Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34};
35
36#ifdef CONFIG_HAVE_HW_BREAKPOINT
37#include <asm/hw_breakpoint.h>
38#endif
39
40#include <linux/list.h>
41#include <linux/mutex.h>
42#include <linux/rculist.h>
43#include <linux/rcupdate.h>
44#include <linux/spinlock.h>
45#include <linux/hrtimer.h>
46#include <linux/fs.h>
47#include <linux/pid_namespace.h>
48#include <linux/workqueue.h>
49#include <linux/ftrace.h>
50#include <linux/cpu.h>
51#include <linux/irq_work.h>
52#include <linux/static_key.h>
53#include <linux/jump_label_ratelimit.h>
54#include <linux/atomic.h>
55#include <linux/sysfs.h>
56#include <linux/perf_regs.h>
57#include <linux/cgroup.h>
58#include <linux/refcount.h>
59#include <asm/local.h>
60
61struct perf_callchain_entry {
62 __u64 nr;
63 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
64};
65
66struct perf_callchain_entry_ctx {
67 struct perf_callchain_entry *entry;
68 u32 max_stack;
69 u32 nr;
70 short contexts;
71 bool contexts_maxed;
72};
73
74typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
75 unsigned long off, unsigned long len);
76
77struct perf_raw_frag {
78 union {
79 struct perf_raw_frag *next;
80 unsigned long pad;
81 };
82 perf_copy_f copy;
83 void *data;
84 u32 size;
85} __packed;
86
87struct perf_raw_record {
88 struct perf_raw_frag frag;
89 u32 size;
90};
91
92/*
93 * branch stack layout:
94 * nr: number of taken branches stored in entries[]
95 *
96 * Note that nr can vary from sample to sample
97 * branches (to, from) are stored from most recent
98 * to least recent, i.e., entries[0] contains the most
99 * recent branch.
100 */
101struct perf_branch_stack {
102 __u64 nr;
103 struct perf_branch_entry entries[0];
104};
105
106struct task_struct;
107
108/*
109 * extra PMU register associated with an event
110 */
111struct hw_perf_event_extra {
112 u64 config; /* register value */
113 unsigned int reg; /* register address or index */
114 int alloc; /* extra register already allocated */
115 int idx; /* index in shared_regs->regs[] */
116};
117
118/**
119 * struct hw_perf_event - performance event hardware details:
120 */
121struct hw_perf_event {
122#ifdef CONFIG_PERF_EVENTS
123 union {
124 struct { /* hardware */
125 u64 config;
126 u64 last_tag;
127 unsigned long config_base;
128 unsigned long event_base;
129 int event_base_rdpmc;
130 int idx;
131 int last_cpu;
132 int flags;
133
134 struct hw_perf_event_extra extra_reg;
135 struct hw_perf_event_extra branch_reg;
136 };
137 struct { /* software */
138 struct hrtimer hrtimer;
139 };
140 struct { /* tracepoint */
141 /* for tp_event->class */
142 struct list_head tp_list;
143 };
144 struct { /* amd_power */
145 u64 pwr_acc;
146 u64 ptsc;
147 };
148#ifdef CONFIG_HAVE_HW_BREAKPOINT
149 struct { /* breakpoint */
150 /*
151 * Crufty hack to avoid the chicken and egg
152 * problem hw_breakpoint has with context
153 * creation and event initalization.
154 */
155 struct arch_hw_breakpoint info;
156 struct list_head bp_list;
157 };
158#endif
159 struct { /* amd_iommu */
160 u8 iommu_bank;
161 u8 iommu_cntr;
162 u16 padding;
163 u64 conf;
164 u64 conf1;
165 };
166 };
167 /*
168 * If the event is a per task event, this will point to the task in
169 * question. See the comment in perf_event_alloc().
170 */
171 struct task_struct *target;
172
173 /*
174 * PMU would store hardware filter configuration
175 * here.
176 */
177 void *addr_filters;
178
179 /* Last sync'ed generation of filters */
180 unsigned long addr_filters_gen;
181
182/*
183 * hw_perf_event::state flags; used to track the PERF_EF_* state.
184 */
185#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
186#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
187#define PERF_HES_ARCH 0x04
188
189 int state;
190
191 /*
192 * The last observed hardware counter value, updated with a
193 * local64_cmpxchg() such that pmu::read() can be called nested.
194 */
195 local64_t prev_count;
196
197 /*
198 * The period to start the next sample with.
199 */
200 u64 sample_period;
201
202 /*
203 * The period we started this sample with.
204 */
205 u64 last_period;
206
207 /*
208 * However much is left of the current period; note that this is
209 * a full 64bit value and allows for generation of periods longer
210 * than hardware might allow.
211 */
212 local64_t period_left;
213
214 /*
215 * State for throttling the event, see __perf_event_overflow() and
216 * perf_adjust_freq_unthr_context().
217 */
218 u64 interrupts_seq;
219 u64 interrupts;
220
221 /*
222 * State for freq target events, see __perf_event_overflow() and
223 * perf_adjust_freq_unthr_context().
