Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/module.h>
14#include <linux/ktime.h>
15#include <linux/hrtimer.h>
16#include <linux/tick.h>
17#include <linux/slab.h>
18#include <linux/sched/cpufreq.h>
19#include <linux/list.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/sysfs.h>
23#include <linux/types.h>
24#include <linux/fs.h>
25#include <linux/acpi.h>
26#include <linux/vmalloc.h>
27#include <linux/pm_qos.h>
28#include <trace/events/power.h>
29
30#include <asm/div64.h>
31#include <asm/msr.h>
32#include <asm/cpu_device_id.h>
33#include <asm/cpufeature.h>
34#include <asm/intel-family.h>
35
36#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39#define INTEL_CPUFREQ_TRANSITION_DELAY 500
40
41#ifdef CONFIG_ACPI
42#include <acpi/processor.h>
43#include <acpi/cppc_acpi.h>
44#endif
45
46#define FRAC_BITS 8
47#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48#define fp_toint(X) ((X) >> FRAC_BITS)
49
50#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52#define EXT_BITS 6
53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
57static inline int32_t mul_fp(int32_t x, int32_t y)
58{
59 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60}
61
62static inline int32_t div_fp(s64 x, s64 y)
63{
64 return div64_s64((int64_t)x << FRAC_BITS, y);
65}
66
67static inline int ceiling_fp(int32_t x)
68{
69 int mask, ret;
70
71 ret = fp_toint(x);
72 mask = (1 << FRAC_BITS) - 1;
73 if (x & mask)
74 ret += 1;
75 return ret;
76}
77
78static inline int32_t percent_fp(int percent)
79{
80 return div_fp(percent, 100);
81}
82
83static inline u64 mul_ext_fp(u64 x, u64 y)
84{
85 return (x * y) >> EXT_FRAC_BITS;
86}
87
88static inline u64 div_ext_fp(u64 x, u64 y)
89{
90 return div64_u64(x << EXT_FRAC_BITS, y);
91}
92
93static inline int32_t percent_ext_fp(int percent)
94{
95 return div_ext_fp(percent, 100);
96}
97
98/**
99 * struct sample - Store performance sample
100 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
101 * performance during last sample period
102 * @busy_scaled: Scaled busy value which is used to calculate next
103 * P state. This can be different than core_avg_perf
104 * to account for cpu idle period
105 * @aperf: Difference of actual performance frequency clock count
106 * read from APERF MSR between last and current sample
107 * @mperf: Difference of maximum performance frequency clock count
108 * read from MPERF MSR between last and current sample
109 * @tsc: Difference of time stamp counter between last and
110 * current sample
111 * @time: Current time from scheduler
112 *
113 * This structure is used in the cpudata structure to store performance sample
114 * data for choosing next P State.
115 */
116struct sample {
117 int32_t core_avg_perf;
118 int32_t busy_scaled;
119 u64 aperf;
120 u64 mperf;
121 u64 tsc;
122 u64 time;
123};
124
125/**
126 * struct pstate_data - Store P state data
127 * @current_pstate: Current requested P state
128 * @min_pstate: Min P state possible for this platform
129 * @max_pstate: Max P state possible for this platform
130 * @max_pstate_physical:This is physical Max P state for a processor
131 * This can be higher than the max_pstate which can
132 * be limited by platform thermal design power limits
133 * @scaling: Scaling factor to convert frequency to cpufreq
134 * frequency units
135 * @turbo_pstate: Max Turbo P state possible for this platform
136 * @max_freq: @max_pstate frequency in cpufreq units
137 * @turbo_freq: @turbo_pstate frequency in cpufreq units
138 *
139 * Stores the per cpu model P state limits and current P state.
140 */
141struct pstate_data {
142 int current_pstate;
143 int min_pstate;
144 int max_pstate;
145 int max_pstate_physical;
146 int scaling;
147 int turbo_pstate;
148 unsigned int max_freq;
149 unsigned int turbo_freq;
150};
151
152/**
153 * struct vid_data - Stores voltage information data
154 * @min: VID data for this platform corresponding to
155 * the lowest P state
156 * @max: VID data corresponding to the highest P State.
157 * @turbo: VID data for turbo P state
158 * @ratio: Ratio of (vid max - vid min) /
159 * (max P state - Min P State)
160 *
161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162 * This data is used in Atom platforms, where in addition to target P state,
163 * the voltage data needs to be specified to select next P State.
164 */
165struct vid_data {
166 int min;
167 int max;
168 int turbo;
169 int32_t ratio;
170};
171
172/**
173 * struct global_params - Global parameters, mostly tunable via sysfs.
174 * @no_turbo: Whether or not to use turbo P-states.
175 * @turbo_disabled: Whethet or not turbo P-states are available at all,
176 * based on the MSR_IA32_MISC_ENABLE value and whether or
177 * not the maximum reported turbo P-state is different from
178 * the maximum reported non-turbo one.
179 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 */
185struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 bool turbo_disabled_mf;
189 int max_perf_pct;
190 int min_perf_pct;
191};
192
193/**
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
211 * current sample
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
222 * preference/bias
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
224 * operation
225 * @hwp_req_cached: Cached value of the last HWP Request MSR
226 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
227 * @last_io_update: Last time when IO wake flag was set
228 * @sched_flags: Store scheduler flags for possible cross CPU update
229 * @hwp_boost_min: Last HWP boosted min performance
230 *
231 * This structure stores per CPU instance data for all CPUs.
232 */
233struct cpudata {
234 int cpu;
235
236 unsigned int policy;
237 struct update_util_data update_util;
238 bool update_util_set;
239
240 struct pstate_data pstate;
241 struct vid_data vid;
242
243 u64 last_update;
244 u64 last_sample_time;
245 u64 aperf_mperf_shift;
246 u64 prev_aperf;
247 u64 prev_mperf;
248 u64 prev_tsc;
249 u64 prev_cummulative_iowait;
250 struct sample sample;
251 int32_t min_perf_ratio;
252 int32_t max_perf_ratio;
253#ifdef CONFIG_ACPI
254 struct acpi_processor_performance acpi_perf_data;
255 bool valid_pss_table;
256#endif
257 unsigned int iowait_boost;
258 s16 epp_powersave;
259 s16 epp_policy;
260 s16 epp_default;
261 s16 epp_saved;
262 u64 hwp_req_cached;
263 u64 hwp_cap_cached;
264 u64 last_io_update;
265 unsigned int sched_flags;
266 u32 hwp_boost_min;
267};
268
269static struct cpudata **all_cpu_data;
270
271/**
272 * struct pstate_funcs - Per CPU model specific callbacks
273 * @get_max: Callback to get maximum non turbo effective P state
274 * @get_max_physical: Callback to get maximum non turbo physical P state
275 * @get_min: Callback to get minimum P state
276 * @get_turbo: Callback to get turbo P state
277 * @get_scaling: Callback to get frequency scaling factor
278 * @get_val: Callback to convert P state to actual MSR write value
279 * @get_vid: Callback to get VID data for Atom platforms
280 *
281 * Core and Atom CPU models have different way to get P State limits. This
282 * structure is used to store those callbacks.
283 */
284struct pstate_funcs {
285 int (*get_max)(void);
286 int (*get_max_physical)(void);
287 int (*get_min)(void);
288 int (*get_turbo)(void);
289 int (*get_scaling)(void);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293};
294
295static struct pstate_funcs pstate_funcs __read_mostly;
296
297static int hwp_active __read_mostly;
298static int hwp_mode_bdw __read_mostly;
299static bool per_cpu_limits __read_mostly;
300static bool hwp_boost __read_mostly;
301
302static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304#ifdef CONFIG_ACPI
305static bool acpi_ppc;
306#endif
307
308static struct global_params global;
309
310static DEFINE_MUTEX(intel_pstate_driver_lock);
311static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313#ifdef CONFIG_ACPI
314
315static bool intel_pstate_acpi_pm_profile_server(void)
316{
317 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319 return true;
320
321 return false;
322}
323
324static bool intel_pstate_get_ppc_enable_status(void)
325{
326 if (intel_pstate_acpi_pm_profile_server())
327 return true;
328
329 return acpi_ppc;
330}
331
332#ifdef CONFIG_ACPI_CPPC_LIB
333
334/* The work item is needed to avoid CPU hotplug locking issues */
335static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336{
337 sched_set_itmt_support();
338}
339
340static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342static void intel_pstate_set_itmt_prio(int cpu)
343{
344 struct cppc_perf_caps cppc_perf;
345 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346 int ret;
347
348 ret = cppc_get_perf_caps(cpu, &cppc_perf);
349 if (ret)
350 return;
351
352 /*
353 * The priorities can be set regardless of whether or not
354 * sched_set_itmt_support(true) has been called and it is valid to
355 * update them at any time after it has been called.
356 */
357 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359 if (max_highest_perf <= min_highest_perf) {
360 if (cppc_perf.highest_perf > max_highest_perf)
361 max_highest_perf = cppc_perf.highest_perf;
362
363 if (cppc_perf.highest_perf < min_highest_perf)
364 min_highest_perf = cppc_perf.highest_perf;
365
366 if (max_highest_perf > min_highest_perf) {
367 /*
368 * This code can be run during CPU online under the
369 * CPU hotplug locks, so sched_set_itmt_support()
370 * cannot be called from here. Queue up a work item
371 * to invoke it.
