Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/range.h>
19#include <linux/pfn.h>
20#include <linux/percpu-refcount.h>
21#include <linux/bit_spinlock.h>
22#include <linux/shrinker.h>
23#include <linux/resource.h>
24#include <linux/page_ext.h>
25#include <linux/err.h>
26#include <linux/page_ref.h>
27#include <linux/memremap.h>
28#include <linux/overflow.h>
29#include <linux/sizes.h>
30
31struct mempolicy;
32struct anon_vma;
33struct anon_vma_chain;
34struct file_ra_state;
35struct user_struct;
36struct writeback_control;
37struct bdi_writeback;
38
39void init_mm_internals(void);
40
41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
42extern unsigned long max_mapnr;
43
44static inline void set_max_mapnr(unsigned long limit)
45{
46 max_mapnr = limit;
47}
48#else
49static inline void set_max_mapnr(unsigned long limit) { }
50#endif
51
52extern atomic_long_t _totalram_pages;
53static inline unsigned long totalram_pages(void)
54{
55 return (unsigned long)atomic_long_read(&_totalram_pages);
56}
57
58static inline void totalram_pages_inc(void)
59{
60 atomic_long_inc(&_totalram_pages);
61}
62
63static inline void totalram_pages_dec(void)
64{
65 atomic_long_dec(&_totalram_pages);
66}
67
68static inline void totalram_pages_add(long count)
69{
70 atomic_long_add(count, &_totalram_pages);
71}
72
73static inline void totalram_pages_set(long val)
74{
75 atomic_long_set(&_totalram_pages, val);
76}
77
78extern void * high_memory;
79extern int page_cluster;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/pgtable.h>
100#include <asm/processor.h>
101
102/*
103 * Architectures that support memory tagging (assigning tags to memory regions,
104 * embedding these tags into addresses that point to these memory regions, and
105 * checking that the memory and the pointer tags match on memory accesses)
106 * redefine this macro to strip tags from pointers.
107 * It's defined as noop for arcitectures that don't support memory tagging.
108 */
109#ifndef untagged_addr
110#define untagged_addr(addr) (addr)
111#endif
112
113#ifndef __pa_symbol
114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
115#endif
116
117#ifndef page_to_virt
118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
119#endif
120
121#ifndef lm_alias
122#define lm_alias(x) __va(__pa_symbol(x))
123#endif
124
125/*
126 * To prevent common memory management code establishing
127 * a zero page mapping on a read fault.
128 * This macro should be defined within <asm/pgtable.h>.
129 * s390 does this to prevent multiplexing of hardware bits
130 * related to the physical page in case of virtualization.
131 */
132#ifndef mm_forbids_zeropage
133#define mm_forbids_zeropage(X) (0)
134#endif
135
136/*
137 * On some architectures it is expensive to call memset() for small sizes.
138 * If an architecture decides to implement their own version of
139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140 * define their own version of this macro in <asm/pgtable.h>
141 */
142#if BITS_PER_LONG == 64
143/* This function must be updated when the size of struct page grows above 80
144 * or reduces below 56. The idea that compiler optimizes out switch()
145 * statement, and only leaves move/store instructions. Also the compiler can
146 * combine write statments if they are both assignments and can be reordered,
147 * this can result in several of the writes here being dropped.
148 */
149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150static inline void __mm_zero_struct_page(struct page *page)
151{
152 unsigned long *_pp = (void *)page;
153
154 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 BUILD_BUG_ON(sizeof(struct page) & 7);
156 BUILD_BUG_ON(sizeof(struct page) < 56);
157 BUILD_BUG_ON(sizeof(struct page) > 80);
158
159 switch (sizeof(struct page)) {
160 case 80:
161 _pp[9] = 0; /* fallthrough */
162 case 72:
163 _pp[8] = 0; /* fallthrough */
164 case 64:
165 _pp[7] = 0; /* fallthrough */
166 case 56:
167 _pp[6] = 0;
168 _pp[5] = 0;
169 _pp[4] = 0;
170 _pp[3] = 0;
171 _pp[2] = 0;
172 _pp[1] = 0;
173 _pp[0] = 0;
174 }
175}
176#else
177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
178#endif
179
180/*
181 * Default maximum number of active map areas, this limits the number of vmas
182 * per mm struct. Users can overwrite this number by sysctl but there is a
183 * problem.
184 *
185 * When a program's coredump is generated as ELF format, a section is created
186 * per a vma. In ELF, the number of sections is represented in unsigned short.
187 * This means the number of sections should be smaller than 65535 at coredump.
188 * Because the kernel adds some informative sections to a image of program at
189 * generating coredump, we need some margin. The number of extra sections is
190 * 1-3 now and depends on arch. We use "5" as safe margin, here.
191 *
192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193 * not a hard limit any more. Although some userspace tools can be surprised by
194 * that.
195 */
196#define MAPCOUNT_ELF_CORE_MARGIN (5)
197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198
199extern int sysctl_max_map_count;
200
201extern unsigned long sysctl_user_reserve_kbytes;
202extern unsigned long sysctl_admin_reserve_kbytes;
203
204extern int sysctl_overcommit_memory;
205extern int sysctl_overcommit_ratio;
206extern unsigned long sysctl_overcommit_kbytes;
207
208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 size_t *, loff_t *);
210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 size_t *, loff_t *);
212
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214
215/* to align the pointer to the (next) page boundary */
216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217
218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220
221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222
223/*
224 * Linux kernel virtual memory manager primitives.
225 * The idea being to have a "virtual" mm in the same way
226 * we have a virtual fs - giving a cleaner interface to the
227 * mm details, and allowing different kinds of memory mappings
228 * (from shared memory to executable loading to arbitrary
229 * mmap() functions).
230 */
231
232struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234void vm_area_free(struct vm_area_struct *);
235
236#ifndef CONFIG_MMU
237extern struct rb_root nommu_region_tree;
238extern struct rw_semaphore nommu_region_sem;
239
240extern unsigned int kobjsize(const void *objp);
241#endif
242
243/*
244 * vm_flags in vm_area_struct, see mm_types.h.
245 * When changing, update also include/trace/events/mmflags.h
246 */
247#define VM_NONE 0x00000000
248
249#define VM_READ 0x00000001 /* currently active flags */
250#define VM_WRITE 0x00000002
251#define VM_EXEC 0x00000004
252#define VM_SHARED 0x00000008
253
254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
256#define VM_MAYWRITE 0x00000020
257#define VM_MAYEXEC 0x00000040
258#define VM_MAYSHARE 0x00000080
259
260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
265
266#define VM_LOCKED 0x00002000
267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
268
269 /* Used by sys_madvise() */
270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
272
273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
279#define VM_SYNC 0x00800000 /* Synchronous page faults */
280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
283
284#ifdef CONFIG_MEM_SOFT_DIRTY
285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
286#else
287# define VM_SOFTDIRTY 0
288#endif
289
290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
294
295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307
308#ifdef CONFIG_ARCH_HAS_PKEYS
309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
314#ifdef CONFIG_PPC
315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
316#else
317# define VM_PKEY_BIT4 0
318#endif
319#endif /* CONFIG_ARCH_HAS_PKEYS */
320
321#if defined(CONFIG_X86)
322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
323#elif defined(CONFIG_PPC)
324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
325#elif defined(CONFIG_PARISC)
326# define VM_GROWSUP VM_ARCH_1
327#elif defined(CONFIG_IA64)
328# define VM_GROWSUP VM_ARCH_1
329#elif defined(CONFIG_SPARC64)
330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
331# define VM_ARCH_CLEAR VM_SPARC_ADI
332#elif !defined(CONFIG_MMU)
333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
334#endif
335
336#if defined(CONFIG_X86_INTEL_MPX)
337/* MPX specific bounds table or bounds directory */
338# define VM_MPX VM_HIGH_ARCH_4
339#else
340# define VM_MPX VM_NONE
341#endif
342
343#ifndef VM_GROWSUP
344# define VM_GROWSUP VM_NONE
345#endif
346
347/* Bits set in the VMA until the stack is in its final location */
348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
349
350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352#endif
353
354#ifdef CONFIG_STACK_GROWSUP
355#define VM_STACK VM_GROWSUP
356#else
357#define VM_STACK VM_GROWSDOWN
358#endif
359
360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361
362/*
363 * Special vmas that are non-mergable, non-mlock()able.
364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365 */
366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367
368/* This mask defines which mm->def_flags a process can inherit its parent */
369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
370
371/* This mask is used to clear all the VMA flags used by mlock */
372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
373
374/* Arch-specific flags to clear when updating VM flags on protection change */
375#ifndef VM_ARCH_CLEAR
376# define VM_ARCH_CLEAR VM_NONE
377#endif
378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379
380/*
381 * mapping from the currently active vm_flags protection bits (the
382 * low four bits) to a page protection mask..
383 */
384extern pgprot_t protection_map[16];
385
386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
391#define FAULT_FLAG_TRIED 0x20 /* Second try */
392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
395
396#define FAULT_FLAG_TRACE \
397 { FAULT_FLAG_WRITE, "WRITE" }, \
398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
402 { FAULT_FLAG_TRIED, "TRIED" }, \
403 { FAULT_FLAG_USER, "USER" }, \
404 { FAULT_FLAG_REMOTE, "REMOTE" }, \
405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
406
407/*
408 * vm_fault is filled by the the pagefault handler and passed to the vma's
409 * ->fault function. The vma's ->fault is responsible for returning a bitmask
410 * of VM_FAULT_xxx flags that give details about how the fault was handled.
411 *
412 * MM layer fills up gfp_mask for page allocations but fault handler might
413 * alter it if its implementation requires a different allocation context.
414 *
415 * pgoff should be used in favour of virtual_address, if possible.