224 */
225 u64 freq_time_stamp;
226 u64 freq_count_stamp;
227#endif
228};
229
230struct perf_event;
231
232/*
233 * Common implementation detail of pmu::{start,commit,cancel}_txn
234 */
235#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
236#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
237
238/**
239 * pmu::capabilities flags
240 */
241#define PERF_PMU_CAP_NO_INTERRUPT 0x01
242#define PERF_PMU_CAP_NO_NMI 0x02
243#define PERF_PMU_CAP_AUX_NO_SG 0x04
244#define PERF_PMU_CAP_EXTENDED_REGS 0x08
245#define PERF_PMU_CAP_EXCLUSIVE 0x10
246#define PERF_PMU_CAP_ITRACE 0x20
247#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
248#define PERF_PMU_CAP_NO_EXCLUDE 0x80
249
250/**
251 * struct pmu - generic performance monitoring unit
252 */
253struct pmu {
254 struct list_head entry;
255
256 struct module *module;
257 struct device *dev;
258 const struct attribute_group **attr_groups;
259 const struct attribute_group **attr_update;
260 const char *name;
261 int type;
262
263 /*
264 * various common per-pmu feature flags
265 */
266 int capabilities;
267
268 int __percpu *pmu_disable_count;
269 struct perf_cpu_context __percpu *pmu_cpu_context;
270 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
271 int task_ctx_nr;
272 int hrtimer_interval_ms;
273
274 /* number of address filters this PMU can do */
275 unsigned int nr_addr_filters;
276
277 /*
278 * Fully disable/enable this PMU, can be used to protect from the PMI
279 * as well as for lazy/batch writing of the MSRs.
280 */
281 void (*pmu_enable) (struct pmu *pmu); /* optional */
282 void (*pmu_disable) (struct pmu *pmu); /* optional */
283
284 /*
285 * Try and initialize the event for this PMU.
286 *
287 * Returns:
288 * -ENOENT -- @event is not for this PMU
289 *
290 * -ENODEV -- @event is for this PMU but PMU not present
291 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
292 * -EINVAL -- @event is for this PMU but @event is not valid
293 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
294 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
295 *
296 * 0 -- @event is for this PMU and valid
297 *
298 * Other error return values are allowed.
299 */
300 int (*event_init) (struct perf_event *event);
301
302 /*
303 * Notification that the event was mapped or unmapped. Called
304 * in the context of the mapping task.
305 */
306 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
307 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
308
309 /*
310 * Flags for ->add()/->del()/ ->start()/->stop(). There are
311 * matching hw_perf_event::state flags.
312 */
313#define PERF_EF_START 0x01 /* start the counter when adding */
314#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
315#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
316
317 /*
318 * Adds/Removes a counter to/from the PMU, can be done inside a
319 * transaction, see the ->*_txn() methods.
320 *
321 * The add/del callbacks will reserve all hardware resources required
322 * to service the event, this includes any counter constraint
323 * scheduling etc.
324 *
325 * Called with IRQs disabled and the PMU disabled on the CPU the event
326 * is on.
327 *
328 * ->add() called without PERF_EF_START should result in the same state
329 * as ->add() followed by ->stop().
330 *
331 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
332 * ->stop() that must deal with already being stopped without
333 * PERF_EF_UPDATE.
334 */
335 int (*add) (struct perf_event *event, int flags);
336 void (*del) (struct perf_event *event, int flags);
337
338 /*
339 * Starts/Stops a counter present on the PMU.
340 *
341 * The PMI handler should stop the counter when perf_event_overflow()
342 * returns !0. ->start() will be used to continue.
343 *
344 * Also used to change the sample period.
345 *
346 * Called with IRQs disabled and the PMU disabled on the CPU the event
347 * is on -- will be called from NMI context with the PMU generates
348 * NMIs.
349 *
350 * ->stop() with PERF_EF_UPDATE will read the counter and update
351 * period/count values like ->read() would.
352 *
353 * ->start() with PERF_EF_RELOAD will reprogram the the counter
354 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
355 */
356 void (*start) (struct perf_event *event, int flags);
357 void (*stop) (struct perf_event *event, int flags);
358
359 /*
360 * Updates the counter value of the event.
361 *
362 * For sampling capable PMUs this will also update the software period
363 * hw_perf_event::period_left field.
364 */
365 void (*read) (struct perf_event *event);
366
367 /*
368 * Group events scheduling is treated as a transaction, add
369 * group events as a whole and perform one schedulability test.
370 * If the test fails, roll back the whole group
371 *
372 * Start the transaction, after this ->add() doesn't need to
373 * do schedulability tests.
374 *
375 * Optional.
376 */
377 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
378 /*
379 * If ->start_txn() disabled the ->add() schedulability test
380 * then ->commit_txn() is required to perform one. On success
381 * the transaction is closed. On error the transaction is kept
382 * open until ->cancel_txn() is called.
383 *
384 * Optional.
385 */
386 int (*commit_txn) (struct pmu *pmu);
387 /*
388 * Will cancel the transaction, assumes ->del() is called
389 * for each successful ->add() during the transaction.
390 *
391 * Optional.
392 */
393 void (*cancel_txn) (struct pmu *pmu);
394
395 /*
396 * Will return the value for perf_event_mmap_page::index for this event,
397 * if no implementation is provided it will default to: event->hw.idx + 1.
398 */
399 int (*event_idx) (struct perf_event *event); /*optional */
400
401 /*
402 * context-switches callback
403 */
404 void (*sched_task) (struct perf_event_context *ctx,
405 bool sched_in);
406 /*
407 * PMU specific data size
408 */
409 size_t task_ctx_size;
410
411
412 /*
413 * Set up pmu-private data structures for an AUX area
414 */
415 void *(*setup_aux) (struct perf_event *event, void **pages,
416 int nr_pages, bool overwrite);
417 /* optional */
418
419 /*
420 * Free pmu-private AUX data structures
421 */
422 void (*free_aux) (void *aux); /* optional */
423
424 /*
425 * Validate address range filters: make sure the HW supports the
426 * requested configuration and number of filters; return 0 if the
427 * supplied filters are valid, -errno otherwise.
