Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct page;
27struct mm_struct;
28struct kmem_cache;
29
30/* Cgroup-specific page state, on top of universal node page state */
31enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40};
41
42enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51};
52
53enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57};
58
59struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63};
64
65#ifdef CONFIG_MEMCG
66
67#define MEM_CGROUP_ID_SHIFT 16
68#define MEM_CGROUP_ID_MAX USHRT_MAX
69
70struct mem_cgroup_id {
71 int id;
72 refcount_t ref;
73};
74
75/*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86};
87
88struct memcg_vmstats_percpu {
89 long stat[MEMCG_NR_STAT];
90 unsigned long events[NR_VM_EVENT_ITEMS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93};
94
95struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99};
100
101struct lruvec_stat {
102 long count[NR_VM_NODE_STAT_ITEMS];
103};
104
105/*
106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107 * which have elements charged to this memcg.
108 */
109struct memcg_shrinker_map {
110 struct rcu_head rcu;
111 unsigned long map[0];
112};
113
114/*
115 * per-zone information in memory controller.
116 */
117struct mem_cgroup_per_node {
118 struct lruvec lruvec;
119
120 /* Legacy local VM stats */
121 struct lruvec_stat __percpu *lruvec_stat_local;
122
123 /* Subtree VM stats (batched updates) */
124 struct lruvec_stat __percpu *lruvec_stat_cpu;
125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
130
131 struct memcg_shrinker_map __rcu *shrinker_map;
132
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 bool congested; /* memcg has many dirty pages */
138 /* backed by a congested BDI */
139
140 struct mem_cgroup *memcg; /* Back pointer, we cannot */
141 /* use container_of */
142};
143
144struct mem_cgroup_threshold {
145 struct eventfd_ctx *eventfd;
146 unsigned long threshold;
147};
148
149/* For threshold */
150struct mem_cgroup_threshold_ary {
151 /* An array index points to threshold just below or equal to usage. */
152 int current_threshold;
153 /* Size of entries[] */
154 unsigned int size;
155 /* Array of thresholds */
156 struct mem_cgroup_threshold entries[0];
157};
158
159struct mem_cgroup_thresholds {
160 /* Primary thresholds array */
161 struct mem_cgroup_threshold_ary *primary;
162 /*
163 * Spare threshold array.
164 * This is needed to make mem_cgroup_unregister_event() "never fail".
165 * It must be able to store at least primary->size - 1 entries.
166 */
167 struct mem_cgroup_threshold_ary *spare;
168};
169
170enum memcg_kmem_state {
171 KMEM_NONE,
172 KMEM_ALLOCATED,
173 KMEM_ONLINE,
174};
175
176#if defined(CONFIG_SMP)
177struct memcg_padding {
178 char x[0];
179} ____cacheline_internodealigned_in_smp;
180#define MEMCG_PADDING(name) struct memcg_padding name;
181#else
182#define MEMCG_PADDING(name)
183#endif
184
185/*
186 * Remember four most recent foreign writebacks with dirty pages in this
187 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
188 * one in a given round, we're likely to catch it later if it keeps
189 * foreign-dirtying, so a fairly low count should be enough.
190 *
191 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
192 */
193#define MEMCG_CGWB_FRN_CNT 4
194
195struct memcg_cgwb_frn {
196 u64 bdi_id; /* bdi->id of the foreign inode */
197 int memcg_id; /* memcg->css.id of foreign inode */
198 u64 at; /* jiffies_64 at the time of dirtying */
199 struct wb_completion done; /* tracks in-flight foreign writebacks */
200};
201
202/*
203 * The memory controller data structure. The memory controller controls both
204 * page cache and RSS per cgroup. We would eventually like to provide
205 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
206 * to help the administrator determine what knobs to tune.
207 */
208struct mem_cgroup {
209 struct cgroup_subsys_state css;
210
211 /* Private memcg ID. Used to ID objects that outlive the cgroup */
212 struct mem_cgroup_id id;
213
214 /* Accounted resources */
215 struct page_counter memory;
216 struct page_counter swap;
217
218 /* Legacy consumer-oriented counters */
219 struct page_counter memsw;
220 struct page_counter kmem;
221 struct page_counter tcpmem;
222
223 /* Upper bound of normal memory consumption range */
224 unsigned long high;
225
226 /* Range enforcement for interrupt charges */
227 struct work_struct high_work;
228
229 unsigned long soft_limit;
230
231 /* vmpressure notifications */
232 struct vmpressure vmpressure;
233
234 /*
235 * Should the accounting and control be hierarchical, per subtree?