372 */
373 schedule_work(&sched_itmt_work);
374 }
375 }
376}
377
378static int intel_pstate_get_cppc_guranteed(int cpu)
379{
380 struct cppc_perf_caps cppc_perf;
381 int ret;
382
383 ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 if (ret)
385 return ret;
386
387 if (cppc_perf.guaranteed_perf)
388 return cppc_perf.guaranteed_perf;
389
390 return cppc_perf.nominal_perf;
391}
392
393#else /* CONFIG_ACPI_CPPC_LIB */
394static void intel_pstate_set_itmt_prio(int cpu)
395{
396}
397#endif /* CONFIG_ACPI_CPPC_LIB */
398
399static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400{
401 struct cpudata *cpu;
402 int ret;
403 int i;
404
405 if (hwp_active) {
406 intel_pstate_set_itmt_prio(policy->cpu);
407 return;
408 }
409
410 if (!intel_pstate_get_ppc_enable_status())
411 return;
412
413 cpu = all_cpu_data[policy->cpu];
414
415 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416 policy->cpu);
417 if (ret)
418 return;
419
420 /*
421 * Check if the control value in _PSS is for PERF_CTL MSR, which should
422 * guarantee that the states returned by it map to the states in our
423 * list directly.
424 */
425 if (cpu->acpi_perf_data.control_register.space_id !=
426 ACPI_ADR_SPACE_FIXED_HARDWARE)
427 goto err;
428
429 /*
430 * If there is only one entry _PSS, simply ignore _PSS and continue as
431 * usual without taking _PSS into account
432 */
433 if (cpu->acpi_perf_data.state_count < 2)
434 goto err;
435
436 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
439 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440 (u32) cpu->acpi_perf_data.states[i].core_frequency,
441 (u32) cpu->acpi_perf_data.states[i].power,
442 (u32) cpu->acpi_perf_data.states[i].control);
443 }
444
445 /*
446 * The _PSS table doesn't contain whole turbo frequency range.
447 * This just contains +1 MHZ above the max non turbo frequency,
448 * with control value corresponding to max turbo ratio. But
449 * when cpufreq set policy is called, it will call with this
450 * max frequency, which will cause a reduced performance as
451 * this driver uses real max turbo frequency as the max
452 * frequency. So correct this frequency in _PSS table to
453 * correct max turbo frequency based on the turbo state.
454 * Also need to convert to MHz as _PSS freq is in MHz.
455 */
456 if (!global.turbo_disabled)
457 cpu->acpi_perf_data.states[0].core_frequency =
458 policy->cpuinfo.max_freq / 1000;
459 cpu->valid_pss_table = true;
460 pr_debug("_PPC limits will be enforced\n");
461
462 return;
463
464 err:
465 cpu->valid_pss_table = false;
466 acpi_processor_unregister_performance(policy->cpu);
467}
468
469static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470{
471 struct cpudata *cpu;
472
473 cpu = all_cpu_data[policy->cpu];
474 if (!cpu->valid_pss_table)
475 return;
476
477 acpi_processor_unregister_performance(policy->cpu);
478}
479#else /* CONFIG_ACPI */
480static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481{
482}
483
484static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485{
486}
487
488static inline bool intel_pstate_acpi_pm_profile_server(void)
489{
490 return false;
491}
492#endif /* CONFIG_ACPI */
493
494#ifndef CONFIG_ACPI_CPPC_LIB
495static int intel_pstate_get_cppc_guranteed(int cpu)
496{
497 return -ENOTSUPP;
498}
499#endif /* CONFIG_ACPI_CPPC_LIB */
500
501static inline void update_turbo_state(void)
502{
503 u64 misc_en;
504 struct cpudata *cpu;
505
506 cpu = all_cpu_data[0];
507 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508 global.turbo_disabled =
509 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511}
512
513static int min_perf_pct_min(void)
514{
515 struct cpudata *cpu = all_cpu_data[0];
516 int turbo_pstate = cpu->pstate.turbo_pstate;
517
518 return turbo_pstate ?
519 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520}
521
522static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523{
524 u64 epb;
525 int ret;
526
527 if (!boot_cpu_has(X86_FEATURE_EPB))
528 return -ENXIO;
529
530 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531 if (ret)
532 return (s16)ret;
533
534 return (s16)(epb & 0x0f);
535}
536
537static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538{
539 s16 epp;
540
541 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 /*
543 * When hwp_req_data is 0, means that caller didn't read
544 * MSR_HWP_REQUEST, so need to read and get EPP.
545 */
546 if (!hwp_req_data) {
547 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548 &hwp_req_data);
549 if (epp)
550 return epp;
551 }
552 epp = (hwp_req_data >> 24) & 0xff;
553 } else {
554 /* When there is no EPP present, HWP uses EPB settings */
555 epp = intel_pstate_get_epb(cpu_data);
556 }
557
558 return epp;
559}
560
561static int intel_pstate_set_epb(int cpu, s16 pref)
562{
563 u64 epb;
564 int ret;
565
566 if (!boot_cpu_has(X86_FEATURE_EPB))
567 return -ENXIO;
568
569 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570 if (ret)
571 return ret;
572
573 epb = (epb & ~0x0f) | pref;
574 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575
576 return 0;
577}
578
579/*
580 * EPP/EPB display strings corresponding to EPP index in the
581 * energy_perf_strings[]
582 * index String
583 *-------------------------------------
584 * 0 default
585 * 1 performance
586 * 2 balance_performance
587 * 3 balance_power
588 * 4 power
589 */
590static const char * const energy_perf_strings[] = {
591 "default",
592 "performance",
593 "balance_performance",
594 "balance_power",
595 "power",
596 NULL
597};
598static const unsigned int epp_values[] = {
599 HWP_EPP_PERFORMANCE,
600 HWP_EPP_BALANCE_PERFORMANCE,
601 HWP_EPP_BALANCE_POWERSAVE,
602 HWP_EPP_POWERSAVE
603};
604
605static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
606{
607 s16 epp;
608 int index = -EINVAL;
609
610 epp = intel_pstate_get_epp(cpu_data, 0);
611 if (epp < 0)
612 return epp;
613
614 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 if (epp == HWP_EPP_PERFORMANCE)
616 return 1;
617 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
618 return 2;
619 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
620 return 3;
621 else
622 return 4;
623 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
624 /*
625 * Range:
626 * 0x00-0x03 : Performance
627 * 0x04-0x07 : Balance performance
628 * 0x08-0x0B : Balance power
629 * 0x0C-0x0F : Power
630 * The EPB is a 4 bit value, but our ranges restrict the
631 * value which can be set. Here only using top two bits
632 * effectively.
633 */
634 index = (epp >> 2) + 1;
635 }
636
637 return index;
638}
639
640static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
641 int pref_index)
642{
643 int epp = -EINVAL;
644 int ret;
645
646 if (!pref_index)
647 epp = cpu_data->epp_default;
648
649 mutex_lock(&intel_pstate_limits_lock);
650
651 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652 u64 value;
653
654 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
655 if (ret)
656 goto return_pref;
657
658 value &= ~GENMASK_ULL(31, 24);
659
660 if (epp == -EINVAL)
661 epp = epp_values[pref_index - 1];
662
663 value |= (u64)epp << 24;
664 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
665 } else {
666 if (epp == -EINVAL)
667 epp = (pref_index - 1) << 2;
668 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
669 }
670return_pref:
671 mutex_unlock(&intel_pstate_limits_lock);
672
673 return ret;
674}
675
676static ssize_t show_energy_performance_available_preferences(
677 struct cpufreq_policy *policy, char *buf)
678{
679 int i = 0;
680 int ret = 0;
681
682 while (energy_perf_strings[i] != NULL)
683 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
684
685 ret += sprintf(&buf[ret], "\n");
686
687 return ret;
688}
689
690cpufreq_freq_attr_ro(energy_performance_available_preferences);
691
692static ssize_t store_energy_performance_preference(
693 struct cpufreq_policy *policy, const char *buf, size_t count)
694{
695 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
696 char str_preference[21];
697 int ret;
698
699 ret = sscanf(buf, "%20s", str_preference);
700 if (ret != 1)
701 return -EINVAL;
702
703 ret = match_string(energy_perf_strings, -1, str_preference);
704 if (ret < 0)
705 return ret;
706
707 intel_pstate_set_energy_pref_index(cpu_data, ret);
708 return count;
709}
710
711static ssize_t show_energy_performance_preference(
712 struct cpufreq_policy *policy, char *buf)
713{
714 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
715 int preference;
716
717 preference = intel_pstate_get_energy_pref_index(cpu_data);
718 if (preference < 0)
719 return preference;
720
721 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
722}
723
724cpufreq_freq_attr_rw(energy_performance_preference);
725
726static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
727{
728 struct cpudata *cpu;
729 u64 cap;
730 int ratio;
731
732 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
733 if (ratio <= 0) {
734 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
735 ratio = HWP_GUARANTEED_PERF(cap);
736 }
737
738 cpu = all_cpu_data[policy->cpu];
739
740 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
741}
742
743cpufreq_freq_attr_ro(base_frequency);
744
745static struct freq_attr *hwp_cpufreq_attrs[] = {
746 &energy_performance_preference,
747 &energy_performance_available_preferences,
748 &base_frequency,
749 NULL,
750};
751
752static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
753 int *current_max)
754{
755 u64 cap;
756
757 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759 if (global.no_turbo)
760 *current_max = HWP_GUARANTEED_PERF(cap);
761 else
762 *current_max = HWP_HIGHEST_PERF(cap);
763
764 *phy_max = HWP_HIGHEST_PERF(cap);
765}
766
767static void intel_pstate_hwp_set(unsigned int cpu)
768{
769 struct cpudata *cpu_data = all_cpu_data[cpu];