428 *
429 * Runs in the context of the ioctl()ing process and is not serialized
430 * with the rest of the PMU callbacks.
431 */
432 int (*addr_filters_validate) (struct list_head *filters);
433 /* optional */
434
435 /*
436 * Synchronize address range filter configuration:
437 * translate hw-agnostic filters into hardware configuration in
438 * event::hw::addr_filters.
439 *
440 * Runs as a part of filter sync sequence that is done in ->start()
441 * callback by calling perf_event_addr_filters_sync().
442 *
443 * May (and should) traverse event::addr_filters::list, for which its
444 * caller provides necessary serialization.
445 */
446 void (*addr_filters_sync) (struct perf_event *event);
447 /* optional */
448
449 /*
450 * Filter events for PMU-specific reasons.
451 */
452 int (*filter_match) (struct perf_event *event); /* optional */
453
454 /*
455 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
456 */
457 int (*check_period) (struct perf_event *event, u64 value); /* optional */
458};
459
460enum perf_addr_filter_action_t {
461 PERF_ADDR_FILTER_ACTION_STOP = 0,
462 PERF_ADDR_FILTER_ACTION_START,
463 PERF_ADDR_FILTER_ACTION_FILTER,
464};
465
466/**
467 * struct perf_addr_filter - address range filter definition
468 * @entry: event's filter list linkage
469 * @path: object file's path for file-based filters
470 * @offset: filter range offset
471 * @size: filter range size (size==0 means single address trigger)
472 * @action: filter/start/stop
473 *
474 * This is a hardware-agnostic filter configuration as specified by the user.
475 */
476struct perf_addr_filter {
477 struct list_head entry;
478 struct path path;
479 unsigned long offset;
480 unsigned long size;
481 enum perf_addr_filter_action_t action;
482};
483
484/**
485 * struct perf_addr_filters_head - container for address range filters
486 * @list: list of filters for this event
487 * @lock: spinlock that serializes accesses to the @list and event's
488 * (and its children's) filter generations.
489 * @nr_file_filters: number of file-based filters
490 *
491 * A child event will use parent's @list (and therefore @lock), so they are
492 * bundled together; see perf_event_addr_filters().
493 */
494struct perf_addr_filters_head {
495 struct list_head list;
496 raw_spinlock_t lock;
497 unsigned int nr_file_filters;
498};
499
500struct perf_addr_filter_range {
501 unsigned long start;
502 unsigned long size;
503};
504
505/**
506 * enum perf_event_state - the states of an event:
507 */
508enum perf_event_state {
509 PERF_EVENT_STATE_DEAD = -4,
510 PERF_EVENT_STATE_EXIT = -3,
511 PERF_EVENT_STATE_ERROR = -2,
512 PERF_EVENT_STATE_OFF = -1,
513 PERF_EVENT_STATE_INACTIVE = 0,
514 PERF_EVENT_STATE_ACTIVE = 1,
515};
516
517struct file;
518struct perf_sample_data;
519
520typedef void (*perf_overflow_handler_t)(struct perf_event *,
521 struct perf_sample_data *,
522 struct pt_regs *regs);
523
524/*
525 * Event capabilities. For event_caps and groups caps.
526 *
527 * PERF_EV_CAP_SOFTWARE: Is a software event.
528 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
529 * from any CPU in the package where it is active.
530 */
531#define PERF_EV_CAP_SOFTWARE BIT(0)
532#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
533
534#define SWEVENT_HLIST_BITS 8
535#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
536
537struct swevent_hlist {
538 struct hlist_head heads[SWEVENT_HLIST_SIZE];
539 struct rcu_head rcu_head;
540};
541
542#define PERF_ATTACH_CONTEXT 0x01
543#define PERF_ATTACH_GROUP 0x02
544#define PERF_ATTACH_TASK 0x04
545#define PERF_ATTACH_TASK_DATA 0x08
546#define PERF_ATTACH_ITRACE 0x10
547
548struct perf_cgroup;
549struct ring_buffer;
550
551struct pmu_event_list {
552 raw_spinlock_t lock;
553 struct list_head list;
554};
555
556#define for_each_sibling_event(sibling, event) \
557 if ((event)->group_leader == (event)) \
558 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
559
560/**
561 * struct perf_event - performance event kernel representation:
562 */
563struct perf_event {
564#ifdef CONFIG_PERF_EVENTS
565 /*
566 * entry onto perf_event_context::event_list;
567 * modifications require ctx->lock
568 * RCU safe iterations.
569 */
570 struct list_head event_entry;
571
572 /*
573 * Locked for modification by both ctx->mutex and ctx->lock; holding
574 * either sufficies for read.
575 */
576 struct list_head sibling_list;
577 struct list_head active_list;
578 /*
579 * Node on the pinned or flexible tree located at the event context;
580 */
581 struct rb_node group_node;
582 u64 group_index;
583 /*
584 * We need storage to track the entries in perf_pmu_migrate_context; we
585 * cannot use the event_entry because of RCU and we want to keep the
586 * group in tact which avoids us using the other two entries.
