/* Returns the number of bytes in this potentially compound page. */ 815static inline unsigned long page_size(struct page *page) 816{ 817 return PAGE_SIZE << compound_order(page); 818} 819 820/* Returns the number of bits needed for the number of bytes in a page */ 821static inline unsigned int page_shift(struct page *page) 822{ 823 return PAGE_SHIFT + compound_order(page); 824} 825 826void free_compound_page(struct page *page); 827 828#ifdef CONFIG_MMU 829/* 830 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 831 * servicing faults for write access. In the normal case, do always want 832 * pte_mkwrite. But get_user_pages can cause write faults for mappings 833 * that do not have writing enabled, when used by access_process_vm. 834 */ 835static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 836{ 837 if (likely(vma->vm_flags & VM_WRITE)) 838 pte = pte_mkwrite(pte); 839 return pte; 840} 841 842vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 843 struct page *page); 844vm_fault_t finish_fault(struct vm_fault *vmf); 845vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 846#endif 847 848/* 849 * Multiple processes may "see" the same page. E.g. for untouched 850 * mappings of /dev/null, all processes see the same page full of 851 * zeroes, and text pages of executables and shared libraries have 852 * only one copy in memory, at most, normally. 853 * 854 * For the non-reserved pages, page_count(page) denotes a reference count. 855 * page_count() == 0 means the page is free. page->lru is then used for 856 * freelist management in the buddy allocator. 857 * page_count() > 0 means the page has been allocated. 858 * 859 * Pages are allocated by the slab allocator in order to provide memory 860 * to kmalloc and kmem_cache_alloc. In this case, the management of the 861 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 862 * unless a particular usage is carefully commented. (the responsibility of 863 * freeing the kmalloc memory is the caller's, of course). 864 * 865 * A page may be used by anyone else who does a __get_free_page(). 866 * In this case, page_count still tracks the references, and should only 867 * be used through the normal accessor functions. The top bits of page->flags 868 * and page->virtual store page management information, but all other fields 869 * are unused and could be used privately, carefully. The management of this 870 * page is the responsibility of the one who allocated it, and those who have 871 * subsequently been given references to it. 872 * 873 * The other pages (we may call them "pagecache pages") are completely 874 * managed by the Linux memory manager: I/O, buffers, swapping etc. 875 * The following discussion applies only to them. 876 * 877 * A pagecache page contains an opaque `private' member, which belongs to the 878 * page's address_space. Usually, this is the address of a circular list of 879 * the page's disk buffers. PG_private must be set to tell the VM to call 880 * into the filesystem to release these pages. 881 * 882 * A page may belong to an inode's memory mapping. In this case, page->mapping 883 * is the pointer to the inode, and page->index is the file offset of the page, 884 * in units of PAGE_SIZE. 885 * 886 * If pagecache pages are not associated with an inode, they are said to be 887 * anonymous pages. These may become associated with the swapcache, and in that 888 * case PG_swapcache is set, and page->private is an offset into the swapcache. 889 * 890 * In either case (swapcache or inode backed), the pagecache itself holds one 891 * reference to the page. Setting PG_private should also increment the 892 * refcount. The each user mapping also has a reference to the page. 893 * 894 * The pagecache pages are stored in a per-mapping radix tree, which is 895 * rooted at mapping->i_pages, and indexed by offset. 896 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 897 * lists, we instead now tag pages as dirty/writeback in the radix tree. 898 * 899 * All pagecache pages may be subject to I/O: 900 * - inode pages may need to be read from disk, 901 * - inode pages which have been modified and are MAP_SHARED may need 902 * to be written back to the inode on disk, 903 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 904 * modified may need to be swapped out to swap space and (later) to be read 905 * back into memory. 906 */ 907 908/* 909 * The zone field is never updated after free_area_init_core() 910 * sets it, so none of the operations on it need to be atomic. 911 */ 912 913/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 914#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 915#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 916#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 917#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 918#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 919 920/* 921 * Define the bit shifts to access each section. For non-existent 922 * sections we define the shift as 0; that plus a 0 mask ensures 923 * the compiler will optimise away reference to them. 924 */ 925#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 926#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 927#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 928#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 929#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 930 931/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 932#ifdef NODE_NOT_IN_PAGE_FLAGS 933#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 934#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 935 SECTIONS_PGOFF : ZONES_PGOFF) 936#else 937#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 938#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 939 NODES_PGOFF : ZONES_PGOFF) 940#endif 941 942#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 943 944#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 945#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 946#endif 947 948#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 949#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 950#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 951#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 952#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 953#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 954 955static inline enum zone_type page_zonenum(const struct page *page) 956{ 957 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 958} 959 960#ifdef CONFIG_ZONE_DEVICE 961static inline bool is_zone_device_page(const struct page *page) 962{ 963 return page_zonenum(page) == ZONE_DEVICE; 964} 965extern void memmap_init_zone_device(struct zone *, unsigned long, 966 unsigned long, struct dev_pagemap *); 967#else 968static inline bool is_zone_device_page(const struct page *page) 969{ 970 return false; 971} 972#endif 973 974#ifdef CONFIG_DEV_PAGEMAP_OPS 975void __put_devmap_managed_page(struct page *page); 976DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 977static inline bool put_devmap_managed_page(struct page *page) 978{ 979 if (!static_branch_unlikely(&devmap_managed_key)) 980 return false; 981 if (!is_zone_device_page(page)) 982 return false; 983 switch (page->pgmap->type) { 984 case MEMORY_DEVICE_PRIVATE: 985 case MEMORY_DEVICE_FS_DAX: 986 __put_devmap_managed_page(page); 987 return true; 988 default: 989 break; 990 } 991 return false; 992} 993 994#else /* CONFIG_DEV_PAGEMAP_OPS */ 995static inline bool put_devmap_managed_page(struct page *page) 996{ 997 return false; 998} 999#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1000 1001static inline bool is_device_private_page(const struct page *page) 1002{ 1003 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1004 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1005 is_zone_device_page(page) && 1006 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1007} 1008 1009static inline bool is_pci_p2pdma_page(const struct page *page) 1010{ 1011 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1012 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1013 is_zone_device_page(page) && 1014 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1015} 1016 1017/* 127: arbitrary random number, small enough to assemble well */ 1018#define page_ref_zero_or_close_to_overflow(page) \ 1019 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1020 1021static inline void get_page(struct page *page) 1022{ 1023 page = compound_head(page); 1024 /* 1025 * Getting a normal page or the head of a compound page 1026 * requires to already have an elevated page->_refcount. 