416 */
417struct vm_fault {
418 struct vm_area_struct *vma; /* Target VMA */
419 unsigned int flags; /* FAULT_FLAG_xxx flags */
420 gfp_t gfp_mask; /* gfp mask to be used for allocations */
421 pgoff_t pgoff; /* Logical page offset based on vma */
422 unsigned long address; /* Faulting virtual address */
423 pmd_t *pmd; /* Pointer to pmd entry matching
424 * the 'address' */
425 pud_t *pud; /* Pointer to pud entry matching
426 * the 'address'
427 */
428 pte_t orig_pte; /* Value of PTE at the time of fault */
429
430 struct page *cow_page; /* Page handler may use for COW fault */
431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
432 struct page *page; /* ->fault handlers should return a
433 * page here, unless VM_FAULT_NOPAGE
434 * is set (which is also implied by
435 * VM_FAULT_ERROR).
436 */
437 /* These three entries are valid only while holding ptl lock */
438 pte_t *pte; /* Pointer to pte entry matching
439 * the 'address'. NULL if the page
440 * table hasn't been allocated.
441 */
442 spinlock_t *ptl; /* Page table lock.
443 * Protects pte page table if 'pte'
444 * is not NULL, otherwise pmd.
445 */
446 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
447 * vm_ops->map_pages() calls
448 * alloc_set_pte() from atomic context.
449 * do_fault_around() pre-allocates
450 * page table to avoid allocation from
451 * atomic context.
452 */
453};
454
455/* page entry size for vm->huge_fault() */
456enum page_entry_size {
457 PE_SIZE_PTE = 0,
458 PE_SIZE_PMD,
459 PE_SIZE_PUD,
460};
461
462/*
463 * These are the virtual MM functions - opening of an area, closing and
464 * unmapping it (needed to keep files on disk up-to-date etc), pointer
465 * to the functions called when a no-page or a wp-page exception occurs.
466 */
467struct vm_operations_struct {
468 void (*open)(struct vm_area_struct * area);
469 void (*close)(struct vm_area_struct * area);
470 int (*split)(struct vm_area_struct * area, unsigned long addr);
471 int (*mremap)(struct vm_area_struct * area);
472 vm_fault_t (*fault)(struct vm_fault *vmf);
473 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 enum page_entry_size pe_size);
475 void (*map_pages)(struct vm_fault *vmf,
476 pgoff_t start_pgoff, pgoff_t end_pgoff);
477 unsigned long (*pagesize)(struct vm_area_struct * area);
478
479 /* notification that a previously read-only page is about to become
480 * writable, if an error is returned it will cause a SIGBUS */
481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482
483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485
486 /* called by access_process_vm when get_user_pages() fails, typically
487 * for use by special VMAs that can switch between memory and hardware
488 */
489 int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 void *buf, int len, int write);
491
492 /* Called by the /proc/PID/maps code to ask the vma whether it
493 * has a special name. Returning non-NULL will also cause this
494 * vma to be dumped unconditionally. */
495 const char *(*name)(struct vm_area_struct *vma);
496
497#ifdef CONFIG_NUMA
498 /*
499 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 * to hold the policy upon return. Caller should pass NULL @new to
501 * remove a policy and fall back to surrounding context--i.e. do not
502 * install a MPOL_DEFAULT policy, nor the task or system default
503 * mempolicy.
504 */
505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506
507 /*
508 * get_policy() op must add reference [mpol_get()] to any policy at
509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
510 * in mm/mempolicy.c will do this automatically.
511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 * must return NULL--i.e., do not "fallback" to task or system default
515 * policy.
516 */
517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 unsigned long addr);
519#endif
520 /*
521 * Called by vm_normal_page() for special PTEs to find the
522 * page for @addr. This is useful if the default behavior
523 * (using pte_page()) would not find the correct page.
524 */
525 struct page *(*find_special_page)(struct vm_area_struct *vma,
526 unsigned long addr);
527};
528
529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530{
531 static const struct vm_operations_struct dummy_vm_ops = {};
532
533 memset(vma, 0, sizeof(*vma));
534 vma->vm_mm = mm;
535 vma->vm_ops = &dummy_vm_ops;
536 INIT_LIST_HEAD(&vma->anon_vma_chain);
537}
538
539static inline void vma_set_anonymous(struct vm_area_struct *vma)
540{
541 vma->vm_ops = NULL;
542}
543
544static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545{
546 return !vma->vm_ops;
547}
548
549#ifdef CONFIG_SHMEM
550/*
551 * The vma_is_shmem is not inline because it is used only by slow
552 * paths in userfault.
553 */
554bool vma_is_shmem(struct vm_area_struct *vma);
555#else
556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557#endif
558
559int vma_is_stack_for_current(struct vm_area_struct *vma);
560
561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563
564struct mmu_gather;
565struct inode;
566
567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
568static inline int pmd_devmap(pmd_t pmd)
569{
570 return 0;
571}
572static inline int pud_devmap(pud_t pud)
573{
574 return 0;
575}
576static inline int pgd_devmap(pgd_t pgd)
577{
578 return 0;
579}
580#endif
581
582/*
583 * FIXME: take this include out, include page-flags.h in
584 * files which need it (119 of them)
585 */
586#include <linux/page-flags.h>
587#include <linux/huge_mm.h>
588
589/*
590 * Methods to modify the page usage count.
591 *
592 * What counts for a page usage:
593 * - cache mapping (page->mapping)
594 * - private data (page->private)
595 * - page mapped in a task's page tables, each mapping
596 * is counted separately
597 *
598 * Also, many kernel routines increase the page count before a critical
599 * routine so they can be sure the page doesn't go away from under them.
600 */
601
602/*
603 * Drop a ref, return true if the refcount fell to zero (the page has no users)
604 */
605static inline int put_page_testzero(struct page *page)
606{
607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 return page_ref_dec_and_test(page);
609}
610
611/*
612 * Try to grab a ref unless the page has a refcount of zero, return false if
613 * that is the case.
614 * This can be called when MMU is off so it must not access
615 * any of the virtual mappings.
616 */
617static inline int get_page_unless_zero(struct page *page)
618{
619 return page_ref_add_unless(page, 1, 0);
620}
621
622extern int page_is_ram(unsigned long pfn);
623
624enum {
625 REGION_INTERSECTS,
626 REGION_DISJOINT,
627 REGION_MIXED,
628};
629
630int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 unsigned long desc);
632
633/* Support for virtually mapped pages */
634struct page *vmalloc_to_page(const void *addr);
635unsigned long vmalloc_to_pfn(const void *addr);
636
637/*
638 * Determine if an address is within the vmalloc range
639 *
640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641 * is no special casing required.
642 */
643static inline bool is_vmalloc_addr(const void *x)
644{
645#ifdef CONFIG_MMU
646 unsigned long addr = (unsigned long)x;
647
648 return addr >= VMALLOC_START && addr < VMALLOC_END;
649#else
650 return false;
651#endif
652}
653
654#ifndef is_ioremap_addr
655#define is_ioremap_addr(x) is_vmalloc_addr(x)
656#endif
657
658#ifdef CONFIG_MMU
659extern int is_vmalloc_or_module_addr(const void *x);
660#else
661static inline int is_vmalloc_or_module_addr(const void *x)
662{
663 return 0;
664}
665#endif
666
667extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
668static inline void *kvmalloc(size_t size, gfp_t flags)
669{
670 return kvmalloc_node(size, flags, NUMA_NO_NODE);
671}
672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673{
674 return kvmalloc_node(size, flags | __GFP_ZERO, node);
675}
676static inline void *kvzalloc(size_t size, gfp_t flags)
677{
678 return kvmalloc(size, flags | __GFP_ZERO);
679}
680
681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682{
683 size_t bytes;
684
685 if (unlikely(check_mul_overflow(n, size, &bytes)))
686 return NULL;
687
688 return kvmalloc(bytes, flags);
689}
690
691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692{
693 return kvmalloc_array(n, size, flags | __GFP_ZERO);
694}
695
696extern void kvfree(const void *addr);
697
698static inline atomic_t *compound_mapcount_ptr(struct page *page)
699{
700 return &page[1].compound_mapcount;
701}
702
703static inline int compound_mapcount(struct page *page)
704{
705 VM_BUG_ON_PAGE(!PageCompound(page), page);
706 page = compound_head(page);
707 return atomic_read(compound_mapcount_ptr(page)) + 1;
708}
709
710/*
711 * The atomic page->_mapcount, starts from -1: so that transitions
712 * both from it and to it can be tracked, using atomic_inc_and_test
713 * and atomic_add_negative(-1).
714 */
715static inline void page_mapcount_reset(struct page *page)
716{
717 atomic_set(&(page)->_mapcount, -1);
718}
719
720int __page_mapcount(struct page *page);
721
722static inline int page_mapcount(struct page *page)
723{
724 VM_BUG_ON_PAGE(PageSlab(page), page);
725
726 if (unlikely(PageCompound(page)))
727 return __page_mapcount(page);
728 return atomic_read(&page->_mapcount) + 1;
729}
730
731#ifdef CONFIG_TRANSPARENT_HUGEPAGE
732int total_mapcount(struct page *page);
733int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
734#else
735static inline int total_mapcount(struct page *page)
736{
737 return page_mapcount(page);
738}
739static inline int page_trans_huge_mapcount(struct page *page,
740 int *total_mapcount)
741{
742 int mapcount = page_mapcount(page);
743 if (total_mapcount)
744 *total_mapcount = mapcount;
745 return mapcount;
746}
747#endif
748
749static inline struct page *virt_to_head_page(const void *x)
750{
751 struct page *page = virt_to_page(x);
752
753 return compound_head(page);
754}
755
756void __put_page(struct page *page);
757
758void put_pages_list(struct list_head *pages);
759
760void split_page(struct page *page, unsigned int order);
761
762/*
763 * Compound pages have a destructor function. Provide a
764 * prototype for that function and accessor functions.
765 * These are _only_ valid on the head of a compound page.