587 */
588 struct list_head migrate_entry;
589
590 struct hlist_node hlist_entry;
591 struct list_head active_entry;
592 int nr_siblings;
593
594 /* Not serialized. Only written during event initialization. */
595 int event_caps;
596 /* The cumulative AND of all event_caps for events in this group. */
597 int group_caps;
598
599 struct perf_event *group_leader;
600 struct pmu *pmu;
601 void *pmu_private;
602
603 enum perf_event_state state;
604 unsigned int attach_state;
605 local64_t count;
606 atomic64_t child_count;
607
608 /*
609 * These are the total time in nanoseconds that the event
610 * has been enabled (i.e. eligible to run, and the task has
611 * been scheduled in, if this is a per-task event)
612 * and running (scheduled onto the CPU), respectively.
613 */
614 u64 total_time_enabled;
615 u64 total_time_running;
616 u64 tstamp;
617
618 /*
619 * timestamp shadows the actual context timing but it can
620 * be safely used in NMI interrupt context. It reflects the
621 * context time as it was when the event was last scheduled in.
622 *
623 * ctx_time already accounts for ctx->timestamp. Therefore to
624 * compute ctx_time for a sample, simply add perf_clock().
625 */
626 u64 shadow_ctx_time;
627
628 struct perf_event_attr attr;
629 u16 header_size;
630 u16 id_header_size;
631 u16 read_size;
632 struct hw_perf_event hw;
633
634 struct perf_event_context *ctx;
635 atomic_long_t refcount;
636
637 /*
638 * These accumulate total time (in nanoseconds) that children
639 * events have been enabled and running, respectively.
640 */
641 atomic64_t child_total_time_enabled;
642 atomic64_t child_total_time_running;
643
644 /*
645 * Protect attach/detach and child_list:
646 */
647 struct mutex child_mutex;
648 struct list_head child_list;
649 struct perf_event *parent;
650
651 int oncpu;
652 int cpu;
653
654 struct list_head owner_entry;
655 struct task_struct *owner;
656
657 /* mmap bits */
658 struct mutex mmap_mutex;
659 atomic_t mmap_count;
660
661 struct ring_buffer *rb;
662 struct list_head rb_entry;
663 unsigned long rcu_batches;
664 int rcu_pending;
665
666 /* poll related */
667 wait_queue_head_t waitq;
668 struct fasync_struct *fasync;
669
670 /* delayed work for NMIs and such */
671 int pending_wakeup;
672 int pending_kill;
673 int pending_disable;
674 struct irq_work pending;
675
676 atomic_t event_limit;
677
678 /* address range filters */
679 struct perf_addr_filters_head addr_filters;
680 /* vma address array for file-based filders */
681 struct perf_addr_filter_range *addr_filter_ranges;
682 unsigned long addr_filters_gen;
683
684 void (*destroy)(struct perf_event *);
685 struct rcu_head rcu_head;
686
687 struct pid_namespace *ns;
688 u64 id;
689
690 u64 (*clock)(void);
691 perf_overflow_handler_t overflow_handler;
692 void *overflow_handler_context;
693#ifdef CONFIG_BPF_SYSCALL
694 perf_overflow_handler_t orig_overflow_handler;
695 struct bpf_prog *prog;
696#endif
697
698#ifdef CONFIG_EVENT_TRACING
699 struct trace_event_call *tp_event;
700 struct event_filter *filter;
701#ifdef CONFIG_FUNCTION_TRACER
702 struct ftrace_ops ftrace_ops;
703#endif
704#endif
705
706#ifdef CONFIG_CGROUP_PERF
707 struct perf_cgroup *cgrp; /* cgroup event is attach to */
708#endif
709
710 struct list_head sb_list;
711#endif /* CONFIG_PERF_EVENTS */
712};
713
714
715struct perf_event_groups {
716 struct rb_root tree;
717 u64 index;
718};
719
720/**
721 * struct perf_event_context - event context structure
722 *
723 * Used as a container for task events and CPU events as well:
724 */
725struct perf_event_context {
726 struct pmu *pmu;
727 /*
728 * Protect the states of the events in the list,
729 * nr_active, and the list:
730 */
731 raw_spinlock_t lock;
732 /*
733 * Protect the list of events. Locking either mutex or lock
734 * is sufficient to ensure the list doesn't change; to change
735 * the list you need to lock both the mutex and the spinlock.
736 */
737 struct mutex mutex;
738
739 struct list_head active_ctx_list;
740 struct perf_event_groups pinned_groups;
741 struct perf_event_groups flexible_groups;
742 struct list_head event_list;
743
744 struct list_head pinned_active;
745 struct list_head flexible_active;
746
747 int nr_events;
748 int nr_active;
749 int is_active;
750 int nr_stat;
751 int nr_freq;
752 int rotate_disable;
753 /*
754 * Set when nr_events != nr_active, except tolerant to events not
755 * necessary to be active due to scheduling constraints, such as cgroups.
756 */
757 int rotate_necessary;
758 refcount_t refcount;
759 struct task_struct *task;
760
761 /*
762 * Context clock, runs when context enabled.
763 */
764 u64 time;
765 u64 timestamp;
766
767 /*
768 * These fields let us detect when two contexts have both
769 * been cloned (inherited) from a common ancestor.
770 */
771 struct perf_event_context *parent_ctx;
772 u64 parent_gen;
773 u64 generation;
774 int pin_count;
775#ifdef CONFIG_CGROUP_PERF
776 int nr_cgroups; /* cgroup evts */
777#endif
778 void *task_ctx_data; /* pmu specific data */
779 struct rcu_head rcu_head;
780};
781
782/*
783 * Number of contexts where an event can trigger:
784 * task, softirq, hardirq, nmi.
