at v5.3 128 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/cache.h> 18#include <linux/rbtree.h> 19#include <linux/socket.h> 20#include <linux/refcount.h> 21 22#include <linux/atomic.h> 23#include <asm/types.h> 24#include <linux/spinlock.h> 25#include <linux/net.h> 26#include <linux/textsearch.h> 27#include <net/checksum.h> 28#include <linux/rcupdate.h> 29#include <linux/hrtimer.h> 30#include <linux/dma-mapping.h> 31#include <linux/netdev_features.h> 32#include <linux/sched.h> 33#include <linux/sched/clock.h> 34#include <net/flow_dissector.h> 35#include <linux/splice.h> 36#include <linux/in6.h> 37#include <linux/if_packet.h> 38#include <net/flow.h> 39 40/* The interface for checksum offload between the stack and networking drivers 41 * is as follows... 42 * 43 * A. IP checksum related features 44 * 45 * Drivers advertise checksum offload capabilities in the features of a device. 46 * From the stack's point of view these are capabilities offered by the driver, 47 * a driver typically only advertises features that it is capable of offloading 48 * to its device. 49 * 50 * The checksum related features are: 51 * 52 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 53 * IP (one's complement) checksum for any combination 54 * of protocols or protocol layering. The checksum is 55 * computed and set in a packet per the CHECKSUM_PARTIAL 56 * interface (see below). 57 * 58 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 59 * TCP or UDP packets over IPv4. These are specifically 60 * unencapsulated packets of the form IPv4|TCP or 61 * IPv4|UDP where the Protocol field in the IPv4 header 62 * is TCP or UDP. The IPv4 header may contain IP options 63 * This feature cannot be set in features for a device 64 * with NETIF_F_HW_CSUM also set. This feature is being 65 * DEPRECATED (see below). 66 * 67 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv6. These are specifically 69 * unencapsulated packets of the form IPv6|TCP or 70 * IPv4|UDP where the Next Header field in the IPv6 71 * header is either TCP or UDP. IPv6 extension headers 72 * are not supported with this feature. This feature 73 * cannot be set in features for a device with 74 * NETIF_F_HW_CSUM also set. This feature is being 75 * DEPRECATED (see below). 76 * 77 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 78 * This flag is used only used to disable the RX checksum 79 * feature for a device. The stack will accept receive 80 * checksum indication in packets received on a device 81 * regardless of whether NETIF_F_RXCSUM is set. 82 * 83 * B. Checksumming of received packets by device. Indication of checksum 84 * verification is in set skb->ip_summed. Possible values are: 85 * 86 * CHECKSUM_NONE: 87 * 88 * Device did not checksum this packet e.g. due to lack of capabilities. 89 * The packet contains full (though not verified) checksum in packet but 90 * not in skb->csum. Thus, skb->csum is undefined in this case. 91 * 92 * CHECKSUM_UNNECESSARY: 93 * 94 * The hardware you're dealing with doesn't calculate the full checksum 95 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 96 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 97 * if their checksums are okay. skb->csum is still undefined in this case 98 * though. A driver or device must never modify the checksum field in the 99 * packet even if checksum is verified. 100 * 101 * CHECKSUM_UNNECESSARY is applicable to following protocols: 102 * TCP: IPv6 and IPv4. 103 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 104 * zero UDP checksum for either IPv4 or IPv6, the networking stack 105 * may perform further validation in this case. 106 * GRE: only if the checksum is present in the header. 107 * SCTP: indicates the CRC in SCTP header has been validated. 108 * FCOE: indicates the CRC in FC frame has been validated. 109 * 110 * skb->csum_level indicates the number of consecutive checksums found in 111 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 112 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 113 * and a device is able to verify the checksums for UDP (possibly zero), 114 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 115 * two. If the device were only able to verify the UDP checksum and not 116 * GRE, either because it doesn't support GRE checksum of because GRE 117 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 118 * not considered in this case). 119 * 120 * CHECKSUM_COMPLETE: 121 * 122 * This is the most generic way. The device supplied checksum of the _whole_ 123 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 124 * hardware doesn't need to parse L3/L4 headers to implement this. 125 * 126 * Notes: 127 * - Even if device supports only some protocols, but is able to produce 128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 129 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 130 * 131 * CHECKSUM_PARTIAL: 132 * 133 * A checksum is set up to be offloaded to a device as described in the 134 * output description for CHECKSUM_PARTIAL. This may occur on a packet 135 * received directly from another Linux OS, e.g., a virtualized Linux kernel 136 * on the same host, or it may be set in the input path in GRO or remote 137 * checksum offload. For the purposes of checksum verification, the checksum 138 * referred to by skb->csum_start + skb->csum_offset and any preceding 139 * checksums in the packet are considered verified. Any checksums in the 140 * packet that are after the checksum being offloaded are not considered to 141 * be verified. 142 * 143 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 144 * in the skb->ip_summed for a packet. Values are: 145 * 146 * CHECKSUM_PARTIAL: 147 * 148 * The driver is required to checksum the packet as seen by hard_start_xmit() 149 * from skb->csum_start up to the end, and to record/write the checksum at 150 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 151 * csum_start and csum_offset values are valid values given the length and 152 * offset of the packet, however they should not attempt to validate that the 153 * checksum refers to a legitimate transport layer checksum-- it is the 154 * purview of the stack to validate that csum_start and csum_offset are set 155 * correctly. 156 * 157 * When the stack requests checksum offload for a packet, the driver MUST 158 * ensure that the checksum is set correctly. A driver can either offload the 159 * checksum calculation to the device, or call skb_checksum_help (in the case 160 * that the device does not support offload for a particular checksum). 161 * 162 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 163 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 164 * checksum offload capability. 165 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 166 * on network device checksumming capabilities: if a packet does not match 167 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 168 * csum_not_inet, see item D.) is called to resolve the checksum. 169 * 170 * CHECKSUM_NONE: 171 * 172 * The skb was already checksummed by the protocol, or a checksum is not 173 * required. 174 * 175 * CHECKSUM_UNNECESSARY: 176 * 177 * This has the same meaning on as CHECKSUM_NONE for checksum offload on 178 * output. 179 * 180 * CHECKSUM_COMPLETE: 181 * Not used in checksum output. If a driver observes a packet with this value 182 * set in skbuff, if should treat as CHECKSUM_NONE being set. 183 * 184 * D. Non-IP checksum (CRC) offloads 185 * 186 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 187 * offloading the SCTP CRC in a packet. To perform this offload the stack 188 * will set set csum_start and csum_offset accordingly, set ip_summed to 189 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 190 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 191 * A driver that supports both IP checksum offload and SCTP CRC32c offload 192 * must verify which offload is configured for a packet by testing the 193 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 194 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 195 * 196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 197 * offloading the FCOE CRC in a packet. To perform this offload the stack 198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 199 * accordingly. Note the there is no indication in the skbuff that the 200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports 201 * both IP checksum offload and FCOE CRC offload must verify which offload 202 * is configured for a packet presumably by inspecting packet headers. 203 * 204 * E. Checksumming on output with GSO. 205 * 206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 209 * part of the GSO operation is implied. If a checksum is being offloaded 210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset 211 * are set to refer to the outermost checksum being offload (two offloaded 212 * checksums are possible with UDP encapsulation). 213 */ 214 215/* Don't change this without changing skb_csum_unnecessary! */ 216#define CHECKSUM_NONE 0 217#define CHECKSUM_UNNECESSARY 1 218#define CHECKSUM_COMPLETE 2 219#define CHECKSUM_PARTIAL 3 220 221/* Maximum value in skb->csum_level */ 222#define SKB_MAX_CSUM_LEVEL 3 223 224#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 225#define SKB_WITH_OVERHEAD(X) \ 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 227#define SKB_MAX_ORDER(X, ORDER) \ 228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 229#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 230#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 231 232/* return minimum truesize of one skb containing X bytes of data */ 233#define SKB_TRUESIZE(X) ((X) + \ 234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 236 237struct net_device; 238struct scatterlist; 239struct pipe_inode_info; 240struct iov_iter; 241struct napi_struct; 242struct bpf_prog; 243union bpf_attr; 244struct skb_ext; 245 246#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 247struct nf_conntrack { 248 atomic_t use; 249}; 250#endif 251 252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 253struct nf_bridge_info { 254 enum { 255 BRNF_PROTO_UNCHANGED, 256 BRNF_PROTO_8021Q, 257 BRNF_PROTO_PPPOE 258 } orig_proto:8; 259 u8 pkt_otherhost:1; 260 u8 in_prerouting:1; 261 u8 bridged_dnat:1; 262 __u16 frag_max_size; 263 struct net_device *physindev; 264 265 /* always valid & non-NULL from FORWARD on, for physdev match */ 266 struct net_device *physoutdev; 267 union { 268 /* prerouting: detect dnat in orig/reply direction */ 269 __be32 ipv4_daddr; 270 struct in6_addr ipv6_daddr; 271 272 /* after prerouting + nat detected: store original source 273 * mac since neigh resolution overwrites it, only used while 274 * skb is out in neigh layer. 275 */ 276 char neigh_header[8]; 277 }; 278}; 279#endif 280 281struct sk_buff_head { 282 /* These two members must be first. */ 283 struct sk_buff *next; 284 struct sk_buff *prev; 285 286 __u32 qlen; 287 spinlock_t lock; 288}; 289 290struct sk_buff; 291 292/* To allow 64K frame to be packed as single skb without frag_list we 293 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 294 * buffers which do not start on a page boundary. 295 * 296 * Since GRO uses frags we allocate at least 16 regardless of page 297 * size. 298 */ 299#if (65536/PAGE_SIZE + 1) < 16 300#define MAX_SKB_FRAGS 16UL 301#else 302#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 303#endif 304extern int sysctl_max_skb_frags; 305 306/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 307 * segment using its current segmentation instead. 308 */ 309#define GSO_BY_FRAGS 0xFFFF 310 311typedef struct skb_frag_struct skb_frag_t; 312 313struct skb_frag_struct { 314 struct { 315 struct page *p; 316 } page; 317#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 318 __u32 page_offset; 319 __u32 size; 320#else 321 __u16 page_offset; 322 __u16 size; 323#endif 324}; 325 326/** 327 * skb_frag_size - Returns the size of a skb fragment 328 * @frag: skb fragment 329 */ 330static inline unsigned int skb_frag_size(const skb_frag_t *frag) 331{ 332 return frag->size; 333} 334 335/** 336 * skb_frag_size_set - Sets the size of a skb fragment 337 * @frag: skb fragment 338 * @size: size of fragment 339 */ 340static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 341{ 342 frag->size = size; 343} 344 345/** 346 * skb_frag_size_add - Incrementes the size of a skb fragment by %delta 347 * @frag: skb fragment 348 * @delta: value to add 349 */ 350static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 351{ 352 frag->size += delta; 353} 354 355/** 356 * skb_frag_size_sub - Decrements the size of a skb fragment by %delta 357 * @frag: skb fragment 358 * @delta: value to subtract 359 */ 360static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 361{ 362 frag->size -= delta; 363} 364 365/** 366 * skb_frag_must_loop - Test if %p is a high memory page 367 * @p: fragment's page 368 */ 369static inline bool skb_frag_must_loop(struct page *p) 370{ 371#if defined(CONFIG_HIGHMEM) 372 if (PageHighMem(p)) 373 return true; 374#endif 375 return false; 376} 377 378/** 379 * skb_frag_foreach_page - loop over pages in a fragment 380 * 381 * @f: skb frag to operate on 382 * @f_off: offset from start of f->page.p 383 * @f_len: length from f_off to loop over 384 * @p: (temp var) current page 385 * @p_off: (temp var) offset from start of current page, 386 * non-zero only on first page. 387 * @p_len: (temp var) length in current page, 388 * < PAGE_SIZE only on first and last page. 389 * @copied: (temp var) length so far, excluding current p_len. 390 * 391 * A fragment can hold a compound page, in which case per-page 392 * operations, notably kmap_atomic, must be called for each 393 * regular page. 394 */ 395#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 396 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 397 p_off = (f_off) & (PAGE_SIZE - 1), \ 398 p_len = skb_frag_must_loop(p) ? \ 399 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 400 copied = 0; \ 401 copied < f_len; \ 402 copied += p_len, p++, p_off = 0, \ 403 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 404 405#define HAVE_HW_TIME_STAMP 406 407/** 408 * struct skb_shared_hwtstamps - hardware time stamps 409 * @hwtstamp: hardware time stamp transformed into duration 410 * since arbitrary point in time 411 * 412 * Software time stamps generated by ktime_get_real() are stored in 413 * skb->tstamp. 414 * 415 * hwtstamps can only be compared against other hwtstamps from 416 * the same device. 417 * 418 * This structure is attached to packets as part of the 419 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 420 */ 421struct skb_shared_hwtstamps { 422 ktime_t hwtstamp; 423}; 424 425/* Definitions for tx_flags in struct skb_shared_info */ 426enum { 427 /* generate hardware time stamp */ 428 SKBTX_HW_TSTAMP = 1 << 0, 429 430 /* generate software time stamp when queueing packet to NIC */ 431 SKBTX_SW_TSTAMP = 1 << 1, 432 433 /* device driver is going to provide hardware time stamp */ 434 SKBTX_IN_PROGRESS = 1 << 2, 435 436 /* device driver supports TX zero-copy buffers */ 437 SKBTX_DEV_ZEROCOPY = 1 << 3, 438 439 /* generate wifi status information (where possible) */ 440 SKBTX_WIFI_STATUS = 1 << 4, 441 442 /* This indicates at least one fragment might be overwritten 443 * (as in vmsplice(), sendfile() ...) 444 * If we need to compute a TX checksum, we'll need to copy 445 * all frags to avoid possible bad checksum 446 */ 447 SKBTX_SHARED_FRAG = 1 << 5, 448 449 /* generate software time stamp when entering packet scheduling */ 450 SKBTX_SCHED_TSTAMP = 1 << 6, 451}; 452 453#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 454#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 455 SKBTX_SCHED_TSTAMP) 456#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 457 458/* 459 * The callback notifies userspace to release buffers when skb DMA is done in 460 * lower device, the skb last reference should be 0 when calling this. 461 * The zerocopy_success argument is true if zero copy transmit occurred, 462 * false on data copy or out of memory error caused by data copy attempt. 463 * The ctx field is used to track device context. 464 * The desc field is used to track userspace buffer index. 