236 */
237 bool use_hierarchy;
238
239 /*
240 * Should the OOM killer kill all belonging tasks, had it kill one?
241 */
242 bool oom_group;
243
244 /* protected by memcg_oom_lock */
245 bool oom_lock;
246 int under_oom;
247
248 int swappiness;
249 /* OOM-Killer disable */
250 int oom_kill_disable;
251
252 /* memory.events and memory.events.local */
253 struct cgroup_file events_file;
254 struct cgroup_file events_local_file;
255
256 /* handle for "memory.swap.events" */
257 struct cgroup_file swap_events_file;
258
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
261
262 /* thresholds for memory usage. RCU-protected */
263 struct mem_cgroup_thresholds thresholds;
264
265 /* thresholds for mem+swap usage. RCU-protected */
266 struct mem_cgroup_thresholds memsw_thresholds;
267
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
270
271 /*
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
274 */
275 unsigned long move_charge_at_immigrate;
276 /* taken only while moving_account > 0 */
277 spinlock_t move_lock;
278 unsigned long move_lock_flags;
279
280 MEMCG_PADDING(_pad1_);
281
282 /*
283 * set > 0 if pages under this cgroup are moving to other cgroup.
284 */
285 atomic_t moving_account;
286 struct task_struct *move_lock_task;
287
288 /* Legacy local VM stats and events */
289 struct memcg_vmstats_percpu __percpu *vmstats_local;
290
291 /* Subtree VM stats and events (batched updates) */
292 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
293
294 MEMCG_PADDING(_pad2_);
295
296 atomic_long_t vmstats[MEMCG_NR_STAT];
297 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
298
299 /* memory.events */
300 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
301 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
302
303 unsigned long socket_pressure;
304
305 /* Legacy tcp memory accounting */
306 bool tcpmem_active;
307 int tcpmem_pressure;
308
309#ifdef CONFIG_MEMCG_KMEM
310 /* Index in the kmem_cache->memcg_params.memcg_caches array */
311 int kmemcg_id;
312 enum memcg_kmem_state kmem_state;
313 struct list_head kmem_caches;
314#endif
315
316 int last_scanned_node;
317#if MAX_NUMNODES > 1
318 nodemask_t scan_nodes;
319 atomic_t numainfo_events;
320 atomic_t numainfo_updating;
321#endif
322
323#ifdef CONFIG_CGROUP_WRITEBACK
324 struct list_head cgwb_list;
325 struct wb_domain cgwb_domain;
326 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
327#endif
328
329 /* List of events which userspace want to receive */
330 struct list_head event_list;
331 spinlock_t event_list_lock;
332
333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 struct deferred_split deferred_split_queue;
335#endif
336
337 struct mem_cgroup_per_node *nodeinfo[0];
338 /* WARNING: nodeinfo must be the last member here */
339};
340
341/*
342 * size of first charge trial. "32" comes from vmscan.c's magic value.
343 * TODO: maybe necessary to use big numbers in big irons.
344 */
345#define MEMCG_CHARGE_BATCH 32U
346
347extern struct mem_cgroup *root_mem_cgroup;
348
349static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
350{
351 return (memcg == root_mem_cgroup);
352}
353
354static inline bool mem_cgroup_disabled(void)
355{
356 return !cgroup_subsys_enabled(memory_cgrp_subsys);
357}
358
359enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
360 struct mem_cgroup *memcg);
361
362int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
363 gfp_t gfp_mask, struct mem_cgroup **memcgp,
364 bool compound);
365int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
366 gfp_t gfp_mask, struct mem_cgroup **memcgp,
367 bool compound);
368void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
369 bool lrucare, bool compound);
370void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
371 bool compound);
372void mem_cgroup_uncharge(struct page *page);
373void mem_cgroup_uncharge_list(struct list_head *page_list);
374
375void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
376
377static struct mem_cgroup_per_node *
378mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
379{
380 return memcg->nodeinfo[nid];
381}
382
383/**
384 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
385 * @node: node of the wanted lruvec
386 * @memcg: memcg of the wanted lruvec
387 *
388 * Returns the lru list vector holding pages for a given @node or a given
389 * @memcg and @zone. This can be the node lruvec, if the memory controller
390 * is disabled.