785 */
786#define PERF_NR_CONTEXTS 4
787
788/**
789 * struct perf_event_cpu_context - per cpu event context structure
790 */
791struct perf_cpu_context {
792 struct perf_event_context ctx;
793 struct perf_event_context *task_ctx;
794 int active_oncpu;
795 int exclusive;
796
797 raw_spinlock_t hrtimer_lock;
798 struct hrtimer hrtimer;
799 ktime_t hrtimer_interval;
800 unsigned int hrtimer_active;
801
802#ifdef CONFIG_CGROUP_PERF
803 struct perf_cgroup *cgrp;
804 struct list_head cgrp_cpuctx_entry;
805#endif
806
807 struct list_head sched_cb_entry;
808 int sched_cb_usage;
809
810 int online;
811};
812
813struct perf_output_handle {
814 struct perf_event *event;
815 struct ring_buffer *rb;
816 unsigned long wakeup;
817 unsigned long size;
818 u64 aux_flags;
819 union {
820 void *addr;
821 unsigned long head;
822 };
823 int page;
824};
825
826struct bpf_perf_event_data_kern {
827 bpf_user_pt_regs_t *regs;
828 struct perf_sample_data *data;
829 struct perf_event *event;
830};
831
832#ifdef CONFIG_CGROUP_PERF
833
834/*
835 * perf_cgroup_info keeps track of time_enabled for a cgroup.
836 * This is a per-cpu dynamically allocated data structure.
837 */
838struct perf_cgroup_info {
839 u64 time;
840 u64 timestamp;
841};
842
843struct perf_cgroup {
844 struct cgroup_subsys_state css;
845 struct perf_cgroup_info __percpu *info;
846};
847
848/*
849 * Must ensure cgroup is pinned (css_get) before calling
850 * this function. In other words, we cannot call this function
851 * if there is no cgroup event for the current CPU context.
852 */
853static inline struct perf_cgroup *
854perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
855{
856 return container_of(task_css_check(task, perf_event_cgrp_id,
857 ctx ? lockdep_is_held(&ctx->lock)
858 : true),
859 struct perf_cgroup, css);
860}
861#endif /* CONFIG_CGROUP_PERF */
862
863#ifdef CONFIG_PERF_EVENTS
864
865extern void *perf_aux_output_begin(struct perf_output_handle *handle,
866 struct perf_event *event);
867extern void perf_aux_output_end(struct perf_output_handle *handle,
868 unsigned long size);
869extern int perf_aux_output_skip(struct perf_output_handle *handle,
870 unsigned long size);
871extern void *perf_get_aux(struct perf_output_handle *handle);
872extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
873extern void perf_event_itrace_started(struct perf_event *event);
874
875extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
876extern void perf_pmu_unregister(struct pmu *pmu);
877
878extern int perf_num_counters(void);
879extern const char *perf_pmu_name(void);
880extern void __perf_event_task_sched_in(struct task_struct *prev,
881 struct task_struct *task);
882extern void __perf_event_task_sched_out(struct task_struct *prev,
883 struct task_struct *next);
884extern int perf_event_init_task(struct task_struct *child);
885extern void perf_event_exit_task(struct task_struct *child);
886extern void perf_event_free_task(struct task_struct *task);
887extern void perf_event_delayed_put(struct task_struct *task);
888extern struct file *perf_event_get(unsigned int fd);
889extern const struct perf_event *perf_get_event(struct file *file);
890extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
891extern void perf_event_print_debug(void);
892extern void perf_pmu_disable(struct pmu *pmu);
893extern void perf_pmu_enable(struct pmu *pmu);
894extern void perf_sched_cb_dec(struct pmu *pmu);
895extern void perf_sched_cb_inc(struct pmu *pmu);
896extern int perf_event_task_disable(void);
897extern int perf_event_task_enable(void);
898
899extern void perf_pmu_resched(struct pmu *pmu);
900
901extern int perf_event_refresh(struct perf_event *event, int refresh);
902extern void perf_event_update_userpage(struct perf_event *event);
903extern int perf_event_release_kernel(struct perf_event *event);
904extern struct perf_event *
905perf_event_create_kernel_counter(struct perf_event_attr *attr,
906 int cpu,
907 struct task_struct *task,
908 perf_overflow_handler_t callback,
909 void *context);
910extern void perf_pmu_migrate_context(struct pmu *pmu,
911 int src_cpu, int dst_cpu);
912int perf_event_read_local(struct perf_event *event, u64 *value,
913 u64 *enabled, u64 *running);
914extern u64 perf_event_read_value(struct perf_event *event,
915 u64 *enabled, u64 *running);
916
917
918struct perf_sample_data {
919 /*
920 * Fields set by perf_sample_data_init(), group so as to
921 * minimize the cachelines touched.
922 */
923 u64 addr;
924 struct perf_raw_record *raw;
925 struct perf_branch_stack *br_stack;
926 u64 period;
927 u64 weight;
928 u64 txn;
929 union perf_mem_data_src data_src;
930
931 /*
932 * The other fields, optionally {set,used} by
933 * perf_{prepare,output}_sample().
934 */
935 u64 type;
936 u64 ip;
937 struct {
938 u32 pid;
939 u32 tid;
940 } tid_entry;
941 u64 time;
942 u64 id;
943 u64 stream_id;
944 struct {
945 u32 cpu;
946 u32 reserved;
947 } cpu_entry;
948 struct perf_callchain_entry *callchain;
949
950 /*
951 * regs_user may point to task_pt_regs or to regs_user_copy, depending
952 * on arch details.