465 */ 466struct ubuf_info { 467 void (*callback)(struct ubuf_info *, bool zerocopy_success); 468 union { 469 struct { 470 unsigned long desc; 471 void *ctx; 472 }; 473 struct { 474 u32 id; 475 u16 len; 476 u16 zerocopy:1; 477 u32 bytelen; 478 }; 479 }; 480 refcount_t refcnt; 481 482 struct mmpin { 483 struct user_struct *user; 484 unsigned int num_pg; 485 } mmp; 486}; 487 488#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 489 490int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 491void mm_unaccount_pinned_pages(struct mmpin *mmp); 492 493struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 494struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 495 struct ubuf_info *uarg); 496 497static inline void sock_zerocopy_get(struct ubuf_info *uarg) 498{ 499 refcount_inc(&uarg->refcnt); 500} 501 502void sock_zerocopy_put(struct ubuf_info *uarg); 503void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 504 505void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 506 507int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 508int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 509 struct msghdr *msg, int len, 510 struct ubuf_info *uarg); 511 512/* This data is invariant across clones and lives at 513 * the end of the header data, ie. at skb->end. 514 */ 515struct skb_shared_info { 516 __u8 __unused; 517 __u8 meta_len; 518 __u8 nr_frags; 519 __u8 tx_flags; 520 unsigned short gso_size; 521 /* Warning: this field is not always filled in (UFO)! */ 522 unsigned short gso_segs; 523 struct sk_buff *frag_list; 524 struct skb_shared_hwtstamps hwtstamps; 525 unsigned int gso_type; 526 u32 tskey; 527 528 /* 529 * Warning : all fields before dataref are cleared in __alloc_skb() 530 */ 531 atomic_t dataref; 532 533 /* Intermediate layers must ensure that destructor_arg 534 * remains valid until skb destructor */ 535 void * destructor_arg; 536 537 /* must be last field, see pskb_expand_head() */ 538 skb_frag_t frags[MAX_SKB_FRAGS]; 539}; 540 541/* We divide dataref into two halves. The higher 16 bits hold references 542 * to the payload part of skb->data. The lower 16 bits hold references to 543 * the entire skb->data. A clone of a headerless skb holds the length of 544 * the header in skb->hdr_len. 545 * 546 * All users must obey the rule that the skb->data reference count must be 547 * greater than or equal to the payload reference count. 548 * 549 * Holding a reference to the payload part means that the user does not 550 * care about modifications to the header part of skb->data. 551 */ 552#define SKB_DATAREF_SHIFT 16 553#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 554 555 556enum { 557 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 558 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 559 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 560}; 561 562enum { 563 SKB_GSO_TCPV4 = 1 << 0, 564 565 /* This indicates the skb is from an untrusted source. */ 566 SKB_GSO_DODGY = 1 << 1, 567 568 /* This indicates the tcp segment has CWR set. */ 569 SKB_GSO_TCP_ECN = 1 << 2, 570 571 SKB_GSO_TCP_FIXEDID = 1 << 3, 572 573 SKB_GSO_TCPV6 = 1 << 4, 574 575 SKB_GSO_FCOE = 1 << 5, 576 577 SKB_GSO_GRE = 1 << 6, 578 579 SKB_GSO_GRE_CSUM = 1 << 7, 580 581 SKB_GSO_IPXIP4 = 1 << 8, 582 583 SKB_GSO_IPXIP6 = 1 << 9, 584 585 SKB_GSO_UDP_TUNNEL = 1 << 10, 586 587 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 588 589 SKB_GSO_PARTIAL = 1 << 12, 590 591 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 592 593 SKB_GSO_SCTP = 1 << 14, 594 595 SKB_GSO_ESP = 1 << 15, 596 597 SKB_GSO_UDP = 1 << 16, 598 599 SKB_GSO_UDP_L4 = 1 << 17, 600}; 601 602#if BITS_PER_LONG > 32 603#define NET_SKBUFF_DATA_USES_OFFSET 1 604#endif 605 606#ifdef NET_SKBUFF_DATA_USES_OFFSET 607typedef unsigned int sk_buff_data_t; 608#else 609typedef unsigned char *sk_buff_data_t; 610#endif 611 612/** 613 * struct sk_buff - socket buffer 614 * @next: Next buffer in list 615 * @prev: Previous buffer in list 616 * @tstamp: Time we arrived/left 617 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 618 * @sk: Socket we are owned by 619 * @dev: Device we arrived on/are leaving by 620 * @cb: Control buffer. Free for use by every layer. Put private vars here 621 * @_skb_refdst: destination entry (with norefcount bit) 622 * @sp: the security path, used for xfrm 623 * @len: Length of actual data 624 * @data_len: Data length 625 * @mac_len: Length of link layer header 626 * @hdr_len: writable header length of cloned skb 627 * @csum: Checksum (must include start/offset pair) 628 * @csum_start: Offset from skb->head where checksumming should start 629 * @csum_offset: Offset from csum_start where checksum should be stored 630 * @priority: Packet queueing priority 631 * @ignore_df: allow local fragmentation 632 * @cloned: Head may be cloned (check refcnt to be sure) 633 * @ip_summed: Driver fed us an IP checksum 634 * @nohdr: Payload reference only, must not modify header 635 * @pkt_type: Packet class 636 * @fclone: skbuff clone status 637 * @ipvs_property: skbuff is owned by ipvs 638 * @offload_fwd_mark: Packet was L2-forwarded in hardware 639 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 640 * @tc_skip_classify: do not classify packet. set by IFB device 641 * @tc_at_ingress: used within tc_classify to distinguish in/egress 642 * @tc_redirected: packet was redirected by a tc action 643 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect 644 * @peeked: this packet has been seen already, so stats have been 645 * done for it, don't do them again 646 * @nf_trace: netfilter packet trace flag 647 * @protocol: Packet protocol from driver 648 * @destructor: Destruct function 649 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 650 * @_nfct: Associated connection, if any (with nfctinfo bits) 651 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 652 * @skb_iif: ifindex of device we arrived on 653 * @tc_index: Traffic control index 654 * @hash: the packet hash 655 * @queue_mapping: Queue mapping for multiqueue devices 656 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 657 * @active_extensions: active extensions (skb_ext_id types) 658 * @ndisc_nodetype: router type (from link layer) 659 * @ooo_okay: allow the mapping of a socket to a queue to be changed 660 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 661 * ports. 662 * @sw_hash: indicates hash was computed in software stack 663 * @wifi_acked_valid: wifi_acked was set 664 * @wifi_acked: whether frame was acked on wifi or not 665 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 666 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 667 * @dst_pending_confirm: need to confirm neighbour 668 * @decrypted: Decrypted SKB 669 * @napi_id: id of the NAPI struct this skb came from 670 * @secmark: security marking 671 * @mark: Generic packet mark 672 * @vlan_proto: vlan encapsulation protocol 673 * @vlan_tci: vlan tag control information 674 * @inner_protocol: Protocol (encapsulation) 675 * @inner_transport_header: Inner transport layer header (encapsulation) 676 * @inner_network_header: Network layer header (encapsulation) 677 * @inner_mac_header: Link layer header (encapsulation) 678 * @transport_header: Transport layer header 679 * @network_header: Network layer header 680 * @mac_header: Link layer header 681 * @tail: Tail pointer 682 * @end: End pointer 683 * @head: Head of buffer 684 * @data: Data head pointer 685 * @truesize: Buffer size 686 * @users: User count - see {datagram,tcp}.c 687 * @extensions: allocated extensions, valid if active_extensions is nonzero 688 */ 689 690struct sk_buff { 691 union { 692 struct { 693 /* These two members must be first. */ 694 struct sk_buff *next; 695 struct sk_buff *prev; 696 697 union { 698 struct net_device *dev; 699 /* Some protocols might use this space to store information, 700 * while device pointer would be NULL. 701 * UDP receive path is one user. 702 */ 703 unsigned long dev_scratch; 704 }; 705 }; 706 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 707 struct list_head list; 708 }; 709 710 union { 711 struct sock *sk; 712 int ip_defrag_offset; 713 }; 714 715 union { 716 ktime_t tstamp; 717 u64 skb_mstamp_ns; /* earliest departure time */ 718 }; 719 /* 720 * This is the control buffer. It is free to use for every 721 * layer. Please put your private variables there. If you 722 * want to keep them across layers you have to do a skb_clone() 723 * first. This is owned by whoever has the skb queued ATM. 724 */ 725 char cb[48] __aligned(8); 726 727 union { 728 struct { 729 unsigned long _skb_refdst; 730 void (*destructor)(struct sk_buff *skb); 731 }; 732 struct list_head tcp_tsorted_anchor; 733 }; 734 735#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 736 unsigned long _nfct; 737#endif 738 unsigned int len, 739 data_len; 740 __u16 mac_len, 741 hdr_len; 742 743 /* Following fields are _not_ copied in __copy_skb_header() 744 * Note that queue_mapping is here mostly to fill a hole. 745 */ 746 __u16 queue_mapping; 747 748/* if you move cloned around you also must adapt those constants */ 749#ifdef __BIG_ENDIAN_BITFIELD 750#define CLONED_MASK (1 << 7) 751#else 752#define CLONED_MASK 1 753#endif 754#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 755 756 __u8 __cloned_offset[0]; 757 __u8 cloned:1, 758 nohdr:1, 759 fclone:2, 760 peeked:1, 761 head_frag:1, 762 pfmemalloc:1; 763#ifdef CONFIG_SKB_EXTENSIONS 764 __u8 active_extensions; 765#endif 766 /* fields enclosed in headers_start/headers_end are copied 767 * using a single memcpy() in __copy_skb_header() 768 */ 769 /* private: */ 770 __u32 headers_start[0]; 771 /* public: */ 772 773/* if you move pkt_type around you also must adapt those constants */ 774#ifdef __BIG_ENDIAN_BITFIELD 775#define PKT_TYPE_MAX (7 << 5) 776#else 777#define PKT_TYPE_MAX 7 778#endif 779#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 780 781 __u8 __pkt_type_offset[0]; 782 __u8 pkt_type:3; 783 __u8 ignore_df:1; 784 __u8 nf_trace:1; 785 __u8 ip_summed:2; 786 __u8 ooo_okay:1; 787 788 __u8 l4_hash:1; 789 __u8 sw_hash:1; 790 __u8 wifi_acked_valid:1; 791 __u8 wifi_acked:1; 792 __u8 no_fcs:1; 793 /* Indicates the inner headers are valid in the skbuff. */ 794 __u8 encapsulation:1; 795 __u8 encap_hdr_csum:1; 796 __u8 csum_valid:1; 797 798#ifdef __BIG_ENDIAN_BITFIELD 799#define PKT_VLAN_PRESENT_BIT 7 800#else 801#define PKT_VLAN_PRESENT_BIT 0 802#endif 803#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 804 __u8 __pkt_vlan_present_offset[0]; 805 __u8 vlan_present:1; 806 __u8 csum_complete_sw:1; 807 __u8 csum_level:2; 808 __u8 csum_not_inet:1; 809 __u8 dst_pending_confirm:1; 810#ifdef CONFIG_IPV6_NDISC_NODETYPE 811 __u8 ndisc_nodetype:2; 812#endif 813 814 __u8 ipvs_property:1; 815 __u8 inner_protocol_type:1; 816 __u8 remcsum_offload:1; 817#ifdef CONFIG_NET_SWITCHDEV 818 __u8 offload_fwd_mark:1; 819 __u8 offload_l3_fwd_mark:1; 820#endif 821#ifdef CONFIG_NET_CLS_ACT 822 __u8 tc_skip_classify:1; 823 __u8 tc_at_ingress:1; 824 __u8 tc_redirected:1; 825 __u8 tc_from_ingress:1; 826#endif 827#ifdef CONFIG_TLS_DEVICE 828 __u8 decrypted:1; 829#endif 830 831#ifdef CONFIG_NET_SCHED 832 __u16 tc_index; /* traffic control index */ 833#endif 834 835 union { 836 __wsum csum; 837 struct { 838 __u16 csum_start; 839 __u16 csum_offset; 840 }; 841 }; 842 __u32 priority; 843 int skb_iif; 844 __u32 hash; 845 __be16 vlan_proto; 846 __u16 vlan_tci; 847#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 848 union { 849 unsigned int napi_id; 850 unsigned int sender_cpu; 851 }; 852#endif 853#ifdef CONFIG_NETWORK_SECMARK 854 __u32 secmark; 855#endif 856 857 union { 858 __u32 mark; 859 __u32 reserved_tailroom; 860 }; 861 862 union { 863 __be16 inner_protocol; 864 __u8 inner_ipproto; 865 }; 866 867 __u16 inner_transport_header; 868 __u16 inner_network_header; 869 __u16 inner_mac_header; 870 871 __be16 protocol; 872 __u16 transport_header; 873 __u16 network_header; 874 __u16 mac_header; 875 876 /* private: */ 877 __u32 headers_end[0]; 878 /* public: */ 879 880 /* These elements must be at the end, see alloc_skb() for details. */ 881 sk_buff_data_t tail; 882 sk_buff_data_t end; 883 unsigned char *head, 884 *data; 885 unsigned int truesize; 886 refcount_t users; 887 888#ifdef CONFIG_SKB_EXTENSIONS 889 /* only useable after checking ->active_extensions != 0 */ 890 struct skb_ext *extensions; 891#endif 892}; 893 894#ifdef __KERNEL__ 895/* 896 * Handling routines are only of interest to the kernel 897 */ 898 899#define SKB_ALLOC_FCLONE 0x01 900#define SKB_ALLOC_RX 0x02 901#define SKB_ALLOC_NAPI 0x04 902 903/** 904 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 905 * @skb: buffer 906 */ 907static inline bool skb_pfmemalloc(const struct sk_buff *skb) 908{ 909 return unlikely(skb->pfmemalloc); 910} 911 912/* 913 * skb might have a dst pointer attached, refcounted or not. 914 * _skb_refdst low order bit is set if refcount was _not_ taken 915 */ 916#define SKB_DST_NOREF 1UL 917#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 918 919#define SKB_NFCT_PTRMASK ~(7UL) 920/** 921 * skb_dst - returns skb dst_entry 922 * @skb: buffer 923 * 924 * Returns skb dst_entry, regardless of reference taken or not. 925 */ 926static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 927{ 928 /* If refdst was not refcounted, check we still are in a 929 * rcu_read_lock section 930 */ 931 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 932 !rcu_read_lock_held() && 933 !rcu_read_lock_bh_held()); 934 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 935} 936 937/** 938 * skb_dst_set - sets skb dst 939 * @skb: buffer 940 * @dst: dst entry 941 * 942 * Sets skb dst, assuming a reference was taken on dst and should 943 * be released by skb_dst_drop() 944 */ 945static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 946{ 947 skb->_skb_refdst = (unsigned long)dst; 948} 949 950/** 951 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 952 * @skb: buffer 953 * @dst: dst entry 954 * 955 * Sets skb dst, assuming a reference was not taken on dst. 956 * If dst entry is cached, we do not take reference and dst_release 957 * will be avoided by refdst_drop. If dst entry is not cached, we take 958 * reference, so that last dst_release can destroy the dst immediately. 959 */ 960static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 961{ 962 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 963 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 964} 965 966/** 967 * skb_dst_is_noref - Test if skb dst isn't refcounted 968 * @skb: buffer 969 */ 970static inline bool skb_dst_is_noref(const struct sk_buff *skb) 971{ 972 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 973} 974 975/** 976 * skb_rtable - Returns the skb &rtable 977 * @skb: buffer 978 */ 979static inline struct rtable *skb_rtable(const struct sk_buff *skb) 980{ 981 return (struct rtable *)skb_dst(skb); 982} 983 984/* For mangling skb->pkt_type from user space side from applications 985 * such as nft, tc, etc, we only allow a conservative subset of 986 * possible pkt_types to be set. 987*/ 988static inline bool skb_pkt_type_ok(u32 ptype) 989{ 990 return ptype <= PACKET_OTHERHOST; 991} 992 993/** 994 * skb_napi_id - Returns the skb's NAPI id 995 * @skb: buffer 996 */ 997static inline unsigned int skb_napi_id(const struct sk_buff *skb) 998{ 999#ifdef CONFIG_NET_RX_BUSY_POLL 1000 return skb->napi_id; 1001#else 1002 return 0; 1003#endif 1004} 1005 1006/** 1007 * skb_unref - decrement the skb's reference count 1008 * @skb: buffer 1009 * 1010 * Returns true if we can free the skb. 1011 */ 1012static inline bool skb_unref(struct sk_buff *skb) 1013{ 1014 if (unlikely(!skb)) 1015 return false; 1016 if (likely(refcount_read(&skb->users) == 1)) 1017 smp_rmb(); 1018 else if (likely(!refcount_dec_and_test(&skb->users))) 1019 return false; 1020 1021 return true; 1022} 1023 1024void skb_release_head_state(struct sk_buff *skb); 1025void kfree_skb(struct sk_buff *skb); 1026void kfree_skb_list(struct sk_buff *segs); 1027void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1028void skb_tx_error(struct sk_buff *skb); 1029void consume_skb(struct sk_buff *skb); 1030void __consume_stateless_skb(struct sk_buff *skb); 1031void __kfree_skb(struct sk_buff *skb); 1032extern struct kmem_cache *skbuff_head_cache; 1033 1034void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1035bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1036 bool *fragstolen, int *delta_truesize); 1037 1038struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1039 int node); 1040struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1041struct sk_buff *build_skb(void *data, unsigned int frag_size); 1042struct sk_buff *build_skb_around(struct sk_buff *skb, 1043 void *data, unsigned int frag_size); 1044 1045/** 1046 * alloc_skb - allocate a network buffer 1047 * @size: size to allocate 1048 * @priority: allocation mask 1049 * 1050 * This function is a convenient wrapper around __alloc_skb(). 1051 */ 1052static inline struct sk_buff *alloc_skb(unsigned int size, 1053 gfp_t priority) 1054{ 1055 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1056} 1057 1058struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1059 unsigned long data_len, 1060 int max_page_order, 1061 int *errcode, 1062 gfp_t gfp_mask); 1063struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1064 1065/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1066struct sk_buff_fclones { 1067 struct sk_buff skb1; 1068 1069 struct sk_buff skb2; 1070 1071 refcount_t fclone_ref; 1072}; 1073 1074/** 1075 * skb_fclone_busy - check if fclone is busy 1076 * @sk: socket 1077 * @skb: buffer 1078 * 1079 * Returns true if skb is a fast clone, and its clone is not freed. 