391 */
392static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
393 struct mem_cgroup *memcg)
394{
395 struct mem_cgroup_per_node *mz;
396 struct lruvec *lruvec;
397
398 if (mem_cgroup_disabled()) {
399 lruvec = node_lruvec(pgdat);
400 goto out;
401 }
402
403 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
404 lruvec = &mz->lruvec;
405out:
406 /*
407 * Since a node can be onlined after the mem_cgroup was created,
408 * we have to be prepared to initialize lruvec->pgdat here;
409 * and if offlined then reonlined, we need to reinitialize it.
410 */
411 if (unlikely(lruvec->pgdat != pgdat))
412 lruvec->pgdat = pgdat;
413 return lruvec;
414}
415
416struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
417
418struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
419
420struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
421
422struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
423
424static inline
425struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
426 return css ? container_of(css, struct mem_cgroup, css) : NULL;
427}
428
429static inline void mem_cgroup_put(struct mem_cgroup *memcg)
430{
431 if (memcg)
432 css_put(&memcg->css);
433}
434
435#define mem_cgroup_from_counter(counter, member) \
436 container_of(counter, struct mem_cgroup, member)
437
438struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
439 struct mem_cgroup *,
440 struct mem_cgroup_reclaim_cookie *);
441void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
442int mem_cgroup_scan_tasks(struct mem_cgroup *,
443 int (*)(struct task_struct *, void *), void *);
444
445static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
446{
447 if (mem_cgroup_disabled())
448 return 0;
449
450 return memcg->id.id;
451}
452struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
453
454static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
455{
456 return mem_cgroup_from_css(seq_css(m));
457}
458
459static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
460{
461 struct mem_cgroup_per_node *mz;
462
463 if (mem_cgroup_disabled())
464 return NULL;
465
466 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
467 return mz->memcg;
468}
469
470/**
471 * parent_mem_cgroup - find the accounting parent of a memcg
472 * @memcg: memcg whose parent to find
473 *
474 * Returns the parent memcg, or NULL if this is the root or the memory
475 * controller is in legacy no-hierarchy mode.
476 */
477static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
478{
479 if (!memcg->memory.parent)
480 return NULL;
481 return mem_cgroup_from_counter(memcg->memory.parent, memory);
482}
483
484static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
485 struct mem_cgroup *root)
486{
487 if (root == memcg)
488 return true;
489 if (!root->use_hierarchy)
490 return false;
491 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
492}
493
494static inline bool mm_match_cgroup(struct mm_struct *mm,
495 struct mem_cgroup *memcg)
496{
497 struct mem_cgroup *task_memcg;
498 bool match = false;
499
500 rcu_read_lock();
501 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
502 if (task_memcg)
503 match = mem_cgroup_is_descendant(task_memcg, memcg);
504 rcu_read_unlock();
505 return match;
506}
507
508struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
509ino_t page_cgroup_ino(struct page *page);
510
511static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
512{
513 if (mem_cgroup_disabled())
514 return true;
515 return !!(memcg->css.flags & CSS_ONLINE);
516}
517
518/*
519 * For memory reclaim.
520 */
521int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
522
523void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
524 int zid, int nr_pages);
525
526static inline
527unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
528 enum lru_list lru, int zone_idx)
529{
530 struct mem_cgroup_per_node *mz;
531
532 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
533 return mz->lru_zone_size[zone_idx][lru];
534}
535
536void mem_cgroup_handle_over_high(void);
537
538unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
539
540void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
541 struct task_struct *p);
542
543void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
544
545static inline void mem_cgroup_enter_user_fault(void)
546{
547 WARN_ON(current->in_user_fault);
548 current->in_user_fault = 1;
549}
550
551static inline void mem_cgroup_exit_user_fault(void)
552{
553 WARN_ON(!current->in_user_fault);
554 current->in_user_fault = 0;
555}
556
557static inline bool task_in_memcg_oom(struct task_struct *p)
558{
559 return p->memcg_in_oom;
560}
561
562bool mem_cgroup_oom_synchronize(bool wait);
563struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
564 struct mem_cgroup *oom_domain);
565void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
566
567#ifdef CONFIG_MEMCG_SWAP
568extern int do_swap_account;
569#endif
570
571struct mem_cgroup *lock_page_memcg(struct page *page);
572void __unlock_page_memcg(struct mem_cgroup *memcg);
573void unlock_page_memcg(struct page *page);
574
575/*
576 * idx can be of type enum memcg_stat_item or node_stat_item.