953 */
954 struct perf_regs regs_user;
955 struct pt_regs regs_user_copy;
956
957 struct perf_regs regs_intr;
958 u64 stack_user_size;
959
960 u64 phys_addr;
961} ____cacheline_aligned;
962
963/* default value for data source */
964#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
965 PERF_MEM_S(LVL, NA) |\
966 PERF_MEM_S(SNOOP, NA) |\
967 PERF_MEM_S(LOCK, NA) |\
968 PERF_MEM_S(TLB, NA))
969
970static inline void perf_sample_data_init(struct perf_sample_data *data,
971 u64 addr, u64 period)
972{
973 /* remaining struct members initialized in perf_prepare_sample() */
974 data->addr = addr;
975 data->raw = NULL;
976 data->br_stack = NULL;
977 data->period = period;
978 data->weight = 0;
979 data->data_src.val = PERF_MEM_NA;
980 data->txn = 0;
981}
982
983extern void perf_output_sample(struct perf_output_handle *handle,
984 struct perf_event_header *header,
985 struct perf_sample_data *data,
986 struct perf_event *event);
987extern void perf_prepare_sample(struct perf_event_header *header,
988 struct perf_sample_data *data,
989 struct perf_event *event,
990 struct pt_regs *regs);
991
992extern int perf_event_overflow(struct perf_event *event,
993 struct perf_sample_data *data,
994 struct pt_regs *regs);
995
996extern void perf_event_output_forward(struct perf_event *event,
997 struct perf_sample_data *data,
998 struct pt_regs *regs);
999extern void perf_event_output_backward(struct perf_event *event,
1000 struct perf_sample_data *data,
1001 struct pt_regs *regs);
1002extern int perf_event_output(struct perf_event *event,
1003 struct perf_sample_data *data,
1004 struct pt_regs *regs);
1005
1006static inline bool
1007is_default_overflow_handler(struct perf_event *event)
1008{
1009 if (likely(event->overflow_handler == perf_event_output_forward))
1010 return true;
1011 if (unlikely(event->overflow_handler == perf_event_output_backward))
1012 return true;
1013 return false;
1014}
1015
1016extern void
1017perf_event_header__init_id(struct perf_event_header *header,
1018 struct perf_sample_data *data,
1019 struct perf_event *event);
1020extern void
1021perf_event__output_id_sample(struct perf_event *event,
1022 struct perf_output_handle *handle,
1023 struct perf_sample_data *sample);
1024
1025extern void
1026perf_log_lost_samples(struct perf_event *event, u64 lost);
1027
1028static inline bool event_has_any_exclude_flag(struct perf_event *event)
1029{
1030 struct perf_event_attr *attr = &event->attr;
1031
1032 return attr->exclude_idle || attr->exclude_user ||
1033 attr->exclude_kernel || attr->exclude_hv ||
1034 attr->exclude_guest || attr->exclude_host;
1035}
1036
1037static inline bool is_sampling_event(struct perf_event *event)
1038{
1039 return event->attr.sample_period != 0;
1040}
1041
1042/*
1043 * Return 1 for a software event, 0 for a hardware event
1044 */
1045static inline int is_software_event(struct perf_event *event)
1046{
1047 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1048}
1049
1050/*
1051 * Return 1 for event in sw context, 0 for event in hw context
1052 */
1053static inline int in_software_context(struct perf_event *event)
1054{
1055 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1056}
1057
1058static inline int is_exclusive_pmu(struct pmu *pmu)
1059{
1060 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1061}
1062
1063extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1064
1065extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1066extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1067
1068#ifndef perf_arch_fetch_caller_regs
1069static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1070#endif
1071
1072/*
1073 * When generating a perf sample in-line, instead of from an interrupt /
1074 * exception, we lack a pt_regs. This is typically used from software events
1075 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1076 *
1077 * We typically don't need a full set, but (for x86) do require:
1078 * - ip for PERF_SAMPLE_IP
1079 * - cs for user_mode() tests
1080 * - sp for PERF_SAMPLE_CALLCHAIN
1081 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1082 *
1083 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1084 * things like PERF_SAMPLE_REGS_INTR.
1085 */
1086static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1087{
1088 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1089}
1090
1091static __always_inline void
1092perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1093{
1094 if (static_key_false(&perf_swevent_enabled[event_id]))
1095 __perf_sw_event(event_id, nr, regs, addr);
1096}
1097
1098DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1099
1100/*
1101 * 'Special' version for the scheduler, it hard assumes no recursion,
1102 * which is guaranteed by us not actually scheduling inside other swevents
1103 * because those disable preemption.