1080 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1081 * so we also check that this didnt happen. 1082 */ 1083static inline bool skb_fclone_busy(const struct sock *sk, 1084 const struct sk_buff *skb) 1085{ 1086 const struct sk_buff_fclones *fclones; 1087 1088 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1089 1090 return skb->fclone == SKB_FCLONE_ORIG && 1091 refcount_read(&fclones->fclone_ref) > 1 && 1092 fclones->skb2.sk == sk; 1093} 1094 1095/** 1096 * alloc_skb_fclone - allocate a network buffer from fclone cache 1097 * @size: size to allocate 1098 * @priority: allocation mask 1099 * 1100 * This function is a convenient wrapper around __alloc_skb(). 1101 */ 1102static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1103 gfp_t priority) 1104{ 1105 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1106} 1107 1108struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1109void skb_headers_offset_update(struct sk_buff *skb, int off); 1110int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1111struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1112void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1113struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1114struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1115 gfp_t gfp_mask, bool fclone); 1116static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1117 gfp_t gfp_mask) 1118{ 1119 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1120} 1121 1122int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1123struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1124 unsigned int headroom); 1125struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1126 int newtailroom, gfp_t priority); 1127int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1128 int offset, int len); 1129int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1130 int offset, int len); 1131int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1132int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1133 1134/** 1135 * skb_pad - zero pad the tail of an skb 1136 * @skb: buffer to pad 1137 * @pad: space to pad 1138 * 1139 * Ensure that a buffer is followed by a padding area that is zero 1140 * filled. Used by network drivers which may DMA or transfer data 1141 * beyond the buffer end onto the wire. 1142 * 1143 * May return error in out of memory cases. The skb is freed on error. 1144 */ 1145static inline int skb_pad(struct sk_buff *skb, int pad) 1146{ 1147 return __skb_pad(skb, pad, true); 1148} 1149#define dev_kfree_skb(a) consume_skb(a) 1150 1151int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1152 int offset, size_t size); 1153 1154struct skb_seq_state { 1155 __u32 lower_offset; 1156 __u32 upper_offset; 1157 __u32 frag_idx; 1158 __u32 stepped_offset; 1159 struct sk_buff *root_skb; 1160 struct sk_buff *cur_skb; 1161 __u8 *frag_data; 1162}; 1163 1164void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1165 unsigned int to, struct skb_seq_state *st); 1166unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1167 struct skb_seq_state *st); 1168void skb_abort_seq_read(struct skb_seq_state *st); 1169 1170unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1171 unsigned int to, struct ts_config *config); 1172 1173/* 1174 * Packet hash types specify the type of hash in skb_set_hash. 1175 * 1176 * Hash types refer to the protocol layer addresses which are used to 1177 * construct a packet's hash. The hashes are used to differentiate or identify 1178 * flows of the protocol layer for the hash type. Hash types are either 1179 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1180 * 1181 * Properties of hashes: 1182 * 1183 * 1) Two packets in different flows have different hash values 1184 * 2) Two packets in the same flow should have the same hash value 1185 * 1186 * A hash at a higher layer is considered to be more specific. A driver should 1187 * set the most specific hash possible. 1188 * 1189 * A driver cannot indicate a more specific hash than the layer at which a hash 1190 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1191 * 1192 * A driver may indicate a hash level which is less specific than the 1193 * actual layer the hash was computed on. For instance, a hash computed 1194 * at L4 may be considered an L3 hash. This should only be done if the 1195 * driver can't unambiguously determine that the HW computed the hash at 1196 * the higher layer. Note that the "should" in the second property above 1197 * permits this. 1198 */ 1199enum pkt_hash_types { 1200 PKT_HASH_TYPE_NONE, /* Undefined type */ 1201 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1202 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1203 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1204}; 1205 1206static inline void skb_clear_hash(struct sk_buff *skb) 1207{ 1208 skb->hash = 0; 1209 skb->sw_hash = 0; 1210 skb->l4_hash = 0; 1211} 1212 1213static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1214{ 1215 if (!skb->l4_hash) 1216 skb_clear_hash(skb); 1217} 1218 1219static inline void 1220__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1221{ 1222 skb->l4_hash = is_l4; 1223 skb->sw_hash = is_sw; 1224 skb->hash = hash; 1225} 1226 1227static inline void 1228skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1229{ 1230 /* Used by drivers to set hash from HW */ 1231 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1232} 1233 1234static inline void 1235__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1236{ 1237 __skb_set_hash(skb, hash, true, is_l4); 1238} 1239 1240void __skb_get_hash(struct sk_buff *skb); 1241u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1242u32 skb_get_poff(const struct sk_buff *skb); 1243u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1244 const struct flow_keys_basic *keys, int hlen); 1245__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1246 void *data, int hlen_proto); 1247 1248static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1249 int thoff, u8 ip_proto) 1250{ 1251 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1252} 1253 1254void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1255 const struct flow_dissector_key *key, 1256 unsigned int key_count); 1257 1258#ifdef CONFIG_NET 1259int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1260 union bpf_attr __user *uattr); 1261int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1262 struct bpf_prog *prog); 1263 1264int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr); 1265#else 1266static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr, 1267 union bpf_attr __user *uattr) 1268{ 1269 return -EOPNOTSUPP; 1270} 1271 1272static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr, 1273 struct bpf_prog *prog) 1274{ 1275 return -EOPNOTSUPP; 1276} 1277 1278static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr) 1279{ 1280 return -EOPNOTSUPP; 1281} 1282#endif 1283 1284struct bpf_flow_dissector; 1285bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1286 __be16 proto, int nhoff, int hlen); 1287 1288bool __skb_flow_dissect(const struct net *net, 1289 const struct sk_buff *skb, 1290 struct flow_dissector *flow_dissector, 1291 void *target_container, 1292 void *data, __be16 proto, int nhoff, int hlen, 1293 unsigned int flags); 1294 1295static inline bool skb_flow_dissect(const struct sk_buff *skb, 1296 struct flow_dissector *flow_dissector, 1297 void *target_container, unsigned int flags) 1298{ 1299 return __skb_flow_dissect(NULL, skb, flow_dissector, 1300 target_container, NULL, 0, 0, 0, flags); 1301} 1302 1303static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1304 struct flow_keys *flow, 1305 unsigned int flags) 1306{ 1307 memset(flow, 0, sizeof(*flow)); 1308 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1309 flow, NULL, 0, 0, 0, flags); 1310} 1311 1312static inline bool 1313skb_flow_dissect_flow_keys_basic(const struct net *net, 1314 const struct sk_buff *skb, 1315 struct flow_keys_basic *flow, void *data, 1316 __be16 proto, int nhoff, int hlen, 1317 unsigned int flags) 1318{ 1319 memset(flow, 0, sizeof(*flow)); 1320 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1321 data, proto, nhoff, hlen, flags); 1322} 1323 1324void skb_flow_dissect_meta(const struct sk_buff *skb, 1325 struct flow_dissector *flow_dissector, 1326 void *target_container); 1327 1328/* Gets a skb connection tracking info, ctinfo map should be a 1329 * a map of mapsize to translate enum ip_conntrack_info states 1330 * to user states. 1331 */ 1332void 1333skb_flow_dissect_ct(const struct sk_buff *skb, 1334 struct flow_dissector *flow_dissector, 1335 void *target_container, 1336 u16 *ctinfo_map, 1337 size_t mapsize); 1338void 1339skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1340 struct flow_dissector *flow_dissector, 1341 void *target_container); 1342 1343static inline __u32 skb_get_hash(struct sk_buff *skb) 1344{ 1345 if (!skb->l4_hash && !skb->sw_hash) 1346 __skb_get_hash(skb); 1347 1348 return skb->hash; 1349} 1350 1351static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1352{ 1353 if (!skb->l4_hash && !skb->sw_hash) { 1354 struct flow_keys keys; 1355 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1356 1357 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1358 } 1359 1360 return skb->hash; 1361} 1362 1363__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); 1364 1365static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1366{ 1367 return skb->hash; 1368} 1369 1370static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1371{ 1372 to->hash = from->hash; 1373 to->sw_hash = from->sw_hash; 1374 to->l4_hash = from->l4_hash; 1375}; 1376 1377static inline void skb_copy_decrypted(struct sk_buff *to, 1378 const struct sk_buff *from) 1379{ 1380#ifdef CONFIG_TLS_DEVICE 1381 to->decrypted = from->decrypted; 1382#endif 1383} 1384 1385#ifdef NET_SKBUFF_DATA_USES_OFFSET 1386static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1387{ 1388 return skb->head + skb->end; 1389} 1390 1391static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1392{ 1393 return skb->end; 1394} 1395#else 1396static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1397{ 1398 return skb->end; 1399} 1400 1401static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1402{ 1403 return skb->end - skb->head; 1404} 1405#endif 1406 1407/* Internal */ 1408#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1409 1410static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1411{ 1412 return &skb_shinfo(skb)->hwtstamps; 1413} 1414 1415static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1416{ 1417 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1418 1419 return is_zcopy ? skb_uarg(skb) : NULL; 1420} 1421 1422static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1423 bool *have_ref) 1424{ 1425 if (skb && uarg && !skb_zcopy(skb)) { 1426 if (unlikely(have_ref && *have_ref)) 1427 *have_ref = false; 1428 else 1429 sock_zerocopy_get(uarg); 1430 skb_shinfo(skb)->destructor_arg = uarg; 1431 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1432 } 1433} 1434 1435static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1436{ 1437 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1438 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1439} 1440 1441static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1442{ 1443 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1444} 1445 1446static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1447{ 1448 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1449} 1450 1451/* Release a reference on a zerocopy structure */ 1452static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1453{ 1454 struct ubuf_info *uarg = skb_zcopy(skb); 1455 1456 if (uarg) { 1457 if (skb_zcopy_is_nouarg(skb)) { 1458 /* no notification callback */ 1459 } else if (uarg->callback == sock_zerocopy_callback) { 1460 uarg->zerocopy = uarg->zerocopy && zerocopy; 1461 sock_zerocopy_put(uarg); 1462 } else { 1463 uarg->callback(uarg, zerocopy); 1464 } 1465 1466 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1467 } 1468} 1469 1470/* Abort a zerocopy operation and revert zckey on error in send syscall */ 1471static inline void skb_zcopy_abort(struct sk_buff *skb) 1472{ 1473 struct ubuf_info *uarg = skb_zcopy(skb); 1474 1475 if (uarg) { 1476 sock_zerocopy_put_abort(uarg, false); 1477 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1478 } 1479} 1480 1481static inline void skb_mark_not_on_list(struct sk_buff *skb) 1482{ 1483 skb->next = NULL; 1484} 1485 1486static inline void skb_list_del_init(struct sk_buff *skb) 1487{ 1488 __list_del_entry(&skb->list); 1489 skb_mark_not_on_list(skb); 1490} 1491 1492/** 1493 * skb_queue_empty - check if a queue is empty 1494 * @list: queue head 1495 * 1496 * Returns true if the queue is empty, false otherwise. 1497 */ 1498static inline int skb_queue_empty(const struct sk_buff_head *list) 1499{ 1500 return list->next == (const struct sk_buff *) list; 1501} 1502 1503/** 1504 * skb_queue_is_last - check if skb is the last entry in the queue 1505 * @list: queue head 1506 * @skb: buffer 1507 * 1508 * Returns true if @skb is the last buffer on the list. 1509 */ 1510static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1511 const struct sk_buff *skb) 1512{ 1513 return skb->next == (const struct sk_buff *) list; 1514} 1515 1516/** 1517 * skb_queue_is_first - check if skb is the first entry in the queue 1518 * @list: queue head 1519 * @skb: buffer 1520 * 1521 * Returns true if @skb is the first buffer on the list. 1522 */ 1523static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1524 const struct sk_buff *skb) 1525{ 1526 return skb->prev == (const struct sk_buff *) list; 1527} 1528 1529/** 1530 * skb_queue_next - return the next packet in the queue 1531 * @list: queue head 1532 * @skb: current buffer 1533 * 1534 * Return the next packet in @list after @skb. It is only valid to 1535 * call this if skb_queue_is_last() evaluates to false. 1536 */ 1537static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1538 const struct sk_buff *skb) 1539{ 1540 /* This BUG_ON may seem severe, but if we just return then we 1541 * are going to dereference garbage. 1542 */ 1543 BUG_ON(skb_queue_is_last(list, skb)); 1544 return skb->next; 1545} 1546 1547/** 1548 * skb_queue_prev - return the prev packet in the queue 1549 * @list: queue head 1550 * @skb: current buffer 1551 * 1552 * Return the prev packet in @list before @skb. It is only valid to 1553 * call this if skb_queue_is_first() evaluates to false. 1554 */ 1555static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1556 const struct sk_buff *skb) 1557{ 1558 /* This BUG_ON may seem severe, but if we just return then we 1559 * are going to dereference garbage. 1560 */ 1561 BUG_ON(skb_queue_is_first(list, skb)); 1562 return skb->prev; 1563} 1564 1565/** 1566 * skb_get - reference buffer 1567 * @skb: buffer to reference 1568 * 1569 * Makes another reference to a socket buffer and returns a pointer 1570 * to the buffer. 1571 */ 1572static inline struct sk_buff *skb_get(struct sk_buff *skb) 1573{ 1574 refcount_inc(&skb->users); 1575 return skb; 1576} 1577 1578/* 1579 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1580 */ 1581 1582/** 1583 * skb_cloned - is the buffer a clone 1584 * @skb: buffer to check 1585 * 1586 * Returns true if the buffer was generated with skb_clone() and is 1587 * one of multiple shared copies of the buffer. Cloned buffers are 1588 * shared data so must not be written to under normal circumstances. 1589 */ 1590static inline int skb_cloned(const struct sk_buff *skb) 1591{ 1592 return skb->cloned && 1593 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1594} 1595 1596static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1597{ 1598 might_sleep_if(gfpflags_allow_blocking(pri)); 1599 1600 if (skb_cloned(skb)) 1601 return pskb_expand_head(skb, 0, 0, pri); 1602 1603 return 0; 1604} 1605 1606/** 1607 * skb_header_cloned - is the header a clone 1608 * @skb: buffer to check 1609 * 1610 * Returns true if modifying the header part of the buffer requires 1611 * the data to be copied. 1612 */ 1613static inline int skb_header_cloned(const struct sk_buff *skb) 1614{ 1615 int dataref; 1616 1617 if (!skb->cloned) 1618 return 0; 1619 1620 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1621 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1622 return dataref != 1; 1623} 1624 1625static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1626{ 1627 might_sleep_if(gfpflags_allow_blocking(pri)); 1628 1629 if (skb_header_cloned(skb)) 1630 return pskb_expand_head(skb, 0, 0, pri); 1631 1632 return 0; 1633} 1634 1635/** 1636 * __skb_header_release - release reference to header 1637 * @skb: buffer to operate on 1638 */ 1639static inline void __skb_header_release(struct sk_buff *skb) 1640{ 1641 skb->nohdr = 1; 1642 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1643} 1644 1645 1646/** 1647 * skb_shared - is the buffer shared 1648 * @skb: buffer to check 1649 * 1650 * Returns true if more than one person has a reference to this 1651 * buffer. 