at v5.3 27 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_uptodate tells whether the page's contents is valid. When a read 67 * completes, the page becomes uptodate, unless a disk I/O error happened. 68 * 69 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 70 * file-backed pagecache (see mm/vmscan.c). 71 * 72 * PG_error is set to indicate that an I/O error occurred on this page. 73 * 74 * PG_arch_1 is an architecture specific page state bit. The generic code 75 * guarantees that this bit is cleared for a page when it first is entered into 76 * the page cache. 77 * 78 * PG_hwpoison indicates that a page got corrupted in hardware and contains 79 * data with incorrect ECC bits that triggered a machine check. Accessing is 80 * not safe since it may cause another machine check. Don't touch! 81 */ 82 83/* 84 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 85 * locked- and dirty-page accounting. 86 * 87 * The page flags field is split into two parts, the main flags area 88 * which extends from the low bits upwards, and the fields area which 89 * extends from the high bits downwards. 90 * 91 * | FIELD | ... | FLAGS | 92 * N-1 ^ 0 93 * (NR_PAGEFLAGS) 94 * 95 * The fields area is reserved for fields mapping zone, node (for NUMA) and 96 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 97 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 98 */ 99enum pageflags { 100 PG_locked, /* Page is locked. Don't touch. */ 101 PG_referenced, 102 PG_uptodate, 103 PG_dirty, 104 PG_lru, 105 PG_active, 106 PG_workingset, 107 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 108 PG_error, 109 PG_slab, 110 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 111 PG_arch_1, 112 PG_reserved, 113 PG_private, /* If pagecache, has fs-private data */ 114 PG_private_2, /* If pagecache, has fs aux data */ 115 PG_writeback, /* Page is under writeback */ 116 PG_head, /* A head page */ 117 PG_mappedtodisk, /* Has blocks allocated on-disk */ 118 PG_reclaim, /* To be reclaimed asap */ 119 PG_swapbacked, /* Page is backed by RAM/swap */ 120 PG_unevictable, /* Page is "unevictable" */ 121#ifdef CONFIG_MMU 122 PG_mlocked, /* Page is vma mlocked */ 123#endif 124#ifdef CONFIG_ARCH_USES_PG_UNCACHED 125 PG_uncached, /* Page has been mapped as uncached */ 126#endif 127#ifdef CONFIG_MEMORY_FAILURE 128 PG_hwpoison, /* hardware poisoned page. Don't touch */ 129#endif 130#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 131 PG_young, 132 PG_idle, 133#endif 134 __NR_PAGEFLAGS, 135 136 /* Filesystems */ 137 PG_checked = PG_owner_priv_1, 138 139 /* SwapBacked */ 140 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 141 142 /* Two page bits are conscripted by FS-Cache to maintain local caching 143 * state. These bits are set on pages belonging to the netfs's inodes 144 * when those inodes are being locally cached. 145 */ 146 PG_fscache = PG_private_2, /* page backed by cache */ 147 148 /* XEN */ 149 /* Pinned in Xen as a read-only pagetable page. */ 150 PG_pinned = PG_owner_priv_1, 151 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 152 PG_savepinned = PG_dirty, 153 /* Has a grant mapping of another (foreign) domain's page. */ 154 PG_foreign = PG_owner_priv_1, 155 /* Remapped by swiotlb-xen. */ 156 PG_xen_remapped = PG_owner_priv_1, 157 158 /* SLOB */ 159 PG_slob_free = PG_private, 160 161 /* Compound pages. Stored in first tail page's flags */ 162 PG_double_map = PG_private_2, 163 164 /* non-lru isolated movable page */ 165 PG_isolated = PG_reclaim, 166}; 167 168#ifndef __GENERATING_BOUNDS_H 169 170struct page; /* forward declaration */ 171 172static inline struct page *compound_head(struct page *page) 173{ 174 unsigned long head = READ_ONCE(page->compound_head); 175 176 if (unlikely(head & 1)) 177 return (struct page *) (head - 1); 178 return page; 179} 180 181static __always_inline int PageTail(struct page *page) 182{ 183 return READ_ONCE(page->compound_head) & 1; 184} 185 186static __always_inline int PageCompound(struct page *page) 187{ 188 return test_bit(PG_head, &page->flags) || PageTail(page); 189} 190 191#define PAGE_POISON_PATTERN -1l 192static inline int PagePoisoned(const struct page *page) 193{ 194 return page->flags == PAGE_POISON_PATTERN; 195} 196 197#ifdef CONFIG_DEBUG_VM 198void page_init_poison(struct page *page, size_t size); 199#else 200static inline void page_init_poison(struct page *page, size_t size) 201{ 202} 203#endif 204 205/* 206 * Page flags policies wrt compound pages 207 * 208 * PF_POISONED_CHECK 209 * check if this struct page poisoned/uninitialized 210 * 211 * PF_ANY: 212 * the page flag is relevant for small, head and tail pages. 213 * 214 * PF_HEAD: 215 * for compound page all operations related to the page flag applied to 216 * head page. 217 * 218 * PF_ONLY_HEAD: 219 * for compound page, callers only ever operate on the head page. 220 * 221 * PF_NO_TAIL: 222 * modifications of the page flag must be done on small or head pages, 223 * checks can be done on tail pages too. 224 * 225 * PF_NO_COMPOUND: 226 * the page flag is not relevant for compound pages. 