766 */
767typedef void compound_page_dtor(struct page *);
768
769/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
770enum compound_dtor_id {
771 NULL_COMPOUND_DTOR,
772 COMPOUND_PAGE_DTOR,
773#ifdef CONFIG_HUGETLB_PAGE
774 HUGETLB_PAGE_DTOR,
775#endif
776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 TRANSHUGE_PAGE_DTOR,
778#endif
779 NR_COMPOUND_DTORS,
780};
781extern compound_page_dtor * const compound_page_dtors[];
782
783static inline void set_compound_page_dtor(struct page *page,
784 enum compound_dtor_id compound_dtor)
785{
786 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
787 page[1].compound_dtor = compound_dtor;
788}
789
790static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
791{
792 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
793 return compound_page_dtors[page[1].compound_dtor];
794}
795
796static inline unsigned int compound_order(struct page *page)
797{
798 if (!PageHead(page))
799 return 0;
800 return page[1].compound_order;
801}
802
803static inline void set_compound_order(struct page *page, unsigned int order)
804{
805 page[1].compound_order = order;
806}
807
808/* Returns the number of pages in this potentially compound page. */
809static inline unsigned long compound_nr(struct page *page)
810{
811 return 1UL << compound_order(page);
812}
813
814/* Returns the number of bytes in this potentially compound page. */
815static inline unsigned long page_size(struct page *page)
816{
817 return PAGE_SIZE << compound_order(page);
818}
819
820/* Returns the number of bits needed for the number of bytes in a page */
821static inline unsigned int page_shift(struct page *page)
822{
823 return PAGE_SHIFT + compound_order(page);
824}
825
826void free_compound_page(struct page *page);
827
828#ifdef CONFIG_MMU
829/*
830 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
831 * servicing faults for write access. In the normal case, do always want
832 * pte_mkwrite. But get_user_pages can cause write faults for mappings
833 * that do not have writing enabled, when used by access_process_vm.
834 */
835static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
836{
837 if (likely(vma->vm_flags & VM_WRITE))
838 pte = pte_mkwrite(pte);
839 return pte;
840}
841
842vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
843 struct page *page);
844vm_fault_t finish_fault(struct vm_fault *vmf);
845vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
846#endif
847
848/*
849 * Multiple processes may "see" the same page. E.g. for untouched
850 * mappings of /dev/null, all processes see the same page full of
851 * zeroes, and text pages of executables and shared libraries have
852 * only one copy in memory, at most, normally.
853 *
854 * For the non-reserved pages, page_count(page) denotes a reference count.
855 * page_count() == 0 means the page is free. page->lru is then used for
856 * freelist management in the buddy allocator.
857 * page_count() > 0 means the page has been allocated.
858 *
859 * Pages are allocated by the slab allocator in order to provide memory
860 * to kmalloc and kmem_cache_alloc. In this case, the management of the
861 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
862 * unless a particular usage is carefully commented. (the responsibility of
863 * freeing the kmalloc memory is the caller's, of course).
864 *
865 * A page may be used by anyone else who does a __get_free_page().
866 * In this case, page_count still tracks the references, and should only
867 * be used through the normal accessor functions. The top bits of page->flags
868 * and page->virtual store page management information, but all other fields
869 * are unused and could be used privately, carefully. The management of this
870 * page is the responsibility of the one who allocated it, and those who have
871 * subsequently been given references to it.
872 *
873 * The other pages (we may call them "pagecache pages") are completely
874 * managed by the Linux memory manager: I/O, buffers, swapping etc.
875 * The following discussion applies only to them.
876 *
877 * A pagecache page contains an opaque `private' member, which belongs to the
878 * page's address_space. Usually, this is the address of a circular list of
879 * the page's disk buffers. PG_private must be set to tell the VM to call
880 * into the filesystem to release these pages.
881 *
882 * A page may belong to an inode's memory mapping. In this case, page->mapping
883 * is the pointer to the inode, and page->index is the file offset of the page,
884 * in units of PAGE_SIZE.
885 *
886 * If pagecache pages are not associated with an inode, they are said to be
887 * anonymous pages. These may become associated with the swapcache, and in that
888 * case PG_swapcache is set, and page->private is an offset into the swapcache.
889 *
890 * In either case (swapcache or inode backed), the pagecache itself holds one
891 * reference to the page. Setting PG_private should also increment the
892 * refcount. The each user mapping also has a reference to the page.
893 *
894 * The pagecache pages are stored in a per-mapping radix tree, which is
895 * rooted at mapping->i_pages, and indexed by offset.
896 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
897 * lists, we instead now tag pages as dirty/writeback in the radix tree.
898 *
899 * All pagecache pages may be subject to I/O:
900 * - inode pages may need to be read from disk,
901 * - inode pages which have been modified and are MAP_SHARED may need
902 * to be written back to the inode on disk,
903 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
904 * modified may need to be swapped out to swap space and (later) to be read
905 * back into memory.
906 */
907
908/*
909 * The zone field is never updated after free_area_init_core()
910 * sets it, so none of the operations on it need to be atomic.
911 */
912
913/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
914#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
915#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
916#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
917#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
918#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
919
920/*
921 * Define the bit shifts to access each section. For non-existent
922 * sections we define the shift as 0; that plus a 0 mask ensures
923 * the compiler will optimise away reference to them.
924 */
925#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
926#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
927#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
928#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
929#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
930
931/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
932#ifdef NODE_NOT_IN_PAGE_FLAGS
933#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
934#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
935 SECTIONS_PGOFF : ZONES_PGOFF)
936#else
937#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
938#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
939 NODES_PGOFF : ZONES_PGOFF)
940#endif
941
942#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
943
944#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
945#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
946#endif
947
948#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
949#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
950#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
951#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
952#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
953#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
954
955static inline enum zone_type page_zonenum(const struct page *page)
956{
957 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
958}
959
960#ifdef CONFIG_ZONE_DEVICE
961static inline bool is_zone_device_page(const struct page *page)
962{
963 return page_zonenum(page) == ZONE_DEVICE;
964}
965extern void memmap_init_zone_device(struct zone *, unsigned long,
966 unsigned long, struct dev_pagemap *);
967#else
968static inline bool is_zone_device_page(const struct page *page)
969{
970 return false;
971}
972#endif
973
974#ifdef CONFIG_DEV_PAGEMAP_OPS
975void __put_devmap_managed_page(struct page *page);
976DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
977static inline bool put_devmap_managed_page(struct page *page)
978{
979 if (!static_branch_unlikely(&devmap_managed_key))
980 return false;
981 if (!is_zone_device_page(page))
982 return false;
983 switch (page->pgmap->type) {
984 case MEMORY_DEVICE_PRIVATE:
985 case MEMORY_DEVICE_FS_DAX:
986 __put_devmap_managed_page(page);
987 return true;
988 default:
989 break;
990 }
991 return false;
992}
993
994#else /* CONFIG_DEV_PAGEMAP_OPS */
995static inline bool put_devmap_managed_page(struct page *page)
996{
997 return false;
998}
999#endif /* CONFIG_DEV_PAGEMAP_OPS */
1000
1001static inline bool is_device_private_page(const struct page *page)
1002{
1003 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1004 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1005 is_zone_device_page(page) &&
1006 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1007}
1008
1009static inline bool is_pci_p2pdma_page(const struct page *page)
1010{
1011 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1012 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1013 is_zone_device_page(page) &&
1014 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1015}
1016
1017/* 127: arbitrary random number, small enough to assemble well */
1018#define page_ref_zero_or_close_to_overflow(page) \
1019 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1020
1021static inline void get_page(struct page *page)
1022{
1023 page = compound_head(page);
1024 /*
1025 * Getting a normal page or the head of a compound page
1026 * requires to already have an elevated page->_refcount.
1027 */
1028 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1029 page_ref_inc(page);
1030}
1031
1032static inline __must_check bool try_get_page(struct page *page)
1033{
1034 page = compound_head(page);
1035 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1036 return false;
1037 page_ref_inc(page);
1038 return true;
1039}
1040
1041static inline void put_page(struct page *page)
1042{
1043 page = compound_head(page);
1044
1045 /*
1046 * For devmap managed pages we need to catch refcount transition from
1047 * 2 to 1, when refcount reach one it means the page is free and we
1048 * need to inform the device driver through callback. See
1049 * include/linux/memremap.h and HMM for details.
1050 */
1051 if (put_devmap_managed_page(page))
1052 return;
1053
1054 if (put_page_testzero(page))
1055 __put_page(page);
1056}
1057
1058/**
1059 * put_user_page() - release a gup-pinned page
1060 * @page: pointer to page to be released
1061 *
1062 * Pages that were pinned via get_user_pages*() must be released via
1063 * either put_user_page(), or one of the put_user_pages*() routines
1064 * below. This is so that eventually, pages that are pinned via
1065 * get_user_pages*() can be separately tracked and uniquely handled. In
1066 * particular, interactions with RDMA and filesystems need special
1067 * handling.
1068 *
1069 * put_user_page() and put_page() are not interchangeable, despite this early
1070 * implementation that makes them look the same. put_user_page() calls must
1071 * be perfectly matched up with get_user_page() calls.
1072 */
1073static inline void put_user_page(struct page *page)
1074{
1075 put_page(page);
1076}
1077
1078void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1079 bool make_dirty);
1080
1081void put_user_pages(struct page **pages, unsigned long npages);
1082
1083#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1084#define SECTION_IN_PAGE_FLAGS
1085#endif
1086
1087/*
1088 * The identification function is mainly used by the buddy allocator for
1089 * determining if two pages could be buddies. We are not really identifying
1090 * the zone since we could be using the section number id if we do not have
1091 * node id available in page flags.
1092 * We only guarantee that it will return the same value for two combinable
1093 * pages in a zone.