1027 */ 1028 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1029 page_ref_inc(page); 1030} 1031 1032static inline __must_check bool try_get_page(struct page *page) 1033{ 1034 page = compound_head(page); 1035 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1036 return false; 1037 page_ref_inc(page); 1038 return true; 1039} 1040 1041static inline void put_page(struct page *page) 1042{ 1043 page = compound_head(page); 1044 1045 /* 1046 * For devmap managed pages we need to catch refcount transition from 1047 * 2 to 1, when refcount reach one it means the page is free and we 1048 * need to inform the device driver through callback. See 1049 * include/linux/memremap.h and HMM for details. 1050 */ 1051 if (put_devmap_managed_page(page)) 1052 return; 1053 1054 if (put_page_testzero(page)) 1055 __put_page(page); 1056} 1057 1058/** 1059 * put_user_page() - release a gup-pinned page 1060 * @page: pointer to page to be released 1061 * 1062 * Pages that were pinned via get_user_pages*() must be released via 1063 * either put_user_page(), or one of the put_user_pages*() routines 1064 * below. This is so that eventually, pages that are pinned via 1065 * get_user_pages*() can be separately tracked and uniquely handled. In 1066 * particular, interactions with RDMA and filesystems need special 1067 * handling. 1068 * 1069 * put_user_page() and put_page() are not interchangeable, despite this early 1070 * implementation that makes them look the same. put_user_page() calls must 1071 * be perfectly matched up with get_user_page() calls. 1072 */ 1073static inline void put_user_page(struct page *page) 1074{ 1075 put_page(page); 1076} 1077 1078void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1079 bool make_dirty); 1080 1081void put_user_pages(struct page **pages, unsigned long npages); 1082 1083#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1084#define SECTION_IN_PAGE_FLAGS 1085#endif 1086 1087/* 1088 * The identification function is mainly used by the buddy allocator for 1089 * determining if two pages could be buddies. We are not really identifying 1090 * the zone since we could be using the section number id if we do not have 1091 * node id available in page flags. 1092 * We only guarantee that it will return the same value for two combinable 1093 * pages in a zone. 1094 */ 1095static inline int page_zone_id(struct page *page) 1096{ 1097 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1098} 1099 1100#ifdef NODE_NOT_IN_PAGE_FLAGS 1101extern int page_to_nid(const struct page *page); 1102#else 1103static inline int page_to_nid(const struct page *page) 1104{ 1105 struct page *p = (struct page *)page; 1106 1107 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1108} 1109#endif 1110 1111#ifdef CONFIG_NUMA_BALANCING 1112static inline int cpu_pid_to_cpupid(int cpu, int pid) 1113{ 1114 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1115} 1116 1117static inline int cpupid_to_pid(int cpupid) 1118{ 1119 return cpupid & LAST__PID_MASK; 1120} 1121 1122static inline int cpupid_to_cpu(int cpupid) 1123{ 1124 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1125} 1126 1127static inline int cpupid_to_nid(int cpupid) 1128{ 1129 return cpu_to_node(cpupid_to_cpu(cpupid)); 1130} 1131 1132static inline bool cpupid_pid_unset(int cpupid) 1133{ 1134 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1135} 1136 1137static inline bool cpupid_cpu_unset(int cpupid) 1138{ 1139 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1140} 1141 1142static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1143{ 1144 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1145} 1146 1147#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1148#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1149static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1150{ 1151 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1152} 1153 1154static inline int page_cpupid_last(struct page *page) 1155{ 1156 return page->_last_cpupid; 1157} 1158static inline void page_cpupid_reset_last(struct page *page) 1159{ 1160 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1161} 1162#else 1163static inline int page_cpupid_last(struct page *page) 1164{ 1165 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1166} 1167 1168extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1169 1170static inline void page_cpupid_reset_last(struct page *page) 1171{ 1172 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1173} 1174#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1175#else /* !CONFIG_NUMA_BALANCING */ 1176static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1177{ 1178 return page_to_nid(page); /* XXX */ 1179} 1180 1181static inline int page_cpupid_last(struct page *page) 1182{ 1183 return page_to_nid(page); /* XXX */ 1184} 1185 1186static inline int cpupid_to_nid(int cpupid) 1187{ 1188 return -1; 1189} 1190 1191static inline int cpupid_to_pid(int cpupid) 1192{ 1193 return -1; 1194} 1195 1196static inline int cpupid_to_cpu(int cpupid) 1197{ 1198 return -1; 1199} 1200 1201static inline int cpu_pid_to_cpupid(int nid, int pid) 1202{ 1203 return -1; 1204} 1205 1206static inline bool cpupid_pid_unset(int cpupid) 1207{ 1208 return 1; 1209} 1210 1211static inline void page_cpupid_reset_last(struct page *page) 1212{ 1213} 1214 1215static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1216{ 1217 return false; 1218} 1219#endif /* CONFIG_NUMA_BALANCING */ 1220 1221#ifdef CONFIG_KASAN_SW_TAGS 1222static inline u8 page_kasan_tag(const struct page *page) 1223{ 1224 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1225} 1226 1227static inline void page_kasan_tag_set(struct page *page, u8 tag) 1228{ 1229 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1230 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1231} 1232 1233static inline void page_kasan_tag_reset(struct page *page) 1234{ 1235 page_kasan_tag_set(page, 0xff); 1236} 1237#else 1238static inline u8 page_kasan_tag(const struct page *page) 1239{ 1240 return 0xff; 1241} 1242 1243static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1244static inline void page_kasan_tag_reset(struct page *page) { } 1245#endif 1246 1247static inline struct zone *page_zone(const struct page *page) 1248{ 1249 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1250} 1251 1252static inline pg_data_t *page_pgdat(const struct page *page) 1253{ 1254 return NODE_DATA(page_to_nid(page)); 1255} 1256 1257#ifdef SECTION_IN_PAGE_FLAGS 1258static inline void set_page_section(struct page *page, unsigned long section) 1259{ 1260 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1261 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1262} 1263 1264static inline unsigned long page_to_section(const struct page *page) 1265{ 1266 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1267} 1268#endif 1269 1270static inline void set_page_zone(struct page *page, enum zone_type zone) 1271{ 1272 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1273 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1274} 1275 1276static inline void set_page_node(struct page *page, unsigned long node) 1277{ 1278 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1279 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1280} 1281 1282static inline void set_page_links(struct page *page, enum zone_type zone, 1283 unsigned long node, unsigned long pfn) 1284{ 1285 set_page_zone(page, zone); 1286 set_page_node(page, node); 1287#ifdef SECTION_IN_PAGE_FLAGS 1288 set_page_section(page, pfn_to_section_nr(pfn)); 1289#endif 1290} 1291 1292#ifdef CONFIG_MEMCG 1293static inline struct mem_cgroup *page_memcg(struct page *page) 1294{ 1295 return page->mem_cgroup; 1296} 1297static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1298{ 1299 WARN_ON_ONCE(!rcu_read_lock_held()); 1300 return READ_ONCE(page->mem_cgroup); 1301} 1302#else 1303static inline struct mem_cgroup *page_memcg(struct page *page) 1304{ 1305 return NULL; 1306} 1307static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1308{ 1309 WARN_ON_ONCE(!rcu_read_lock_held()); 1310 return NULL; 1311} 1312#endif 1313 1314/* 1315 * Some inline functions in vmstat.h depend on page_zone() 1316 */ 1317#include <linux/vmstat.h> 1318 1319static __always_inline void *lowmem_page_address(const struct page *page) 1320{ 1321 return page_to_virt(page); 1322} 1323 1324#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1325#define HASHED_PAGE_VIRTUAL 1326#endif 1327 1328#if defined(WANT_PAGE_VIRTUAL) 1329static inline void *page_address(const struct page *page) 1330{ 1331 return page->virtual; 1332} 1333static inline void set_page_address(struct page *page, void *address) 1334{ 1335 page->virtual = address; 1336} 1337#define page_address_init() do { } while(0) 1338#endif 1339 1340#if