1652 */ 1653static inline int skb_shared(const struct sk_buff *skb) 1654{ 1655 return refcount_read(&skb->users) != 1; 1656} 1657 1658/** 1659 * skb_share_check - check if buffer is shared and if so clone it 1660 * @skb: buffer to check 1661 * @pri: priority for memory allocation 1662 * 1663 * If the buffer is shared the buffer is cloned and the old copy 1664 * drops a reference. A new clone with a single reference is returned. 1665 * If the buffer is not shared the original buffer is returned. When 1666 * being called from interrupt status or with spinlocks held pri must 1667 * be GFP_ATOMIC. 1668 * 1669 * NULL is returned on a memory allocation failure. 1670 */ 1671static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1672{ 1673 might_sleep_if(gfpflags_allow_blocking(pri)); 1674 if (skb_shared(skb)) { 1675 struct sk_buff *nskb = skb_clone(skb, pri); 1676 1677 if (likely(nskb)) 1678 consume_skb(skb); 1679 else 1680 kfree_skb(skb); 1681 skb = nskb; 1682 } 1683 return skb; 1684} 1685 1686/* 1687 * Copy shared buffers into a new sk_buff. We effectively do COW on 1688 * packets to handle cases where we have a local reader and forward 1689 * and a couple of other messy ones. The normal one is tcpdumping 1690 * a packet thats being forwarded. 1691 */ 1692 1693/** 1694 * skb_unshare - make a copy of a shared buffer 1695 * @skb: buffer to check 1696 * @pri: priority for memory allocation 1697 * 1698 * If the socket buffer is a clone then this function creates a new 1699 * copy of the data, drops a reference count on the old copy and returns 1700 * the new copy with the reference count at 1. If the buffer is not a clone 1701 * the original buffer is returned. When called with a spinlock held or 1702 * from interrupt state @pri must be %GFP_ATOMIC 1703 * 1704 * %NULL is returned on a memory allocation failure. 1705 */ 1706static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1707 gfp_t pri) 1708{ 1709 might_sleep_if(gfpflags_allow_blocking(pri)); 1710 if (skb_cloned(skb)) { 1711 struct sk_buff *nskb = skb_copy(skb, pri); 1712 1713 /* Free our shared copy */ 1714 if (likely(nskb)) 1715 consume_skb(skb); 1716 else 1717 kfree_skb(skb); 1718 skb = nskb; 1719 } 1720 return skb; 1721} 1722 1723/** 1724 * skb_peek - peek at the head of an &sk_buff_head 1725 * @list_: list to peek at 1726 * 1727 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1728 * be careful with this one. A peek leaves the buffer on the 1729 * list and someone else may run off with it. You must hold 1730 * the appropriate locks or have a private queue to do this. 1731 * 1732 * Returns %NULL for an empty list or a pointer to the head element. 1733 * The reference count is not incremented and the reference is therefore 1734 * volatile. Use with caution. 1735 */ 1736static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1737{ 1738 struct sk_buff *skb = list_->next; 1739 1740 if (skb == (struct sk_buff *)list_) 1741 skb = NULL; 1742 return skb; 1743} 1744 1745/** 1746 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1747 * @list_: list to peek at 1748 * 1749 * Like skb_peek(), but the caller knows that the list is not empty. 1750 */ 1751static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1752{ 1753 return list_->next; 1754} 1755 1756/** 1757 * skb_peek_next - peek skb following the given one from a queue 1758 * @skb: skb to start from 1759 * @list_: list to peek at 1760 * 1761 * Returns %NULL when the end of the list is met or a pointer to the 1762 * next element. The reference count is not incremented and the 1763 * reference is therefore volatile. Use with caution. 1764 */ 1765static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1766 const struct sk_buff_head *list_) 1767{ 1768 struct sk_buff *next = skb->next; 1769 1770 if (next == (struct sk_buff *)list_) 1771 next = NULL; 1772 return next; 1773} 1774 1775/** 1776 * skb_peek_tail - peek at the tail of an &sk_buff_head 1777 * @list_: list to peek at 1778 * 1779 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1780 * be careful with this one. A peek leaves the buffer on the 1781 * list and someone else may run off with it. You must hold 1782 * the appropriate locks or have a private queue to do this. 1783 * 1784 * Returns %NULL for an empty list or a pointer to the tail element. 1785 * The reference count is not incremented and the reference is therefore 1786 * volatile. Use with caution. 1787 */ 1788static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1789{ 1790 struct sk_buff *skb = list_->prev; 1791 1792 if (skb == (struct sk_buff *)list_) 1793 skb = NULL; 1794 return skb; 1795 1796} 1797 1798/** 1799 * skb_queue_len - get queue length 1800 * @list_: list to measure 1801 * 1802 * Return the length of an &sk_buff queue. 1803 */ 1804static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1805{ 1806 return list_->qlen; 1807} 1808 1809/** 1810 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1811 * @list: queue to initialize 1812 * 1813 * This initializes only the list and queue length aspects of 1814 * an sk_buff_head object. This allows to initialize the list 1815 * aspects of an sk_buff_head without reinitializing things like 1816 * the spinlock. It can also be used for on-stack sk_buff_head 1817 * objects where the spinlock is known to not be used. 1818 */ 1819static inline void __skb_queue_head_init(struct sk_buff_head *list) 1820{ 1821 list->prev = list->next = (struct sk_buff *)list; 1822 list->qlen = 0; 1823} 1824 1825/* 1826 * This function creates a split out lock class for each invocation; 1827 * this is needed for now since a whole lot of users of the skb-queue 1828 * infrastructure in drivers have different locking usage (in hardirq) 1829 * than the networking core (in softirq only). In the long run either the 1830 * network layer or drivers should need annotation to consolidate the 1831 * main types of usage into 3 classes. 1832 */ 1833static inline void skb_queue_head_init(struct sk_buff_head *list) 1834{ 1835 spin_lock_init(&list->lock); 1836 __skb_queue_head_init(list); 1837} 1838 1839static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1840 struct lock_class_key *class) 1841{ 1842 skb_queue_head_init(list); 1843 lockdep_set_class(&list->lock, class); 1844} 1845 1846/* 1847 * Insert an sk_buff on a list. 1848 * 1849 * The "__skb_xxxx()" functions are the non-atomic ones that 1850 * can only be called with interrupts disabled. 1851 */ 1852static inline void __skb_insert(struct sk_buff *newsk, 1853 struct sk_buff *prev, struct sk_buff *next, 1854 struct sk_buff_head *list) 1855{ 1856 newsk->next = next; 1857 newsk->prev = prev; 1858 next->prev = prev->next = newsk; 1859 list->qlen++; 1860} 1861 1862static inline void __skb_queue_splice(const struct sk_buff_head *list, 1863 struct sk_buff *prev, 1864 struct sk_buff *next) 1865{ 1866 struct sk_buff *first = list->next; 1867 struct sk_buff *last = list->prev; 1868 1869 first->prev = prev; 1870 prev->next = first; 1871 1872 last->next = next; 1873 next->prev = last; 1874} 1875 1876/** 1877 * skb_queue_splice - join two skb lists, this is designed for stacks 1878 * @list: the new list to add 1879 * @head: the place to add it in the first list 1880 */ 1881static inline void skb_queue_splice(const struct sk_buff_head *list, 1882 struct sk_buff_head *head) 1883{ 1884 if (!skb_queue_empty(list)) { 1885 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1886 head->qlen += list->qlen; 1887 } 1888} 1889 1890/** 1891 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1892 * @list: the new list to add 1893 * @head: the place to add it in the first list 1894 * 1895 * The list at @list is reinitialised 1896 */ 1897static inline void skb_queue_splice_init(struct sk_buff_head *list, 1898 struct sk_buff_head *head) 1899{ 1900 if (!skb_queue_empty(list)) { 1901 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1902 head->qlen += list->qlen; 1903 __skb_queue_head_init(list); 1904 } 1905} 1906 1907/** 1908 * skb_queue_splice_tail - join two skb lists, each list being a queue 1909 * @list: the new list to add 1910 * @head: the place to add it in the first list 1911 */ 1912static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1913 struct sk_buff_head *head) 1914{ 1915 if (!skb_queue_empty(list)) { 1916 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1917 head->qlen += list->qlen; 1918 } 1919} 1920 1921/** 1922 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1923 * @list: the new list to add 1924 * @head: the place to add it in the first list 1925 * 1926 * Each of the lists is a queue. 1927 * The list at @list is reinitialised 1928 */ 1929static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1930 struct sk_buff_head *head) 1931{ 1932 if (!skb_queue_empty(list)) { 1933 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1934 head->qlen += list->qlen; 1935 __skb_queue_head_init(list); 1936 } 1937} 1938 1939/** 1940 * __skb_queue_after - queue a buffer at the list head 1941 * @list: list to use 1942 * @prev: place after this buffer 1943 * @newsk: buffer to queue 1944 * 1945 * Queue a buffer int the middle of a list. This function takes no locks 1946 * and you must therefore hold required locks before calling it. 1947 * 1948 * A buffer cannot be placed on two lists at the same time. 1949 */ 1950static inline void __skb_queue_after(struct sk_buff_head *list, 1951 struct sk_buff *prev, 1952 struct sk_buff *newsk) 1953{ 1954 __skb_insert(newsk, prev, prev->next, list); 1955} 1956 1957void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1958 struct sk_buff_head *list); 1959 1960static inline void __skb_queue_before(struct sk_buff_head *list, 1961 struct sk_buff *next, 1962 struct sk_buff *newsk) 1963{ 1964 __skb_insert(newsk, next->prev, next, list); 1965} 1966 1967/** 1968 * __skb_queue_head - queue a buffer at the list head 1969 * @list: list to use 1970 * @newsk: buffer to queue 1971 * 1972 * Queue a buffer at the start of a list. This function takes no locks 1973 * and you must therefore hold required locks before calling it. 1974 * 1975 * A buffer cannot be placed on two lists at the same time. 1976 */ 1977static inline void __skb_queue_head(struct sk_buff_head *list, 1978 struct sk_buff *newsk) 1979{ 1980 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1981} 1982void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1983 1984/** 1985 * __skb_queue_tail - queue a buffer at the list tail 1986 * @list: list to use 1987 * @newsk: buffer to queue 1988 * 1989 * Queue a buffer at the end of a list. This function takes no locks 1990 * and you must therefore hold required locks before calling it. 1991 * 1992 * A buffer cannot be placed on two lists at the same time. 1993 */ 1994static inline void __skb_queue_tail(struct sk_buff_head *list, 1995 struct sk_buff *newsk) 1996{ 1997 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1998} 1999void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2000 2001/* 2002 * remove sk_buff from list. _Must_ be called atomically, and with 2003 * the list known.. 2004 */ 2005void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2006static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2007{ 2008 struct sk_buff *next, *prev; 2009 2010 list->qlen--; 2011 next = skb->next; 2012 prev = skb->prev; 2013 skb->next = skb->prev = NULL; 2014 next->prev = prev; 2015 prev->next = next; 2016} 2017 2018/** 2019 * __skb_dequeue - remove from the head of the queue 2020 * @list: list to dequeue from 2021 * 2022 * Remove the head of the list. This function does not take any locks 2023 * so must be used with appropriate locks held only. The head item is 2024 * returned or %NULL if the list is empty. 2025 */ 2026static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2027{ 2028 struct sk_buff *skb = skb_peek(list); 2029 if (skb) 2030 __skb_unlink(skb, list); 2031 return skb; 2032} 2033struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2034 2035/** 2036 * __skb_dequeue_tail - remove from the tail of the queue 2037 * @list: list to dequeue from 2038 * 2039 * Remove the tail of the list. This function does not take any locks 2040 * so must be used with appropriate locks held only. The tail item is 2041 * returned or %NULL if the list is empty. 2042 */ 2043static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2044{ 2045 struct sk_buff *skb = skb_peek_tail(list); 2046 if (skb) 2047 __skb_unlink(skb, list); 2048 return skb; 2049} 2050struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2051 2052 2053static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2054{ 2055 return skb->data_len; 2056} 2057 2058static inline unsigned int skb_headlen(const struct sk_buff *skb) 2059{ 2060 return skb->len - skb->data_len; 2061} 2062 2063static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2064{ 2065 unsigned int i, len = 0; 2066 2067 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2068 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2069 return len; 2070} 2071 2072static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2073{ 2074 return skb_headlen(skb) + __skb_pagelen(skb); 2075} 2076 2077/** 2078 * __skb_fill_page_desc - initialise a paged fragment in an skb 2079 * @skb: buffer containing fragment to be initialised 2080 * @i: paged fragment index to initialise 2081 * @page: the page to use for this fragment 2082 * @off: the offset to the data with @page 2083 * @size: the length of the data 2084 * 2085 * Initialises the @i'th fragment of @skb to point to &size bytes at 2086 * offset @off within @page. 2087 * 2088 * Does not take any additional reference on the fragment. 2089 */ 2090static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2091 struct page *page, int off, int size) 2092{ 2093 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2094 2095 /* 2096 * Propagate page pfmemalloc to the skb if we can. The problem is 2097 * that not all callers have unique ownership of the page but rely 2098 * on page_is_pfmemalloc doing the right thing(tm). 2099 */ 2100 frag->page.p = page; 2101 frag->page_offset = off; 2102 skb_frag_size_set(frag, size); 2103 2104 page = compound_head(page); 2105 if (page_is_pfmemalloc(page)) 2106 skb->pfmemalloc = true; 2107} 2108 2109/** 2110 * skb_fill_page_desc - initialise a paged fragment in an skb 2111 * @skb: buffer containing fragment to be initialised 2112 * @i: paged fragment index to initialise 2113 * @page: the page to use for this fragment 2114 * @off: the offset to the data with @page 2115 * @size: the length of the data 2116 * 2117 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2118 * @skb to point to @size bytes at offset @off within @page. In 2119 * addition updates @skb such that @i is the last fragment. 2120 * 2121 * Does not take any additional reference on the fragment. 