577 * Keep in sync with memcg_exact_page_state().
578 */
579static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
580{
581 long x = atomic_long_read(&memcg->vmstats[idx]);
582#ifdef CONFIG_SMP
583 if (x < 0)
584 x = 0;
585#endif
586 return x;
587}
588
589/*
590 * idx can be of type enum memcg_stat_item or node_stat_item.
591 * Keep in sync with memcg_exact_page_state().
592 */
593static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
594 int idx)
595{
596 long x = 0;
597 int cpu;
598
599 for_each_possible_cpu(cpu)
600 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
601#ifdef CONFIG_SMP
602 if (x < 0)
603 x = 0;
604#endif
605 return x;
606}
607
608void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
609
610/* idx can be of type enum memcg_stat_item or node_stat_item */
611static inline void mod_memcg_state(struct mem_cgroup *memcg,
612 int idx, int val)
613{
614 unsigned long flags;
615
616 local_irq_save(flags);
617 __mod_memcg_state(memcg, idx, val);
618 local_irq_restore(flags);
619}
620
621/**
622 * mod_memcg_page_state - update page state statistics
623 * @page: the page
624 * @idx: page state item to account
625 * @val: number of pages (positive or negative)
626 *
627 * The @page must be locked or the caller must use lock_page_memcg()
628 * to prevent double accounting when the page is concurrently being
629 * moved to another memcg:
630 *
631 * lock_page(page) or lock_page_memcg(page)
632 * if (TestClearPageState(page))
633 * mod_memcg_page_state(page, state, -1);
634 * unlock_page(page) or unlock_page_memcg(page)
635 *
636 * Kernel pages are an exception to this, since they'll never move.
637 */
638static inline void __mod_memcg_page_state(struct page *page,
639 int idx, int val)
640{
641 if (page->mem_cgroup)
642 __mod_memcg_state(page->mem_cgroup, idx, val);
643}
644
645static inline void mod_memcg_page_state(struct page *page,
646 int idx, int val)
647{
648 if (page->mem_cgroup)
649 mod_memcg_state(page->mem_cgroup, idx, val);
650}
651
652static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
653 enum node_stat_item idx)
654{
655 struct mem_cgroup_per_node *pn;
656 long x;
657
658 if (mem_cgroup_disabled())
659 return node_page_state(lruvec_pgdat(lruvec), idx);
660
661 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
662 x = atomic_long_read(&pn->lruvec_stat[idx]);
663#ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666#endif
667 return x;
668}
669
670static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
671 enum node_stat_item idx)
672{
673 struct mem_cgroup_per_node *pn;
674 long x = 0;
675 int cpu;
676
677 if (mem_cgroup_disabled())
678 return node_page_state(lruvec_pgdat(lruvec), idx);
679
680 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
681 for_each_possible_cpu(cpu)
682 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
683#ifdef CONFIG_SMP
684 if (x < 0)
685 x = 0;
686#endif
687 return x;
688}
689
690void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
691 int val);
692void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
693
694static inline void mod_lruvec_state(struct lruvec *lruvec,
695 enum node_stat_item idx, int val)
696{
697 unsigned long flags;
698
699 local_irq_save(flags);
700 __mod_lruvec_state(lruvec, idx, val);
701 local_irq_restore(flags);
702}
703
704static inline void __mod_lruvec_page_state(struct page *page,
705 enum node_stat_item idx, int val)
706{
707 pg_data_t *pgdat = page_pgdat(page);
708 struct lruvec *lruvec;
709
710 /* Untracked pages have no memcg, no lruvec. Update only the node */
711 if (!page->mem_cgroup) {
712 __mod_node_page_state(pgdat, idx, val);
713 return;
714 }
715
716 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
717 __mod_lruvec_state(lruvec, idx, val);
718}
719
720static inline void mod_lruvec_page_state(struct page *page,
721 enum node_stat_item idx, int val)
722{
723 unsigned long flags;
724
725 local_irq_save(flags);
726 __mod_lruvec_page_state(page, idx, val);
727 local_irq_restore(flags);
728}
729
730unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
731 gfp_t gfp_mask,
732 unsigned long *total_scanned);
733
734void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
735 unsigned long count);
736
737static inline void count_memcg_events(struct mem_cgroup *memcg,
738 enum vm_event_item idx,
739 unsigned long count)
740{
741 unsigned long flags;
742