1094 */
1095static inline int page_zone_id(struct page *page)
1096{
1097 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1098}
1099
1100#ifdef NODE_NOT_IN_PAGE_FLAGS
1101extern int page_to_nid(const struct page *page);
1102#else
1103static inline int page_to_nid(const struct page *page)
1104{
1105 struct page *p = (struct page *)page;
1106
1107 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1108}
1109#endif
1110
1111#ifdef CONFIG_NUMA_BALANCING
1112static inline int cpu_pid_to_cpupid(int cpu, int pid)
1113{
1114 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1115}
1116
1117static inline int cpupid_to_pid(int cpupid)
1118{
1119 return cpupid & LAST__PID_MASK;
1120}
1121
1122static inline int cpupid_to_cpu(int cpupid)
1123{
1124 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1125}
1126
1127static inline int cpupid_to_nid(int cpupid)
1128{
1129 return cpu_to_node(cpupid_to_cpu(cpupid));
1130}
1131
1132static inline bool cpupid_pid_unset(int cpupid)
1133{
1134 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1135}
1136
1137static inline bool cpupid_cpu_unset(int cpupid)
1138{
1139 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1140}
1141
1142static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1143{
1144 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1145}
1146
1147#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1148#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1149static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1150{
1151 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1152}
1153
1154static inline int page_cpupid_last(struct page *page)
1155{
1156 return page->_last_cpupid;
1157}
1158static inline void page_cpupid_reset_last(struct page *page)
1159{
1160 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1161}
1162#else
1163static inline int page_cpupid_last(struct page *page)
1164{
1165 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1166}
1167
1168extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1169
1170static inline void page_cpupid_reset_last(struct page *page)
1171{
1172 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1173}
1174#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1175#else /* !CONFIG_NUMA_BALANCING */
1176static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1177{
1178 return page_to_nid(page); /* XXX */
1179}
1180
1181static inline int page_cpupid_last(struct page *page)
1182{
1183 return page_to_nid(page); /* XXX */
1184}
1185
1186static inline int cpupid_to_nid(int cpupid)
1187{
1188 return -1;
1189}
1190
1191static inline int cpupid_to_pid(int cpupid)
1192{
1193 return -1;
1194}
1195
1196static inline int cpupid_to_cpu(int cpupid)
1197{
1198 return -1;
1199}
1200
1201static inline int cpu_pid_to_cpupid(int nid, int pid)
1202{
1203 return -1;
1204}
1205
1206static inline bool cpupid_pid_unset(int cpupid)
1207{
1208 return 1;
1209}
1210
1211static inline void page_cpupid_reset_last(struct page *page)
1212{
1213}
1214
1215static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1216{
1217 return false;
1218}
1219#endif /* CONFIG_NUMA_BALANCING */
1220
1221#ifdef CONFIG_KASAN_SW_TAGS
1222static inline u8 page_kasan_tag(const struct page *page)
1223{
1224 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1225}
1226
1227static inline void page_kasan_tag_set(struct page *page, u8 tag)
1228{
1229 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1230 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1231}
1232
1233static inline void page_kasan_tag_reset(struct page *page)
1234{
1235 page_kasan_tag_set(page, 0xff);
1236}
1237#else
1238static inline u8 page_kasan_tag(const struct page *page)
1239{
1240 return 0xff;
1241}
1242
1243static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1244static inline void page_kasan_tag_reset(struct page *page) { }
1245#endif
1246
1247static inline struct zone *page_zone(const struct page *page)
1248{
1249 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1250}
1251
1252static inline pg_data_t *page_pgdat(const struct page *page)
1253{
1254 return NODE_DATA(page_to_nid(page));
1255}
1256
1257#ifdef SECTION_IN_PAGE_FLAGS
1258static inline void set_page_section(struct page *page, unsigned long section)
1259{
1260 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1261 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1262}
1263
1264static inline unsigned long page_to_section(const struct page *page)
1265{
1266 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1267}
1268#endif
1269
1270static inline void set_page_zone(struct page *page, enum zone_type zone)
1271{
1272 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1273 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1274}
1275
1276static inline void set_page_node(struct page *page, unsigned long node)
1277{
1278 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1279 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1280}
1281
1282static inline void set_page_links(struct page *page, enum zone_type zone,
1283 unsigned long node, unsigned long pfn)
1284{
1285 set_page_zone(page, zone);
1286 set_page_node(page, node);
1287#ifdef SECTION_IN_PAGE_FLAGS
1288 set_page_section(page, pfn_to_section_nr(pfn));
1289#endif
1290}
1291
1292#ifdef CONFIG_MEMCG
1293static inline struct mem_cgroup *page_memcg(struct page *page)
1294{
1295 return page->mem_cgroup;
1296}
1297static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1298{
1299 WARN_ON_ONCE(!rcu_read_lock_held());
1300 return READ_ONCE(page->mem_cgroup);
1301}
1302#else
1303static inline struct mem_cgroup *page_memcg(struct page *page)
1304{
1305 return NULL;
1306}
1307static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1308{
1309 WARN_ON_ONCE(!rcu_read_lock_held());
1310 return NULL;
1311}
1312#endif
1313
1314/*
1315 * Some inline functions in vmstat.h depend on page_zone()
1316 */
1317#include <linux/vmstat.h>
1318
1319static __always_inline void *lowmem_page_address(const struct page *page)
1320{
1321 return page_to_virt(page);
1322}
1323
1324#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1325#define HASHED_PAGE_VIRTUAL
1326#endif
1327
1328#if defined(WANT_PAGE_VIRTUAL)
1329static inline void *page_address(const struct page *page)
1330{
1331 return page->virtual;
1332}
1333static inline void set_page_address(struct page *page, void *address)
1334{
1335 page->virtual = address;
1336}
1337#define page_address_init() do { } while(0)
1338#endif
1339
1340#if defined(HASHED_PAGE_VIRTUAL)
1341void *page_address(const struct page *page);
1342void set_page_address(struct page *page, void *virtual);
1343void page_address_init(void);
1344#endif
1345
1346#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1347#define page_address(page) lowmem_page_address(page)
1348#define set_page_address(page, address) do { } while(0)
1349#define page_address_init() do { } while(0)
1350#endif
1351
1352extern void *page_rmapping(struct page *page);
1353extern struct anon_vma *page_anon_vma(struct page *page);
1354extern struct address_space *page_mapping(struct page *page);
1355
1356extern struct address_space *__page_file_mapping(struct page *);
1357
1358static inline
1359struct address_space *page_file_mapping(struct page *page)
1360{
1361 if (unlikely(PageSwapCache(page)))
1362 return __page_file_mapping(page);
1363
1364 return page->mapping;
1365}
1366
1367extern pgoff_t __page_file_index(struct page *page);
1368
1369/*
1370 * Return the pagecache index of the passed page. Regular pagecache pages
1371 * use ->index whereas swapcache pages use swp_offset(->private)
1372 */
1373static inline pgoff_t page_index(struct page *page)
1374{
1375 if (unlikely(PageSwapCache(page)))
1376 return __page_file_index(page);
1377 return page->index;
1378}
1379
1380bool page_mapped(struct page *page);
1381struct address_space *page_mapping(struct page *page);
1382struct address_space *page_mapping_file(struct page *page);
1383
1384/*
1385 * Return true only if the page has been allocated with
1386 * ALLOC_NO_WATERMARKS and the low watermark was not
1387 * met implying that the system is under some pressure.
1388 */
1389static inline bool page_is_pfmemalloc(struct page *page)
1390{
1391 /*
1392 * Page index cannot be this large so this must be
1393 * a pfmemalloc page.
1394 */
1395 return page->index == -1UL;
1396}
1397
1398/*
1399 * Only to be called by the page allocator on a freshly allocated
1400 * page.
1401 */
1402static inline void set_page_pfmemalloc(struct page *page)
1403{
1404 page->index = -1UL;
1405}
1406
1407static inline void clear_page_pfmemalloc(struct page *page)
1408{
1409 page->index = 0;
1410}
1411
1412/*
1413 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1414 */
1415extern void pagefault_out_of_memory(void);
1416
1417#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1418
1419/*
1420 * Flags passed to show_mem() and show_free_areas() to suppress output in
1421 * various contexts.
1422 */
1423#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1424
1425extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1426
1427#ifdef CONFIG_MMU
1428extern bool can_do_mlock(void);
1429#else
1430static inline bool can_do_mlock(void) { return false; }
1431#endif
1432extern int user_shm_lock(size_t, struct user_struct *);
1433extern void user_shm_unlock(size_t, struct user_struct *);
1434
1435/*
1436 * Parameter block passed down to zap_pte_range in exceptional cases.