2122 */ 2123static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2124 struct page *page, int off, int size) 2125{ 2126 __skb_fill_page_desc(skb, i, page, off, size); 2127 skb_shinfo(skb)->nr_frags = i + 1; 2128} 2129 2130void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2131 int size, unsigned int truesize); 2132 2133void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2134 unsigned int truesize); 2135 2136#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2137 2138#ifdef NET_SKBUFF_DATA_USES_OFFSET 2139static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2140{ 2141 return skb->head + skb->tail; 2142} 2143 2144static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2145{ 2146 skb->tail = skb->data - skb->head; 2147} 2148 2149static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2150{ 2151 skb_reset_tail_pointer(skb); 2152 skb->tail += offset; 2153} 2154 2155#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2156static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2157{ 2158 return skb->tail; 2159} 2160 2161static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2162{ 2163 skb->tail = skb->data; 2164} 2165 2166static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2167{ 2168 skb->tail = skb->data + offset; 2169} 2170 2171#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2172 2173/* 2174 * Add data to an sk_buff 2175 */ 2176void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2177void *skb_put(struct sk_buff *skb, unsigned int len); 2178static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2179{ 2180 void *tmp = skb_tail_pointer(skb); 2181 SKB_LINEAR_ASSERT(skb); 2182 skb->tail += len; 2183 skb->len += len; 2184 return tmp; 2185} 2186 2187static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2188{ 2189 void *tmp = __skb_put(skb, len); 2190 2191 memset(tmp, 0, len); 2192 return tmp; 2193} 2194 2195static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2196 unsigned int len) 2197{ 2198 void *tmp = __skb_put(skb, len); 2199 2200 memcpy(tmp, data, len); 2201 return tmp; 2202} 2203 2204static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2205{ 2206 *(u8 *)__skb_put(skb, 1) = val; 2207} 2208 2209static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2210{ 2211 void *tmp = skb_put(skb, len); 2212 2213 memset(tmp, 0, len); 2214 2215 return tmp; 2216} 2217 2218static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2219 unsigned int len) 2220{ 2221 void *tmp = skb_put(skb, len); 2222 2223 memcpy(tmp, data, len); 2224 2225 return tmp; 2226} 2227 2228static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2229{ 2230 *(u8 *)skb_put(skb, 1) = val; 2231} 2232 2233void *skb_push(struct sk_buff *skb, unsigned int len); 2234static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2235{ 2236 skb->data -= len; 2237 skb->len += len; 2238 return skb->data; 2239} 2240 2241void *skb_pull(struct sk_buff *skb, unsigned int len); 2242static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2243{ 2244 skb->len -= len; 2245 BUG_ON(skb->len < skb->data_len); 2246 return skb->data += len; 2247} 2248 2249static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2250{ 2251 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2252} 2253 2254void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2255 2256static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2257{ 2258 if (len > skb_headlen(skb) && 2259 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2260 return NULL; 2261 skb->len -= len; 2262 return skb->data += len; 2263} 2264 2265static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2266{ 2267 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2268} 2269 2270static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 2271{ 2272 if (likely(len <= skb_headlen(skb))) 2273 return 1; 2274 if (unlikely(len > skb->len)) 2275 return 0; 2276 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2277} 2278 2279void skb_condense(struct sk_buff *skb); 2280 2281/** 2282 * skb_headroom - bytes at buffer head 2283 * @skb: buffer to check 2284 * 2285 * Return the number of bytes of free space at the head of an &sk_buff. 2286 */ 2287static inline unsigned int skb_headroom(const struct sk_buff *skb) 2288{ 2289 return skb->data - skb->head; 2290} 2291 2292/** 2293 * skb_tailroom - bytes at buffer end 2294 * @skb: buffer to check 2295 * 2296 * Return the number of bytes of free space at the tail of an sk_buff 2297 */ 2298static inline int skb_tailroom(const struct sk_buff *skb) 2299{ 2300 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2301} 2302 2303/** 2304 * skb_availroom - bytes at buffer end 2305 * @skb: buffer to check 2306 * 2307 * Return the number of bytes of free space at the tail of an sk_buff 2308 * allocated by sk_stream_alloc() 2309 */ 2310static inline int skb_availroom(const struct sk_buff *skb) 2311{ 2312 if (skb_is_nonlinear(skb)) 2313 return 0; 2314 2315 return skb->end - skb->tail - skb->reserved_tailroom; 2316} 2317 2318/** 2319 * skb_reserve - adjust headroom 2320 * @skb: buffer to alter 2321 * @len: bytes to move 2322 * 2323 * Increase the headroom of an empty &sk_buff by reducing the tail 2324 * room. This is only allowed for an empty buffer. 2325 */ 2326static inline void skb_reserve(struct sk_buff *skb, int len) 2327{ 2328 skb->data += len; 2329 skb->tail += len; 2330} 2331 2332/** 2333 * skb_tailroom_reserve - adjust reserved_tailroom 2334 * @skb: buffer to alter 2335 * @mtu: maximum amount of headlen permitted 2336 * @needed_tailroom: minimum amount of reserved_tailroom 2337 * 2338 * Set reserved_tailroom so that headlen can be as large as possible but 2339 * not larger than mtu and tailroom cannot be smaller than 2340 * needed_tailroom. 2341 * The required headroom should already have been reserved before using 2342 * this function. 2343 */ 2344static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2345 unsigned int needed_tailroom) 2346{ 2347 SKB_LINEAR_ASSERT(skb); 2348 if (mtu < skb_tailroom(skb) - needed_tailroom) 2349 /* use at most mtu */ 2350 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2351 else 2352 /* use up to all available space */ 2353 skb->reserved_tailroom = needed_tailroom; 2354} 2355 2356#define ENCAP_TYPE_ETHER 0 2357#define ENCAP_TYPE_IPPROTO 1 2358 2359static inline void skb_set_inner_protocol(struct sk_buff *skb, 2360 __be16 protocol) 2361{ 2362 skb->inner_protocol = protocol; 2363 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2364} 2365 2366static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2367 __u8 ipproto) 2368{ 2369 skb->inner_ipproto = ipproto; 2370 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2371} 2372 2373static inline void skb_reset_inner_headers(struct sk_buff *skb) 2374{ 2375 skb->inner_mac_header = skb->mac_header; 2376 skb->inner_network_header = skb->network_header; 2377 skb->inner_transport_header = skb->transport_header; 2378} 2379 2380static inline void skb_reset_mac_len(struct sk_buff *skb) 2381{ 2382 skb->mac_len = skb->network_header - skb->mac_header; 2383} 2384 2385static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2386 *skb) 2387{ 2388 return skb->head + skb->inner_transport_header; 2389} 2390 2391static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2392{ 2393 return skb_inner_transport_header(skb) - skb->data; 2394} 2395 2396static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2397{ 2398 skb->inner_transport_header = skb->data - skb->head; 2399} 2400 2401static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2402 const int offset) 2403{ 2404 skb_reset_inner_transport_header(skb); 2405 skb->inner_transport_header += offset; 2406} 2407 2408static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2409{ 2410 return skb->head + skb->inner_network_header; 2411} 2412 2413static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2414{ 2415 skb->inner_network_header = skb->data - skb->head; 2416} 2417 2418static inline void skb_set_inner_network_header(struct sk_buff *skb, 2419 const int offset) 2420{ 2421 skb_reset_inner_network_header(skb); 2422 skb->inner_network_header += offset; 2423} 2424 2425static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2426{ 2427 return skb->head + skb->inner_mac_header; 2428} 2429 2430static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2431{ 2432 skb->inner_mac_header = skb->data - skb->head; 2433} 2434 2435static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2436 const int offset) 2437{ 2438 skb_reset_inner_mac_header(skb); 2439 skb->inner_mac_header += offset; 2440} 2441static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2442{ 2443 return skb->transport_header != (typeof(skb->transport_header))~0U; 2444} 2445 2446static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2447{ 2448 return skb->head + skb->transport_header; 2449} 2450 2451static inline void skb_reset_transport_header(struct sk_buff *skb) 2452{ 2453 skb->transport_header = skb->data - skb->head; 2454} 2455 2456static inline void skb_set_transport_header(struct sk_buff *skb, 2457 const int offset) 2458{ 2459 skb_reset_transport_header(skb); 2460 skb->transport_header += offset; 2461} 2462 2463static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2464{ 2465 return skb->head + skb->network_header; 2466} 2467 2468static inline void skb_reset_network_header(struct sk_buff *skb) 2469{ 2470 skb->network_header = skb->data - skb->head; 2471} 2472 2473static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2474{ 2475 skb_reset_network_header(skb); 2476 skb->network_header += offset; 2477} 2478 2479static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2480{ 2481 return skb->head + skb->mac_header; 2482} 2483 2484static inline int skb_mac_offset(const struct sk_buff *skb) 2485{ 2486 return skb_mac_header(skb) - skb->data; 2487} 2488 2489static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2490{ 2491 return skb->network_header - skb->mac_header; 2492} 2493 2494static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2495{ 2496 return skb->mac_header != (typeof(skb->mac_header))~0U; 2497} 2498 2499static inline void skb_reset_mac_header(struct sk_buff *skb) 2500{ 2501 skb->mac_header = skb->data - skb->head; 2502} 2503 2504static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2505{ 2506 skb_reset_mac_header(skb); 2507 skb->mac_header += offset; 2508} 2509 2510static inline void skb_pop_mac_header(struct sk_buff *skb) 2511{ 2512 skb->mac_header = skb->network_header; 2513} 2514 2515static inline void skb_probe_transport_header(struct sk_buff *skb) 2516{ 2517 struct flow_keys_basic keys; 2518 2519 if (skb_transport_header_was_set(skb)) 2520 return; 2521 2522 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2523 NULL, 0, 0, 0, 0)) 2524 skb_set_transport_header(skb, keys.control.thoff); 2525} 2526 2527static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2528{ 2529 if (skb_mac_header_was_set(skb)) { 2530 const unsigned char *old_mac = skb_mac_header(skb); 2531 2532 skb_set_mac_header(skb, -skb->mac_len); 2533 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2534 } 2535} 2536 2537static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2538{ 2539 return skb->csum_start - skb_headroom(skb); 2540} 2541 2542static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2543{ 2544 return skb->head + skb->csum_start; 2545} 2546 2547static inline int skb_transport_offset(const struct sk_buff *skb) 2548{ 2549 return skb_transport_header(skb) - skb->data; 2550} 2551 2552static inline u32 skb_network_header_len(const struct sk_buff *skb) 2553{ 2554 return skb->transport_header - skb->network_header; 2555} 2556 2557static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2558{ 2559 return skb->inner_transport_header - skb->inner_network_header; 2560} 2561 2562static inline int skb_network_offset(const struct sk_buff *skb) 2563{ 2564 return skb_network_header(skb) - skb->data; 2565} 2566 2567static inline int skb_inner_network_offset(const struct sk_buff *skb) 2568{ 2569 return skb_inner_network_header(skb) - skb->data; 2570} 2571 2572static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2573{ 2574 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2575} 2576 2577/* 2578 * CPUs often take a performance hit when accessing unaligned memory 2579 * locations. The actual performance hit varies, it can be small if the 2580 * hardware handles it or large if we have to take an exception and fix it 2581 * in software. 2582 * 2583 * Since an ethernet header is 14 bytes network drivers often end up with 2584 * the IP header at an unaligned offset. The IP header can be aligned by 2585 * shifting the start of the packet by 2 bytes. Drivers should do this 2586 * with: 2587 * 2588 * skb_reserve(skb, NET_IP_ALIGN); 2589 * 2590 * The downside to this alignment of the IP header is that the DMA is now 2591 * unaligned. On some architectures the cost of an unaligned DMA is high 2592 * and this cost outweighs the gains made by aligning the IP header. 2593 * 2594 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2595 * to be overridden. 2596 */ 2597#ifndef NET_IP_ALIGN 2598#define NET_IP_ALIGN 2 2599#endif 2600 2601/* 2602 * The networking layer reserves some headroom in skb data (via 2603 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2604 * the header has to grow. In the default case, if the header has to grow 2605 * 32 bytes or less we avoid the reallocation. 2606 * 2607 * Unfortunately this headroom changes the DMA alignment of the resulting 2608 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2609 * on some architectures. An architecture can override this value, 2610 * perhaps setting it to a cacheline in size (since that will maintain 2611 * cacheline alignment of the DMA). It must be a power of 2. 2612 * 2613 * Various parts of the networking layer expect at least 32 bytes of 2614 * headroom, you should not reduce this. 2615 * 2616 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2617 * to reduce average number of cache lines per packet. 2618 * get_rps_cpus() for example only access one 64 bytes aligned block : 2619 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2620 */ 2621#ifndef NET_SKB_PAD 2622#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2623#endif 2624 2625int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2626 2627static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2628{ 2629 if (WARN_ON(skb_is_nonlinear(skb))) 2630 return; 2631 skb->len = len; 2632 skb_set_tail_pointer(skb, len); 2633} 2634 2635static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2636{ 2637 __skb_set_length(skb, len); 2638} 2639 2640void skb_trim(struct sk_buff *skb, unsigned int len); 2641 2642static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2643{ 2644 if (skb->data_len) 2645 return ___pskb_trim(skb, len); 2646 __skb_trim(skb, len); 2647 return 0; 2648} 2649 2650static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2651{ 2652 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2653} 2654 2655/** 2656 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2657 * @skb: buffer to alter 2658 * @len: new length 2659 * 2660 * This is identical to pskb_trim except that the caller knows that 2661 * the skb is not cloned so we should never get an error due to out- 2662 * of-memory. 2663 */ 2664static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2665{ 2666 int err = pskb_trim(skb, len); 2667 BUG_ON(err); 2668} 2669 2670static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2671{ 2672 unsigned int diff = len - skb->len; 2673 2674 if (skb_tailroom(skb) < diff) { 2675 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2676 GFP_ATOMIC); 2677 if (ret) 2678 return ret; 2679 } 2680 __skb_set_length(skb, len); 2681 return 0; 2682} 2683 2684/** 2685 * skb_orphan - orphan a buffer 2686 * @skb: buffer to orphan 2687 * 2688 * If a buffer currently has an owner then we call the owner's 2689 * destructor function and make the @skb unowned. The buffer continues 2690 * to exist but is no longer charged to its former owner. 2691 */ 2692static inline void skb_orphan(struct sk_buff *skb) 2693{ 2694 if (skb->destructor) { 2695 skb->destructor(skb); 2696 skb->destructor = NULL; 2697 skb->sk = NULL; 2698 } else { 2699 BUG_ON(skb->sk); 2700 } 2701} 2702 2703/** 2704 * skb_orphan_frags - orphan the frags contained in a buffer 2705 * @skb: buffer to orphan frags from 2706 * @gfp_mask: allocation mask for replacement pages 2707 * 2708 * For each frag in the SKB which needs a destructor (i.e. has an 2709 * owner) create a copy of that frag and release the original 2710 * page by calling the destructor. 2711 */ 2712static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2713{ 2714 if (likely(!skb_zcopy(skb))) 2715 return 0; 2716 if (!skb_zcopy_is_nouarg(skb) && 2717 skb_uarg(skb)->callback == sock_zerocopy_callback) 2718 return 0; 2719 return skb_copy_ubufs(skb, gfp_mask); 2720} 2721 2722/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2723static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2724{ 2725 if (likely(!skb_zcopy(skb))) 2726 return 0; 2727 return skb_copy_ubufs(skb, gfp_mask); 2728} 2729 2730/** 2731 * __skb_queue_purge - empty a list 2732 * @list: list to empty 2733 * 2734 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2735 * the list and one reference dropped. This function does not take the 2736 * list lock and the caller must hold the relevant locks to use it. 2737 */ 2738static inline void __skb_queue_purge(struct sk_buff_head *list) 2739{ 2740 struct sk_buff *skb; 2741 while ((skb = __skb_dequeue(list)) != NULL) 2742 kfree_skb(skb); 2743} 2744void skb_queue_purge(struct sk_buff_head *list); 2745 2746unsigned int skb_rbtree_purge(struct rb_root *root); 2747 2748void *netdev_alloc_frag(unsigned int fragsz); 2749 2750struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2751 gfp_t gfp_mask); 2752 2753/** 2754 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2755 * @dev: network device to receive on 2756 * @length: length to allocate 2757 * 2758 * Allocate a new &sk_buff and assign it a usage count of one. The 2759 * buffer has unspecified headroom built in. Users should allocate 2760 * the headroom they think they need without accounting for the 2761 * built in space. The built in space is used for optimisations. 2762 * 2763 * %NULL is returned if there is no free memory. Although this function 2764 * allocates memory it can be called from an interrupt. 