743 local_irq_save(flags);
744 __count_memcg_events(memcg, idx, count);
745 local_irq_restore(flags);
746}
747
748static inline void count_memcg_page_event(struct page *page,
749 enum vm_event_item idx)
750{
751 if (page->mem_cgroup)
752 count_memcg_events(page->mem_cgroup, idx, 1);
753}
754
755static inline void count_memcg_event_mm(struct mm_struct *mm,
756 enum vm_event_item idx)
757{
758 struct mem_cgroup *memcg;
759
760 if (mem_cgroup_disabled())
761 return;
762
763 rcu_read_lock();
764 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
765 if (likely(memcg))
766 count_memcg_events(memcg, idx, 1);
767 rcu_read_unlock();
768}
769
770static inline void memcg_memory_event(struct mem_cgroup *memcg,
771 enum memcg_memory_event event)
772{
773 atomic_long_inc(&memcg->memory_events_local[event]);
774 cgroup_file_notify(&memcg->events_local_file);
775
776 do {
777 atomic_long_inc(&memcg->memory_events[event]);
778 cgroup_file_notify(&memcg->events_file);
779
780 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
781 break;
782 } while ((memcg = parent_mem_cgroup(memcg)) &&
783 !mem_cgroup_is_root(memcg));
784}
785
786static inline void memcg_memory_event_mm(struct mm_struct *mm,
787 enum memcg_memory_event event)
788{
789 struct mem_cgroup *memcg;
790
791 if (mem_cgroup_disabled())
792 return;
793
794 rcu_read_lock();
795 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (likely(memcg))
797 memcg_memory_event(memcg, event);
798 rcu_read_unlock();
799}
800
801#ifdef CONFIG_TRANSPARENT_HUGEPAGE
802void mem_cgroup_split_huge_fixup(struct page *head);
803#endif
804
805#else /* CONFIG_MEMCG */
806
807#define MEM_CGROUP_ID_SHIFT 0
808#define MEM_CGROUP_ID_MAX 0
809
810struct mem_cgroup;
811
812static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
813{
814 return true;
815}
816
817static inline bool mem_cgroup_disabled(void)
818{
819 return true;
820}
821
822static inline void memcg_memory_event(struct mem_cgroup *memcg,
823 enum memcg_memory_event event)
824{
825}
826
827static inline void memcg_memory_event_mm(struct mm_struct *mm,
828 enum memcg_memory_event event)
829{
830}
831
832static inline enum mem_cgroup_protection mem_cgroup_protected(
833 struct mem_cgroup *root, struct mem_cgroup *memcg)
834{
835 return MEMCG_PROT_NONE;
836}
837
838static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
839 gfp_t gfp_mask,
840 struct mem_cgroup **memcgp,
841 bool compound)
842{
843 *memcgp = NULL;
844 return 0;
845}
846
847static inline int mem_cgroup_try_charge_delay(struct page *page,
848 struct mm_struct *mm,
849 gfp_t gfp_mask,
850 struct mem_cgroup **memcgp,
851 bool compound)
852{
853 *memcgp = NULL;
854 return 0;
855}
856
857static inline void mem_cgroup_commit_charge(struct page *page,
858 struct mem_cgroup *memcg,
859 bool lrucare, bool compound)
860{
861}
862
863static inline void mem_cgroup_cancel_charge(struct page *page,
864 struct mem_cgroup *memcg,
865 bool compound)
866{
867}
868
869static inline void mem_cgroup_uncharge(struct page *page)
870{
871}
872
873static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
874{
875}
876
877static inline void mem_cgroup_migrate(struct page *old, struct page *new)
878{
879}
880
881static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
882 struct mem_cgroup *memcg)
883{
884 return node_lruvec(pgdat);
885}
886
887static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
888 struct pglist_data *pgdat)
889{
890 return &pgdat->lruvec;
891}
892
893static inline bool mm_match_cgroup(struct mm_struct *mm,
894 struct mem_cgroup *memcg)
895{
896 return true;
897}
898
899static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
900{
901 return NULL;
902}
903
904static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
905{
906 return NULL;
907}
908
909static inline void mem_cgroup_put(struct mem_cgroup *memcg)
910{
911}
912
913static inline struct mem_cgroup *
914mem_cgroup_iter(struct mem_cgroup *root,
915 struct mem_cgroup *prev,
916 struct mem_cgroup_reclaim_cookie *reclaim)
917{
918 return NULL;
919}
920
921static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
922 struct mem_cgroup *prev)
923{
924}
925
926static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
927 int (*fn)(struct task_struct *, void *), void *arg)
928{
929 return 0;
930}
931
932static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
933{
934 return 0;
935}