defined(HASHED_PAGE_VIRTUAL) 1341void *page_address(const struct page *page); 1342void set_page_address(struct page *page, void *virtual); 1343void page_address_init(void); 1344#endif 1345 1346#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1347#define page_address(page) lowmem_page_address(page) 1348#define set_page_address(page, address) do { } while(0) 1349#define page_address_init() do { } while(0) 1350#endif 1351 1352extern void *page_rmapping(struct page *page); 1353extern struct anon_vma *page_anon_vma(struct page *page); 1354extern struct address_space *page_mapping(struct page *page); 1355 1356extern struct address_space *__page_file_mapping(struct page *); 1357 1358static inline 1359struct address_space *page_file_mapping(struct page *page) 1360{ 1361 if (unlikely(PageSwapCache(page))) 1362 return __page_file_mapping(page); 1363 1364 return page->mapping; 1365} 1366 1367extern pgoff_t __page_file_index(struct page *page); 1368 1369/* 1370 * Return the pagecache index of the passed page. Regular pagecache pages 1371 * use ->index whereas swapcache pages use swp_offset(->private) 1372 */ 1373static inline pgoff_t page_index(struct page *page) 1374{ 1375 if (unlikely(PageSwapCache(page))) 1376 return __page_file_index(page); 1377 return page->index; 1378} 1379 1380bool page_mapped(struct page *page); 1381struct address_space *page_mapping(struct page *page); 1382struct address_space *page_mapping_file(struct page *page); 1383 1384/* 1385 * Return true only if the page has been allocated with 1386 * ALLOC_NO_WATERMARKS and the low watermark was not 1387 * met implying that the system is under some pressure. 1388 */ 1389static inline bool page_is_pfmemalloc(struct page *page) 1390{ 1391 /* 1392 * Page index cannot be this large so this must be 1393 * a pfmemalloc page. 1394 */ 1395 return page->index == -1UL; 1396} 1397 1398/* 1399 * Only to be called by the page allocator on a freshly allocated 1400 * page. 1401 */ 1402static inline void set_page_pfmemalloc(struct page *page) 1403{ 1404 page->index = -1UL; 1405} 1406 1407static inline void clear_page_pfmemalloc(struct page *page) 1408{ 1409 page->index = 0; 1410} 1411 1412/* 1413 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1414 */ 1415extern void pagefault_out_of_memory(void); 1416 1417#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1418 1419/* 1420 * Flags passed to show_mem() and show_free_areas() to suppress output in 1421 * various contexts. 1422 */ 1423#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1424 1425extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1426 1427#ifdef CONFIG_MMU 1428extern bool can_do_mlock(void); 1429#else 1430static inline bool can_do_mlock(void) { return false; } 1431#endif 1432extern int user_shm_lock(size_t, struct user_struct *); 1433extern void user_shm_unlock(size_t, struct user_struct *); 1434 1435/* 1436 * Parameter block passed down to zap_pte_range in exceptional cases. 1437 */ 1438struct zap_details { 1439 struct address_space *check_mapping; /* Check page->mapping if set */ 1440 pgoff_t first_index; /* Lowest page->index to unmap */ 1441 pgoff_t last_index; /* Highest page->index to unmap */ 1442}; 1443 1444struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1445 pte_t pte); 1446struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1447 pmd_t pmd); 1448 1449void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1450 unsigned long size); 1451void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1452 unsigned long size); 1453void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1454 unsigned long start, unsigned long end); 1455 1456struct mmu_notifier_range; 1457 1458void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1459 unsigned long end, unsigned long floor, unsigned long ceiling); 1460int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1461 struct vm_area_struct *vma); 1462int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1463 struct mmu_notifier_range *range, 1464 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1465int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1466 unsigned long *pfn); 1467int follow_phys(struct vm_area_struct *vma, unsigned long address, 1468 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1469int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1470 void *buf, int len, int write); 1471 1472extern void truncate_pagecache(struct inode *inode, loff_t new); 1473extern void truncate_setsize(struct inode *inode, loff_t newsize); 1474void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1475void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1476int truncate_inode_page(struct address_space *mapping, struct page *page); 1477int generic_error_remove_page(struct address_space *mapping, struct page *page); 1478int invalidate_inode_page(struct page *page); 1479 1480#ifdef CONFIG_MMU 1481extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1482 unsigned long address, unsigned int flags); 1483extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1484 unsigned long address, unsigned int fault_flags, 1485 bool *unlocked); 1486void unmap_mapping_pages(struct address_space *mapping, 1487 pgoff_t start, pgoff_t nr, bool even_cows); 1488void unmap_mapping_range(struct address_space *mapping, 1489 loff_t const holebegin, loff_t const holelen, int even_cows); 1490#else 1491static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1492 unsigned long address, unsigned int flags) 1493{ 1494 /* should never happen if there's no MMU */ 1495 BUG(); 1496 return VM_FAULT_SIGBUS; 1497} 1498static inline int fixup_user_fault(struct task_struct *tsk, 1499 struct mm_struct *mm, unsigned long address, 1500 unsigned int fault_flags, bool *unlocked) 1501{ 1502 /* should never happen if there's no MMU */ 1503 BUG(); 1504 return -EFAULT; 1505} 1506static inline void unmap_mapping_pages(struct address_space *mapping, 1507 pgoff_t start, pgoff_t nr, bool even_cows) { } 1508static inline void unmap_mapping_range(struct address_space *mapping, 1509 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1510#endif 1511 1512static inline void unmap_shared_mapping_range(struct address_space *mapping, 1513 loff_t const holebegin, loff_t const holelen) 1514{ 1515 unmap_mapping_range(mapping, holebegin, holelen, 0); 1516} 1517 1518extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1519 void *buf, int len, unsigned int gup_flags); 1520extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1521 void *buf, int len, unsigned int gup_flags); 1522extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1523 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1524 1525long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1526 unsigned long start, unsigned long nr_pages, 1527 unsigned int gup_flags, struct page **pages, 1528 struct vm_area_struct **vmas, int *locked); 1529long get_user_pages(unsigned long start, unsigned long nr_pages, 1530 unsigned int gup_flags, struct page **pages, 1531 struct vm_area_struct **vmas); 1532long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1533 unsigned int gup_flags, struct page **pages, int *locked); 1534long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1535 struct page **pages, unsigned int gup_flags); 1536 1537int get_user_pages_fast(unsigned long start, int nr_pages, 1538 unsigned int gup_flags, struct page **pages); 1539 1540int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1541int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1542 struct task_struct *task, bool bypass_rlim); 1543 1544/* Container for pinned pfns / pages */ 1545struct frame_vector { 1546 unsigned int nr_allocated; /* Number of frames we have space for */ 1547 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1548 bool got_ref; /* Did we pin pages by getting page ref? */ 1549 bool is_pfns; /* Does array contain pages or pfns? */ 1550 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1551 * pfns_vector_pages() or pfns_vector_pfns() 1552 * for access */ 1553}; 1554 1555struct frame_vector *frame_vector_create(unsigned int nr_frames); 1556void frame_vector_destroy(struct frame_vector *vec); 1557int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1558 unsigned int gup_flags, struct frame_vector *vec); 1559void put_vaddr_frames(struct frame_vector *vec); 1560int frame_vector_to_pages(struct frame_vector *vec); 1561void frame_vector_to_pfns(struct frame_vector *vec); 1562 1563static inline unsigned int frame_vector_count(struct frame_vector *vec) 1564{ 1565 return vec->nr_frames; 1566} 1567 1568static inline struct page **frame_vector_pages(struct frame_vector *vec) 1569{ 1570 if (vec->is_pfns) { 1571 int err = frame_vector_to_pages(vec); 