770 int max, min;
771 u64 value;
772 s16 epp;
773
774 max = cpu_data->max_perf_ratio;
775 min = cpu_data->min_perf_ratio;
776
777 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778 min = max;
779
780 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
781
782 value &= ~HWP_MIN_PERF(~0L);
783 value |= HWP_MIN_PERF(min);
784
785 value &= ~HWP_MAX_PERF(~0L);
786 value |= HWP_MAX_PERF(max);
787
788 if (cpu_data->epp_policy == cpu_data->policy)
789 goto skip_epp;
790
791 cpu_data->epp_policy = cpu_data->policy;
792
793 if (cpu_data->epp_saved >= 0) {
794 epp = cpu_data->epp_saved;
795 cpu_data->epp_saved = -EINVAL;
796 goto update_epp;
797 }
798
799 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
800 epp = intel_pstate_get_epp(cpu_data, value);
801 cpu_data->epp_powersave = epp;
802 /* If EPP read was failed, then don't try to write */
803 if (epp < 0)
804 goto skip_epp;
805
806 epp = 0;
807 } else {
808 /* skip setting EPP, when saved value is invalid */
809 if (cpu_data->epp_powersave < 0)
810 goto skip_epp;
811
812 /*
813 * No need to restore EPP when it is not zero. This
814 * means:
815 * - Policy is not changed
816 * - user has manually changed
817 * - Error reading EPB
818 */
819 epp = intel_pstate_get_epp(cpu_data, value);
820 if (epp)
821 goto skip_epp;
822
823 epp = cpu_data->epp_powersave;
824 }
825update_epp:
826 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827 value &= ~GENMASK_ULL(31, 24);
828 value |= (u64)epp << 24;
829 } else {
830 intel_pstate_set_epb(cpu, epp);
831 }
832skip_epp:
833 WRITE_ONCE(cpu_data->hwp_req_cached, value);
834 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835}
836
837static void intel_pstate_hwp_force_min_perf(int cpu)
838{
839 u64 value;
840 int min_perf;
841
842 value = all_cpu_data[cpu]->hwp_req_cached;
843 value &= ~GENMASK_ULL(31, 0);
844 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
845
846 /* Set hwp_max = hwp_min */
847 value |= HWP_MAX_PERF(min_perf);
848 value |= HWP_MIN_PERF(min_perf);
849
850 /* Set EPP/EPB to min */
851 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
853 else
854 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
855
856 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
857}
858
859static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
860{
861 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
862
863 if (!hwp_active)
864 return 0;
865
866 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
867
868 return 0;
869}
870
871static void intel_pstate_hwp_enable(struct cpudata *cpudata);
872
873static int intel_pstate_resume(struct cpufreq_policy *policy)
874{
875 if (!hwp_active)
876 return 0;
877
878 mutex_lock(&intel_pstate_limits_lock);
879
880 if (policy->cpu == 0)
881 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
882
883 all_cpu_data[policy->cpu]->epp_policy = 0;
884 intel_pstate_hwp_set(policy->cpu);
885
886 mutex_unlock(&intel_pstate_limits_lock);
887
888 return 0;
889}
890
891static void intel_pstate_update_policies(void)
892{
893 int cpu;
894
895 for_each_possible_cpu(cpu)
896 cpufreq_update_policy(cpu);
897}
898
899static void intel_pstate_update_max_freq(unsigned int cpu)
900{
901 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
902 struct cpudata *cpudata;
903
904 if (!policy)
905 return;
906
907 cpudata = all_cpu_data[cpu];
908 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
909 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
910
911 refresh_frequency_limits(policy);
912
913 cpufreq_cpu_release(policy);
914}
915
916static void intel_pstate_update_limits(unsigned int cpu)
917{
918 mutex_lock(&intel_pstate_driver_lock);
919
920 update_turbo_state();
921 /*
922 * If turbo has been turned on or off globally, policy limits for
923 * all CPUs need to be updated to reflect that.
924 */
925 if (global.turbo_disabled_mf != global.turbo_disabled) {
926 global.turbo_disabled_mf = global.turbo_disabled;
927 for_each_possible_cpu(cpu)
928 intel_pstate_update_max_freq(cpu);
929 } else {
930 cpufreq_update_policy(cpu);
931 }
932
933 mutex_unlock(&intel_pstate_driver_lock);
934}
935
936/************************** sysfs begin ************************/
937#define show_one(file_name, object) \
938 static ssize_t show_##file_name \
939 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
940 { \
941 return sprintf(buf, "%u\n", global.object); \
942 }
943
944static ssize_t intel_pstate_show_status(char *buf);
945static int intel_pstate_update_status(const char *buf, size_t size);
946
947static ssize_t show_status(struct kobject *kobj,
948 struct kobj_attribute *attr, char *buf)
949{
950 ssize_t ret;
951
952 mutex_lock(&intel_pstate_driver_lock);
953 ret = intel_pstate_show_status(buf);
954 mutex_unlock(&intel_pstate_driver_lock);
955
956 return ret;
957}
958
959static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
960 const char *buf, size_t count)
961{
962 char *p = memchr(buf, '\n', count);
963 int ret;
964
965 mutex_lock(&intel_pstate_driver_lock);
966 ret = intel_pstate_update_status(buf, p ? p - buf : count);
967 mutex_unlock(&intel_pstate_driver_lock);
968
969 return ret < 0 ? ret : count;
970}
971
972static ssize_t show_turbo_pct(struct kobject *kobj,
973 struct kobj_attribute *attr, char *buf)
974{
975 struct cpudata *cpu;
976 int total, no_turbo, turbo_pct;
977 uint32_t turbo_fp;
978
979 mutex_lock(&intel_pstate_driver_lock);
980
981 if (!intel_pstate_driver) {
982 mutex_unlock(&intel_pstate_driver_lock);
983 return -EAGAIN;
984 }
985
986 cpu = all_cpu_data[0];
987
988 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
989 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
990 turbo_fp = div_fp(no_turbo, total);
991 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
992
993 mutex_unlock(&intel_pstate_driver_lock);
994
995 return sprintf(buf, "%u\n", turbo_pct);
996}
997
998static ssize_t show_num_pstates(struct kobject *kobj,
999 struct kobj_attribute *attr, char *buf)
1000{
1001 struct cpudata *cpu;
1002 int total;
1003
1004 mutex_lock(&intel_pstate_driver_lock);
1005
1006 if (!intel_pstate_driver) {
1007 mutex_unlock(&intel_pstate_driver_lock);
1008 return -EAGAIN;
1009 }
1010
1011 cpu = all_cpu_data[0];
1012 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1013
1014 mutex_unlock(&intel_pstate_driver_lock);
1015
1016 return sprintf(buf, "%u\n", total);
1017}
1018
1019static ssize_t show_no_turbo(struct kobject *kobj,
1020 struct kobj_attribute *attr, char *buf)
1021{
1022 ssize_t ret;
1023
1024 mutex_lock(&intel_pstate_driver_lock);
1025
1026 if (!intel_pstate_driver) {
1027 mutex_unlock(&intel_pstate_driver_lock);
1028 return -EAGAIN;
1029 }
1030
1031 update_turbo_state();
1032 if (global.turbo_disabled)
1033 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1034 else
1035 ret = sprintf(buf, "%u\n", global.no_turbo);
1036
1037 mutex_unlock(&intel_pstate_driver_lock);
1038
1039 return ret;
1040}
1041
1042static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1043 const char *buf, size_t count)
1044{
1045 unsigned int input;
1046 int ret;
1047
1048 ret = sscanf(buf, "%u", &input);
1049 if (ret != 1)
1050 return -EINVAL;
1051
1052 mutex_lock(&intel_pstate_driver_lock);
1053
1054 if (!intel_pstate_driver) {
1055 mutex_unlock(&intel_pstate_driver_lock);
1056 return -EAGAIN;
1057 }
1058
1059 mutex_lock(&intel_pstate_limits_lock);
1060
1061 update_turbo_state();
1062 if (global.turbo_disabled) {
1063 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1064 mutex_unlock(&intel_pstate_limits_lock);
1065 mutex_unlock(&intel_pstate_driver_lock);
1066 return -EPERM;
1067 }
1068
1069 global.no_turbo = clamp_t(int, input, 0, 1);
1070
1071 if (global.no_turbo) {
1072 struct cpudata *cpu = all_cpu_data[0];
1073 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1074
1075 /* Squash the global minimum into the permitted range. */
1076 if (global.min_perf_pct > pct)
1077 global.min_perf_pct = pct;
1078 }
1079
1080 mutex_unlock(&intel_pstate_limits_lock);
1081
1082 intel_pstate_update_policies();
1083
1084 mutex_unlock(&intel_pstate_driver_lock);
1085
1086 return count;
1087}
1088
1089static struct cpufreq_driver intel_pstate;
1090
1091static void update_qos_request(enum dev_pm_qos_req_type type)
1092{
1093 int max_state, turbo_max, freq, i, perf_pct;
1094 struct dev_pm_qos_request *req;
1095 struct cpufreq_policy *policy;
1096
1097 for_each_possible_cpu(i) {
1098 struct cpudata *cpu = all_cpu_data[i];
1099
1100 policy = cpufreq_cpu_get(i);
1101 if (!policy)
1102 continue;
1103
1104 req = policy->driver_data;
1105 cpufreq_cpu_put(policy);
1106
1107 if (!req)
1108 continue;
1109
1110 if (hwp_active)
1111 intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1112 else
1113 turbo_max = cpu->pstate.turbo_pstate;
1114
1115 if (type == DEV_PM_QOS_MIN_FREQUENCY) {
1116 perf_pct = global.min_perf_pct;
1117 } else {
1118 req++;
1119 perf_pct = global.max_perf_pct;
1120 }
1121
1122 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1123 freq *= cpu->pstate.scaling;
1124
1125 if (dev_pm_qos_update_request(req, freq) < 0)
1126 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1127 }
1128}
1129
1130static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1131 const char *buf, size_t count)
1132{
1133 unsigned int input;
1134 int ret;
1135
1136 ret = sscanf(buf, "%u", &input);
1137 if (ret != 1)
1138 return -EINVAL;
1139
1140 mutex_lock(&intel_pstate_driver_lock);
1141
1142 if (!intel_pstate_driver) {
1143 mutex_unlock(&intel_pstate_driver_lock);
1144 return -EAGAIN;
1145 }
1146
1147 mutex_lock(&intel_pstate_limits_lock);
1148
1149 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1150
1151 mutex_unlock(&intel_pstate_limits_lock);
1152
1153 if (intel_pstate_driver == &intel_pstate)
1154 intel_pstate_update_policies();
1155 else