936
937static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
938{
939 WARN_ON_ONCE(id);
940 /* XXX: This should always return root_mem_cgroup */
941 return NULL;
942}
943
944static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
945{
946 return NULL;
947}
948
949static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
950{
951 return NULL;
952}
953
954static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
955{
956 return true;
957}
958
959static inline
960unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
961 enum lru_list lru, int zone_idx)
962{
963 return 0;
964}
965
966static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
967{
968 return 0;
969}
970
971static inline void
972mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
973{
974}
975
976static inline void
977mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
978{
979}
980
981static inline struct mem_cgroup *lock_page_memcg(struct page *page)
982{
983 return NULL;
984}
985
986static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
987{
988}
989
990static inline void unlock_page_memcg(struct page *page)
991{
992}
993
994static inline void mem_cgroup_handle_over_high(void)
995{
996}
997
998static inline void mem_cgroup_enter_user_fault(void)
999{
1000}
1001
1002static inline void mem_cgroup_exit_user_fault(void)
1003{
1004}
1005
1006static inline bool task_in_memcg_oom(struct task_struct *p)
1007{
1008 return false;
1009}
1010
1011static inline bool mem_cgroup_oom_synchronize(bool wait)
1012{
1013 return false;
1014}
1015
1016static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1017 struct task_struct *victim, struct mem_cgroup *oom_domain)
1018{
1019 return NULL;
1020}
1021
1022static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1023{
1024}
1025
1026static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1027{
1028 return 0;
1029}
1030
1031static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1032 int idx)
1033{
1034 return 0;
1035}
1036
1037static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1038 int idx,
1039 int nr)
1040{
1041}
1042
1043static inline void mod_memcg_state(struct mem_cgroup *memcg,
1044 int idx,
1045 int nr)
1046{
1047}
1048
1049static inline void __mod_memcg_page_state(struct page *page,
1050 int idx,
1051 int nr)
1052{
1053}
1054
1055static inline void mod_memcg_page_state(struct page *page,
1056 int idx,
1057 int nr)
1058{
1059}
1060
1061static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1062 enum node_stat_item idx)
1063{
1064 return node_page_state(lruvec_pgdat(lruvec), idx);
1065}
1066
1067static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1068 enum node_stat_item idx)
1069{
1070 return node_page_state(lruvec_pgdat(lruvec), idx);
1071}
1072
1073static inline void __mod_lruvec_state(struct lruvec *lruvec,
1074 enum node_stat_item idx, int val)
1075{
1076 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1077}
1078
1079static inline void mod_lruvec_state(struct lruvec *lruvec,
1080 enum node_stat_item idx, int val)
1081{
1082 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1083}
1084
1085static inline void __mod_lruvec_page_state(struct page *page,
1086 enum node_stat_item idx, int val)
1087{
1088 __mod_node_page_state(page_pgdat(page), idx, val);
1089}
1090
1091static inline void mod_lruvec_page_state(struct page *page,
1092 enum node_stat_item idx, int val)
1093{
1094 mod_node_page_state(page_pgdat(page), idx, val);
1095}
1096
1097static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1098 int val)
1099{
1100 struct page *page = virt_to_head_page(p);
1101
1102 __mod_node_page_state(page_pgdat(page), idx, val);
1103}
1104
1105static inline
1106unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1107 gfp_t gfp_mask,
1108 unsigned long *total_scanned)
1109{
1110 return 0;
1111}
1112
1113static inline void mem_cgroup_split_huge_fixup(struct page *head)
1114{
1115}
1116
1117static inline void count_memcg_events(struct mem_cgroup *memcg,
1118 enum vm_event_item idx,
1119 unsigned long count)
1120{
1121}
1122
1123static inline void __count_memcg_events(struct mem_cgroup *memcg,
1124 enum vm_event_item idx,
1125 unsigned long count)
1126{
1127}
1128
1129static inline void count_memcg_page_event(struct page *page,
1130 int idx)
1131{
1132}
1133
1134static inline
1135void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1136{