1572 1573 if (err) 1574 return ERR_PTR(err); 1575 } 1576 return (struct page **)(vec->ptrs); 1577} 1578 1579static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1580{ 1581 if (!vec->is_pfns) 1582 frame_vector_to_pfns(vec); 1583 return (unsigned long *)(vec->ptrs); 1584} 1585 1586struct kvec; 1587int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1588 struct page **pages); 1589int get_kernel_page(unsigned long start, int write, struct page **pages); 1590struct page *get_dump_page(unsigned long addr); 1591 1592extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1593extern void do_invalidatepage(struct page *page, unsigned int offset, 1594 unsigned int length); 1595 1596void __set_page_dirty(struct page *, struct address_space *, int warn); 1597int __set_page_dirty_nobuffers(struct page *page); 1598int __set_page_dirty_no_writeback(struct page *page); 1599int redirty_page_for_writepage(struct writeback_control *wbc, 1600 struct page *page); 1601void account_page_dirtied(struct page *page, struct address_space *mapping); 1602void account_page_cleaned(struct page *page, struct address_space *mapping, 1603 struct bdi_writeback *wb); 1604int set_page_dirty(struct page *page); 1605int set_page_dirty_lock(struct page *page); 1606void __cancel_dirty_page(struct page *page); 1607static inline void cancel_dirty_page(struct page *page) 1608{ 1609 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1610 if (PageDirty(page)) 1611 __cancel_dirty_page(page); 1612} 1613int clear_page_dirty_for_io(struct page *page); 1614 1615int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1616 1617extern unsigned long move_page_tables(struct vm_area_struct *vma, 1618 unsigned long old_addr, struct vm_area_struct *new_vma, 1619 unsigned long new_addr, unsigned long len, 1620 bool need_rmap_locks); 1621extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1622 unsigned long end, pgprot_t newprot, 1623 int dirty_accountable, int prot_numa); 1624extern int mprotect_fixup(struct vm_area_struct *vma, 1625 struct vm_area_struct **pprev, unsigned long start, 1626 unsigned long end, unsigned long newflags); 1627 1628/* 1629 * doesn't attempt to fault and will return short. 1630 */ 1631int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1632 struct page **pages); 1633/* 1634 * per-process(per-mm_struct) statistics. 1635 */ 1636static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1637{ 1638 long val = atomic_long_read(&mm->rss_stat.count[member]); 1639 1640#ifdef SPLIT_RSS_COUNTING 1641 /* 1642 * counter is updated in asynchronous manner and may go to minus. 1643 * But it's never be expected number for users. 1644 */ 1645 if (val < 0) 1646 val = 0; 1647#endif 1648 return (unsigned long)val; 1649} 1650 1651static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1652{ 1653 atomic_long_add(value, &mm->rss_stat.count[member]); 1654} 1655 1656static inline void inc_mm_counter(struct mm_struct *mm, int member) 1657{ 1658 atomic_long_inc(&mm->rss_stat.count[member]); 1659} 1660 1661static inline void dec_mm_counter(struct mm_struct *mm, int member) 1662{ 1663 atomic_long_dec(&mm->rss_stat.count[member]); 1664} 1665 1666/* Optimized variant when page is already known not to be PageAnon */ 1667static inline int mm_counter_file(struct page *page) 1668{ 1669 if (PageSwapBacked(page)) 1670 return MM_SHMEMPAGES; 1671 return MM_FILEPAGES; 1672} 1673 1674static inline int mm_counter(struct page *page) 1675{ 1676 if (PageAnon(page)) 1677 return MM_ANONPAGES; 1678 return mm_counter_file(page); 1679} 1680 1681static inline unsigned long get_mm_rss(struct mm_struct *mm) 1682{ 1683 return get_mm_counter(mm, MM_FILEPAGES) + 1684 get_mm_counter(mm, MM_ANONPAGES) + 1685 get_mm_counter(mm, MM_SHMEMPAGES); 1686} 1687 1688static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1689{ 1690 return max(mm->hiwater_rss, get_mm_rss(mm)); 1691} 1692 1693static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1694{ 1695 return max(mm->hiwater_vm, mm->total_vm); 1696} 1697 1698static inline void update_hiwater_rss(struct mm_struct *mm) 1699{ 1700 unsigned long _rss = get_mm_rss(mm); 1701 1702 if ((mm)->hiwater_rss < _rss) 1703 (mm)->hiwater_rss = _rss; 1704} 1705 1706static inline void update_hiwater_vm(struct mm_struct *mm) 1707{ 1708 if (mm->hiwater_vm < mm->total_vm) 1709 mm->hiwater_vm = mm->total_vm; 1710} 1711 1712static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1713{ 1714 mm->hiwater_rss = get_mm_rss(mm); 1715} 1716 1717static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1718 struct mm_struct *mm) 1719{ 1720 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1721 1722 if (*maxrss < hiwater_rss) 1723 *maxrss = hiwater_rss; 1724} 1725 1726#if defined(SPLIT_RSS_COUNTING) 1727void sync_mm_rss(struct mm_struct *mm); 1728#else 1729static inline void sync_mm_rss(struct mm_struct *mm) 1730{ 1731} 1732#endif 1733 1734#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1735static inline int pte_devmap(pte_t pte) 1736{ 1737 return 0; 1738} 1739#endif 1740 1741int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1742 1743extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1744 spinlock_t **ptl); 1745static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1746 spinlock_t **ptl) 1747{ 1748 pte_t *ptep; 1749 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1750 return ptep; 1751} 1752 1753#ifdef __PAGETABLE_P4D_FOLDED 1754static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1755 unsigned long address) 1756{ 1757 return 0; 1758} 1759#else 1760int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1761#endif 1762 1763#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1764static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1765 unsigned long address) 1766{ 1767 return 0; 1768} 1769static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1770static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1771 1772#else 1773int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1774 1775static inline void mm_inc_nr_puds(struct mm_struct *mm) 1776{ 1777 if (mm_pud_folded(mm)) 1778 return; 1779 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1780} 1781 1782static inline void mm_dec_nr_puds(struct mm_struct *mm) 1783{ 1784 if (mm_pud_folded(mm)) 1785 return; 1786 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1787} 1788#endif 1789 1790#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1791static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1792 unsigned long address) 1793{ 1794 return 0; 1795} 1796 1797static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1798static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1799 1800#else 1801int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1802 1803static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1804{ 1805 if (mm_pmd_folded(mm)) 1806 return; 1807 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1808} 1809 1810static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1811{ 1812 if (mm_pmd_folded(mm)) 1813 return; 1814 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1815} 1816#endif 1817 1818#ifdef CONFIG_MMU 1819static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1820{ 1821 atomic_long_set(&mm->pgtables_bytes, 0); 1822} 1823 1824static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1825{ 1826 return atomic_long_read(&mm->pgtables_bytes); 1827} 1828 1829static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1830{ 1831 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1832} 1833 1834static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1835{ 1836 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1837} 1838#else 1839 1840static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1841static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1842{ 1843 return 0; 1844} 1845 1846static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1847static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1848#endif 1849 1850int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1851int __pte_alloc_kernel(pmd_t *pmd); 1852 1853/* 1854 * The following ifdef needed to get the 4level-fixup.h header to work. 1855 * Remove it when 4level-fixup.h has been removed. 