1156 update_qos_request(DEV_PM_QOS_MAX_FREQUENCY);
1157
1158 mutex_unlock(&intel_pstate_driver_lock);
1159
1160 return count;
1161}
1162
1163static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1164 const char *buf, size_t count)
1165{
1166 unsigned int input;
1167 int ret;
1168
1169 ret = sscanf(buf, "%u", &input);
1170 if (ret != 1)
1171 return -EINVAL;
1172
1173 mutex_lock(&intel_pstate_driver_lock);
1174
1175 if (!intel_pstate_driver) {
1176 mutex_unlock(&intel_pstate_driver_lock);
1177 return -EAGAIN;
1178 }
1179
1180 mutex_lock(&intel_pstate_limits_lock);
1181
1182 global.min_perf_pct = clamp_t(int, input,
1183 min_perf_pct_min(), global.max_perf_pct);
1184
1185 mutex_unlock(&intel_pstate_limits_lock);
1186
1187 if (intel_pstate_driver == &intel_pstate)
1188 intel_pstate_update_policies();
1189 else
1190 update_qos_request(DEV_PM_QOS_MIN_FREQUENCY);
1191
1192 mutex_unlock(&intel_pstate_driver_lock);
1193
1194 return count;
1195}
1196
1197static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1198 struct kobj_attribute *attr, char *buf)
1199{
1200 return sprintf(buf, "%u\n", hwp_boost);
1201}
1202
1203static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1204 struct kobj_attribute *b,
1205 const char *buf, size_t count)
1206{
1207 unsigned int input;
1208 int ret;
1209
1210 ret = kstrtouint(buf, 10, &input);
1211 if (ret)
1212 return ret;
1213
1214 mutex_lock(&intel_pstate_driver_lock);
1215 hwp_boost = !!input;
1216 intel_pstate_update_policies();
1217 mutex_unlock(&intel_pstate_driver_lock);
1218
1219 return count;
1220}
1221
1222show_one(max_perf_pct, max_perf_pct);
1223show_one(min_perf_pct, min_perf_pct);
1224
1225define_one_global_rw(status);
1226define_one_global_rw(no_turbo);
1227define_one_global_rw(max_perf_pct);
1228define_one_global_rw(min_perf_pct);
1229define_one_global_ro(turbo_pct);
1230define_one_global_ro(num_pstates);
1231define_one_global_rw(hwp_dynamic_boost);
1232
1233static struct attribute *intel_pstate_attributes[] = {
1234 &status.attr,
1235 &no_turbo.attr,
1236 &turbo_pct.attr,
1237 &num_pstates.attr,
1238 NULL
1239};
1240
1241static const struct attribute_group intel_pstate_attr_group = {
1242 .attrs = intel_pstate_attributes,
1243};
1244
1245static void __init intel_pstate_sysfs_expose_params(void)
1246{
1247 struct kobject *intel_pstate_kobject;
1248 int rc;
1249
1250 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1251 &cpu_subsys.dev_root->kobj);
1252 if (WARN_ON(!intel_pstate_kobject))
1253 return;
1254
1255 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1256 if (WARN_ON(rc))
1257 return;
1258
1259 /*
1260 * If per cpu limits are enforced there are no global limits, so
1261 * return without creating max/min_perf_pct attributes
1262 */
1263 if (per_cpu_limits)
1264 return;
1265
1266 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1267 WARN_ON(rc);
1268
1269 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1270 WARN_ON(rc);
1271
1272 if (hwp_active) {
1273 rc = sysfs_create_file(intel_pstate_kobject,
1274 &hwp_dynamic_boost.attr);
1275 WARN_ON(rc);
1276 }
1277}
1278/************************** sysfs end ************************/
1279
1280static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1281{
1282 /* First disable HWP notification interrupt as we don't process them */
1283 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1284 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1285
1286 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1287 cpudata->epp_policy = 0;
1288 if (cpudata->epp_default == -EINVAL)
1289 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1290}
1291
1292#define MSR_IA32_POWER_CTL_BIT_EE 19
1293
1294/* Disable energy efficiency optimization */
1295static void intel_pstate_disable_ee(int cpu)
1296{
1297 u64 power_ctl;
1298 int ret;
1299
1300 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1301 if (ret)
1302 return;
1303
1304 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1305 pr_info("Disabling energy efficiency optimization\n");
1306 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1307 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1308 }
1309}
1310
1311static int atom_get_min_pstate(void)
1312{
1313 u64 value;
1314
1315 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1316 return (value >> 8) & 0x7F;
1317}
1318
1319static int atom_get_max_pstate(void)
1320{
1321 u64 value;
1322
1323 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1324 return (value >> 16) & 0x7F;
1325}
1326
1327static int atom_get_turbo_pstate(void)
1328{
1329 u64 value;
1330
1331 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1332 return value & 0x7F;
1333}
1334
1335static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1336{
1337 u64 val;
1338 int32_t vid_fp;
1339 u32 vid;
1340
1341 val = (u64)pstate << 8;
1342 if (global.no_turbo && !global.turbo_disabled)
1343 val |= (u64)1 << 32;
1344
1345 vid_fp = cpudata->vid.min + mul_fp(
1346 int_tofp(pstate - cpudata->pstate.min_pstate),
1347 cpudata->vid.ratio);
1348
1349 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1350 vid = ceiling_fp(vid_fp);
1351
1352 if (pstate > cpudata->pstate.max_pstate)
1353 vid = cpudata->vid.turbo;
1354
1355 return val | vid;
1356}
1357
1358static int silvermont_get_scaling(void)
1359{
1360 u64 value;
1361 int i;
1362 /* Defined in Table 35-6 from SDM (Sept 2015) */
1363 static int silvermont_freq_table[] = {
1364 83300, 100000, 133300, 116700, 80000};
1365
1366 rdmsrl(MSR_FSB_FREQ, value);
1367 i = value & 0x7;
1368 WARN_ON(i > 4);
1369
1370 return silvermont_freq_table[i];
1371}
1372
1373static int airmont_get_scaling(void)
1374{
1375 u64 value;
1376 int i;
1377 /* Defined in Table 35-10 from SDM (Sept 2015) */
1378 static int airmont_freq_table[] = {
1379 83300, 100000, 133300, 116700, 80000,
1380 93300, 90000, 88900, 87500};
1381
1382 rdmsrl(MSR_FSB_FREQ, value);
1383 i = value & 0xF;
1384 WARN_ON(i > 8);
1385
1386 return airmont_freq_table[i];
1387}
1388
1389static void atom_get_vid(struct cpudata *cpudata)
1390{
1391 u64 value;
1392
1393 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1394 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1395 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1396 cpudata->vid.ratio = div_fp(
1397 cpudata->vid.max - cpudata->vid.min,
1398 int_tofp(cpudata->pstate.max_pstate -
1399 cpudata->pstate.min_pstate));
1400
1401 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1402 cpudata->vid.turbo = value & 0x7f;
1403}
1404
1405static int core_get_min_pstate(void)
1406{
1407 u64 value;
1408
1409 rdmsrl(MSR_PLATFORM_INFO, value);
1410 return (value >> 40) & 0xFF;
1411}
1412
1413static int core_get_max_pstate_physical(void)
1414{
1415 u64 value;
1416
1417 rdmsrl(MSR_PLATFORM_INFO, value);
1418 return (value >> 8) & 0xFF;
1419}
1420
1421static int core_get_tdp_ratio(u64 plat_info)
1422{
1423 /* Check how many TDP levels present */
1424 if (plat_info & 0x600000000) {
1425 u64 tdp_ctrl;
1426 u64 tdp_ratio;
1427 int tdp_msr;
1428 int err;
1429
1430 /* Get the TDP level (0, 1, 2) to get ratios */
1431 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1432 if (err)
1433 return err;
1434
1435 /* TDP MSR are continuous starting at 0x648 */
1436 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1437 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1438 if (err)
1439 return err;
1440
1441 /* For level 1 and 2, bits[23:16] contain the ratio */
1442 if (tdp_ctrl & 0x03)
1443 tdp_ratio >>= 16;
1444
1445 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1446 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1447
1448 return (int)tdp_ratio;
1449 }
1450
1451 return -ENXIO;
1452}
1453
1454static int core_get_max_pstate(void)
1455{
1456 u64 tar;
1457 u64 plat_info;
1458 int max_pstate;
1459 int tdp_ratio;
1460 int err;
1461
1462 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1463 max_pstate = (plat_info >> 8) & 0xFF;
1464
1465 tdp_ratio = core_get_tdp_ratio(plat_info);
1466 if (tdp_ratio <= 0)
1467 return max_pstate;
1468
1469 if (hwp_active) {
1470 /* Turbo activation ratio is not used on HWP platforms */
1471 return tdp_ratio;
1472 }
1473
1474 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1475 if (!err) {
1476 int tar_levels;
1477
1478 /* Do some sanity checking for safety */
1479 tar_levels = tar & 0xff;
1480 if (tdp_ratio - 1 == tar_levels) {
1481 max_pstate = tar_levels;
1482 pr_debug("max_pstate=TAC %x\n", max_pstate);
1483 }
1484 }
1485
1486 return max_pstate;
1487}
1488
1489static int core_get_turbo_pstate(void)
1490{
1491 u64 value;
1492 int nont, ret;
1493
1494 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1495 nont = core_get_max_pstate();
1496 ret = (value) & 255;
1497 if (ret <= nont)
1498 ret = nont;
1499 return ret;
1500}
1501
1502static inline int core_get_scaling(void)
1503{
1504 return 100000;
1505}
1506
1507static u64 core_get_val(struct cpudata *cpudata, int pstate)
1508{
1509 u64 val;
1510
1511 val = (u64)pstate << 8;
1512 if (global.no_turbo && !global.turbo_disabled)
1513 val |= (u64)1 << 32;
1514
1515 return val;
1516}
1517
1518static int knl_get_aperf_mperf_shift(void)
1519{
1520 return 10;
1521}
1522
1523static int knl_get_turbo_pstate(void)
1524{
1525 u64 value;
1526 int nont, ret;
1527
1528 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1529 nont = core_get_max_pstate();
1530 ret = (((value) >> 8) & 0xFF);
1531 if (ret <= nont)
1532 ret = nont;
1533 return ret;
1534}
1535
1536static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1537{
1538 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1539 cpu->pstate.current_pstate = pstate;
1540 /*
1541 * Generally, there is no guarantee that this code will always run on
1542 * the CPU being updated, so force the register update to run on the
1543 * right CPU.