2765 */ 2766static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2767 unsigned int length) 2768{ 2769 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2770} 2771 2772/* legacy helper around __netdev_alloc_skb() */ 2773static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2774 gfp_t gfp_mask) 2775{ 2776 return __netdev_alloc_skb(NULL, length, gfp_mask); 2777} 2778 2779/* legacy helper around netdev_alloc_skb() */ 2780static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2781{ 2782 return netdev_alloc_skb(NULL, length); 2783} 2784 2785 2786static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2787 unsigned int length, gfp_t gfp) 2788{ 2789 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2790 2791 if (NET_IP_ALIGN && skb) 2792 skb_reserve(skb, NET_IP_ALIGN); 2793 return skb; 2794} 2795 2796static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2797 unsigned int length) 2798{ 2799 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2800} 2801 2802static inline void skb_free_frag(void *addr) 2803{ 2804 page_frag_free(addr); 2805} 2806 2807void *napi_alloc_frag(unsigned int fragsz); 2808struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2809 unsigned int length, gfp_t gfp_mask); 2810static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2811 unsigned int length) 2812{ 2813 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2814} 2815void napi_consume_skb(struct sk_buff *skb, int budget); 2816 2817void __kfree_skb_flush(void); 2818void __kfree_skb_defer(struct sk_buff *skb); 2819 2820/** 2821 * __dev_alloc_pages - allocate page for network Rx 2822 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2823 * @order: size of the allocation 2824 * 2825 * Allocate a new page. 2826 * 2827 * %NULL is returned if there is no free memory. 2828*/ 2829static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2830 unsigned int order) 2831{ 2832 /* This piece of code contains several assumptions. 2833 * 1. This is for device Rx, therefor a cold page is preferred. 2834 * 2. The expectation is the user wants a compound page. 2835 * 3. If requesting a order 0 page it will not be compound 2836 * due to the check to see if order has a value in prep_new_page 2837 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2838 * code in gfp_to_alloc_flags that should be enforcing this. 2839 */ 2840 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2841 2842 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2843} 2844 2845static inline struct page *dev_alloc_pages(unsigned int order) 2846{ 2847 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2848} 2849 2850/** 2851 * __dev_alloc_page - allocate a page for network Rx 2852 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2853 * 2854 * Allocate a new page. 2855 * 2856 * %NULL is returned if there is no free memory. 2857 */ 2858static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2859{ 2860 return __dev_alloc_pages(gfp_mask, 0); 2861} 2862 2863static inline struct page *dev_alloc_page(void) 2864{ 2865 return dev_alloc_pages(0); 2866} 2867 2868/** 2869 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2870 * @page: The page that was allocated from skb_alloc_page 2871 * @skb: The skb that may need pfmemalloc set 2872 */ 2873static inline void skb_propagate_pfmemalloc(struct page *page, 2874 struct sk_buff *skb) 2875{ 2876 if (page_is_pfmemalloc(page)) 2877 skb->pfmemalloc = true; 2878} 2879 2880/** 2881 * skb_frag_page - retrieve the page referred to by a paged fragment 2882 * @frag: the paged fragment 2883 * 2884 * Returns the &struct page associated with @frag. 2885 */ 2886static inline struct page *skb_frag_page(const skb_frag_t *frag) 2887{ 2888 return frag->page.p; 2889} 2890 2891/** 2892 * __skb_frag_ref - take an addition reference on a paged fragment. 2893 * @frag: the paged fragment 2894 * 2895 * Takes an additional reference on the paged fragment @frag. 2896 */ 2897static inline void __skb_frag_ref(skb_frag_t *frag) 2898{ 2899 get_page(skb_frag_page(frag)); 2900} 2901 2902/** 2903 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2904 * @skb: the buffer 2905 * @f: the fragment offset. 2906 * 2907 * Takes an additional reference on the @f'th paged fragment of @skb. 2908 */ 2909static inline void skb_frag_ref(struct sk_buff *skb, int f) 2910{ 2911 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2912} 2913 2914/** 2915 * __skb_frag_unref - release a reference on a paged fragment. 2916 * @frag: the paged fragment 2917 * 2918 * Releases a reference on the paged fragment @frag. 2919 */ 2920static inline void __skb_frag_unref(skb_frag_t *frag) 2921{ 2922 put_page(skb_frag_page(frag)); 2923} 2924 2925/** 2926 * skb_frag_unref - release a reference on a paged fragment of an skb. 2927 * @skb: the buffer 2928 * @f: the fragment offset 2929 * 2930 * Releases a reference on the @f'th paged fragment of @skb. 2931 */ 2932static inline void skb_frag_unref(struct sk_buff *skb, int f) 2933{ 2934 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2935} 2936 2937/** 2938 * skb_frag_address - gets the address of the data contained in a paged fragment 2939 * @frag: the paged fragment buffer 2940 * 2941 * Returns the address of the data within @frag. The page must already 2942 * be mapped. 2943 */ 2944static inline void *skb_frag_address(const skb_frag_t *frag) 2945{ 2946 return page_address(skb_frag_page(frag)) + frag->page_offset; 2947} 2948 2949/** 2950 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2951 * @frag: the paged fragment buffer 2952 * 2953 * Returns the address of the data within @frag. Checks that the page 2954 * is mapped and returns %NULL otherwise. 2955 */ 2956static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2957{ 2958 void *ptr = page_address(skb_frag_page(frag)); 2959 if (unlikely(!ptr)) 2960 return NULL; 2961 2962 return ptr + frag->page_offset; 2963} 2964 2965/** 2966 * __skb_frag_set_page - sets the page contained in a paged fragment 2967 * @frag: the paged fragment 2968 * @page: the page to set 2969 * 2970 * Sets the fragment @frag to contain @page. 2971 */ 2972static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2973{ 2974 frag->page.p = page; 2975} 2976 2977/** 2978 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2979 * @skb: the buffer 2980 * @f: the fragment offset 2981 * @page: the page to set 2982 * 2983 * Sets the @f'th fragment of @skb to contain @page. 2984 */ 2985static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2986 struct page *page) 2987{ 2988 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2989} 2990 2991bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2992 2993/** 2994 * skb_frag_dma_map - maps a paged fragment via the DMA API 2995 * @dev: the device to map the fragment to 2996 * @frag: the paged fragment to map 2997 * @offset: the offset within the fragment (starting at the 2998 * fragment's own offset) 2999 * @size: the number of bytes to map 3000 * @dir: the direction of the mapping (``PCI_DMA_*``) 3001 * 3002 * Maps the page associated with @frag to @device. 3003 */ 3004static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3005 const skb_frag_t *frag, 3006 size_t offset, size_t size, 3007 enum dma_data_direction dir) 3008{ 3009 return dma_map_page(dev, skb_frag_page(frag), 3010 frag->page_offset + offset, size, dir); 3011} 3012 3013static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3014 gfp_t gfp_mask) 3015{ 3016 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3017} 3018 3019 3020static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3021 gfp_t gfp_mask) 3022{ 3023 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3024} 3025 3026 3027/** 3028 * skb_clone_writable - is the header of a clone writable 3029 * @skb: buffer to check 3030 * @len: length up to which to write 3031 * 3032 * Returns true if modifying the header part of the cloned buffer 3033 * does not requires the data to be copied. 3034 */ 3035static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3036{ 3037 return !skb_header_cloned(skb) && 3038 skb_headroom(skb) + len <= skb->hdr_len; 3039} 3040 3041static inline int skb_try_make_writable(struct sk_buff *skb, 3042 unsigned int write_len) 3043{ 3044 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3045 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3046} 3047 3048static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3049 int cloned) 3050{ 3051 int delta = 0; 3052 3053 if (headroom > skb_headroom(skb)) 3054 delta = headroom - skb_headroom(skb); 3055 3056 if (delta || cloned) 3057 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3058 GFP_ATOMIC); 3059 return 0; 3060} 3061 3062/** 3063 * skb_cow - copy header of skb when it is required 3064 * @skb: buffer to cow 3065 * @headroom: needed headroom 3066 * 3067 * If the skb passed lacks sufficient headroom or its data part 3068 * is shared, data is reallocated. If reallocation fails, an error 3069 * is returned and original skb is not changed. 3070 * 3071 * The result is skb with writable area skb->head...skb->tail 3072 * and at least @headroom of space at head. 3073 */ 3074static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3075{ 3076 return __skb_cow(skb, headroom, skb_cloned(skb)); 3077} 3078 3079/** 3080 * skb_cow_head - skb_cow but only making the head writable 3081 * @skb: buffer to cow 3082 * @headroom: needed headroom 3083 * 3084 * This function is identical to skb_cow except that we replace the 3085 * skb_cloned check by skb_header_cloned. It should be used when 3086 * you only need to push on some header and do not need to modify 3087 * the data. 3088 */ 3089static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3090{ 3091 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3092} 3093 3094/** 3095 * skb_padto - pad an skbuff up to a minimal size 3096 * @skb: buffer to pad 3097 * @len: minimal length 3098 * 3099 * Pads up a buffer to ensure the trailing bytes exist and are 3100 * blanked. If the buffer already contains sufficient data it 3101 * is untouched. Otherwise it is extended. Returns zero on 3102 * success. The skb is freed on error. 3103 */ 3104static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3105{ 3106 unsigned int size = skb->len; 3107 if (likely(size >= len)) 3108 return 0; 3109 return skb_pad(skb, len - size); 3110} 3111 3112/** 3113 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3114 * @skb: buffer to pad 3115 * @len: minimal length 3116 * @free_on_error: free buffer on error 3117 * 3118 * Pads up a buffer to ensure the trailing bytes exist and are 3119 * blanked. If the buffer already contains sufficient data it 3120 * is untouched. Otherwise it is extended. Returns zero on 3121 * success. The skb is freed on error if @free_on_error is true. 3122 */ 3123static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3124 bool free_on_error) 3125{ 3126 unsigned int size = skb->len; 3127 3128 if (unlikely(size < len)) { 3129 len -= size; 3130 if (__skb_pad(skb, len, free_on_error)) 3131 return -ENOMEM; 3132 __skb_put(skb, len); 3133 } 3134 return 0; 3135} 3136 3137/** 3138 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3139 * @skb: buffer to pad 3140 * @len: minimal length 3141 * 3142 * Pads up a buffer to ensure the trailing bytes exist and are 3143 * blanked. If the buffer already contains sufficient data it 3144 * is untouched. Otherwise it is extended. Returns zero on 3145 * success. The skb is freed on error. 3146 */ 3147static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3148{ 3149 return __skb_put_padto(skb, len, true); 3150} 3151 3152static inline int skb_add_data(struct sk_buff *skb, 3153 struct iov_iter *from, int copy) 3154{ 3155 const int off = skb->len; 3156 3157 if (skb->ip_summed == CHECKSUM_NONE) { 3158 __wsum csum = 0; 3159 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3160 &csum, from)) { 3161 skb->csum = csum_block_add(skb->csum, csum, off); 3162 return 0; 3163 } 3164 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3165 return 0; 3166 3167 __skb_trim(skb, off); 3168 return -EFAULT; 3169} 3170 3171static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3172 const struct page *page, int off) 3173{ 3174 if (skb_zcopy(skb)) 3175 return false; 3176 if (i) { 3177 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 3178 3179 return page == skb_frag_page(frag) && 3180 off == frag->page_offset + skb_frag_size(frag); 3181 } 3182 return false; 3183} 3184 3185static inline int __skb_linearize(struct sk_buff *skb) 3186{ 3187 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3188} 3189 3190/** 3191 * skb_linearize - convert paged skb to linear one 3192 * @skb: buffer to linarize 3193 * 3194 * If there is no free memory -ENOMEM is returned, otherwise zero 3195 * is returned and the old skb data released. 3196 */ 3197static inline int skb_linearize(struct sk_buff *skb) 3198{ 3199 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3200} 3201 3202/** 3203 * skb_has_shared_frag - can any frag be overwritten 3204 * @skb: buffer to test 3205 * 3206 * Return true if the skb has at least one frag that might be modified 3207 * by an external entity (as in vmsplice()/sendfile()) 3208 */ 3209static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3210{ 3211 return skb_is_nonlinear(skb) && 3212 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3213} 3214 3215/** 3216 * skb_linearize_cow - make sure skb is linear and writable 3217 * @skb: buffer to process 3218 * 3219 * If there is no free memory -ENOMEM is returned, otherwise zero 3220 * is returned and the old skb data released. 3221 */ 3222static inline int skb_linearize_cow(struct sk_buff *skb) 3223{ 3224 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3225 __skb_linearize(skb) : 0; 3226} 3227 3228static __always_inline void 3229__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3230 unsigned int off) 3231{ 3232 if (skb->ip_summed == CHECKSUM_COMPLETE) 3233 skb->csum = csum_block_sub(skb->csum, 3234 csum_partial(start, len, 0), off); 3235 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3236 skb_checksum_start_offset(skb) < 0) 3237 skb->ip_summed = CHECKSUM_NONE; 3238} 3239 3240/** 3241 * skb_postpull_rcsum - update checksum for received skb after pull 3242 * @skb: buffer to update 3243 * @start: start of data before pull 3244 * @len: length of data pulled 3245 * 3246 * After doing a pull on a received packet, you need to call this to 3247 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3248 * CHECKSUM_NONE so that it can be recomputed from scratch. 3249 */ 3250static inline void skb_postpull_rcsum(struct sk_buff *skb, 3251 const void *start, unsigned int len) 3252{ 3253 __skb_postpull_rcsum(skb, start, len, 0); 3254} 3255 3256static __always_inline void 3257__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3258 unsigned int off) 3259{ 3260 if (skb->ip_summed == CHECKSUM_COMPLETE) 3261 skb->csum = csum_block_add(skb->csum, 3262 csum_partial(start, len, 0), off); 3263} 3264 3265/** 3266 * skb_postpush_rcsum - update checksum for received skb after push 3267 * @skb: buffer to update 3268 * @start: start of data after push 3269 * @len: length of data pushed 3270 * 3271 * After doing a push on a received packet, you need to call this to 3272 * update the CHECKSUM_COMPLETE checksum. 3273 */ 3274static inline void skb_postpush_rcsum(struct sk_buff *skb, 3275 const void *start, unsigned int len) 3276{ 3277 __skb_postpush_rcsum(skb, start, len, 0); 3278} 3279 3280void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3281 3282/** 3283 * skb_push_rcsum - push skb and update receive checksum 3284 * @skb: buffer to update 3285 * @len: length of data pulled 3286 * 3287 * This function performs an skb_push on the packet and updates 3288 * the CHECKSUM_COMPLETE checksum. It should be used on 3289 * receive path processing instead of skb_push unless you know 3290 * that the checksum difference is zero (e.g., a valid IP header) 3291 * or you are setting ip_summed to CHECKSUM_NONE. 3292 */ 3293static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3294{ 3295 skb_push(skb, len); 3296 skb_postpush_rcsum(skb, skb->data, len); 3297 return skb->data; 3298} 3299 3300int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3301/** 3302 * pskb_trim_rcsum - trim received skb and update checksum 3303 * @skb: buffer to trim 3304 * @len: new length 3305 * 3306 * This is exactly the same as pskb_trim except that it ensures the 3307 * checksum of received packets are still valid after the operation. 3308 * It can change skb pointers. 