1104 */
1105static __always_inline void
1106perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1107{
1108 if (static_key_false(&perf_swevent_enabled[event_id])) {
1109 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1110
1111 perf_fetch_caller_regs(regs);
1112 ___perf_sw_event(event_id, nr, regs, addr);
1113 }
1114}
1115
1116extern struct static_key_false perf_sched_events;
1117
1118static __always_inline bool
1119perf_sw_migrate_enabled(void)
1120{
1121 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1122 return true;
1123 return false;
1124}
1125
1126static inline void perf_event_task_migrate(struct task_struct *task)
1127{
1128 if (perf_sw_migrate_enabled())
1129 task->sched_migrated = 1;
1130}
1131
1132static inline void perf_event_task_sched_in(struct task_struct *prev,
1133 struct task_struct *task)
1134{
1135 if (static_branch_unlikely(&perf_sched_events))
1136 __perf_event_task_sched_in(prev, task);
1137
1138 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1139 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1140
1141 perf_fetch_caller_regs(regs);
1142 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1143 task->sched_migrated = 0;
1144 }
1145}
1146
1147static inline void perf_event_task_sched_out(struct task_struct *prev,
1148 struct task_struct *next)
1149{
1150 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1151
1152 if (static_branch_unlikely(&perf_sched_events))
1153 __perf_event_task_sched_out(prev, next);
1154}
1155
1156extern void perf_event_mmap(struct vm_area_struct *vma);
1157
1158extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1159 bool unregister, const char *sym);
1160extern void perf_event_bpf_event(struct bpf_prog *prog,
1161 enum perf_bpf_event_type type,
1162 u16 flags);
1163
1164extern struct perf_guest_info_callbacks *perf_guest_cbs;
1165extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1166extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1167
1168extern void perf_event_exec(void);
1169extern void perf_event_comm(struct task_struct *tsk, bool exec);
1170extern void perf_event_namespaces(struct task_struct *tsk);
1171extern void perf_event_fork(struct task_struct *tsk);
1172
1173/* Callchains */
1174DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1175
1176extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1177extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1178extern struct perf_callchain_entry *
1179get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1180 u32 max_stack, bool crosstask, bool add_mark);
1181extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1182extern int get_callchain_buffers(int max_stack);
1183extern void put_callchain_buffers(void);
1184
1185extern int sysctl_perf_event_max_stack;
1186extern int sysctl_perf_event_max_contexts_per_stack;
1187
1188static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1189{
1190 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1191 struct perf_callchain_entry *entry = ctx->entry;
1192 entry->ip[entry->nr++] = ip;
1193 ++ctx->contexts;
1194 return 0;
1195 } else {
1196 ctx->contexts_maxed = true;
1197 return -1; /* no more room, stop walking the stack */
1198 }
1199}
1200
1201static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1202{
1203 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1204 struct perf_callchain_entry *entry = ctx->entry;
1205 entry->ip[entry->nr++] = ip;
1206 ++ctx->nr;
1207 return 0;
1208 } else {
1209 return -1; /* no more room, stop walking the stack */
1210 }
1211}
1212
1213extern int sysctl_perf_event_paranoid;
1214extern int sysctl_perf_event_mlock;
1215extern int sysctl_perf_event_sample_rate;
1216extern int sysctl_perf_cpu_time_max_percent;
1217
1218extern void perf_sample_event_took(u64 sample_len_ns);
1219
1220extern int perf_proc_update_handler(struct ctl_table *table, int write,
1221 void __user *buffer, size_t *lenp,
1222 loff_t *ppos);
1223extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1224 void __user *buffer, size_t *lenp,
1225 loff_t *ppos);
1226
1227int perf_event_max_stack_handler(struct ctl_table *table, int write,
1228 void __user *buffer, size_t *lenp, loff_t *ppos);
1229
1230static inline bool perf_paranoid_tracepoint_raw(void)
1231{
1232 return sysctl_perf_event_paranoid > -1;
1233}
1234
1235static inline bool perf_paranoid_cpu(void)
1236{
1237 return sysctl_perf_event_paranoid > 0;
1238}
1239
1240static inline bool perf_paranoid_kernel(void)
1241{
1242 return sysctl_perf_event_paranoid > 1;
1243}
1244
1245extern void perf_event_init(void);
1246extern void perf_tp_event(u16 event_type, u64 count, void *record,
1247 int entry_size, struct pt_regs *regs,
1248 struct hlist_head *head, int rctx,
1249 struct task_struct *task);
1250extern void perf_bp_event(struct perf_event *event, void *data);
1251
1252#ifndef perf_misc_flags
1253# define perf_misc_flags(regs) \
1254 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1255# define perf_instruction_pointer(regs) instruction_pointer(regs)
1256#endif
1257#ifndef perf_arch_bpf_user_pt_regs
1258# define perf_arch_bpf_user_pt_regs(regs) regs
1259#endif
1260
1261static inline bool has_branch_stack(struct perf_event *event)
1262{
1263 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1264}
1265
1266static inline bool needs_branch_stack(struct perf_event *event)
1267{
1268 return event->attr.branch_sample_type != 0;
1269}
1270
1271static inline bool has_aux(struct perf_event *event)
1272{
1273 return event->pmu->setup_aux;
1274}
1275
1276static inline bool is_write_backward(struct perf_event *event)
1277{
1278 return !!event->attr.write_backward;
1279}
1280
1281static inline bool has_addr_filter(struct perf_event *event)
1282{
1283 return event->pmu->nr_addr_filters;
1284}
1285
1286/*
1287 * An inherited event uses parent's filters
1288 */
1289static inline struct perf_addr_filters_head *
1290perf_event_addr_filters(struct perf_event *event)
1291{
1292 struct perf_addr_filters_head *ifh = &event->addr_filters;
1293
1294 if (event->parent)
1295 ifh = &event->parent->addr_filters;
1296
1297 return ifh;
1298}
1299
1300extern void perf_event_addr_filters_sync(struct perf_event *event);
1301
1302extern int perf_output_begin(struct perf_output_handle *handle,
1303 struct perf_event *event, unsigned int size);
1304extern int perf_output_begin_forward(struct perf_output_handle *handle,