1856 */ 1857#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1858 1859#ifndef __ARCH_HAS_5LEVEL_HACK 1860static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1861 unsigned long address) 1862{ 1863 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1864 NULL : p4d_offset(pgd, address); 1865} 1866 1867static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1868 unsigned long address) 1869{ 1870 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1871 NULL : pud_offset(p4d, address); 1872} 1873#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1874 1875static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1876{ 1877 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1878 NULL: pmd_offset(pud, address); 1879} 1880#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1881 1882#if USE_SPLIT_PTE_PTLOCKS 1883#if ALLOC_SPLIT_PTLOCKS 1884void __init ptlock_cache_init(void); 1885extern bool ptlock_alloc(struct page *page); 1886extern void ptlock_free(struct page *page); 1887 1888static inline spinlock_t *ptlock_ptr(struct page *page) 1889{ 1890 return page->ptl; 1891} 1892#else /* ALLOC_SPLIT_PTLOCKS */ 1893static inline void ptlock_cache_init(void) 1894{ 1895} 1896 1897static inline bool ptlock_alloc(struct page *page) 1898{ 1899 return true; 1900} 1901 1902static inline void ptlock_free(struct page *page) 1903{ 1904} 1905 1906static inline spinlock_t *ptlock_ptr(struct page *page) 1907{ 1908 return &page->ptl; 1909} 1910#endif /* ALLOC_SPLIT_PTLOCKS */ 1911 1912static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1913{ 1914 return ptlock_ptr(pmd_page(*pmd)); 1915} 1916 1917static inline bool ptlock_init(struct page *page) 1918{ 1919 /* 1920 * prep_new_page() initialize page->private (and therefore page->ptl) 1921 * with 0. Make sure nobody took it in use in between. 1922 * 1923 * It can happen if arch try to use slab for page table allocation: 1924 * slab code uses page->slab_cache, which share storage with page->ptl. 1925 */ 1926 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1927 if (!ptlock_alloc(page)) 1928 return false; 1929 spin_lock_init(ptlock_ptr(page)); 1930 return true; 1931} 1932 1933#else /* !USE_SPLIT_PTE_PTLOCKS */ 1934/* 1935 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1936 */ 1937static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1938{ 1939 return &mm->page_table_lock; 1940} 1941static inline void ptlock_cache_init(void) {} 1942static inline bool ptlock_init(struct page *page) { return true; } 1943static inline void ptlock_free(struct page *page) {} 1944#endif /* USE_SPLIT_PTE_PTLOCKS */ 1945 1946static inline void pgtable_init(void) 1947{ 1948 ptlock_cache_init(); 1949 pgtable_cache_init(); 1950} 1951 1952static inline bool pgtable_pte_page_ctor(struct page *page) 1953{ 1954 if (!ptlock_init(page)) 1955 return false; 1956 __SetPageTable(page); 1957 inc_zone_page_state(page, NR_PAGETABLE); 1958 return true; 1959} 1960 1961static inline void pgtable_pte_page_dtor(struct page *page) 1962{ 1963 ptlock_free(page); 1964 __ClearPageTable(page); 1965 dec_zone_page_state(page, NR_PAGETABLE); 1966} 1967 1968#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1969({ \ 1970 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1971 pte_t *__pte = pte_offset_map(pmd, address); \ 1972 *(ptlp) = __ptl; \ 1973 spin_lock(__ptl); \ 1974 __pte; \ 1975}) 1976 1977#define pte_unmap_unlock(pte, ptl) do { \ 1978 spin_unlock(ptl); \ 1979 pte_unmap(pte); \ 1980} while (0) 1981 1982#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 1983 1984#define pte_alloc_map(mm, pmd, address) \ 1985 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 1986 1987#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1988 (pte_alloc(mm, pmd) ? \ 1989 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1990 1991#define pte_alloc_kernel(pmd, address) \ 1992 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 1993 NULL: pte_offset_kernel(pmd, address)) 1994 1995#if USE_SPLIT_PMD_PTLOCKS 1996 1997static struct page *pmd_to_page(pmd_t *pmd) 1998{ 1999 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2000 return virt_to_page((void *)((unsigned long) pmd & mask)); 2001} 2002 2003static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2004{ 2005 return ptlock_ptr(pmd_to_page(pmd)); 2006} 2007 2008static inline bool pgtable_pmd_page_ctor(struct page *page) 2009{ 2010#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2011 page->pmd_huge_pte = NULL; 2012#endif 2013 return ptlock_init(page); 2014} 2015 2016static inline void pgtable_pmd_page_dtor(struct page *page) 2017{ 2018#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2019 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2020#endif 2021 ptlock_free(page); 2022} 2023 2024#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2025 2026#else 2027 2028static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2029{ 2030 return &mm->page_table_lock; 2031} 2032 2033static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2034static inline void pgtable_pmd_page_dtor(struct page *page) {} 2035 2036#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2037 2038#endif 2039 2040static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2041{ 2042 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2043 spin_lock(ptl); 2044 return ptl; 2045} 2046 2047/* 2048 * No scalability reason to split PUD locks yet, but follow the same pattern 2049 * as the PMD locks to make it easier if we decide to. The VM should not be 2050 * considered ready to switch to split PUD locks yet; there may be places 2051 * which need to be converted from page_table_lock. 2052 */ 2053static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2054{ 2055 return &mm->page_table_lock; 2056} 2057 2058static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2059{ 2060 spinlock_t *ptl = pud_lockptr(mm, pud); 2061 2062 spin_lock(ptl); 2063 return ptl; 2064} 2065 2066extern void __init pagecache_init(void); 2067extern void free_area_init(unsigned long * zones_size); 2068extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2069 unsigned long zone_start_pfn, unsigned long *zholes_size); 2070extern void free_initmem(void); 2071 2072/* 2073 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2074 * into the buddy system. The freed pages will be poisoned with pattern 2075 * "poison" if it's within range [0, UCHAR_MAX]. 2076 * Return pages freed into the buddy system. 2077 */ 2078extern unsigned long free_reserved_area(void *start, void *end, 2079 int poison, const char *s); 2080 2081#ifdef CONFIG_HIGHMEM 2082/* 2083 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2084 * and totalram_pages. 2085 */ 2086extern void free_highmem_page(struct page *page); 2087#endif 2088 2089extern void adjust_managed_page_count(struct page *page, long count); 2090extern void mem_init_print_info(const char *str); 2091 2092extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2093 2094/* Free the reserved page into the buddy system, so it gets managed. */ 2095static inline void __free_reserved_page(struct page *page) 2096{ 2097 ClearPageReserved(page); 2098 init_page_count(page); 2099 __free_page(page); 2100} 2101 2102static inline void free_reserved_page(struct page *page) 2103{ 2104 __free_reserved_page(page); 2105 adjust_managed_page_count(page, 1); 2106} 2107 2108static inline void mark_page_reserved(struct page *page) 2109{ 2110 SetPageReserved(page); 2111 adjust_managed_page_count(page, -1); 2112} 2113 2114/* 2115 * Default method to free all the __init memory into the buddy system. 2116 * The freed pages will be poisoned with pattern "poison" if it's within 2117 * range [0, UCHAR_MAX]. 2118 * Return pages freed into the buddy system. 2119 */ 2120static inline unsigned long free_initmem_default(int poison) 2121{ 2122 extern char __init_begin[], __init_end[]; 2123 2124 return free_reserved_area(&__init_begin, &__init_end, 2125 poison, "unused kernel"); 2126} 2127 2128static inline unsigned long get_num_physpages(void) 2129{ 2130 int nid; 2131 unsigned long phys_pages = 0; 2132 2133 for_each_online_node(nid) 2134 phys_pages += node_present_pages(nid); 2135 2136 return phys_pages; 2137} 2138 2139#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2140/* 2141 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2142 * zones, allocate the backing mem_map and account for memory holes in a more 2143 * architecture independent manner. This is a substitute for creating the 2144 * zone_sizes[] and zholes_size[] arrays and passing them to 2145 * free_area_init_node() 2146 * 2147 * An architecture is expected to register range of page frames backed by 2148 * physical memory with memblock_add[_node]() before calling 2149 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2150 * usage, an architecture is expected to do something like 2151 * 2152 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2153 * max_highmem_pfn}; 2154 * for_each_valid_physical_page_range() 2155 * memblock_add_node(base, size, nid) 2156 * free_area_init_nodes(max_zone_pfns); 2157 * 2158 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2159 * registered physical page range. Similarly 2160 * sparse_memory_present_with_active_regions() calls memory_present() for 2161 * each range when SPARSEMEM is enabled. 