1437 */
1438struct zap_details {
1439 struct address_space *check_mapping; /* Check page->mapping if set */
1440 pgoff_t first_index; /* Lowest page->index to unmap */
1441 pgoff_t last_index; /* Highest page->index to unmap */
1442};
1443
1444struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1445 pte_t pte);
1446struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1447 pmd_t pmd);
1448
1449void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 unsigned long size);
1451void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1452 unsigned long size);
1453void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1454 unsigned long start, unsigned long end);
1455
1456struct mmu_notifier_range;
1457
1458void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1459 unsigned long end, unsigned long floor, unsigned long ceiling);
1460int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1461 struct vm_area_struct *vma);
1462int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1463 struct mmu_notifier_range *range,
1464 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1465int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1466 unsigned long *pfn);
1467int follow_phys(struct vm_area_struct *vma, unsigned long address,
1468 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1469int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1470 void *buf, int len, int write);
1471
1472extern void truncate_pagecache(struct inode *inode, loff_t new);
1473extern void truncate_setsize(struct inode *inode, loff_t newsize);
1474void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1475void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1476int truncate_inode_page(struct address_space *mapping, struct page *page);
1477int generic_error_remove_page(struct address_space *mapping, struct page *page);
1478int invalidate_inode_page(struct page *page);
1479
1480#ifdef CONFIG_MMU
1481extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1482 unsigned long address, unsigned int flags);
1483extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1484 unsigned long address, unsigned int fault_flags,
1485 bool *unlocked);
1486void unmap_mapping_pages(struct address_space *mapping,
1487 pgoff_t start, pgoff_t nr, bool even_cows);
1488void unmap_mapping_range(struct address_space *mapping,
1489 loff_t const holebegin, loff_t const holelen, int even_cows);
1490#else
1491static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1492 unsigned long address, unsigned int flags)
1493{
1494 /* should never happen if there's no MMU */
1495 BUG();
1496 return VM_FAULT_SIGBUS;
1497}
1498static inline int fixup_user_fault(struct task_struct *tsk,
1499 struct mm_struct *mm, unsigned long address,
1500 unsigned int fault_flags, bool *unlocked)
1501{
1502 /* should never happen if there's no MMU */
1503 BUG();
1504 return -EFAULT;
1505}
1506static inline void unmap_mapping_pages(struct address_space *mapping,
1507 pgoff_t start, pgoff_t nr, bool even_cows) { }
1508static inline void unmap_mapping_range(struct address_space *mapping,
1509 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1510#endif
1511
1512static inline void unmap_shared_mapping_range(struct address_space *mapping,
1513 loff_t const holebegin, loff_t const holelen)
1514{
1515 unmap_mapping_range(mapping, holebegin, holelen, 0);
1516}
1517
1518extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1519 void *buf, int len, unsigned int gup_flags);
1520extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1521 void *buf, int len, unsigned int gup_flags);
1522extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1523 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1524
1525long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1526 unsigned long start, unsigned long nr_pages,
1527 unsigned int gup_flags, struct page **pages,
1528 struct vm_area_struct **vmas, int *locked);
1529long get_user_pages(unsigned long start, unsigned long nr_pages,
1530 unsigned int gup_flags, struct page **pages,
1531 struct vm_area_struct **vmas);
1532long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1533 unsigned int gup_flags, struct page **pages, int *locked);
1534long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1535 struct page **pages, unsigned int gup_flags);
1536
1537int get_user_pages_fast(unsigned long start, int nr_pages,
1538 unsigned int gup_flags, struct page **pages);
1539
1540int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1541int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1542 struct task_struct *task, bool bypass_rlim);
1543
1544/* Container for pinned pfns / pages */
1545struct frame_vector {
1546 unsigned int nr_allocated; /* Number of frames we have space for */
1547 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1548 bool got_ref; /* Did we pin pages by getting page ref? */
1549 bool is_pfns; /* Does array contain pages or pfns? */
1550 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1551 * pfns_vector_pages() or pfns_vector_pfns()
1552 * for access */
1553};
1554
1555struct frame_vector *frame_vector_create(unsigned int nr_frames);
1556void frame_vector_destroy(struct frame_vector *vec);
1557int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1558 unsigned int gup_flags, struct frame_vector *vec);
1559void put_vaddr_frames(struct frame_vector *vec);
1560int frame_vector_to_pages(struct frame_vector *vec);
1561void frame_vector_to_pfns(struct frame_vector *vec);
1562
1563static inline unsigned int frame_vector_count(struct frame_vector *vec)
1564{
1565 return vec->nr_frames;
1566}
1567
1568static inline struct page **frame_vector_pages(struct frame_vector *vec)
1569{
1570 if (vec->is_pfns) {
1571 int err = frame_vector_to_pages(vec);
1572
1573 if (err)
1574 return ERR_PTR(err);
1575 }
1576 return (struct page **)(vec->ptrs);
1577}
1578
1579static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1580{
1581 if (!vec->is_pfns)
1582 frame_vector_to_pfns(vec);
1583 return (unsigned long *)(vec->ptrs);
1584}
1585
1586struct kvec;
1587int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1588 struct page **pages);
1589int get_kernel_page(unsigned long start, int write, struct page **pages);
1590struct page *get_dump_page(unsigned long addr);
1591
1592extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1593extern void do_invalidatepage(struct page *page, unsigned int offset,
1594 unsigned int length);
1595
1596void __set_page_dirty(struct page *, struct address_space *, int warn);
1597int __set_page_dirty_nobuffers(struct page *page);
1598int __set_page_dirty_no_writeback(struct page *page);
1599int redirty_page_for_writepage(struct writeback_control *wbc,
1600 struct page *page);
1601void account_page_dirtied(struct page *page, struct address_space *mapping);
1602void account_page_cleaned(struct page *page, struct address_space *mapping,
1603 struct bdi_writeback *wb);
1604int set_page_dirty(struct page *page);
1605int set_page_dirty_lock(struct page *page);
1606void __cancel_dirty_page(struct page *page);
1607static inline void cancel_dirty_page(struct page *page)
1608{
1609 /* Avoid atomic ops, locking, etc. when not actually needed. */
1610 if (PageDirty(page))
1611 __cancel_dirty_page(page);
1612}
1613int clear_page_dirty_for_io(struct page *page);
1614
1615int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1616
1617extern unsigned long move_page_tables(struct vm_area_struct *vma,
1618 unsigned long old_addr, struct vm_area_struct *new_vma,
1619 unsigned long new_addr, unsigned long len,
1620 bool need_rmap_locks);
1621extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1622 unsigned long end, pgprot_t newprot,
1623 int dirty_accountable, int prot_numa);
1624extern int mprotect_fixup(struct vm_area_struct *vma,
1625 struct vm_area_struct **pprev, unsigned long start,
1626 unsigned long end, unsigned long newflags);
1627
1628/*
1629 * doesn't attempt to fault and will return short.
1630 */
1631int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1632 struct page **pages);
1633/*
1634 * per-process(per-mm_struct) statistics.
1635 */
1636static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1637{
1638 long val = atomic_long_read(&mm->rss_stat.count[member]);
1639
1640#ifdef SPLIT_RSS_COUNTING
1641 /*
1642 * counter is updated in asynchronous manner and may go to minus.
1643 * But it's never be expected number for users.
1644 */
1645 if (val < 0)
1646 val = 0;
1647#endif
1648 return (unsigned long)val;
1649}
1650
1651static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1652{
1653 atomic_long_add(value, &mm->rss_stat.count[member]);
1654}
1655
1656static inline void inc_mm_counter(struct mm_struct *mm, int member)
1657{
1658 atomic_long_inc(&mm->rss_stat.count[member]);
1659}
1660
1661static inline void dec_mm_counter(struct mm_struct *mm, int member)
1662{
1663 atomic_long_dec(&mm->rss_stat.count[member]);
1664}
1665
1666/* Optimized variant when page is already known not to be PageAnon */
1667static inline int mm_counter_file(struct page *page)
1668{
1669 if (PageSwapBacked(page))
1670 return MM_SHMEMPAGES;
1671 return MM_FILEPAGES;
1672}
1673
1674static inline int mm_counter(struct page *page)
1675{
1676 if (PageAnon(page))
1677 return MM_ANONPAGES;
1678 return mm_counter_file(page);
1679}
1680
1681static inline unsigned long get_mm_rss(struct mm_struct *mm)
1682{
1683 return get_mm_counter(mm, MM_FILEPAGES) +
1684 get_mm_counter(mm, MM_ANONPAGES) +
1685 get_mm_counter(mm, MM_SHMEMPAGES);
1686}
1687
1688static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1689{
1690 return max(mm->hiwater_rss, get_mm_rss(mm));
1691}
1692
1693static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1694{
1695 return max(mm->hiwater_vm, mm->total_vm);
1696}
1697
1698static inline void update_hiwater_rss(struct mm_struct *mm)
1699{
1700 unsigned long _rss = get_mm_rss(mm);
1701
1702 if ((mm)->hiwater_rss < _rss)
1703 (mm)->hiwater_rss = _rss;
1704}
1705
1706static inline void update_hiwater_vm(struct mm_struct *mm)
1707{
1708 if (mm->hiwater_vm < mm->total_vm)
1709 mm->hiwater_vm = mm->total_vm;
1710}
1711
1712static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1713{
1714 mm->hiwater_rss = get_mm_rss(mm);
1715}
1716
1717static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1718 struct mm_struct *mm)
1719{
1720 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1721
1722 if (*maxrss < hiwater_rss)
1723 *maxrss = hiwater_rss;
1724}
1725
1726#if defined(SPLIT_RSS_COUNTING)
1727void sync_mm_rss(struct mm_struct *mm);
1728#else
1729static inline void sync_mm_rss(struct mm_struct *mm)
1730{
1731}
1732#endif
1733
1734#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1735static inline int pte_devmap(pte_t pte)
1736{
1737 return 0;
1738}
1739#endif
1740
1741int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1742
1743extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1744 spinlock_t **ptl);
1745static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746 spinlock_t **ptl)
1747{
1748 pte_t *ptep;
1749 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1750 return ptep;
1751}
1752
1753#ifdef __PAGETABLE_P4D_FOLDED
1754static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1755 unsigned long address)
1756{
1757 return 0;
1758}
1759#else
1760int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1761#endif
1762
1763#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1764static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1765 unsigned long address)
1766{
1767 return 0;
1768}
1769static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1770static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1771
1772#else
1773int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1774
1775static inline void mm_inc_nr_puds(struct mm_struct *mm)
1776{
1777 if (mm_pud_folded(mm))
1778 return;
1779 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1780}
1781
1782static inline void mm_dec_nr_puds(struct mm_struct *mm)
1783{
1784 if (mm_pud_folded(mm))
1785 return;
1786 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1787}
1788#endif
1789
1790#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1791static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1792 unsigned long address)
1793{
1794 return 0;
1795}
1796
1797static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1798static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1799
1800#else
1801int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1802
1803static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1804{
1805 if (mm_pmd_folded(mm))
1806 return;
1807 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1808}
1809
1810static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1811{
1812 if (mm_pmd_folded(mm))
1813 return;
1814 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1815}
1816#endif
1817
1818#ifdef CONFIG_MMU
1819static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1820{
1821 atomic_long_set(&mm->pgtables_bytes, 0);
1822}
1823
1824static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1825{
1826 return atomic_long_read(&mm->pgtables_bytes);
1827}
1828
1829static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1830{
1831 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1832}
1833
1834static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1835{
1836 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1837}
1838#else
1839
1840static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1841static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1842{
1843 return 0;
1844}
1845
1846static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1847static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1848#endif
1849
1850int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1851int __pte_alloc_kernel(pmd_t *pmd);
1852
1853/*
1854 * The following ifdef needed to get the 4level-fixup.h header to work.
1855 * Remove it when 4level-fixup.h has been removed.