3309 */ 3310 3311static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3312{ 3313 if (likely(len >= skb->len)) 3314 return 0; 3315 return pskb_trim_rcsum_slow(skb, len); 3316} 3317 3318static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3319{ 3320 if (skb->ip_summed == CHECKSUM_COMPLETE) 3321 skb->ip_summed = CHECKSUM_NONE; 3322 __skb_trim(skb, len); 3323 return 0; 3324} 3325 3326static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3327{ 3328 if (skb->ip_summed == CHECKSUM_COMPLETE) 3329 skb->ip_summed = CHECKSUM_NONE; 3330 return __skb_grow(skb, len); 3331} 3332 3333#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3334#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3335#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3336#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3337#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3338 3339#define skb_queue_walk(queue, skb) \ 3340 for (skb = (queue)->next; \ 3341 skb != (struct sk_buff *)(queue); \ 3342 skb = skb->next) 3343 3344#define skb_queue_walk_safe(queue, skb, tmp) \ 3345 for (skb = (queue)->next, tmp = skb->next; \ 3346 skb != (struct sk_buff *)(queue); \ 3347 skb = tmp, tmp = skb->next) 3348 3349#define skb_queue_walk_from(queue, skb) \ 3350 for (; skb != (struct sk_buff *)(queue); \ 3351 skb = skb->next) 3352 3353#define skb_rbtree_walk(skb, root) \ 3354 for (skb = skb_rb_first(root); skb != NULL; \ 3355 skb = skb_rb_next(skb)) 3356 3357#define skb_rbtree_walk_from(skb) \ 3358 for (; skb != NULL; \ 3359 skb = skb_rb_next(skb)) 3360 3361#define skb_rbtree_walk_from_safe(skb, tmp) \ 3362 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3363 skb = tmp) 3364 3365#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3366 for (tmp = skb->next; \ 3367 skb != (struct sk_buff *)(queue); \ 3368 skb = tmp, tmp = skb->next) 3369 3370#define skb_queue_reverse_walk(queue, skb) \ 3371 for (skb = (queue)->prev; \ 3372 skb != (struct sk_buff *)(queue); \ 3373 skb = skb->prev) 3374 3375#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3376 for (skb = (queue)->prev, tmp = skb->prev; \ 3377 skb != (struct sk_buff *)(queue); \ 3378 skb = tmp, tmp = skb->prev) 3379 3380#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3381 for (tmp = skb->prev; \ 3382 skb != (struct sk_buff *)(queue); \ 3383 skb = tmp, tmp = skb->prev) 3384 3385static inline bool skb_has_frag_list(const struct sk_buff *skb) 3386{ 3387 return skb_shinfo(skb)->frag_list != NULL; 3388} 3389 3390static inline void skb_frag_list_init(struct sk_buff *skb) 3391{ 3392 skb_shinfo(skb)->frag_list = NULL; 3393} 3394 3395#define skb_walk_frags(skb, iter) \ 3396 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3397 3398 3399int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, 3400 const struct sk_buff *skb); 3401struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3402 struct sk_buff_head *queue, 3403 unsigned int flags, 3404 void (*destructor)(struct sock *sk, 3405 struct sk_buff *skb), 3406 int *off, int *err, 3407 struct sk_buff **last); 3408struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, 3409 void (*destructor)(struct sock *sk, 3410 struct sk_buff *skb), 3411 int *off, int *err, 3412 struct sk_buff **last); 3413struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 3414 void (*destructor)(struct sock *sk, 3415 struct sk_buff *skb), 3416 int *off, int *err); 3417struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3418 int *err); 3419__poll_t datagram_poll(struct file *file, struct socket *sock, 3420 struct poll_table_struct *wait); 3421int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3422 struct iov_iter *to, int size); 3423static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3424 struct msghdr *msg, int size) 3425{ 3426 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3427} 3428int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3429 struct msghdr *msg); 3430int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3431 struct iov_iter *to, int len, 3432 struct ahash_request *hash); 3433int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3434 struct iov_iter *from, int len); 3435int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3436void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3437void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3438static inline void skb_free_datagram_locked(struct sock *sk, 3439 struct sk_buff *skb) 3440{ 3441 __skb_free_datagram_locked(sk, skb, 0); 3442} 3443int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3444int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3445int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3446__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3447 int len, __wsum csum); 3448int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3449 struct pipe_inode_info *pipe, unsigned int len, 3450 unsigned int flags); 3451int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3452 int len); 3453void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3454unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3455int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3456 int len, int hlen); 3457void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3458int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3459void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3460bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3461bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3462struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3463struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3464int skb_ensure_writable(struct sk_buff *skb, int write_len); 3465int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3466int skb_vlan_pop(struct sk_buff *skb); 3467int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3468int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto); 3469int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto); 3470int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3471int skb_mpls_dec_ttl(struct sk_buff *skb); 3472struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3473 gfp_t gfp); 3474 3475static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3476{ 3477 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3478} 3479 3480static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3481{ 3482 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3483} 3484 3485struct skb_checksum_ops { 3486 __wsum (*update)(const void *mem, int len, __wsum wsum); 3487 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3488}; 3489 3490extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3491 3492__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3493 __wsum csum, const struct skb_checksum_ops *ops); 3494__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3495 __wsum csum); 3496 3497static inline void * __must_check 3498__skb_header_pointer(const struct sk_buff *skb, int offset, 3499 int len, void *data, int hlen, void *buffer) 3500{ 3501 if (hlen - offset >= len) 3502 return data + offset; 3503 3504 if (!skb || 3505 skb_copy_bits(skb, offset, buffer, len) < 0) 3506 return NULL; 3507 3508 return buffer; 3509} 3510 3511static inline void * __must_check 3512skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3513{ 3514 return __skb_header_pointer(skb, offset, len, skb->data, 3515 skb_headlen(skb), buffer); 3516} 3517 3518/** 3519 * skb_needs_linearize - check if we need to linearize a given skb 3520 * depending on the given device features. 3521 * @skb: socket buffer to check 3522 * @features: net device features 3523 * 3524 * Returns true if either: 3525 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3526 * 2. skb is fragmented and the device does not support SG. 3527 */ 3528static inline bool skb_needs_linearize(struct sk_buff *skb, 3529 netdev_features_t features) 3530{ 3531 return skb_is_nonlinear(skb) && 3532 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3533 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3534} 3535 3536static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3537 void *to, 3538 const unsigned int len) 3539{ 3540 memcpy(to, skb->data, len); 3541} 3542 3543static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3544 const int offset, void *to, 3545 const unsigned int len) 3546{ 3547 memcpy(to, skb->data + offset, len); 3548} 3549 3550static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3551 const void *from, 3552 const unsigned int len) 3553{ 3554 memcpy(skb->data, from, len); 3555} 3556 3557static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3558 const int offset, 3559 const void *from, 3560 const unsigned int len) 3561{ 3562 memcpy(skb->data + offset, from, len); 3563} 3564 3565void skb_init(void); 3566 3567static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3568{ 3569 return skb->tstamp; 3570} 3571 3572/** 3573 * skb_get_timestamp - get timestamp from a skb 3574 * @skb: skb to get stamp from 3575 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3576 * 3577 * Timestamps are stored in the skb as offsets to a base timestamp. 3578 * This function converts the offset back to a struct timeval and stores 3579 * it in stamp. 3580 */ 3581static inline void skb_get_timestamp(const struct sk_buff *skb, 3582 struct __kernel_old_timeval *stamp) 3583{ 3584 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3585} 3586 3587static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3588 struct __kernel_sock_timeval *stamp) 3589{ 3590 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3591 3592 stamp->tv_sec = ts.tv_sec; 3593 stamp->tv_usec = ts.tv_nsec / 1000; 3594} 3595 3596static inline void skb_get_timestampns(const struct sk_buff *skb, 3597 struct timespec *stamp) 3598{ 3599 *stamp = ktime_to_timespec(skb->tstamp); 3600} 3601 3602static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3603 struct __kernel_timespec *stamp) 3604{ 3605 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3606 3607 stamp->tv_sec = ts.tv_sec; 3608 stamp->tv_nsec = ts.tv_nsec; 3609} 3610 3611static inline void __net_timestamp(struct sk_buff *skb) 3612{ 3613 skb->tstamp = ktime_get_real(); 3614} 3615 3616static inline ktime_t net_timedelta(ktime_t t) 3617{ 3618 return ktime_sub(ktime_get_real(), t); 3619} 3620 3621static inline ktime_t net_invalid_timestamp(void) 3622{ 3623 return 0; 3624} 3625 3626static inline u8 skb_metadata_len(const struct sk_buff *skb) 3627{ 3628 return skb_shinfo(skb)->meta_len; 3629} 3630 3631static inline void *skb_metadata_end(const struct sk_buff *skb) 3632{ 3633 return skb_mac_header(skb); 3634} 3635 3636static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3637 const struct sk_buff *skb_b, 3638 u8 meta_len) 3639{ 3640 const void *a = skb_metadata_end(skb_a); 3641 const void *b = skb_metadata_end(skb_b); 3642 /* Using more efficient varaiant than plain call to memcmp(). */ 3643#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3644 u64 diffs = 0; 3645 3646 switch (meta_len) { 3647#define __it(x, op) (x -= sizeof(u##op)) 3648#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3649 case 32: diffs |= __it_diff(a, b, 64); 3650 /* fall through */ 3651 case 24: diffs |= __it_diff(a, b, 64); 3652 /* fall through */ 3653 case 16: diffs |= __it_diff(a, b, 64); 3654 /* fall through */ 3655 case 8: diffs |= __it_diff(a, b, 64); 3656 break; 3657 case 28: diffs |= __it_diff(a, b, 64); 3658 /* fall through */ 3659 case 20: diffs |= __it_diff(a, b, 64); 3660 /* fall through */ 3661 case 12: diffs |= __it_diff(a, b, 64); 3662 /* fall through */ 3663 case 4: diffs |= __it_diff(a, b, 32); 3664 break; 3665 } 3666 return diffs; 3667#else 3668 return memcmp(a - meta_len, b - meta_len, meta_len); 3669#endif 3670} 3671 3672static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3673 const struct sk_buff *skb_b) 3674{ 3675 u8 len_a = skb_metadata_len(skb_a); 3676 u8 len_b = skb_metadata_len(skb_b); 3677 3678 if (!(len_a | len_b)) 3679 return false; 3680 3681 return len_a != len_b ? 3682 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3683} 3684 3685static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3686{ 3687 skb_shinfo(skb)->meta_len = meta_len; 3688} 3689 3690static inline void skb_metadata_clear(struct sk_buff *skb) 3691{ 3692 skb_metadata_set(skb, 0); 3693} 3694 3695struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3696 3697#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3698 3699void skb_clone_tx_timestamp(struct sk_buff *skb); 3700bool skb_defer_rx_timestamp(struct sk_buff *skb); 3701 3702#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3703 3704static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3705{ 3706} 3707 3708static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3709{ 3710 return false; 3711} 3712 3713#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3714 3715/** 3716 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3717 * 3718 * PHY drivers may accept clones of transmitted packets for 3719 * timestamping via their phy_driver.txtstamp method. These drivers 3720 * must call this function to return the skb back to the stack with a 3721 * timestamp. 3722 * 3723 * @skb: clone of the the original outgoing packet 3724 * @hwtstamps: hardware time stamps 3725 * 3726 */ 3727void skb_complete_tx_timestamp(struct sk_buff *skb, 3728 struct skb_shared_hwtstamps *hwtstamps); 3729 3730void __skb_tstamp_tx(struct sk_buff *orig_skb, 3731 struct skb_shared_hwtstamps *hwtstamps, 3732 struct sock *sk, int tstype); 3733 3734/** 3735 * skb_tstamp_tx - queue clone of skb with send time stamps 3736 * @orig_skb: the original outgoing packet 3737 * @hwtstamps: hardware time stamps, may be NULL if not available 3738 * 3739 * If the skb has a socket associated, then this function clones the 3740 * skb (thus sharing the actual data and optional structures), stores 3741 * the optional hardware time stamping information (if non NULL) or 3742 * generates a software time stamp (otherwise), then queues the clone 3743 * to the error queue of the socket. Errors are silently ignored. 3744 */ 3745void skb_tstamp_tx(struct sk_buff *orig_skb, 3746 struct skb_shared_hwtstamps *hwtstamps); 3747 3748/** 3749 * skb_tx_timestamp() - Driver hook for transmit timestamping 3750 * 3751 * Ethernet MAC Drivers should call this function in their hard_xmit() 3752 * function immediately before giving the sk_buff to the MAC hardware. 3753 * 3754 * Specifically, one should make absolutely sure that this function is 3755 * called before TX completion of this packet can trigger. Otherwise 3756 * the packet could potentially already be freed. 3757 * 3758 * @skb: A socket buffer. 3759 */ 3760static inline void skb_tx_timestamp(struct sk_buff *skb) 3761{ 3762 skb_clone_tx_timestamp(skb); 3763 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3764 skb_tstamp_tx(skb, NULL); 3765} 3766 3767/** 3768 * skb_complete_wifi_ack - deliver skb with wifi status 3769 * 3770 * @skb: the original outgoing packet 3771 * @acked: ack status 3772 * 3773 */ 3774void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3775 3776__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3777__sum16 __skb_checksum_complete(struct sk_buff *skb); 3778 3779static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3780{ 3781 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3782 skb->csum_valid || 3783 (skb->ip_summed == CHECKSUM_PARTIAL && 3784 skb_checksum_start_offset(skb) >= 0)); 3785} 3786 3787/** 3788 * skb_checksum_complete - Calculate checksum of an entire packet 3789 * @skb: packet to process 3790 * 3791 * This function calculates the checksum over the entire packet plus 3792 * the value of skb->csum. The latter can be used to supply the 3793 * checksum of a pseudo header as used by TCP/UDP. It returns the 3794 * checksum. 3795 * 3796 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3797 * this function can be used to verify that checksum on received 3798 * packets. In that case the function should return zero if the 3799 * checksum is correct. In particular, this function will return zero 3800 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3801 * hardware has already verified the correctness of the checksum. 3802 */ 3803static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3804{ 3805 return skb_csum_unnecessary(skb) ? 3806 0 : __skb_checksum_complete(skb); 3807} 3808 3809static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3810{ 3811 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3812 if (skb->csum_level == 0) 3813 skb->ip_summed = CHECKSUM_NONE; 3814 else 3815 skb->csum_level--; 3816 } 3817} 3818 3819static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3820{ 3821 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3822 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3823 skb->csum_level++; 3824 } else if (skb->ip_summed == CHECKSUM_NONE) { 3825 skb->ip_summed = CHECKSUM_UNNECESSARY; 3826 skb->csum_level = 0; 3827 } 3828} 3829 3830/* Check if we need to perform checksum complete validation. 3831 * 3832 * Returns true if checksum complete is needed, false otherwise 3833 * (either checksum is unnecessary or zero checksum is allowed). 3834 */ 3835static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3836 bool zero_okay, 3837 __sum16 check) 3838{ 3839 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3840 skb->csum_valid = 1; 3841 __skb_decr_checksum_unnecessary(skb); 3842 return false; 3843 } 3844 3845 return true; 3846} 3847 3848/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3849 * in checksum_init. 3850 */ 3851#define CHECKSUM_BREAK 76 3852 3853/* Unset checksum-complete 3854 * 3855 * Unset checksum complete can be done when packet is being modified 3856 * (uncompressed for instance) and checksum-complete value is 3857 * invalidated. 3858 */ 3859static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3860{ 3861 if (skb->ip_summed == CHECKSUM_COMPLETE) 3862 skb->ip_summed = CHECKSUM_NONE; 3863} 3864 3865/* Validate (init) checksum based on checksum complete. 