2162 * 2163 * See mm/page_alloc.c for more information on each function exposed by 2164 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2165 */ 2166extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2167unsigned long node_map_pfn_alignment(void); 2168unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2169 unsigned long end_pfn); 2170extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2171 unsigned long end_pfn); 2172extern void get_pfn_range_for_nid(unsigned int nid, 2173 unsigned long *start_pfn, unsigned long *end_pfn); 2174extern unsigned long find_min_pfn_with_active_regions(void); 2175extern void free_bootmem_with_active_regions(int nid, 2176 unsigned long max_low_pfn); 2177extern void sparse_memory_present_with_active_regions(int nid); 2178 2179#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2180 2181#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2182 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2183static inline int __early_pfn_to_nid(unsigned long pfn, 2184 struct mminit_pfnnid_cache *state) 2185{ 2186 return 0; 2187} 2188#else 2189/* please see mm/page_alloc.c */ 2190extern int __meminit early_pfn_to_nid(unsigned long pfn); 2191/* there is a per-arch backend function. */ 2192extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2193 struct mminit_pfnnid_cache *state); 2194#endif 2195 2196#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2197void zero_resv_unavail(void); 2198#else 2199static inline void zero_resv_unavail(void) {} 2200#endif 2201 2202extern void set_dma_reserve(unsigned long new_dma_reserve); 2203extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2204 enum memmap_context, struct vmem_altmap *); 2205extern void setup_per_zone_wmarks(void); 2206extern int __meminit init_per_zone_wmark_min(void); 2207extern void mem_init(void); 2208extern void __init mmap_init(void); 2209extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2210extern long si_mem_available(void); 2211extern void si_meminfo(struct sysinfo * val); 2212extern void si_meminfo_node(struct sysinfo *val, int nid); 2213#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2214extern unsigned long arch_reserved_kernel_pages(void); 2215#endif 2216 2217extern __printf(3, 4) 2218void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2219 2220extern void setup_per_cpu_pageset(void); 2221 2222extern void zone_pcp_update(struct zone *zone); 2223extern void zone_pcp_reset(struct zone *zone); 2224 2225/* page_alloc.c */ 2226extern int min_free_kbytes; 2227extern int watermark_boost_factor; 2228extern int watermark_scale_factor; 2229 2230/* nommu.c */ 2231extern atomic_long_t mmap_pages_allocated; 2232extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2233 2234/* interval_tree.c */ 2235void vma_interval_tree_insert(struct vm_area_struct *node, 2236 struct rb_root_cached *root); 2237void vma_interval_tree_insert_after(struct vm_area_struct *node, 2238 struct vm_area_struct *prev, 2239 struct rb_root_cached *root); 2240void vma_interval_tree_remove(struct vm_area_struct *node, 2241 struct rb_root_cached *root); 2242struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2243 unsigned long start, unsigned long last); 2244struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2245 unsigned long start, unsigned long last); 2246 2247#define vma_interval_tree_foreach(vma, root, start, last) \ 2248 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2249 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2250 2251void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2252 struct rb_root_cached *root); 2253void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2254 struct rb_root_cached *root); 2255struct anon_vma_chain * 2256anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2257 unsigned long start, unsigned long last); 2258struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2259 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2260#ifdef CONFIG_DEBUG_VM_RB 2261void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2262#endif 2263 2264#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2265 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2266 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2267 2268/* mmap.c */ 2269extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2270extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2271 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2272 struct vm_area_struct *expand); 2273static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2274 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2275{ 2276 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2277} 2278extern struct vm_area_struct *vma_merge(struct mm_struct *, 2279 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2280 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2281 struct mempolicy *, struct vm_userfaultfd_ctx); 2282extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2283extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2284 unsigned long addr, int new_below); 2285extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2286 unsigned long addr, int new_below); 2287extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2288extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2289 struct rb_node **, struct rb_node *); 2290extern void unlink_file_vma(struct vm_area_struct *); 2291extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2292 unsigned long addr, unsigned long len, pgoff_t pgoff, 2293 bool *need_rmap_locks); 2294extern void exit_mmap(struct mm_struct *); 2295 2296static inline int check_data_rlimit(unsigned long rlim, 2297 unsigned long new, 2298 unsigned long start, 2299 unsigned long end_data, 2300 unsigned long start_data) 2301{ 2302 if (rlim < RLIM_INFINITY) { 2303 if (((new - start) + (end_data - start_data)) > rlim) 2304 return -ENOSPC; 2305 } 2306 2307 return 0; 2308} 2309 2310extern int mm_take_all_locks(struct mm_struct *mm); 2311extern void mm_drop_all_locks(struct mm_struct *mm); 2312 2313extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2314extern struct file *get_mm_exe_file(struct mm_struct *mm); 2315extern struct file *get_task_exe_file(struct task_struct *task); 2316 2317extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2318extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2319 2320extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2321 const struct vm_special_mapping *sm); 2322extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2323 unsigned long addr, unsigned long len, 2324 unsigned long flags, 2325 const struct vm_special_mapping *spec); 2326/* This is an obsolete alternative to _install_special_mapping. */ 2327extern int install_special_mapping(struct mm_struct *mm, 2328 unsigned long addr, unsigned long len, 2329 unsigned long flags, struct page **pages); 2330 2331unsigned long randomize_stack_top(unsigned long stack_top); 2332 2333extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2334 2335extern unsigned long mmap_region(struct file *file, unsigned long addr, 2336 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2337 struct list_head *uf); 2338extern unsigned long do_mmap(struct file *file, unsigned long addr, 2339 unsigned long len, unsigned long prot, unsigned long flags, 2340 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2341 struct list_head *uf); 2342extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2343 struct list_head *uf, bool downgrade); 2344extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2345 struct list_head *uf); 2346 2347static inline unsigned long 2348do_mmap_pgoff(struct file *file, unsigned long addr, 2349 unsigned long len, unsigned long prot, unsigned long flags, 2350 unsigned long pgoff, unsigned long *populate, 2351 struct list_head *uf) 2352{ 2353 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2354} 2355 2356#ifdef CONFIG_MMU 2357extern int __mm_populate(unsigned long addr, unsigned long len, 2358 int ignore_errors); 2359static inline void mm_populate(unsigned long addr, unsigned long len) 2360{ 2361 /* Ignore errors */ 2362 (void) __mm_populate(addr, len, 1); 2363} 2364#else 2365static inline void mm_populate(unsigned long addr, unsigned long len) {} 2366#endif 2367 2368/* These take the mm semaphore themselves */ 2369extern int __must_check vm_brk(unsigned long, unsigned long); 2370extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2371extern int vm_munmap(unsigned long, size_t); 2372extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2373 unsigned long, unsigned long, 2374 unsigned long, unsigned long); 2375 2376struct vm_unmapped_area_info { 2377#define VM_UNMAPPED_AREA_TOPDOWN 1 2378 unsigned long flags; 2379 unsigned long length; 2380 unsigned long low_limit; 2381 unsigned long high_limit; 2382 unsigned long align_mask; 2383 unsigned long align_offset; 2384}; 2385 2386extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2387extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2388 2389/* 2390 * Search for an unmapped address range. 