1137}
1138#endif /* CONFIG_MEMCG */
1139
1140/* idx can be of type enum memcg_stat_item or node_stat_item */
1141static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1142 int idx)
1143{
1144 __mod_memcg_state(memcg, idx, 1);
1145}
1146
1147/* idx can be of type enum memcg_stat_item or node_stat_item */
1148static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1149 int idx)
1150{
1151 __mod_memcg_state(memcg, idx, -1);
1152}
1153
1154/* idx can be of type enum memcg_stat_item or node_stat_item */
1155static inline void __inc_memcg_page_state(struct page *page,
1156 int idx)
1157{
1158 __mod_memcg_page_state(page, idx, 1);
1159}
1160
1161/* idx can be of type enum memcg_stat_item or node_stat_item */
1162static inline void __dec_memcg_page_state(struct page *page,
1163 int idx)
1164{
1165 __mod_memcg_page_state(page, idx, -1);
1166}
1167
1168static inline void __inc_lruvec_state(struct lruvec *lruvec,
1169 enum node_stat_item idx)
1170{
1171 __mod_lruvec_state(lruvec, idx, 1);
1172}
1173
1174static inline void __dec_lruvec_state(struct lruvec *lruvec,
1175 enum node_stat_item idx)
1176{
1177 __mod_lruvec_state(lruvec, idx, -1);
1178}
1179
1180static inline void __inc_lruvec_page_state(struct page *page,
1181 enum node_stat_item idx)
1182{
1183 __mod_lruvec_page_state(page, idx, 1);
1184}
1185
1186static inline void __dec_lruvec_page_state(struct page *page,
1187 enum node_stat_item idx)
1188{
1189 __mod_lruvec_page_state(page, idx, -1);
1190}
1191
1192static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1193{
1194 __mod_lruvec_slab_state(p, idx, 1);
1195}
1196
1197static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1198{
1199 __mod_lruvec_slab_state(p, idx, -1);
1200}
1201
1202/* idx can be of type enum memcg_stat_item or node_stat_item */
1203static inline void inc_memcg_state(struct mem_cgroup *memcg,
1204 int idx)
1205{
1206 mod_memcg_state(memcg, idx, 1);
1207}
1208
1209/* idx can be of type enum memcg_stat_item or node_stat_item */
1210static inline void dec_memcg_state(struct mem_cgroup *memcg,
1211 int idx)
1212{
1213 mod_memcg_state(memcg, idx, -1);
1214}
1215
1216/* idx can be of type enum memcg_stat_item or node_stat_item */
1217static inline void inc_memcg_page_state(struct page *page,
1218 int idx)
1219{
1220 mod_memcg_page_state(page, idx, 1);
1221}
1222
1223/* idx can be of type enum memcg_stat_item or node_stat_item */
1224static inline void dec_memcg_page_state(struct page *page,
1225 int idx)
1226{
1227 mod_memcg_page_state(page, idx, -1);
1228}
1229
1230static inline void inc_lruvec_state(struct lruvec *lruvec,
1231 enum node_stat_item idx)
1232{
1233 mod_lruvec_state(lruvec, idx, 1);
1234}
1235
1236static inline void dec_lruvec_state(struct lruvec *lruvec,
1237 enum node_stat_item idx)
1238{
1239 mod_lruvec_state(lruvec, idx, -1);
1240}
1241
1242static inline void inc_lruvec_page_state(struct page *page,
1243 enum node_stat_item idx)
1244{
1245 mod_lruvec_page_state(page, idx, 1);
1246}
1247
1248static inline void dec_lruvec_page_state(struct page *page,
1249 enum node_stat_item idx)
1250{
1251 mod_lruvec_page_state(page, idx, -1);
1252}
1253
1254#ifdef CONFIG_CGROUP_WRITEBACK
1255
1256struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1257void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1258 unsigned long *pheadroom, unsigned long *pdirty,
1259 unsigned long *pwriteback);
1260
1261void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1262 struct bdi_writeback *wb);
1263
1264static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1265 struct bdi_writeback *wb)
1266{
1267 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1268 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1269}
1270
1271void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1272
1273#else /* CONFIG_CGROUP_WRITEBACK */
1274
1275static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1276{
1277 return NULL;
1278}
1279
1280static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1281 unsigned long *pfilepages,
1282 unsigned long *pheadroom,
1283 unsigned long *pdirty,
1284 unsigned long *pwriteback)
1285{
1286}
1287
1288static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1289 struct bdi_writeback *wb)
1290{
1291}
1292
1293static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1294{
1295}
1296
1297#endif /* CONFIG_CGROUP_WRITEBACK */
1298