1856 */
1857#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1858
1859#ifndef __ARCH_HAS_5LEVEL_HACK
1860static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1861 unsigned long address)
1862{
1863 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1864 NULL : p4d_offset(pgd, address);
1865}
1866
1867static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1868 unsigned long address)
1869{
1870 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1871 NULL : pud_offset(p4d, address);
1872}
1873#endif /* !__ARCH_HAS_5LEVEL_HACK */
1874
1875static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1876{
1877 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1878 NULL: pmd_offset(pud, address);
1879}
1880#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1881
1882#if USE_SPLIT_PTE_PTLOCKS
1883#if ALLOC_SPLIT_PTLOCKS
1884void __init ptlock_cache_init(void);
1885extern bool ptlock_alloc(struct page *page);
1886extern void ptlock_free(struct page *page);
1887
1888static inline spinlock_t *ptlock_ptr(struct page *page)
1889{
1890 return page->ptl;
1891}
1892#else /* ALLOC_SPLIT_PTLOCKS */
1893static inline void ptlock_cache_init(void)
1894{
1895}
1896
1897static inline bool ptlock_alloc(struct page *page)
1898{
1899 return true;
1900}
1901
1902static inline void ptlock_free(struct page *page)
1903{
1904}
1905
1906static inline spinlock_t *ptlock_ptr(struct page *page)
1907{
1908 return &page->ptl;
1909}
1910#endif /* ALLOC_SPLIT_PTLOCKS */
1911
1912static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1913{
1914 return ptlock_ptr(pmd_page(*pmd));
1915}
1916
1917static inline bool ptlock_init(struct page *page)
1918{
1919 /*
1920 * prep_new_page() initialize page->private (and therefore page->ptl)
1921 * with 0. Make sure nobody took it in use in between.
1922 *
1923 * It can happen if arch try to use slab for page table allocation:
1924 * slab code uses page->slab_cache, which share storage with page->ptl.
1925 */
1926 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1927 if (!ptlock_alloc(page))
1928 return false;
1929 spin_lock_init(ptlock_ptr(page));
1930 return true;
1931}
1932
1933#else /* !USE_SPLIT_PTE_PTLOCKS */
1934/*
1935 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1936 */
1937static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1938{
1939 return &mm->page_table_lock;
1940}
1941static inline void ptlock_cache_init(void) {}
1942static inline bool ptlock_init(struct page *page) { return true; }
1943static inline void ptlock_free(struct page *page) {}
1944#endif /* USE_SPLIT_PTE_PTLOCKS */
1945
1946static inline void pgtable_init(void)
1947{
1948 ptlock_cache_init();
1949 pgtable_cache_init();
1950}
1951
1952static inline bool pgtable_pte_page_ctor(struct page *page)
1953{
1954 if (!ptlock_init(page))
1955 return false;
1956 __SetPageTable(page);
1957 inc_zone_page_state(page, NR_PAGETABLE);
1958 return true;
1959}
1960
1961static inline void pgtable_pte_page_dtor(struct page *page)
1962{
1963 ptlock_free(page);
1964 __ClearPageTable(page);
1965 dec_zone_page_state(page, NR_PAGETABLE);
1966}
1967
1968#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1969({ \
1970 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1971 pte_t *__pte = pte_offset_map(pmd, address); \
1972 *(ptlp) = __ptl; \
1973 spin_lock(__ptl); \
1974 __pte; \
1975})
1976
1977#define pte_unmap_unlock(pte, ptl) do { \
1978 spin_unlock(ptl); \
1979 pte_unmap(pte); \
1980} while (0)
1981
1982#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1983
1984#define pte_alloc_map(mm, pmd, address) \
1985 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1986
1987#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1988 (pte_alloc(mm, pmd) ? \
1989 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1990
1991#define pte_alloc_kernel(pmd, address) \
1992 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1993 NULL: pte_offset_kernel(pmd, address))
1994
1995#if USE_SPLIT_PMD_PTLOCKS
1996
1997static struct page *pmd_to_page(pmd_t *pmd)
1998{
1999 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2000 return virt_to_page((void *)((unsigned long) pmd & mask));
2001}
2002
2003static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2004{
2005 return ptlock_ptr(pmd_to_page(pmd));
2006}
2007
2008static inline bool pgtable_pmd_page_ctor(struct page *page)
2009{
2010#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2011 page->pmd_huge_pte = NULL;
2012#endif
2013 return ptlock_init(page);
2014}
2015
2016static inline void pgtable_pmd_page_dtor(struct page *page)
2017{
2018#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2019 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2020#endif
2021 ptlock_free(page);
2022}
2023
2024#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2025
2026#else
2027
2028static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2029{
2030 return &mm->page_table_lock;
2031}
2032
2033static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2034static inline void pgtable_pmd_page_dtor(struct page *page) {}
2035
2036#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2037
2038#endif
2039
2040static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2041{
2042 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2043 spin_lock(ptl);
2044 return ptl;
2045}
2046
2047/*
2048 * No scalability reason to split PUD locks yet, but follow the same pattern
2049 * as the PMD locks to make it easier if we decide to. The VM should not be
2050 * considered ready to switch to split PUD locks yet; there may be places
2051 * which need to be converted from page_table_lock.
2052 */
2053static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2054{
2055 return &mm->page_table_lock;
2056}
2057
2058static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2059{
2060 spinlock_t *ptl = pud_lockptr(mm, pud);
2061
2062 spin_lock(ptl);
2063 return ptl;
2064}
2065
2066extern void __init pagecache_init(void);
2067extern void free_area_init(unsigned long * zones_size);
2068extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2069 unsigned long zone_start_pfn, unsigned long *zholes_size);
2070extern void free_initmem(void);
2071
2072/*
2073 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2074 * into the buddy system. The freed pages will be poisoned with pattern
2075 * "poison" if it's within range [0, UCHAR_MAX].
2076 * Return pages freed into the buddy system.
2077 */
2078extern unsigned long free_reserved_area(void *start, void *end,
2079 int poison, const char *s);
2080
2081#ifdef CONFIG_HIGHMEM
2082/*
2083 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2084 * and totalram_pages.
2085 */
2086extern void free_highmem_page(struct page *page);
2087#endif
2088
2089extern void adjust_managed_page_count(struct page *page, long count);
2090extern void mem_init_print_info(const char *str);
2091
2092extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2093
2094/* Free the reserved page into the buddy system, so it gets managed. */
2095static inline void __free_reserved_page(struct page *page)
2096{
2097 ClearPageReserved(page);
2098 init_page_count(page);
2099 __free_page(page);
2100}
2101
2102static inline void free_reserved_page(struct page *page)
2103{
2104 __free_reserved_page(page);
2105 adjust_managed_page_count(page, 1);
2106}
2107
2108static inline void mark_page_reserved(struct page *page)
2109{
2110 SetPageReserved(page);
2111 adjust_managed_page_count(page, -1);
2112}
2113
2114/*
2115 * Default method to free all the __init memory into the buddy system.
2116 * The freed pages will be poisoned with pattern "poison" if it's within
2117 * range [0, UCHAR_MAX].
2118 * Return pages freed into the buddy system.
2119 */
2120static inline unsigned long free_initmem_default(int poison)
2121{
2122 extern char __init_begin[], __init_end[];
2123
2124 return free_reserved_area(&__init_begin, &__init_end,
2125 poison, "unused kernel");
2126}
2127
2128static inline unsigned long get_num_physpages(void)
2129{
2130 int nid;
2131 unsigned long phys_pages = 0;
2132
2133 for_each_online_node(nid)
2134 phys_pages += node_present_pages(nid);
2135
2136 return phys_pages;
2137}
2138
2139#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2140/*
2141 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2142 * zones, allocate the backing mem_map and account for memory holes in a more
2143 * architecture independent manner. This is a substitute for creating the
2144 * zone_sizes[] and zholes_size[] arrays and passing them to
2145 * free_area_init_node()
2146 *
2147 * An architecture is expected to register range of page frames backed by
2148 * physical memory with memblock_add[_node]() before calling
2149 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2150 * usage, an architecture is expected to do something like
2151 *
2152 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2153 * max_highmem_pfn};
2154 * for_each_valid_physical_page_range()
2155 * memblock_add_node(base, size, nid)
2156 * free_area_init_nodes(max_zone_pfns);
2157 *
2158 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2159 * registered physical page range. Similarly
2160 * sparse_memory_present_with_active_regions() calls memory_present() for
2161 * each range when SPARSEMEM is enabled.