1544 */
1545 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1546 pstate_funcs.get_val(cpu, pstate));
1547}
1548
1549static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1550{
1551 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1552}
1553
1554static void intel_pstate_max_within_limits(struct cpudata *cpu)
1555{
1556 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1557
1558 update_turbo_state();
1559 intel_pstate_set_pstate(cpu, pstate);
1560}
1561
1562static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1563{
1564 cpu->pstate.min_pstate = pstate_funcs.get_min();
1565 cpu->pstate.max_pstate = pstate_funcs.get_max();
1566 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1567 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1568 cpu->pstate.scaling = pstate_funcs.get_scaling();
1569 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1570
1571 if (hwp_active && !hwp_mode_bdw) {
1572 unsigned int phy_max, current_max;
1573
1574 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1575 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1576 } else {
1577 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1578 }
1579
1580 if (pstate_funcs.get_aperf_mperf_shift)
1581 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1582
1583 if (pstate_funcs.get_vid)
1584 pstate_funcs.get_vid(cpu);
1585
1586 intel_pstate_set_min_pstate(cpu);
1587}
1588
1589/*
1590 * Long hold time will keep high perf limits for long time,
1591 * which negatively impacts perf/watt for some workloads,
1592 * like specpower. 3ms is based on experiements on some
1593 * workoads.
1594 */
1595static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1596
1597static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1598{
1599 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1600 u32 max_limit = (hwp_req & 0xff00) >> 8;
1601 u32 min_limit = (hwp_req & 0xff);
1602 u32 boost_level1;
1603
1604 /*
1605 * Cases to consider (User changes via sysfs or boot time):
1606 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1607 * No boost, return.
1608 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1609 * Should result in one level boost only for P0.
1610 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1611 * Should result in two level boost:
1612 * (min + p1)/2 and P1.
1613 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1614 * Should result in three level boost:
1615 * (min + p1)/2, P1 and P0.
1616 */
1617
1618 /* If max and min are equal or already at max, nothing to boost */
1619 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1620 return;
1621
1622 if (!cpu->hwp_boost_min)
1623 cpu->hwp_boost_min = min_limit;
1624
1625 /* level at half way mark between min and guranteed */
1626 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1627
1628 if (cpu->hwp_boost_min < boost_level1)
1629 cpu->hwp_boost_min = boost_level1;
1630 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1631 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1632 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1633 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1634 cpu->hwp_boost_min = max_limit;
1635 else
1636 return;
1637
1638 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1639 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1640 cpu->last_update = cpu->sample.time;
1641}
1642
1643static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1644{
1645 if (cpu->hwp_boost_min) {
1646 bool expired;
1647
1648 /* Check if we are idle for hold time to boost down */
1649 expired = time_after64(cpu->sample.time, cpu->last_update +
1650 hwp_boost_hold_time_ns);
1651 if (expired) {
1652 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1653 cpu->hwp_boost_min = 0;
1654 }
1655 }
1656 cpu->last_update = cpu->sample.time;
1657}
1658
1659static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1660 u64 time)
1661{
1662 cpu->sample.time = time;
1663
1664 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1665 bool do_io = false;
1666
1667 cpu->sched_flags = 0;
1668 /*
1669 * Set iowait_boost flag and update time. Since IO WAIT flag
1670 * is set all the time, we can't just conclude that there is
1671 * some IO bound activity is scheduled on this CPU with just
1672 * one occurrence. If we receive at least two in two
1673 * consecutive ticks, then we treat as boost candidate.
1674 */
1675 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1676 do_io = true;
1677
1678 cpu->last_io_update = time;
1679
1680 if (do_io)
1681 intel_pstate_hwp_boost_up(cpu);
1682
1683 } else {
1684 intel_pstate_hwp_boost_down(cpu);
1685 }
1686}
1687
1688static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1689 u64 time, unsigned int flags)
1690{
1691 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1692
1693 cpu->sched_flags |= flags;
1694
1695 if (smp_processor_id() == cpu->cpu)
1696 intel_pstate_update_util_hwp_local(cpu, time);
1697}
1698
1699static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1700{
1701 struct sample *sample = &cpu->sample;
1702
1703 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1704}
1705
1706static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1707{
1708 u64 aperf, mperf;
1709 unsigned long flags;
1710 u64 tsc;
1711
1712 local_irq_save(flags);
1713 rdmsrl(MSR_IA32_APERF, aperf);
1714 rdmsrl(MSR_IA32_MPERF, mperf);
1715 tsc = rdtsc();
1716 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1717 local_irq_restore(flags);
1718 return false;
1719 }
1720 local_irq_restore(flags);
1721
1722 cpu->last_sample_time = cpu->sample.time;
1723 cpu->sample.time = time;
1724 cpu->sample.aperf = aperf;
1725 cpu->sample.mperf = mperf;
1726 cpu->sample.tsc = tsc;
1727 cpu->sample.aperf -= cpu->prev_aperf;
1728 cpu->sample.mperf -= cpu->prev_mperf;
1729 cpu->sample.tsc -= cpu->prev_tsc;
1730
1731 cpu->prev_aperf = aperf;
1732 cpu->prev_mperf = mperf;
1733 cpu->prev_tsc = tsc;
1734 /*
1735 * First time this function is invoked in a given cycle, all of the
1736 * previous sample data fields are equal to zero or stale and they must
1737 * be populated with meaningful numbers for things to work, so assume
1738 * that sample.time will always be reset before setting the utilization
1739 * update hook and make the caller skip the sample then.
1740 */
1741 if (cpu->last_sample_time) {
1742 intel_pstate_calc_avg_perf(cpu);
1743 return true;
1744 }
1745 return false;
1746}
1747
1748static inline int32_t get_avg_frequency(struct cpudata *cpu)
1749{
1750 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1751}
1752
1753static inline int32_t get_avg_pstate(struct cpudata *cpu)
1754{
1755 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1756 cpu->sample.core_avg_perf);
1757}
1758
1759static inline int32_t get_target_pstate(struct cpudata *cpu)
1760{
1761 struct sample *sample = &cpu->sample;
1762 int32_t busy_frac;
1763 int target, avg_pstate;
1764
1765 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1766 sample->tsc);
1767
1768 if (busy_frac < cpu->iowait_boost)
1769 busy_frac = cpu->iowait_boost;
1770
1771 sample->busy_scaled = busy_frac * 100;
1772
1773 target = global.no_turbo || global.turbo_disabled ?
1774 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1775 target += target >> 2;
1776 target = mul_fp(target, busy_frac);
1777 if (target < cpu->pstate.min_pstate)
1778 target = cpu->pstate.min_pstate;
1779
1780 /*
1781 * If the average P-state during the previous cycle was higher than the
1782 * current target, add 50% of the difference to the target to reduce
1783 * possible performance oscillations and offset possible performance
1784 * loss related to moving the workload from one CPU to another within
1785 * a package/module.