1305 struct perf_event *event,
1306 unsigned int size);
1307extern int perf_output_begin_backward(struct perf_output_handle *handle,
1308 struct perf_event *event,
1309 unsigned int size);
1310
1311extern void perf_output_end(struct perf_output_handle *handle);
1312extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1313 const void *buf, unsigned int len);
1314extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1315 unsigned int len);
1316extern int perf_swevent_get_recursion_context(void);
1317extern void perf_swevent_put_recursion_context(int rctx);
1318extern u64 perf_swevent_set_period(struct perf_event *event);
1319extern void perf_event_enable(struct perf_event *event);
1320extern void perf_event_disable(struct perf_event *event);
1321extern void perf_event_disable_local(struct perf_event *event);
1322extern void perf_event_disable_inatomic(struct perf_event *event);
1323extern void perf_event_task_tick(void);
1324extern int perf_event_account_interrupt(struct perf_event *event);
1325#else /* !CONFIG_PERF_EVENTS: */
1326static inline void *
1327perf_aux_output_begin(struct perf_output_handle *handle,
1328 struct perf_event *event) { return NULL; }
1329static inline void
1330perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1331 { }
1332static inline int
1333perf_aux_output_skip(struct perf_output_handle *handle,
1334 unsigned long size) { return -EINVAL; }
1335static inline void *
1336perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1337static inline void
1338perf_event_task_migrate(struct task_struct *task) { }
1339static inline void
1340perf_event_task_sched_in(struct task_struct *prev,
1341 struct task_struct *task) { }
1342static inline void
1343perf_event_task_sched_out(struct task_struct *prev,
1344 struct task_struct *next) { }
1345static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1346static inline void perf_event_exit_task(struct task_struct *child) { }
1347static inline void perf_event_free_task(struct task_struct *task) { }
1348static inline void perf_event_delayed_put(struct task_struct *task) { }
1349static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1350static inline const struct perf_event *perf_get_event(struct file *file)
1351{
1352 return ERR_PTR(-EINVAL);
1353}
1354static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1355{
1356 return ERR_PTR(-EINVAL);
1357}
1358static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1359 u64 *enabled, u64 *running)
1360{
1361 return -EINVAL;
1362}
1363static inline void perf_event_print_debug(void) { }
1364static inline int perf_event_task_disable(void) { return -EINVAL; }
1365static inline int perf_event_task_enable(void) { return -EINVAL; }
1366static inline int perf_event_refresh(struct perf_event *event, int refresh)
1367{
1368 return -EINVAL;
1369}
1370
1371static inline void
1372perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1373static inline void
1374perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1375static inline void
1376perf_bp_event(struct perf_event *event, void *data) { }
1377
1378static inline int perf_register_guest_info_callbacks
1379(struct perf_guest_info_callbacks *callbacks) { return 0; }
1380static inline int perf_unregister_guest_info_callbacks
1381(struct perf_guest_info_callbacks *callbacks) { return 0; }
1382
1383static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1384
1385typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1386static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1387 bool unregister, const char *sym) { }
1388static inline void perf_event_bpf_event(struct bpf_prog *prog,
1389 enum perf_bpf_event_type type,
1390 u16 flags) { }
1391static inline void perf_event_exec(void) { }
1392static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1393static inline void perf_event_namespaces(struct task_struct *tsk) { }
1394static inline void perf_event_fork(struct task_struct *tsk) { }
1395static inline void perf_event_init(void) { }
1396static inline int perf_swevent_get_recursion_context(void) { return -1; }
1397static inline void perf_swevent_put_recursion_context(int rctx) { }
1398static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1399static inline void perf_event_enable(struct perf_event *event) { }
1400static inline void perf_event_disable(struct perf_event *event) { }
1401static inline int __perf_event_disable(void *info) { return -1; }
1402static inline void perf_event_task_tick(void) { }
1403static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1404#endif
1405
1406#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1407extern void perf_restore_debug_store(void);
1408#else
1409static inline void perf_restore_debug_store(void) { }
1410#endif
1411
1412static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1413{
1414 return frag->pad < sizeof(u64);
1415}
1416
1417#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1418
1419struct perf_pmu_events_attr {
1420 struct device_attribute attr;
1421 u64 id;
1422 const char *event_str;
1423};
1424
1425struct perf_pmu_events_ht_attr {
1426 struct device_attribute attr;
1427 u64 id;
1428 const char *event_str_ht;
1429 const char *event_str_noht;
1430};
1431
1432ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1433 char *page);
1434
1435#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1436static struct perf_pmu_events_attr _var = { \
1437 .attr = __ATTR(_name, 0444, _show, NULL), \
1438 .id = _id, \
1439};
1440
1441#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1442static struct perf_pmu_events_attr _var = { \
1443 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1444 .id = 0, \
1445 .event_str = _str, \
1446};
1447
1448#define PMU_FORMAT_ATTR(_name, _format) \
1449static ssize_t \
1450_name##_show(struct device *dev, \
1451 struct device_attribute *attr, \
1452 char *page) \
1453{ \
1454 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1455 return sprintf(page, _format "\n"); \
1456} \
1457 \
1458static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1459
1460/* Performance counter hotplug functions */
1461#ifdef CONFIG_PERF_EVENTS
1462int perf_event_init_cpu(unsigned int cpu);
1463int perf_event_exit_cpu(unsigned int cpu);
1464#else
1465#define perf_event_init_cpu NULL
1466#define perf_event_exit_cpu NULL
1467#endif
1468
1469#endif /* _LINUX_PERF_EVENT_H */