2162 *
2163 * See mm/page_alloc.c for more information on each function exposed by
2164 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2165 */
2166extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2167unsigned long node_map_pfn_alignment(void);
2168unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2169 unsigned long end_pfn);
2170extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2171 unsigned long end_pfn);
2172extern void get_pfn_range_for_nid(unsigned int nid,
2173 unsigned long *start_pfn, unsigned long *end_pfn);
2174extern unsigned long find_min_pfn_with_active_regions(void);
2175extern void free_bootmem_with_active_regions(int nid,
2176 unsigned long max_low_pfn);
2177extern void sparse_memory_present_with_active_regions(int nid);
2178
2179#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2180
2181#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2182 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2183static inline int __early_pfn_to_nid(unsigned long pfn,
2184 struct mminit_pfnnid_cache *state)
2185{
2186 return 0;
2187}
2188#else
2189/* please see mm/page_alloc.c */
2190extern int __meminit early_pfn_to_nid(unsigned long pfn);
2191/* there is a per-arch backend function. */
2192extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2193 struct mminit_pfnnid_cache *state);
2194#endif
2195
2196#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2197void zero_resv_unavail(void);
2198#else
2199static inline void zero_resv_unavail(void) {}
2200#endif
2201
2202extern void set_dma_reserve(unsigned long new_dma_reserve);
2203extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2204 enum memmap_context, struct vmem_altmap *);
2205extern void setup_per_zone_wmarks(void);
2206extern int __meminit init_per_zone_wmark_min(void);
2207extern void mem_init(void);
2208extern void __init mmap_init(void);
2209extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2210extern long si_mem_available(void);
2211extern void si_meminfo(struct sysinfo * val);
2212extern void si_meminfo_node(struct sysinfo *val, int nid);
2213#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2214extern unsigned long arch_reserved_kernel_pages(void);
2215#endif
2216
2217extern __printf(3, 4)
2218void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2219
2220extern void setup_per_cpu_pageset(void);
2221
2222extern void zone_pcp_update(struct zone *zone);
2223extern void zone_pcp_reset(struct zone *zone);
2224
2225/* page_alloc.c */
2226extern int min_free_kbytes;
2227extern int watermark_boost_factor;
2228extern int watermark_scale_factor;
2229
2230/* nommu.c */
2231extern atomic_long_t mmap_pages_allocated;
2232extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2233
2234/* interval_tree.c */
2235void vma_interval_tree_insert(struct vm_area_struct *node,
2236 struct rb_root_cached *root);
2237void vma_interval_tree_insert_after(struct vm_area_struct *node,
2238 struct vm_area_struct *prev,
2239 struct rb_root_cached *root);
2240void vma_interval_tree_remove(struct vm_area_struct *node,
2241 struct rb_root_cached *root);
2242struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2243 unsigned long start, unsigned long last);
2244struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2245 unsigned long start, unsigned long last);
2246
2247#define vma_interval_tree_foreach(vma, root, start, last) \
2248 for (vma = vma_interval_tree_iter_first(root, start, last); \
2249 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2250
2251void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2252 struct rb_root_cached *root);
2253void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2254 struct rb_root_cached *root);
2255struct anon_vma_chain *
2256anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2257 unsigned long start, unsigned long last);
2258struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2259 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2260#ifdef CONFIG_DEBUG_VM_RB
2261void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2262#endif
2263
2264#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2265 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2266 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2267
2268/* mmap.c */
2269extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2270extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2271 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2272 struct vm_area_struct *expand);
2273static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2274 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2275{
2276 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2277}
2278extern struct vm_area_struct *vma_merge(struct mm_struct *,
2279 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2280 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2281 struct mempolicy *, struct vm_userfaultfd_ctx);
2282extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2283extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2284 unsigned long addr, int new_below);
2285extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2286 unsigned long addr, int new_below);
2287extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2288extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2289 struct rb_node **, struct rb_node *);
2290extern void unlink_file_vma(struct vm_area_struct *);
2291extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2292 unsigned long addr, unsigned long len, pgoff_t pgoff,
2293 bool *need_rmap_locks);
2294extern void exit_mmap(struct mm_struct *);
2295
2296static inline int check_data_rlimit(unsigned long rlim,
2297 unsigned long new,
2298 unsigned long start,
2299 unsigned long end_data,
2300 unsigned long start_data)
2301{
2302 if (rlim < RLIM_INFINITY) {
2303 if (((new - start) + (end_data - start_data)) > rlim)
2304 return -ENOSPC;
2305 }
2306
2307 return 0;
2308}
2309
2310extern int mm_take_all_locks(struct mm_struct *mm);
2311extern void mm_drop_all_locks(struct mm_struct *mm);
2312
2313extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2314extern struct file *get_mm_exe_file(struct mm_struct *mm);
2315extern struct file *get_task_exe_file(struct task_struct *task);
2316
2317extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2318extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2319
2320extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2321 const struct vm_special_mapping *sm);
2322extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2323 unsigned long addr, unsigned long len,
2324 unsigned long flags,
2325 const struct vm_special_mapping *spec);
2326/* This is an obsolete alternative to _install_special_mapping. */
2327extern int install_special_mapping(struct mm_struct *mm,
2328 unsigned long addr, unsigned long len,
2329 unsigned long flags, struct page **pages);
2330
2331unsigned long randomize_stack_top(unsigned long stack_top);
2332
2333extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2334
2335extern unsigned long mmap_region(struct file *file, unsigned long addr,
2336 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2337 struct list_head *uf);
2338extern unsigned long do_mmap(struct file *file, unsigned long addr,
2339 unsigned long len, unsigned long prot, unsigned long flags,
2340 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2341 struct list_head *uf);
2342extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2343 struct list_head *uf, bool downgrade);
2344extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2345 struct list_head *uf);
2346
2347static inline unsigned long
2348do_mmap_pgoff(struct file *file, unsigned long addr,
2349 unsigned long len, unsigned long prot, unsigned long flags,
2350 unsigned long pgoff, unsigned long *populate,
2351 struct list_head *uf)
2352{
2353 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2354}
2355
2356#ifdef CONFIG_MMU
2357extern int __mm_populate(unsigned long addr, unsigned long len,
2358 int ignore_errors);
2359static inline void mm_populate(unsigned long addr, unsigned long len)
2360{
2361 /* Ignore errors */
2362 (void) __mm_populate(addr, len, 1);
2363}
2364#else
2365static inline void mm_populate(unsigned long addr, unsigned long len) {}
2366#endif
2367
2368/* These take the mm semaphore themselves */
2369extern int __must_check vm_brk(unsigned long, unsigned long);
2370extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2371extern int vm_munmap(unsigned long, size_t);
2372extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2373 unsigned long, unsigned long,
2374 unsigned long, unsigned long);
2375
2376struct vm_unmapped_area_info {
2377#define VM_UNMAPPED_AREA_TOPDOWN 1
2378 unsigned long flags;
2379 unsigned long length;
2380 unsigned long low_limit;
2381 unsigned long high_limit;
2382 unsigned long align_mask;
2383 unsigned long align_offset;
2384};
2385
2386extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2387extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2388
2389/*
2390 * Search for an unmapped address range.
2391 *
2392 * We are looking for a range that:
2393 * - does not intersect with any VMA;
2394 * - is contained within the [low_limit, high_limit) interval;
2395 * - is at least the desired size.
2396 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2397 */
2398static inline unsigned long
2399vm_unmapped_area(struct vm_unmapped_area_info *info)
2400{
2401 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2402 return unmapped_area_topdown(info);
2403 else
2404 return unmapped_area(info);
2405}
2406
2407/* truncate.c */
2408extern void truncate_inode_pages(struct address_space *, loff_t);
2409extern void truncate_inode_pages_range(struct address_space *,
2410 loff_t lstart, loff_t lend);
2411extern void truncate_inode_pages_final(struct address_space *);
2412
2413/* generic vm_area_ops exported for stackable file systems */
2414extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2415extern void filemap_map_pages(struct vm_fault *vmf,
2416 pgoff_t start_pgoff, pgoff_t end_pgoff);
2417extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2418
2419/* mm/page-writeback.c */
2420int __must_check write_one_page(struct page *page);
2421void task_dirty_inc(struct task_struct *tsk);
2422
2423/* readahead.c */
2424#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2425
2426int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2427 pgoff_t offset, unsigned long nr_to_read);
2428
2429void page_cache_sync_readahead(struct address_space *mapping,
2430 struct file_ra_state *ra,
2431 struct file *filp,
2432 pgoff_t offset,
2433 unsigned long size);
2434
2435void page_cache_async_readahead(struct address_space *mapping,
2436 struct file_ra_state *ra,
2437 struct file *filp,
2438 struct page *pg,
2439 pgoff_t offset,
2440 unsigned long size);
2441
2442extern unsigned long stack_guard_gap;
2443/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2444extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2445
2446/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2447extern int expand_downwards(struct vm_area_struct *vma,
2448 unsigned long address);
2449#if VM_GROWSUP
2450extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2451#else
2452 #define expand_upwards(vma, address) (0)
2453#endif
2454
2455/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2456extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2457extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2458 struct vm_area_struct **pprev);
2459
2460/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2461 NULL if none. Assume start_addr < end_addr. */
2462static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2463{
2464 struct vm_area_struct * vma = find_vma(mm,start_addr);
2465
2466 if (vma && end_addr <= vma->vm_start)
2467 vma = NULL;
2468 return vma;
2469}
2470
2471static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2472{
2473 unsigned long vm_start = vma->vm_start;
2474
2475 if (vma->vm_flags & VM_GROWSDOWN) {
2476 vm_start -= stack_guard_gap;
2477 if (vm_start > vma->vm_start)
2478 vm_start = 0;
2479 }
2480 return vm_start;
2481}
2482
2483static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2484{
2485 unsigned long vm_end = vma->vm_end;
2486
2487 if (vma->vm_flags & VM_GROWSUP) {
2488 vm_end += stack_guard_gap;
2489 if (vm_end < vma->vm_end)
2490 vm_end = -PAGE_SIZE;
2491 }
2492 return vm_end;
2493}
2494
2495static inline unsigned long vma_pages(struct vm_area_struct *vma)
2496{
2497 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2498}
2499
2500/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2501static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2502 unsigned long vm_start, unsigned long vm_end)
2503{
2504 struct vm_area_struct *vma = find_vma(mm, vm_start);
2505
2506 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2507 vma = NULL;
2508
2509 return vma;
2510}
2511
2512static inline bool range_in_vma(struct vm_area_struct *vma,
2513 unsigned long start, unsigned long end)
2514{
2515 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2516}
2517
2518#ifdef CONFIG_MMU
2519pgprot_t vm_get_page_prot(unsigned long vm_flags);
2520void vma_set_page_prot(struct vm_area_struct *vma);
2521#else
2522static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2523{
2524 return __pgprot(0);
2525}
2526static inline void vma_set_page_prot(struct vm_area_struct *vma)
2527{
2528 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2529}
2530#endif
2531
2532#ifdef CONFIG_NUMA_BALANCING
2533unsigned long change_prot_numa(struct vm_area_struct *vma,
2534 unsigned long start, unsigned long end);
2535#endif
2536
2537struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2538int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2539 unsigned long pfn, unsigned long size, pgprot_t);
2540int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2541int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2542 unsigned long num);
2543int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2544 unsigned long num);
2545vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2546 unsigned long pfn);
2547vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2548 unsigned long pfn, pgprot_t pgprot);
2549vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2550 pfn_t pfn);
2551vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2552 unsigned long addr, pfn_t pfn);
2553int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2554
2555static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2556 unsigned long addr, struct page *page)
2557{
2558 int err = vm_insert_page(vma, addr, page);
2559
2560 if (err == -ENOMEM)
2561 return VM_FAULT_OOM;
2562 if (err < 0 && err != -EBUSY)
2563 return VM_FAULT_SIGBUS;
2564
2565 return VM_FAULT_NOPAGE;
2566}
2567
2568static inline vm_fault_t vmf_error(int err)
2569{
2570 if (err == -ENOMEM)
2571 return VM_FAULT_OOM;
2572 return VM_FAULT_SIGBUS;
2573}
2574
2575struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2576 unsigned int foll_flags);
2577
2578#define FOLL_WRITE 0x01 /* check pte is writable */
2579#define FOLL_TOUCH 0x02 /* mark page accessed */
2580#define FOLL_GET 0x04 /* do get_page on page */
2581#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2582#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2583#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2584 * and return without waiting upon it */
2585#define FOLL_POPULATE 0x40 /* fault in page */
2586#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2587#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2588#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2589#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2590#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2591#define FOLL_MLOCK 0x1000 /* lock present pages */
2592#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2593#define FOLL_COW 0x4000 /* internal GUP flag */
2594#define FOLL_ANON 0x8000 /* don't do file mappings */
2595#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2596#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2597
2598/*
2599 * NOTE on FOLL_LONGTERM:
2600 *
2601 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2602 * period _often_ under userspace control. This is contrasted with
2603 * iov_iter_get_pages() where usages which are transient.