1786 */
1787 avg_pstate = get_avg_pstate(cpu);
1788 if (avg_pstate > target)
1789 target += (avg_pstate - target) >> 1;
1790
1791 return target;
1792}
1793
1794static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1795{
1796 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1797 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1798
1799 return clamp_t(int, pstate, min_pstate, max_pstate);
1800}
1801
1802static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1803{
1804 if (pstate == cpu->pstate.current_pstate)
1805 return;
1806
1807 cpu->pstate.current_pstate = pstate;
1808 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1809}
1810
1811static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1812{
1813 int from = cpu->pstate.current_pstate;
1814 struct sample *sample;
1815 int target_pstate;
1816
1817 update_turbo_state();
1818
1819 target_pstate = get_target_pstate(cpu);
1820 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1821 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1822 intel_pstate_update_pstate(cpu, target_pstate);
1823
1824 sample = &cpu->sample;
1825 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1826 fp_toint(sample->busy_scaled),
1827 from,
1828 cpu->pstate.current_pstate,
1829 sample->mperf,
1830 sample->aperf,
1831 sample->tsc,
1832 get_avg_frequency(cpu),
1833 fp_toint(cpu->iowait_boost * 100));
1834}
1835
1836static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1837 unsigned int flags)
1838{
1839 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1840 u64 delta_ns;
1841
1842 /* Don't allow remote callbacks */
1843 if (smp_processor_id() != cpu->cpu)
1844 return;
1845
1846 delta_ns = time - cpu->last_update;
1847 if (flags & SCHED_CPUFREQ_IOWAIT) {
1848 /* Start over if the CPU may have been idle. */
1849 if (delta_ns > TICK_NSEC) {
1850 cpu->iowait_boost = ONE_EIGHTH_FP;
1851 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1852 cpu->iowait_boost <<= 1;
1853 if (cpu->iowait_boost > int_tofp(1))
1854 cpu->iowait_boost = int_tofp(1);
1855 } else {
1856 cpu->iowait_boost = ONE_EIGHTH_FP;
1857 }
1858 } else if (cpu->iowait_boost) {
1859 /* Clear iowait_boost if the CPU may have been idle. */
1860 if (delta_ns > TICK_NSEC)
1861 cpu->iowait_boost = 0;
1862 else
1863 cpu->iowait_boost >>= 1;
1864 }
1865 cpu->last_update = time;
1866 delta_ns = time - cpu->sample.time;
1867 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1868 return;
1869
1870 if (intel_pstate_sample(cpu, time))
1871 intel_pstate_adjust_pstate(cpu);
1872}
1873
1874static struct pstate_funcs core_funcs = {
1875 .get_max = core_get_max_pstate,
1876 .get_max_physical = core_get_max_pstate_physical,
1877 .get_min = core_get_min_pstate,
1878 .get_turbo = core_get_turbo_pstate,
1879 .get_scaling = core_get_scaling,
1880 .get_val = core_get_val,
1881};
1882
1883static const struct pstate_funcs silvermont_funcs = {
1884 .get_max = atom_get_max_pstate,
1885 .get_max_physical = atom_get_max_pstate,
1886 .get_min = atom_get_min_pstate,
1887 .get_turbo = atom_get_turbo_pstate,
1888 .get_val = atom_get_val,
1889 .get_scaling = silvermont_get_scaling,
1890 .get_vid = atom_get_vid,
1891};
1892
1893static const struct pstate_funcs airmont_funcs = {
1894 .get_max = atom_get_max_pstate,
1895 .get_max_physical = atom_get_max_pstate,
1896 .get_min = atom_get_min_pstate,
1897 .get_turbo = atom_get_turbo_pstate,
1898 .get_val = atom_get_val,
1899 .get_scaling = airmont_get_scaling,
1900 .get_vid = atom_get_vid,
1901};
1902
1903static const struct pstate_funcs knl_funcs = {
1904 .get_max = core_get_max_pstate,
1905 .get_max_physical = core_get_max_pstate_physical,
1906 .get_min = core_get_min_pstate,
1907 .get_turbo = knl_get_turbo_pstate,
1908 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1909 .get_scaling = core_get_scaling,
1910 .get_val = core_get_val,
1911};
1912
1913#define ICPU(model, policy) \
1914 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1915 (unsigned long)&policy }
1916
1917static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1918 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1919 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1920 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1921 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1922 ICPU(INTEL_FAM6_HASWELL, core_funcs),
1923 ICPU(INTEL_FAM6_BROADWELL, core_funcs),
1924 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1925 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1926 ICPU(INTEL_FAM6_HASWELL_L, core_funcs),
1927 ICPU(INTEL_FAM6_HASWELL_G, core_funcs),
1928 ICPU(INTEL_FAM6_BROADWELL_G, core_funcs),
1929 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1930 ICPU(INTEL_FAM6_SKYLAKE_L, core_funcs),
1931 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1932 ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1933 ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1934 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1935 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1936 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1937 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1938 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1939 {}
1940};
1941MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1942
1943static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1944 ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1945 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1946 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1947 {}
1948};
1949
1950static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1951 ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1952 {}
1953};
1954
1955static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1956 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1957 ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1958 {}
1959};
1960
1961static int intel_pstate_init_cpu(unsigned int cpunum)
1962{
1963 struct cpudata *cpu;
1964
1965 cpu = all_cpu_data[cpunum];
1966
1967 if (!cpu) {
1968 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1969 if (!cpu)
1970 return -ENOMEM;
1971
1972 all_cpu_data[cpunum] = cpu;
1973
1974 cpu->epp_default = -EINVAL;
1975 cpu->epp_powersave = -EINVAL;
1976 cpu->epp_saved = -EINVAL;
1977 }
1978
1979 cpu = all_cpu_data[cpunum];
1980
1981 cpu->cpu = cpunum;
1982
1983 if (hwp_active) {
1984 const struct x86_cpu_id *id;
1985
1986 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1987 if (id)
1988 intel_pstate_disable_ee(cpunum);
1989
1990 intel_pstate_hwp_enable(cpu);
1991
1992 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1993 if (id && intel_pstate_acpi_pm_profile_server())
1994 hwp_boost = true;
1995 }
1996
1997 intel_pstate_get_cpu_pstates(cpu);
1998
1999 pr_debug("controlling: cpu %d\n", cpunum);
2000
2001 return 0;
2002}
2003
2004static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2005{
2006 struct cpudata *cpu = all_cpu_data[cpu_num];
2007
2008 if (hwp_active && !hwp_boost)
2009 return;
2010
2011 if (cpu->update_util_set)
2012 return;
2013
2014 /* Prevent intel_pstate_update_util() from using stale data. */
2015 cpu->sample.time = 0;
2016 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2017 (hwp_active ?
2018 intel_pstate_update_util_hwp :
2019 intel_pstate_update_util));
2020 cpu->update_util_set = true;
2021}
2022
2023static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2024{
2025 struct cpudata *cpu_data = all_cpu_data[cpu];
2026
2027 if (!cpu_data->update_util_set)
2028 return;
2029
2030 cpufreq_remove_update_util_hook(cpu);
2031 cpu_data->update_util_set = false;
2032 synchronize_rcu();
2033}
2034
2035static int intel_pstate_get_max_freq(struct cpudata *cpu)
2036{
2037 return global.turbo_disabled || global.no_turbo ?
2038 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2039}
2040
2041static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2042 struct cpudata *cpu)
2043{
2044 int max_freq = intel_pstate_get_max_freq(cpu);
2045 int32_t max_policy_perf, min_policy_perf;
2046 int max_state, turbo_max;
2047
2048 /*
2049 * HWP needs some special consideration, because on BDX the
2050 * HWP_REQUEST uses abstract value to represent performance
2051 * rather than pure ratios.
2052 */
2053 if (hwp_active) {
2054 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2055 } else {
2056 max_state = global.no_turbo || global.turbo_disabled ?
2057 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058 turbo_max = cpu->pstate.turbo_pstate;
2059 }
2060
2061 max_policy_perf = max_state * policy->max / max_freq;
2062 if (policy->max == policy->min) {
2063 min_policy_perf = max_policy_perf;
2064 } else {
2065 min_policy_perf = max_state * policy->min / max_freq;
2066 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2067 0, max_policy_perf);
2068 }
2069
2070 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071 policy->cpu, max_state,
2072 min_policy_perf, max_policy_perf);
2073
2074 /* Normalize user input to [min_perf, max_perf] */
2075 if (per_cpu_limits) {
2076 cpu->min_perf_ratio = min_policy_perf;
2077 cpu->max_perf_ratio = max_policy_perf;
2078 } else {
2079 int32_t global_min, global_max;
2080
2081 /* Global limits are in percent of the maximum turbo P-state. */
2082 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2083 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2084 global_min = clamp_t(int32_t, global_min, 0, global_max);
2085
2086 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2087 global_min, global_max);
2088
2089 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2090 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2091 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2092 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2093
2094 /* Make sure min_perf <= max_perf */
2095 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2096 cpu->max_perf_ratio);
2097
2098 }
2099 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2100 cpu->max_perf_ratio,
2101 cpu->min_perf_ratio);
2102}
2103
2104static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2105{
2106 struct cpudata *cpu;
2107
2108 if (!policy->cpuinfo.max_freq)
2109 return -ENODEV;
2110
2111 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2112 policy->cpuinfo.max_freq, policy->max);
2113
2114 cpu = all_cpu_data[policy->cpu];
2115 cpu->policy = policy->policy;
2116
2117 mutex_lock(&intel_pstate_limits_lock);
2118
2119 intel_pstate_update_perf_limits(policy, cpu);
2120
2121 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2122 /*
2123 * NOHZ_FULL CPUs need this as the governor callback may not
2124 * be invoked on them.
2125 */
2126 intel_pstate_clear_update_util_hook(policy->cpu);
2127 intel_pstate_max_within_limits(cpu);
2128 } else {
2129 intel_pstate_set_update_util_hook(policy->cpu);
2130 }
2131
2132 if (hwp_active) {
2133 /*
2134 * When hwp_boost was active before and dynamically it
2135 * was turned off, in that case we need to clear the
2136 * update util hook.