3866 * 3867 * Return values: 3868 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3869 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3870 * checksum is stored in skb->csum for use in __skb_checksum_complete 3871 * non-zero: value of invalid checksum 3872 * 3873 */ 3874static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3875 bool complete, 3876 __wsum psum) 3877{ 3878 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3879 if (!csum_fold(csum_add(psum, skb->csum))) { 3880 skb->csum_valid = 1; 3881 return 0; 3882 } 3883 } 3884 3885 skb->csum = psum; 3886 3887 if (complete || skb->len <= CHECKSUM_BREAK) { 3888 __sum16 csum; 3889 3890 csum = __skb_checksum_complete(skb); 3891 skb->csum_valid = !csum; 3892 return csum; 3893 } 3894 3895 return 0; 3896} 3897 3898static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3899{ 3900 return 0; 3901} 3902 3903/* Perform checksum validate (init). Note that this is a macro since we only 3904 * want to calculate the pseudo header which is an input function if necessary. 3905 * First we try to validate without any computation (checksum unnecessary) and 3906 * then calculate based on checksum complete calling the function to compute 3907 * pseudo header. 3908 * 3909 * Return values: 3910 * 0: checksum is validated or try to in skb_checksum_complete 3911 * non-zero: value of invalid checksum 3912 */ 3913#define __skb_checksum_validate(skb, proto, complete, \ 3914 zero_okay, check, compute_pseudo) \ 3915({ \ 3916 __sum16 __ret = 0; \ 3917 skb->csum_valid = 0; \ 3918 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3919 __ret = __skb_checksum_validate_complete(skb, \ 3920 complete, compute_pseudo(skb, proto)); \ 3921 __ret; \ 3922}) 3923 3924#define skb_checksum_init(skb, proto, compute_pseudo) \ 3925 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3926 3927#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3928 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3929 3930#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3931 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3932 3933#define skb_checksum_validate_zero_check(skb, proto, check, \ 3934 compute_pseudo) \ 3935 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 3936 3937#define skb_checksum_simple_validate(skb) \ 3938 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3939 3940static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3941{ 3942 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 3943} 3944 3945static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 3946{ 3947 skb->csum = ~pseudo; 3948 skb->ip_summed = CHECKSUM_COMPLETE; 3949} 3950 3951#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 3952do { \ 3953 if (__skb_checksum_convert_check(skb)) \ 3954 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 3955} while (0) 3956 3957static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 3958 u16 start, u16 offset) 3959{ 3960 skb->ip_summed = CHECKSUM_PARTIAL; 3961 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 3962 skb->csum_offset = offset - start; 3963} 3964 3965/* Update skbuf and packet to reflect the remote checksum offload operation. 3966 * When called, ptr indicates the starting point for skb->csum when 3967 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 3968 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 3969 */ 3970static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 3971 int start, int offset, bool nopartial) 3972{ 3973 __wsum delta; 3974 3975 if (!nopartial) { 3976 skb_remcsum_adjust_partial(skb, ptr, start, offset); 3977 return; 3978 } 3979 3980 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 3981 __skb_checksum_complete(skb); 3982 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 3983 } 3984 3985 delta = remcsum_adjust(ptr, skb->csum, start, offset); 3986 3987 /* Adjust skb->csum since we changed the packet */ 3988 skb->csum = csum_add(skb->csum, delta); 3989} 3990 3991static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 3992{ 3993#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3994 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); 3995#else 3996 return NULL; 3997#endif 3998} 3999 4000#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4001void nf_conntrack_destroy(struct nf_conntrack *nfct); 4002static inline void nf_conntrack_put(struct nf_conntrack *nfct) 4003{ 4004 if (nfct && atomic_dec_and_test(&nfct->use)) 4005 nf_conntrack_destroy(nfct); 4006} 4007static inline void nf_conntrack_get(struct nf_conntrack *nfct) 4008{ 4009 if (nfct) 4010 atomic_inc(&nfct->use); 4011} 4012#endif 4013 4014#ifdef CONFIG_SKB_EXTENSIONS 4015enum skb_ext_id { 4016#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4017 SKB_EXT_BRIDGE_NF, 4018#endif 4019#ifdef CONFIG_XFRM 4020 SKB_EXT_SEC_PATH, 4021#endif 4022 SKB_EXT_NUM, /* must be last */ 4023}; 4024 4025/** 4026 * struct skb_ext - sk_buff extensions 4027 * @refcnt: 1 on allocation, deallocated on 0 4028 * @offset: offset to add to @data to obtain extension address 4029 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4030 * @data: start of extension data, variable sized 4031 * 4032 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4033 * to use 'u8' types while allowing up to 2kb worth of extension data. 4034 */ 4035struct skb_ext { 4036 refcount_t refcnt; 4037 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4038 u8 chunks; /* same */ 4039 char data[0] __aligned(8); 4040}; 4041 4042void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4043void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4044void __skb_ext_put(struct skb_ext *ext); 4045 4046static inline void skb_ext_put(struct sk_buff *skb) 4047{ 4048 if (skb->active_extensions) 4049 __skb_ext_put(skb->extensions); 4050} 4051 4052static inline void __skb_ext_copy(struct sk_buff *dst, 4053 const struct sk_buff *src) 4054{ 4055 dst->active_extensions = src->active_extensions; 4056 4057 if (src->active_extensions) { 4058 struct skb_ext *ext = src->extensions; 4059 4060 refcount_inc(&ext->refcnt); 4061 dst->extensions = ext; 4062 } 4063} 4064 4065static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4066{ 4067 skb_ext_put(dst); 4068 __skb_ext_copy(dst, src); 4069} 4070 4071static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4072{ 4073 return !!ext->offset[i]; 4074} 4075 4076static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4077{ 4078 return skb->active_extensions & (1 << id); 4079} 4080 4081static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4082{ 4083 if (skb_ext_exist(skb, id)) 4084 __skb_ext_del(skb, id); 4085} 4086 4087static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4088{ 4089 if (skb_ext_exist(skb, id)) { 4090 struct skb_ext *ext = skb->extensions; 4091 4092 return (void *)ext + (ext->offset[id] << 3); 4093 } 4094 4095 return NULL; 4096} 4097#else 4098static inline void skb_ext_put(struct sk_buff *skb) {} 4099static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4100static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4101static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4102#endif /* CONFIG_SKB_EXTENSIONS */ 4103 4104static inline void nf_reset(struct sk_buff *skb) 4105{ 4106#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4107 nf_conntrack_put(skb_nfct(skb)); 4108 skb->_nfct = 0; 4109#endif 4110#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4111 skb_ext_del(skb, SKB_EXT_BRIDGE_NF); 4112#endif 4113} 4114 4115static inline void nf_reset_trace(struct sk_buff *skb) 4116{ 4117#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4118 skb->nf_trace = 0; 4119#endif 4120} 4121 4122static inline void ipvs_reset(struct sk_buff *skb) 4123{ 4124#if IS_ENABLED(CONFIG_IP_VS) 4125 skb->ipvs_property = 0; 4126#endif 4127} 4128 4129/* Note: This doesn't put any conntrack info in dst. */ 4130static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4131 bool copy) 4132{ 4133#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4134 dst->_nfct = src->_nfct; 4135 nf_conntrack_get(skb_nfct(src)); 4136#endif 4137#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4138 if (copy) 4139 dst->nf_trace = src->nf_trace; 4140#endif 4141} 4142 4143static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4144{ 4145#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4146 nf_conntrack_put(skb_nfct(dst)); 4147#endif 4148 __nf_copy(dst, src, true); 4149} 4150 4151#ifdef CONFIG_NETWORK_SECMARK 4152static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4153{ 4154 to->secmark = from->secmark; 4155} 4156 4157static inline void skb_init_secmark(struct sk_buff *skb) 4158{ 4159 skb->secmark = 0; 4160} 4161#else 4162static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4163{ } 4164 4165static inline void skb_init_secmark(struct sk_buff *skb) 4166{ } 4167#endif 4168 4169static inline int secpath_exists(const struct sk_buff *skb) 4170{ 4171#ifdef CONFIG_XFRM 4172 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4173#else 4174 return 0; 4175#endif 4176} 4177 4178static inline bool skb_irq_freeable(const struct sk_buff *skb) 4179{ 4180 return !skb->destructor && 4181 !secpath_exists(skb) && 4182 !skb_nfct(skb) && 4183 !skb->_skb_refdst && 4184 !skb_has_frag_list(skb); 4185} 4186 4187static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4188{ 4189 skb->queue_mapping = queue_mapping; 4190} 4191 4192static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4193{ 4194 return skb->queue_mapping; 4195} 4196 4197static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4198{ 4199 to->queue_mapping = from->queue_mapping; 4200} 4201 4202static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4203{ 4204 skb->queue_mapping = rx_queue + 1; 4205} 4206 4207static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4208{ 4209 return skb->queue_mapping - 1; 4210} 4211 4212static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4213{ 4214 return skb->queue_mapping != 0; 4215} 4216 4217static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4218{ 4219 skb->dst_pending_confirm = val; 4220} 4221 4222static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4223{ 4224 return skb->dst_pending_confirm != 0; 4225} 4226 4227static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4228{ 4229#ifdef CONFIG_XFRM 4230 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4231#else 4232 return NULL; 4233#endif 4234} 4235 4236/* Keeps track of mac header offset relative to skb->head. 4237 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4238 * For non-tunnel skb it points to skb_mac_header() and for 4239 * tunnel skb it points to outer mac header. 4240 * Keeps track of level of encapsulation of network headers. 4241 */ 4242struct skb_gso_cb { 4243 union { 4244 int mac_offset; 4245 int data_offset; 4246 }; 4247 int encap_level; 4248 __wsum csum; 4249 __u16 csum_start; 4250}; 4251#define SKB_SGO_CB_OFFSET 32 4252#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) 4253 4254static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4255{ 4256 return (skb_mac_header(inner_skb) - inner_skb->head) - 4257 SKB_GSO_CB(inner_skb)->mac_offset; 4258} 4259 4260static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4261{ 4262 int new_headroom, headroom; 4263 int ret; 4264 4265 headroom = skb_headroom(skb); 4266 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4267 if (ret) 4268 return ret; 4269 4270 new_headroom = skb_headroom(skb); 4271 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4272 return 0; 4273} 4274 4275static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4276{ 4277 /* Do not update partial checksums if remote checksum is enabled. */ 4278 if (skb->remcsum_offload) 4279 return; 4280 4281 SKB_GSO_CB(skb)->csum = res; 4282 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4283} 4284 4285/* Compute the checksum for a gso segment. First compute the checksum value 4286 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4287 * then add in skb->csum (checksum from csum_start to end of packet). 4288 * skb->csum and csum_start are then updated to reflect the checksum of the 4289 * resultant packet starting from the transport header-- the resultant checksum 4290 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4291 * header. 4292 */ 4293static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4294{ 4295 unsigned char *csum_start = skb_transport_header(skb); 4296 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4297 __wsum partial = SKB_GSO_CB(skb)->csum; 4298 4299 SKB_GSO_CB(skb)->csum = res; 4300 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4301 4302 return csum_fold(csum_partial(csum_start, plen, partial)); 4303} 4304 4305static inline bool skb_is_gso(const struct sk_buff *skb) 4306{ 4307 return skb_shinfo(skb)->gso_size; 4308} 4309 4310/* Note: Should be called only if skb_is_gso(skb) is true */ 4311static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4312{ 4313 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4314} 4315 4316/* Note: Should be called only if skb_is_gso(skb) is true */ 4317static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4318{ 4319 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4320} 4321 4322/* Note: Should be called only if skb_is_gso(skb) is true */ 4323static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4324{ 4325 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4326} 4327 4328static inline void skb_gso_reset(struct sk_buff *skb) 4329{ 4330 skb_shinfo(skb)->gso_size = 0; 4331 skb_shinfo(skb)->gso_segs = 0; 4332 skb_shinfo(skb)->gso_type = 0; 4333} 4334 4335static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4336 u16 increment) 4337{ 4338 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4339 return; 4340 shinfo->gso_size += increment; 4341} 4342 4343static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4344 u16 decrement) 4345{ 4346 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4347 return; 4348 shinfo->gso_size -= decrement; 4349} 4350 4351void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4352 4353static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4354{ 4355 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4356 * wanted then gso_type will be set. */ 4357 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4358 4359 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4360 unlikely(shinfo->gso_type == 0)) { 4361 __skb_warn_lro_forwarding(skb); 4362 return true; 4363 } 4364 return false; 4365} 4366 4367static inline void skb_forward_csum(struct sk_buff *skb) 4368{ 4369 /* Unfortunately we don't support this one. Any brave souls? */ 4370 if (skb->ip_summed == CHECKSUM_COMPLETE) 4371 skb->ip_summed = CHECKSUM_NONE; 4372} 4373 4374/** 4375 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4376 * @skb: skb to check 4377 * 4378 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4379 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4380 * use this helper, to document places where we make this assertion. 4381 */ 4382static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4383{ 4384#ifdef DEBUG 4385 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4386#endif 4387} 4388 4389bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4390 4391int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4392struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4393 unsigned int transport_len, 4394 __sum16(*skb_chkf)(struct sk_buff *skb)); 4395 4396/** 4397 * skb_head_is_locked - Determine if the skb->head is locked down 4398 * @skb: skb to check 4399 * 4400 * The head on skbs build around a head frag can be removed if they are 4401 * not cloned. This function returns true if the skb head is locked down 4402 * due to either being allocated via kmalloc, or by being a clone with 4403 * multiple references to the head. 4404 */ 4405static inline bool skb_head_is_locked(const struct sk_buff *skb) 4406{ 4407 return !skb->head_frag || skb_cloned(skb); 4408} 4409 4410/* Local Checksum Offload. 4411 * Compute outer checksum based on the assumption that the 4412 * inner checksum will be offloaded later. 4413 * See Documentation/networking/checksum-offloads.rst for 4414 * explanation of how this works. 4415 * Fill in outer checksum adjustment (e.g. with sum of outer 4416 * pseudo-header) before calling. 4417 * Also ensure that inner checksum is in linear data area. 4418 */ 4419static inline __wsum lco_csum(struct sk_buff *skb) 4420{ 4421 unsigned char *csum_start = skb_checksum_start(skb); 4422 unsigned char *l4_hdr = skb_transport_header(skb); 4423 __wsum partial; 4424 4425 /* Start with complement of inner checksum adjustment */ 4426 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4427 skb->csum_offset)); 4428 4429 /* Add in checksum of our headers (incl. outer checksum 4430 * adjustment filled in by caller) and return result. 4431 */ 4432 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4433} 4434 4435#endif /* __KERNEL__ */ 4436#endif /* _LINUX_SKBUFF_H */