2604 *
2605 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2606 * lifetime enforced by the filesystem and we need guarantees that longterm
2607 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2608 * the filesystem. Ideas for this coordination include revoking the longterm
2609 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2610 * added after the problem with filesystems was found FS DAX VMAs are
2611 * specifically failed. Filesystem pages are still subject to bugs and use of
2612 * FOLL_LONGTERM should be avoided on those pages.
2613 *
2614 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2615 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2616 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2617 * is due to an incompatibility with the FS DAX check and
2618 * FAULT_FLAG_ALLOW_RETRY
2619 *
2620 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2621 * that region. And so CMA attempts to migrate the page before pinning when
2622 * FOLL_LONGTERM is specified.
2623 */
2624
2625static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2626{
2627 if (vm_fault & VM_FAULT_OOM)
2628 return -ENOMEM;
2629 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2630 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2631 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2632 return -EFAULT;
2633 return 0;
2634}
2635
2636typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2637extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2638 unsigned long size, pte_fn_t fn, void *data);
2639
2640
2641#ifdef CONFIG_PAGE_POISONING
2642extern bool page_poisoning_enabled(void);
2643extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2644#else
2645static inline bool page_poisoning_enabled(void) { return false; }
2646static inline void kernel_poison_pages(struct page *page, int numpages,
2647 int enable) { }
2648#endif
2649
2650#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2651DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2652#else
2653DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2654#endif
2655static inline bool want_init_on_alloc(gfp_t flags)
2656{
2657 if (static_branch_unlikely(&init_on_alloc) &&
2658 !page_poisoning_enabled())
2659 return true;
2660 return flags & __GFP_ZERO;
2661}
2662
2663#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2664DECLARE_STATIC_KEY_TRUE(init_on_free);
2665#else
2666DECLARE_STATIC_KEY_FALSE(init_on_free);
2667#endif
2668static inline bool want_init_on_free(void)
2669{
2670 return static_branch_unlikely(&init_on_free) &&
2671 !page_poisoning_enabled();
2672}
2673
2674#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2675DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2676#else
2677DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2678#endif
2679
2680static inline bool debug_pagealloc_enabled(void)
2681{
2682 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2683 return false;
2684
2685 return static_branch_unlikely(&_debug_pagealloc_enabled);
2686}
2687
2688#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2689extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2690
2691static inline void
2692kernel_map_pages(struct page *page, int numpages, int enable)
2693{
2694 __kernel_map_pages(page, numpages, enable);
2695}
2696#ifdef CONFIG_HIBERNATION
2697extern bool kernel_page_present(struct page *page);
2698#endif /* CONFIG_HIBERNATION */
2699#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2700static inline void
2701kernel_map_pages(struct page *page, int numpages, int enable) {}
2702#ifdef CONFIG_HIBERNATION
2703static inline bool kernel_page_present(struct page *page) { return true; }
2704#endif /* CONFIG_HIBERNATION */
2705#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2706
2707#ifdef __HAVE_ARCH_GATE_AREA
2708extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2709extern int in_gate_area_no_mm(unsigned long addr);
2710extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2711#else
2712static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2713{
2714 return NULL;
2715}
2716static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2717static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2718{
2719 return 0;
2720}
2721#endif /* __HAVE_ARCH_GATE_AREA */
2722
2723extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2724
2725#ifdef CONFIG_SYSCTL
2726extern int sysctl_drop_caches;
2727int drop_caches_sysctl_handler(struct ctl_table *, int,
2728 void __user *, size_t *, loff_t *);
2729#endif
2730
2731void drop_slab(void);
2732void drop_slab_node(int nid);
2733
2734#ifndef CONFIG_MMU
2735#define randomize_va_space 0
2736#else
2737extern int randomize_va_space;
2738#endif
2739
2740const char * arch_vma_name(struct vm_area_struct *vma);
2741#ifdef CONFIG_MMU
2742void print_vma_addr(char *prefix, unsigned long rip);
2743#else
2744static inline void print_vma_addr(char *prefix, unsigned long rip)
2745{
2746}
2747#endif
2748
2749void *sparse_buffer_alloc(unsigned long size);
2750struct page * __populate_section_memmap(unsigned long pfn,
2751 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2752pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2753p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2754pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2755pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2756pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2757void *vmemmap_alloc_block(unsigned long size, int node);
2758struct vmem_altmap;
2759void *vmemmap_alloc_block_buf(unsigned long size, int node);
2760void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2761void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2762int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2763 int node);
2764int vmemmap_populate(unsigned long start, unsigned long end, int node,
2765 struct vmem_altmap *altmap);
2766void vmemmap_populate_print_last(void);
2767#ifdef CONFIG_MEMORY_HOTPLUG
2768void vmemmap_free(unsigned long start, unsigned long end,
2769 struct vmem_altmap *altmap);
2770#endif
2771void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2772 unsigned long nr_pages);
2773
2774enum mf_flags {
2775 MF_COUNT_INCREASED = 1 << 0,
2776 MF_ACTION_REQUIRED = 1 << 1,
2777 MF_MUST_KILL = 1 << 2,
2778 MF_SOFT_OFFLINE = 1 << 3,
2779};
2780extern int memory_failure(unsigned long pfn, int flags);
2781extern void memory_failure_queue(unsigned long pfn, int flags);
2782extern int unpoison_memory(unsigned long pfn);
2783extern int get_hwpoison_page(struct page *page);
2784#define put_hwpoison_page(page) put_page(page)
2785extern int sysctl_memory_failure_early_kill;
2786extern int sysctl_memory_failure_recovery;
2787extern void shake_page(struct page *p, int access);
2788extern atomic_long_t num_poisoned_pages __read_mostly;
2789extern int soft_offline_page(struct page *page, int flags);
2790
2791
2792/*
2793 * Error handlers for various types of pages.
2794 */
2795enum mf_result {
2796 MF_IGNORED, /* Error: cannot be handled */
2797 MF_FAILED, /* Error: handling failed */
2798 MF_DELAYED, /* Will be handled later */
2799 MF_RECOVERED, /* Successfully recovered */
2800};
2801
2802enum mf_action_page_type {
2803 MF_MSG_KERNEL,
2804 MF_MSG_KERNEL_HIGH_ORDER,
2805 MF_MSG_SLAB,
2806 MF_MSG_DIFFERENT_COMPOUND,
2807 MF_MSG_POISONED_HUGE,
2808 MF_MSG_HUGE,
2809 MF_MSG_FREE_HUGE,
2810 MF_MSG_NON_PMD_HUGE,
2811 MF_MSG_UNMAP_FAILED,
2812 MF_MSG_DIRTY_SWAPCACHE,
2813 MF_MSG_CLEAN_SWAPCACHE,
2814 MF_MSG_DIRTY_MLOCKED_LRU,
2815 MF_MSG_CLEAN_MLOCKED_LRU,
2816 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2817 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2818 MF_MSG_DIRTY_LRU,
2819 MF_MSG_CLEAN_LRU,
2820 MF_MSG_TRUNCATED_LRU,
2821 MF_MSG_BUDDY,
2822 MF_MSG_BUDDY_2ND,
2823 MF_MSG_DAX,
2824 MF_MSG_UNKNOWN,
2825};
2826
2827#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2828extern void clear_huge_page(struct page *page,
2829 unsigned long addr_hint,
2830 unsigned int pages_per_huge_page);
2831extern void copy_user_huge_page(struct page *dst, struct page *src,
2832 unsigned long addr_hint,
2833 struct vm_area_struct *vma,
2834 unsigned int pages_per_huge_page);
2835extern long copy_huge_page_from_user(struct page *dst_page,
2836 const void __user *usr_src,
2837 unsigned int pages_per_huge_page,
2838 bool allow_pagefault);
2839#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2840
2841#ifdef CONFIG_DEBUG_PAGEALLOC
2842extern unsigned int _debug_guardpage_minorder;
2843DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2844
2845static inline unsigned int debug_guardpage_minorder(void)
2846{
2847 return _debug_guardpage_minorder;
2848}
2849
2850static inline bool debug_guardpage_enabled(void)
2851{
2852 return static_branch_unlikely(&_debug_guardpage_enabled);
2853}
2854
2855static inline bool page_is_guard(struct page *page)
2856{
2857 if (!debug_guardpage_enabled())
2858 return false;
2859
2860 return PageGuard(page);
2861}
2862#else
2863static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2864static inline bool debug_guardpage_enabled(void) { return false; }
2865static inline bool page_is_guard(struct page *page) { return false; }
2866#endif /* CONFIG_DEBUG_PAGEALLOC */
2867
2868#if MAX_NUMNODES > 1
2869void __init setup_nr_node_ids(void);
2870#else
2871static inline void setup_nr_node_ids(void) {}
2872#endif
2873
2874extern int memcmp_pages(struct page *page1, struct page *page2);
2875
2876static inline int pages_identical(struct page *page1, struct page *page2)
2877{
2878 return !memcmp_pages(page1, page2);
2879}
2880
2881#endif /* __KERNEL__ */
2882#endif /* _LINUX_MM_H */