2391 * 2392 * We are looking for a range that: 2393 * - does not intersect with any VMA; 2394 * - is contained within the [low_limit, high_limit) interval; 2395 * - is at least the desired size. 2396 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2397 */ 2398static inline unsigned long 2399vm_unmapped_area(struct vm_unmapped_area_info *info) 2400{ 2401 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2402 return unmapped_area_topdown(info); 2403 else 2404 return unmapped_area(info); 2405} 2406 2407/* truncate.c */ 2408extern void truncate_inode_pages(struct address_space *, loff_t); 2409extern void truncate_inode_pages_range(struct address_space *, 2410 loff_t lstart, loff_t lend); 2411extern void truncate_inode_pages_final(struct address_space *); 2412 2413/* generic vm_area_ops exported for stackable file systems */ 2414extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2415extern void filemap_map_pages(struct vm_fault *vmf, 2416 pgoff_t start_pgoff, pgoff_t end_pgoff); 2417extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2418 2419/* mm/page-writeback.c */ 2420int __must_check write_one_page(struct page *page); 2421void task_dirty_inc(struct task_struct *tsk); 2422 2423/* readahead.c */ 2424#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2425 2426int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2427 pgoff_t offset, unsigned long nr_to_read); 2428 2429void page_cache_sync_readahead(struct address_space *mapping, 2430 struct file_ra_state *ra, 2431 struct file *filp, 2432 pgoff_t offset, 2433 unsigned long size); 2434 2435void page_cache_async_readahead(struct address_space *mapping, 2436 struct file_ra_state *ra, 2437 struct file *filp, 2438 struct page *pg, 2439 pgoff_t offset, 2440 unsigned long size); 2441 2442extern unsigned long stack_guard_gap; 2443/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2444extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2445 2446/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2447extern int expand_downwards(struct vm_area_struct *vma, 2448 unsigned long address); 2449#if VM_GROWSUP 2450extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2451#else 2452 #define expand_upwards(vma, address) (0) 2453#endif 2454 2455/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2456extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2457extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2458 struct vm_area_struct **pprev); 2459 2460/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2461 NULL if none. Assume start_addr < end_addr. */ 2462static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2463{ 2464 struct vm_area_struct * vma = find_vma(mm,start_addr); 2465 2466 if (vma && end_addr <= vma->vm_start) 2467 vma = NULL; 2468 return vma; 2469} 2470 2471static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2472{ 2473 unsigned long vm_start = vma->vm_start; 2474 2475 if (vma->vm_flags & VM_GROWSDOWN) { 2476 vm_start -= stack_guard_gap; 2477 if (vm_start > vma->vm_start) 2478 vm_start = 0; 2479 } 2480 return vm_start; 2481} 2482 2483static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2484{ 2485 unsigned long vm_end = vma->vm_end; 2486 2487 if (vma->vm_flags & VM_GROWSUP) { 2488 vm_end += stack_guard_gap; 2489 if (vm_end < vma->vm_end) 2490 vm_end = -PAGE_SIZE; 2491 } 2492 return vm_end; 2493} 2494 2495static inline unsigned long vma_pages(struct vm_area_struct *vma) 2496{ 2497 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2498} 2499 2500/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2501static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2502 unsigned long vm_start, unsigned long vm_end) 2503{ 2504 struct vm_area_struct *vma = find_vma(mm, vm_start); 2505 2506 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2507 vma = NULL; 2508 2509 return vma; 2510} 2511 2512static inline bool range_in_vma(struct vm_area_struct *vma, 2513 unsigned long start, unsigned long end) 2514{ 2515 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2516} 2517 2518#ifdef CONFIG_MMU 2519pgprot_t vm_get_page_prot(unsigned long vm_flags); 2520void vma_set_page_prot(struct vm_area_struct *vma); 2521#else 2522static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2523{ 2524 return __pgprot(0); 2525} 2526static inline void vma_set_page_prot(struct vm_area_struct *vma) 2527{ 2528 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2529} 2530#endif 2531 2532#ifdef CONFIG_NUMA_BALANCING 2533unsigned long change_prot_numa(struct vm_area_struct *vma, 2534 unsigned long start, unsigned long end); 2535#endif 2536 2537struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2538int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2539 unsigned long pfn, unsigned long size, pgprot_t); 2540int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2541int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2542 unsigned long num); 2543int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2544 unsigned long num); 2545vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2546 unsigned long pfn); 2547vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2548 unsigned long pfn, pgprot_t pgprot); 2549vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2550 pfn_t pfn); 2551vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2552 unsigned long addr, pfn_t pfn); 2553int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2554 2555static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2556 unsigned long addr, struct page *page) 2557{ 2558 int err = vm_insert_page(vma, addr, page); 2559 2560 if (err == -ENOMEM) 2561 return VM_FAULT_OOM; 2562 if (err < 0 && err != -EBUSY) 2563 return VM_FAULT_SIGBUS; 2564 2565 return VM_FAULT_NOPAGE; 2566} 2567 2568static inline vm_fault_t vmf_error(int err) 2569{ 2570 if (err == -ENOMEM) 2571 return VM_FAULT_OOM; 2572 return VM_FAULT_SIGBUS; 2573} 2574 2575struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2576 unsigned int foll_flags); 2577 2578#define FOLL_WRITE 0x01 /* check pte is writable */ 2579#define FOLL_TOUCH 0x02 /* mark page accessed */ 2580#define FOLL_GET 0x04 /* do get_page on page */ 2581#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2582#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2583#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2584 * and return without waiting upon it */ 2585#define FOLL_POPULATE 0x40 /* fault in page */ 2586#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2587#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2588#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2589#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2590#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2591#define FOLL_MLOCK 0x1000 /* lock present pages */ 2592#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2593#define FOLL_COW 0x4000 /* internal GUP flag */ 2594#define FOLL_ANON 0x8000 /* don't do file mappings */ 2595#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2596#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2597 2598/* 2599 * NOTE on FOLL_LONGTERM: 2600 * 2601 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2602 * period _often_ under userspace control. This is contrasted with 2603 * iov_iter_get_pages() where usages which are transient. 2604 * 2605 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2606 * lifetime enforced by the filesystem and we need guarantees that longterm 2607 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2608 * the filesystem. Ideas for this coordination include revoking the longterm 2609 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2610 * added after the problem with filesystems was found FS DAX VMAs are 2611 * specifically failed. Filesystem pages are still subject to bugs and use of 2612 * FOLL_LONGTERM should be avoided on those pages. 2613 * 2614 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2615 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2616 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2617 * is due to an incompatibility with the FS DAX check and 2618 * FAULT_FLAG_ALLOW_RETRY 2619 * 2620 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2621 * that region. And so CMA attempts to migrate the page before pinning when 2622 * FOLL_LONGTERM is specified. 