2137 */
2138 if (!hwp_boost)
2139 intel_pstate_clear_update_util_hook(policy->cpu);
2140 intel_pstate_hwp_set(policy->cpu);
2141 }
2142
2143 mutex_unlock(&intel_pstate_limits_lock);
2144
2145 return 0;
2146}
2147
2148static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2149 struct cpudata *cpu)
2150{
2151 if (!hwp_active &&
2152 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2153 policy->max < policy->cpuinfo.max_freq &&
2154 policy->max > cpu->pstate.max_freq) {
2155 pr_debug("policy->max > max non turbo frequency\n");
2156 policy->max = policy->cpuinfo.max_freq;
2157 }
2158}
2159
2160static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2161{
2162 struct cpudata *cpu = all_cpu_data[policy->cpu];
2163
2164 update_turbo_state();
2165 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2166 intel_pstate_get_max_freq(cpu));
2167
2168 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2169 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2170 return -EINVAL;
2171
2172 intel_pstate_adjust_policy_max(policy, cpu);
2173
2174 return 0;
2175}
2176
2177static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2178{
2179 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2180}
2181
2182static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2183{
2184 pr_debug("CPU %d exiting\n", policy->cpu);
2185
2186 intel_pstate_clear_update_util_hook(policy->cpu);
2187 if (hwp_active) {
2188 intel_pstate_hwp_save_state(policy);
2189 intel_pstate_hwp_force_min_perf(policy->cpu);
2190 } else {
2191 intel_cpufreq_stop_cpu(policy);
2192 }
2193}
2194
2195static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2196{
2197 intel_pstate_exit_perf_limits(policy);
2198
2199 policy->fast_switch_possible = false;
2200
2201 return 0;
2202}
2203
2204static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2205{
2206 struct cpudata *cpu;
2207 int rc;
2208
2209 rc = intel_pstate_init_cpu(policy->cpu);
2210 if (rc)
2211 return rc;
2212
2213 cpu = all_cpu_data[policy->cpu];
2214
2215 cpu->max_perf_ratio = 0xFF;
2216 cpu->min_perf_ratio = 0;
2217
2218 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2219 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2220
2221 /* cpuinfo and default policy values */
2222 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2223 update_turbo_state();
2224 global.turbo_disabled_mf = global.turbo_disabled;
2225 policy->cpuinfo.max_freq = global.turbo_disabled ?
2226 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2227 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2228
2229 if (hwp_active) {
2230 unsigned int max_freq;
2231
2232 max_freq = global.turbo_disabled ?
2233 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2234 if (max_freq < policy->cpuinfo.max_freq)
2235 policy->cpuinfo.max_freq = max_freq;
2236 }
2237
2238 intel_pstate_init_acpi_perf_limits(policy);
2239
2240 policy->fast_switch_possible = true;
2241
2242 return 0;
2243}
2244
2245static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2246{
2247 int ret = __intel_pstate_cpu_init(policy);
2248
2249 if (ret)
2250 return ret;
2251
2252 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2253 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2254 else
2255 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256
2257 return 0;
2258}
2259
2260static struct cpufreq_driver intel_pstate = {
2261 .flags = CPUFREQ_CONST_LOOPS,
2262 .verify = intel_pstate_verify_policy,
2263 .setpolicy = intel_pstate_set_policy,
2264 .suspend = intel_pstate_hwp_save_state,
2265 .resume = intel_pstate_resume,
2266 .init = intel_pstate_cpu_init,
2267 .exit = intel_pstate_cpu_exit,
2268 .stop_cpu = intel_pstate_stop_cpu,
2269 .update_limits = intel_pstate_update_limits,
2270 .name = "intel_pstate",
2271};
2272
2273static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2274{
2275 struct cpudata *cpu = all_cpu_data[policy->cpu];
2276
2277 update_turbo_state();
2278 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2279 intel_pstate_get_max_freq(cpu));
2280
2281 intel_pstate_adjust_policy_max(policy, cpu);
2282
2283 intel_pstate_update_perf_limits(policy, cpu);
2284
2285 return 0;
2286}
2287
2288/* Use of trace in passive mode:
2289 *
2290 * In passive mode the trace core_busy field (also known as the
2291 * performance field, and lablelled as such on the graphs; also known as
2292 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2293 * driver call was via the normal or fast switch path. Various graphs
2294 * output from the intel_pstate_tracer.py utility that include core_busy
2295 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2296 * so we use 10 to indicate the the normal path through the driver, and
2297 * 90 to indicate the fast switch path through the driver.
2298 * The scaled_busy field is not used, and is set to 0.
2299 */
2300
2301#define INTEL_PSTATE_TRACE_TARGET 10
2302#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2303
2304static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2305{
2306 struct sample *sample;
2307
2308 if (!trace_pstate_sample_enabled())
2309 return;
2310
2311 if (!intel_pstate_sample(cpu, ktime_get()))
2312 return;
2313
2314 sample = &cpu->sample;
2315 trace_pstate_sample(trace_type,
2316 0,
2317 old_pstate,
2318 cpu->pstate.current_pstate,
2319 sample->mperf,
2320 sample->aperf,
2321 sample->tsc,
2322 get_avg_frequency(cpu),
2323 fp_toint(cpu->iowait_boost * 100));
2324}
2325
2326static int intel_cpufreq_target(struct cpufreq_policy *policy,
2327 unsigned int target_freq,
2328 unsigned int relation)
2329{
2330 struct cpudata *cpu = all_cpu_data[policy->cpu];
2331 struct cpufreq_freqs freqs;
2332 int target_pstate, old_pstate;
2333
2334 update_turbo_state();
2335
2336 freqs.old = policy->cur;
2337 freqs.new = target_freq;
2338
2339 cpufreq_freq_transition_begin(policy, &freqs);
2340 switch (relation) {
2341 case CPUFREQ_RELATION_L:
2342 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2343 break;
2344 case CPUFREQ_RELATION_H:
2345 target_pstate = freqs.new / cpu->pstate.scaling;
2346 break;
2347 default:
2348 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2349 break;
2350 }
2351 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2352 old_pstate = cpu->pstate.current_pstate;
2353 if (target_pstate != cpu->pstate.current_pstate) {
2354 cpu->pstate.current_pstate = target_pstate;
2355 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2356 pstate_funcs.get_val(cpu, target_pstate));
2357 }
2358 freqs.new = target_pstate * cpu->pstate.scaling;
2359 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2360 cpufreq_freq_transition_end(policy, &freqs, false);
2361
2362 return 0;
2363}
2364
2365static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2366 unsigned int target_freq)
2367{
2368 struct cpudata *cpu = all_cpu_data[policy->cpu];
2369 int target_pstate, old_pstate;
2370
2371 update_turbo_state();
2372
2373 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2374 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2375 old_pstate = cpu->pstate.current_pstate;
2376 intel_pstate_update_pstate(cpu, target_pstate);
2377 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2378 return target_pstate * cpu->pstate.scaling;
2379}
2380
2381static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2382{
2383 int max_state, turbo_max, min_freq, max_freq, ret;
2384 struct dev_pm_qos_request *req;
2385 struct cpudata *cpu;
2386 struct device *dev;
2387
2388 dev = get_cpu_device(policy->cpu);
2389 if (!dev)
2390 return -ENODEV;
2391
2392 ret = __intel_pstate_cpu_init(policy);
2393 if (ret)
2394 return ret;
2395
2396 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2397 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2398 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2399 policy->cur = policy->cpuinfo.min_freq;
2400
2401 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2402 if (!req) {
2403 ret = -ENOMEM;
2404 goto pstate_exit;
2405 }
2406
2407 cpu = all_cpu_data[policy->cpu];
2408
2409 if (hwp_active)
2410 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2411 else
2412 turbo_max = cpu->pstate.turbo_pstate;
2413
2414 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2415 min_freq *= cpu->pstate.scaling;
2416 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2417 max_freq *= cpu->pstate.scaling;
2418
2419 ret = dev_pm_qos_add_request(dev, req, DEV_PM_QOS_MIN_FREQUENCY,
2420 min_freq);
2421 if (ret < 0) {
2422 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2423 goto free_req;
2424 }
2425
2426 ret = dev_pm_qos_add_request(dev, req + 1, DEV_PM_QOS_MAX_FREQUENCY,
2427 max_freq);
2428 if (ret < 0) {
2429 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2430 goto remove_min_req;
2431 }
2432
2433 policy->driver_data = req;
2434
2435 return 0;
2436
2437remove_min_req:
2438 dev_pm_qos_remove_request(req);
2439free_req:
2440 kfree(req);
2441pstate_exit:
2442 intel_pstate_exit_perf_limits(policy);
2443
2444 return ret;
2445}
2446
2447static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2448{
2449 struct dev_pm_qos_request *req;
2450
2451 req = policy->driver_data;
2452
2453 dev_pm_qos_remove_request(req + 1);
2454 dev_pm_qos_remove_request(req);
2455 kfree(req);
2456
2457 return intel_pstate_cpu_exit(policy);
2458}
2459
2460static struct cpufreq_driver intel_cpufreq = {
2461 .flags = CPUFREQ_CONST_LOOPS,
2462 .verify = intel_cpufreq_verify_policy,
2463 .target = intel_cpufreq_target,
2464 .fast_switch = intel_cpufreq_fast_switch,
2465 .init = intel_cpufreq_cpu_init,
2466 .exit = intel_cpufreq_cpu_exit,
2467 .stop_cpu = intel_cpufreq_stop_cpu,
2468 .update_limits = intel_pstate_update_limits,
2469 .name = "intel_cpufreq",
2470};
2471
2472static struct cpufreq_driver *default_driver = &intel_pstate;
2473
2474static void intel_pstate_driver_cleanup(void)
2475{
2476 unsigned int cpu;
2477
2478 get_online_cpus();
2479 for_each_online_cpu(cpu) {
2480 if (all_cpu_data[cpu]) {
2481 if (intel_pstate_driver == &intel_pstate)
2482 intel_pstate_clear_update_util_hook(cpu);
2483
2484 kfree(all_cpu_data[cpu]);
2485 all_cpu_data[cpu] = NULL;
2486 }
2487 }
2488 put_online_cpus();
2489 intel_pstate_driver = NULL;
2490}
2491
2492static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2493{
2494 int ret;
2495
2496 memset(&global, 0, sizeof(global));
2497 global.max_perf_pct = 100;
2498
2499 intel_pstate_driver = driver;
2500 ret = cpufreq_register_driver(intel_pstate_driver);
2501 if (ret) {
2502 intel_pstate_driver_cleanup();
2503 return ret;
2504 }
2505
2506 global.min_perf_pct = min_perf_pct_min();
2507
2508 return 0;
2509}
2510
2511static int intel_pstate_unregister_driver(void)
2512{
2513 if (hwp_active)
2514 return -EBUSY;
2515
2516 cpufreq_unregister_driver(intel_pstate_driver);
2517 intel_pstate_driver_cleanup();
2518
2519 return 0;
2520}
2521
2522static ssize_t intel_pstate_show_status(char *buf)
2523{
2524 if (!intel_pstate_driver)
2525 return sprintf(buf, "off\n");
2526
2527 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2528 "active" : "passive");
2529}
2530
2531static int intel_pstate_update_status(const char *buf, size_t size)
2532{
2533 int ret;
2534
2535 if (size == 3 && !strncmp(buf, "off", size))
2536 return intel_pstate_driver ?