1299struct sock;
1300bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1301void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1302#ifdef CONFIG_MEMCG
1303extern struct static_key_false memcg_sockets_enabled_key;
1304#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1305void mem_cgroup_sk_alloc(struct sock *sk);
1306void mem_cgroup_sk_free(struct sock *sk);
1307static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1308{
1309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1310 return true;
1311 do {
1312 if (time_before(jiffies, memcg->socket_pressure))
1313 return true;
1314 } while ((memcg = parent_mem_cgroup(memcg)));
1315 return false;
1316}
1317
1318extern int memcg_expand_shrinker_maps(int new_id);
1319
1320extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1321 int nid, int shrinker_id);
1322#else
1323#define mem_cgroup_sockets_enabled 0
1324static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1325static inline void mem_cgroup_sk_free(struct sock *sk) { };
1326static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1327{
1328 return false;
1329}
1330
1331static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1332 int nid, int shrinker_id)
1333{
1334}
1335#endif
1336
1337struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1338void memcg_kmem_put_cache(struct kmem_cache *cachep);
1339
1340#ifdef CONFIG_MEMCG_KMEM
1341int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1342void __memcg_kmem_uncharge(struct page *page, int order);
1343int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1344 struct mem_cgroup *memcg);
1345void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
1346 unsigned int nr_pages);
1347
1348extern struct static_key_false memcg_kmem_enabled_key;
1349extern struct workqueue_struct *memcg_kmem_cache_wq;
1350
1351extern int memcg_nr_cache_ids;
1352void memcg_get_cache_ids(void);
1353void memcg_put_cache_ids(void);
1354
1355/*
1356 * Helper macro to loop through all memcg-specific caches. Callers must still
1357 * check if the cache is valid (it is either valid or NULL).
1358 * the slab_mutex must be held when looping through those caches
1359 */
1360#define for_each_memcg_cache_index(_idx) \
1361 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1362
1363static inline bool memcg_kmem_enabled(void)
1364{
1365 return static_branch_unlikely(&memcg_kmem_enabled_key);
1366}
1367
1368static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1369{
1370 if (memcg_kmem_enabled())
1371 return __memcg_kmem_charge(page, gfp, order);
1372 return 0;
1373}
1374
1375static inline void memcg_kmem_uncharge(struct page *page, int order)
1376{
1377 if (memcg_kmem_enabled())
1378 __memcg_kmem_uncharge(page, order);
1379}
1380
1381static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1382 int order, struct mem_cgroup *memcg)
1383{
1384 if (memcg_kmem_enabled())
1385 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1386 return 0;
1387}
1388
1389static inline void memcg_kmem_uncharge_memcg(struct page *page, int order,
1390 struct mem_cgroup *memcg)
1391{
1392 if (memcg_kmem_enabled())
1393 __memcg_kmem_uncharge_memcg(memcg, 1 << order);
1394}
1395
1396/*
1397 * helper for accessing a memcg's index. It will be used as an index in the
1398 * child cache array in kmem_cache, and also to derive its name. This function
1399 * will return -1 when this is not a kmem-limited memcg.
1400 */
1401static inline int memcg_cache_id(struct mem_cgroup *memcg)
1402{
1403 return memcg ? memcg->kmemcg_id : -1;
1404}
1405
1406#else
1407
1408static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1409{
1410 return 0;
1411}
1412
1413static inline void memcg_kmem_uncharge(struct page *page, int order)
1414{
1415}
1416
1417static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1418{
1419 return 0;
1420}
1421
1422static inline void __memcg_kmem_uncharge(struct page *page, int order)
1423{
1424}
1425
1426#define for_each_memcg_cache_index(_idx) \
1427 for (; NULL; )
1428
1429static inline bool memcg_kmem_enabled(void)
1430{
1431 return false;
1432}
1433
1434static inline int memcg_cache_id(struct mem_cgroup *memcg)
1435{
1436 return -1;
1437}
1438
1439static inline void memcg_get_cache_ids(void)
1440{
1441}
1442
1443static inline void memcg_put_cache_ids(void)
1444{
1445}
1446
1447#endif /* CONFIG_MEMCG_KMEM */
1448
1449#endif /* _LINUX_MEMCONTROL_H */