2623 */ 2624 2625static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2626{ 2627 if (vm_fault & VM_FAULT_OOM) 2628 return -ENOMEM; 2629 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2630 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2631 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2632 return -EFAULT; 2633 return 0; 2634} 2635 2636typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2637extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2638 unsigned long size, pte_fn_t fn, void *data); 2639 2640 2641#ifdef CONFIG_PAGE_POISONING 2642extern bool page_poisoning_enabled(void); 2643extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2644#else 2645static inline bool page_poisoning_enabled(void) { return false; } 2646static inline void kernel_poison_pages(struct page *page, int numpages, 2647 int enable) { } 2648#endif 2649 2650#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2651DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2652#else 2653DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2654#endif 2655static inline bool want_init_on_alloc(gfp_t flags) 2656{ 2657 if (static_branch_unlikely(&init_on_alloc) && 2658 !page_poisoning_enabled()) 2659 return true; 2660 return flags & __GFP_ZERO; 2661} 2662 2663#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2664DECLARE_STATIC_KEY_TRUE(init_on_free); 2665#else 2666DECLARE_STATIC_KEY_FALSE(init_on_free); 2667#endif 2668static inline bool want_init_on_free(void) 2669{ 2670 return static_branch_unlikely(&init_on_free) && 2671 !page_poisoning_enabled(); 2672} 2673 2674#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 2675DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 2676#else 2677DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2678#endif 2679 2680static inline bool debug_pagealloc_enabled(void) 2681{ 2682 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2683 return false; 2684 2685 return static_branch_unlikely(&_debug_pagealloc_enabled); 2686} 2687 2688#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2689extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2690 2691static inline void 2692kernel_map_pages(struct page *page, int numpages, int enable) 2693{ 2694 __kernel_map_pages(page, numpages, enable); 2695} 2696#ifdef CONFIG_HIBERNATION 2697extern bool kernel_page_present(struct page *page); 2698#endif /* CONFIG_HIBERNATION */ 2699#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2700static inline void 2701kernel_map_pages(struct page *page, int numpages, int enable) {} 2702#ifdef CONFIG_HIBERNATION 2703static inline bool kernel_page_present(struct page *page) { return true; } 2704#endif /* CONFIG_HIBERNATION */ 2705#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2706 2707#ifdef __HAVE_ARCH_GATE_AREA 2708extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2709extern int in_gate_area_no_mm(unsigned long addr); 2710extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2711#else 2712static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2713{ 2714 return NULL; 2715} 2716static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2717static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2718{ 2719 return 0; 2720} 2721#endif /* __HAVE_ARCH_GATE_AREA */ 2722 2723extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2724 2725#ifdef CONFIG_SYSCTL 2726extern int sysctl_drop_caches; 2727int drop_caches_sysctl_handler(struct ctl_table *, int, 2728 void __user *, size_t *, loff_t *); 2729#endif 2730 2731void drop_slab(void); 2732void drop_slab_node(int nid); 2733 2734#ifndef CONFIG_MMU 2735#define randomize_va_space 0 2736#else 2737extern int randomize_va_space; 2738#endif 2739 2740const char * arch_vma_name(struct vm_area_struct *vma); 2741#ifdef CONFIG_MMU 2742void print_vma_addr(char *prefix, unsigned long rip); 2743#else 2744static inline void print_vma_addr(char *prefix, unsigned long rip) 2745{ 2746} 2747#endif 2748 2749void *sparse_buffer_alloc(unsigned long size); 2750struct page * __populate_section_memmap(unsigned long pfn, 2751 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2752pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2753p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2754pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2755pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2756pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2757void *vmemmap_alloc_block(unsigned long size, int node); 2758struct vmem_altmap; 2759void *vmemmap_alloc_block_buf(unsigned long size, int node); 2760void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2761void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2762int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2763 int node); 2764int vmemmap_populate(unsigned long start, unsigned long end, int node, 2765 struct vmem_altmap *altmap); 2766void vmemmap_populate_print_last(void); 2767#ifdef CONFIG_MEMORY_HOTPLUG 2768void vmemmap_free(unsigned long start, unsigned long end, 2769 struct vmem_altmap *altmap); 2770#endif 2771void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2772 unsigned long nr_pages); 2773 2774enum mf_flags { 2775 MF_COUNT_INCREASED = 1 << 0, 2776 MF_ACTION_REQUIRED = 1 << 1, 2777 MF_MUST_KILL = 1 << 2, 2778 MF_SOFT_OFFLINE = 1 << 3, 2779}; 2780extern int memory_failure(unsigned long pfn, int flags); 2781extern void memory_failure_queue(unsigned long pfn, int flags); 2782extern int unpoison_memory(unsigned long pfn); 2783extern int get_hwpoison_page(struct page *page); 2784#define put_hwpoison_page(page) put_page(page) 2785extern int sysctl_memory_failure_early_kill; 2786extern int sysctl_memory_failure_recovery; 2787extern void shake_page(struct page *p, int access); 2788extern atomic_long_t num_poisoned_pages __read_mostly; 2789extern int soft_offline_page(struct page *page, int flags); 2790 2791 2792/* 2793 * Error handlers for various types of pages. 2794 */ 2795enum mf_result { 2796 MF_IGNORED, /* Error: cannot be handled */ 2797 MF_FAILED, /* Error: handling failed */ 2798 MF_DELAYED, /* Will be handled later */ 2799 MF_RECOVERED, /* Successfully recovered */ 2800}; 2801 2802enum mf_action_page_type { 2803 MF_MSG_KERNEL, 2804 MF_MSG_KERNEL_HIGH_ORDER, 2805 MF_MSG_SLAB, 2806 MF_MSG_DIFFERENT_COMPOUND, 2807 MF_MSG_POISONED_HUGE, 2808 MF_MSG_HUGE, 2809 MF_MSG_FREE_HUGE, 2810 MF_MSG_NON_PMD_HUGE, 2811 MF_MSG_UNMAP_FAILED, 2812 MF_MSG_DIRTY_SWAPCACHE, 2813 MF_MSG_CLEAN_SWAPCACHE, 2814 MF_MSG_DIRTY_MLOCKED_LRU, 2815 MF_MSG_CLEAN_MLOCKED_LRU, 2816 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2817 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2818 MF_MSG_DIRTY_LRU, 2819 MF_MSG_CLEAN_LRU, 2820 MF_MSG_TRUNCATED_LRU, 2821 MF_MSG_BUDDY, 2822 MF_MSG_BUDDY_2ND, 2823 MF_MSG_DAX, 2824 MF_MSG_UNKNOWN, 2825}; 2826 2827#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2828extern void clear_huge_page(struct page *page, 2829 unsigned long addr_hint, 2830 unsigned int pages_per_huge_page); 2831extern void copy_user_huge_page(struct page *dst, struct page *src, 2832 unsigned long addr_hint, 2833 struct vm_area_struct *vma, 2834 unsigned int pages_per_huge_page); 2835extern long copy_huge_page_from_user(struct page *dst_page, 2836 const void __user *usr_src, 2837 unsigned int pages_per_huge_page, 2838 bool allow_pagefault); 2839#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2840 2841#ifdef CONFIG_DEBUG_PAGEALLOC 2842extern unsigned int _debug_guardpage_minorder; 2843DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2844 2845static inline unsigned int debug_guardpage_minorder(void) 2846{ 2847 return _debug_guardpage_minorder; 2848} 2849 2850static inline bool debug_guardpage_enabled(void) 2851{ 2852 return static_branch_unlikely(&_debug_guardpage_enabled); 2853} 2854 2855static inline bool page_is_guard(struct page *page) 2856{ 2857 if (!debug_guardpage_enabled()) 2858 return false; 2859 2860 return PageGuard(page); 2861} 2862#else 2863static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2864static inline bool debug_guardpage_enabled(void) { return false; } 2865static inline bool page_is_guard(struct page *page) { return false; } 2866#endif /* CONFIG_DEBUG_PAGEALLOC */ 2867 2868#if MAX_NUMNODES > 1 2869void __init setup_nr_node_ids(void); 2870#else 2871static inline void setup_nr_node_ids(void) {} 2872#endif 2873 2874extern int memcmp_pages(struct page *page1, struct page *page2); 2875 2876static inline int pages_identical(struct page *page1, struct page *page2) 2877{ 2878 return !memcmp_pages(page1, page2); 2879} 2880 2881#endif /* __KERNEL__ */ 2882#endif /* _LINUX_MM_H */