2537 intel_pstate_unregister_driver() : -EINVAL;
2538
2539 if (size == 6 && !strncmp(buf, "active", size)) {
2540 if (intel_pstate_driver) {
2541 if (intel_pstate_driver == &intel_pstate)
2542 return 0;
2543
2544 ret = intel_pstate_unregister_driver();
2545 if (ret)
2546 return ret;
2547 }
2548
2549 return intel_pstate_register_driver(&intel_pstate);
2550 }
2551
2552 if (size == 7 && !strncmp(buf, "passive", size)) {
2553 if (intel_pstate_driver) {
2554 if (intel_pstate_driver == &intel_cpufreq)
2555 return 0;
2556
2557 ret = intel_pstate_unregister_driver();
2558 if (ret)
2559 return ret;
2560 }
2561
2562 return intel_pstate_register_driver(&intel_cpufreq);
2563 }
2564
2565 return -EINVAL;
2566}
2567
2568static int no_load __initdata;
2569static int no_hwp __initdata;
2570static int hwp_only __initdata;
2571static unsigned int force_load __initdata;
2572
2573static int __init intel_pstate_msrs_not_valid(void)
2574{
2575 if (!pstate_funcs.get_max() ||
2576 !pstate_funcs.get_min() ||
2577 !pstate_funcs.get_turbo())
2578 return -ENODEV;
2579
2580 return 0;
2581}
2582
2583static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2584{
2585 pstate_funcs.get_max = funcs->get_max;
2586 pstate_funcs.get_max_physical = funcs->get_max_physical;
2587 pstate_funcs.get_min = funcs->get_min;
2588 pstate_funcs.get_turbo = funcs->get_turbo;
2589 pstate_funcs.get_scaling = funcs->get_scaling;
2590 pstate_funcs.get_val = funcs->get_val;
2591 pstate_funcs.get_vid = funcs->get_vid;
2592 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2593}
2594
2595#ifdef CONFIG_ACPI
2596
2597static bool __init intel_pstate_no_acpi_pss(void)
2598{
2599 int i;
2600
2601 for_each_possible_cpu(i) {
2602 acpi_status status;
2603 union acpi_object *pss;
2604 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2605 struct acpi_processor *pr = per_cpu(processors, i);
2606
2607 if (!pr)
2608 continue;
2609
2610 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2611 if (ACPI_FAILURE(status))
2612 continue;
2613
2614 pss = buffer.pointer;
2615 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2616 kfree(pss);
2617 return false;
2618 }
2619
2620 kfree(pss);
2621 }
2622
2623 pr_debug("ACPI _PSS not found\n");
2624 return true;
2625}
2626
2627static bool __init intel_pstate_no_acpi_pcch(void)
2628{
2629 acpi_status status;
2630 acpi_handle handle;
2631
2632 status = acpi_get_handle(NULL, "\\_SB", &handle);
2633 if (ACPI_FAILURE(status))
2634 goto not_found;
2635
2636 if (acpi_has_method(handle, "PCCH"))
2637 return false;
2638
2639not_found:
2640 pr_debug("ACPI PCCH not found\n");
2641 return true;
2642}
2643
2644static bool __init intel_pstate_has_acpi_ppc(void)
2645{
2646 int i;
2647
2648 for_each_possible_cpu(i) {
2649 struct acpi_processor *pr = per_cpu(processors, i);
2650
2651 if (!pr)
2652 continue;
2653 if (acpi_has_method(pr->handle, "_PPC"))
2654 return true;
2655 }
2656 pr_debug("ACPI _PPC not found\n");
2657 return false;
2658}
2659
2660enum {
2661 PSS,
2662 PPC,
2663};
2664
2665/* Hardware vendor-specific info that has its own power management modes */
2666static struct acpi_platform_list plat_info[] __initdata = {
2667 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2668 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2669 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2670 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2671 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2672 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2673 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2674 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2675 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2676 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2677 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2678 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2679 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2680 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2681 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2682 { } /* End */
2683};
2684
2685static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2686{
2687 const struct x86_cpu_id *id;
2688 u64 misc_pwr;
2689 int idx;
2690
2691 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2692 if (id) {
2693 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2694 if (misc_pwr & (1 << 8)) {
2695 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2696 return true;
2697 }
2698 }
2699
2700 idx = acpi_match_platform_list(plat_info);
2701 if (idx < 0)
2702 return false;
2703
2704 switch (plat_info[idx].data) {
2705 case PSS:
2706 if (!intel_pstate_no_acpi_pss())
2707 return false;
2708
2709 return intel_pstate_no_acpi_pcch();
2710 case PPC:
2711 return intel_pstate_has_acpi_ppc() && !force_load;
2712 }
2713
2714 return false;
2715}
2716
2717static void intel_pstate_request_control_from_smm(void)
2718{
2719 /*
2720 * It may be unsafe to request P-states control from SMM if _PPC support
2721 * has not been enabled.
2722 */
2723 if (acpi_ppc)
2724 acpi_processor_pstate_control();
2725}
2726#else /* CONFIG_ACPI not enabled */
2727static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2728static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2729static inline void intel_pstate_request_control_from_smm(void) {}
2730#endif /* CONFIG_ACPI */
2731
2732#define INTEL_PSTATE_HWP_BROADWELL 0x01
2733
2734#define ICPU_HWP(model, hwp_mode) \
2735 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2736
2737static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2738 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2739 ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2740 ICPU_HWP(X86_MODEL_ANY, 0),
2741 {}
2742};
2743
2744static int __init intel_pstate_init(void)
2745{
2746 const struct x86_cpu_id *id;
2747 int rc;
2748
2749 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2750 return -ENODEV;
2751
2752 if (no_load)
2753 return -ENODEV;
2754
2755 id = x86_match_cpu(hwp_support_ids);
2756 if (id) {
2757 copy_cpu_funcs(&core_funcs);
2758 if (!no_hwp) {
2759 hwp_active++;
2760 hwp_mode_bdw = id->driver_data;
2761 intel_pstate.attr = hwp_cpufreq_attrs;
2762 goto hwp_cpu_matched;
2763 }
2764 } else {
2765 id = x86_match_cpu(intel_pstate_cpu_ids);
2766 if (!id) {
2767 pr_info("CPU model not supported\n");
2768 return -ENODEV;
2769 }
2770
2771 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2772 }
2773
2774 if (intel_pstate_msrs_not_valid()) {
2775 pr_info("Invalid MSRs\n");
2776 return -ENODEV;
2777 }
2778
2779hwp_cpu_matched:
2780 /*
2781 * The Intel pstate driver will be ignored if the platform
2782 * firmware has its own power management modes.
2783 */
2784 if (intel_pstate_platform_pwr_mgmt_exists()) {
2785 pr_info("P-states controlled by the platform\n");
2786 return -ENODEV;
2787 }
2788
2789 if (!hwp_active && hwp_only)
2790 return -ENOTSUPP;
2791
2792 pr_info("Intel P-state driver initializing\n");
2793
2794 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2795 if (!all_cpu_data)
2796 return -ENOMEM;
2797
2798 intel_pstate_request_control_from_smm();
2799
2800 intel_pstate_sysfs_expose_params();
2801
2802 mutex_lock(&intel_pstate_driver_lock);
2803 rc = intel_pstate_register_driver(default_driver);
2804 mutex_unlock(&intel_pstate_driver_lock);
2805 if (rc)
2806 return rc;
2807
2808 if (hwp_active)
2809 pr_info("HWP enabled\n");
2810
2811 return 0;
2812}
2813device_initcall(intel_pstate_init);
2814
2815static int __init intel_pstate_setup(char *str)
2816{
2817 if (!str)
2818 return -EINVAL;
2819
2820 if (!strcmp(str, "disable")) {
2821 no_load = 1;
2822 } else if (!strcmp(str, "passive")) {
2823 pr_info("Passive mode enabled\n");
2824 default_driver = &intel_cpufreq;
2825 no_hwp = 1;
2826 }
2827 if (!strcmp(str, "no_hwp")) {
2828 pr_info("HWP disabled\n");
2829 no_hwp = 1;
2830 }
2831 if (!strcmp(str, "force"))
2832 force_load = 1;
2833 if (!strcmp(str, "hwp_only"))
2834 hwp_only = 1;
2835 if (!strcmp(str, "per_cpu_perf_limits"))
2836 per_cpu_limits = true;
2837
2838#ifdef CONFIG_ACPI
2839 if (!strcmp(str, "support_acpi_ppc"))
2840 acpi_ppc = true;
2841#endif
2842
2843 return 0;
2844}
2845early_param("intel_pstate", intel_pstate_setup);
2846
2847MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2848MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2849MODULE_LICENSE("GPL");