227 */ 228#define PF_POISONED_CHECK(page) ({ \ 229 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 230 page; }) 231#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 232#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 233#define PF_ONLY_HEAD(page, enforce) ({ \ 234 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 235 PF_POISONED_CHECK(page); }) 236#define PF_NO_TAIL(page, enforce) ({ \ 237 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 238 PF_POISONED_CHECK(compound_head(page)); }) 239#define PF_NO_COMPOUND(page, enforce) ({ \ 240 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 241 PF_POISONED_CHECK(page); }) 242 243/* 244 * Macros to create function definitions for page flags 245 */ 246#define TESTPAGEFLAG(uname, lname, policy) \ 247static __always_inline int Page##uname(struct page *page) \ 248 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 249 250#define SETPAGEFLAG(uname, lname, policy) \ 251static __always_inline void SetPage##uname(struct page *page) \ 252 { set_bit(PG_##lname, &policy(page, 1)->flags); } 253 254#define CLEARPAGEFLAG(uname, lname, policy) \ 255static __always_inline void ClearPage##uname(struct page *page) \ 256 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 257 258#define __SETPAGEFLAG(uname, lname, policy) \ 259static __always_inline void __SetPage##uname(struct page *page) \ 260 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 261 262#define __CLEARPAGEFLAG(uname, lname, policy) \ 263static __always_inline void __ClearPage##uname(struct page *page) \ 264 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 265 266#define TESTSETFLAG(uname, lname, policy) \ 267static __always_inline int TestSetPage##uname(struct page *page) \ 268 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 269 270#define TESTCLEARFLAG(uname, lname, policy) \ 271static __always_inline int TestClearPage##uname(struct page *page) \ 272 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 273 274#define PAGEFLAG(uname, lname, policy) \ 275 TESTPAGEFLAG(uname, lname, policy) \ 276 SETPAGEFLAG(uname, lname, policy) \ 277 CLEARPAGEFLAG(uname, lname, policy) 278 279#define __PAGEFLAG(uname, lname, policy) \ 280 TESTPAGEFLAG(uname, lname, policy) \ 281 __SETPAGEFLAG(uname, lname, policy) \ 282 __CLEARPAGEFLAG(uname, lname, policy) 283 284#define TESTSCFLAG(uname, lname, policy) \ 285 TESTSETFLAG(uname, lname, policy) \ 286 TESTCLEARFLAG(uname, lname, policy) 287 288#define TESTPAGEFLAG_FALSE(uname) \ 289static inline int Page##uname(const struct page *page) { return 0; } 290 291#define SETPAGEFLAG_NOOP(uname) \ 292static inline void SetPage##uname(struct page *page) { } 293 294#define CLEARPAGEFLAG_NOOP(uname) \ 295static inline void ClearPage##uname(struct page *page) { } 296 297#define __CLEARPAGEFLAG_NOOP(uname) \ 298static inline void __ClearPage##uname(struct page *page) { } 299 300#define TESTSETFLAG_FALSE(uname) \ 301static inline int TestSetPage##uname(struct page *page) { return 0; } 302 303#define TESTCLEARFLAG_FALSE(uname) \ 304static inline int TestClearPage##uname(struct page *page) { return 0; } 305 306#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 307 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 308 309#define TESTSCFLAG_FALSE(uname) \ 310 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 311 312__PAGEFLAG(Locked, locked, PF_NO_TAIL) 313PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 314PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) 315PAGEFLAG(Referenced, referenced, PF_HEAD) 316 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 317 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 318PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 319 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 320PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 321PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 322 TESTCLEARFLAG(Active, active, PF_HEAD) 323PAGEFLAG(Workingset, workingset, PF_HEAD) 324 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 325__PAGEFLAG(Slab, slab, PF_NO_TAIL) 326__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 327PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 328 329/* Xen */ 330PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 331 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 332PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 333PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 334PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 335 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 336 337PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 338 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 339 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 340PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 341 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 342 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 343 344/* 345 * Private page markings that may be used by the filesystem that owns the page 346 * for its own purposes. 347 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 348 */ 349PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 350 __CLEARPAGEFLAG(Private, private, PF_ANY) 351PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 352PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 353 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 354 355/* 356 * Only test-and-set exist for PG_writeback. The unconditional operators are 357 * risky: they bypass page accounting. 358 */ 359TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 360 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 361PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 362 363/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 364PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 365 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 366PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 367 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 368 369#ifdef CONFIG_HIGHMEM 370/* 371 * Must use a macro here due to header dependency issues. page_zone() is not 372 * available at this point. 373 */ 374#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 375#else 376PAGEFLAG_FALSE(HighMem) 377#endif 378 379#ifdef CONFIG_SWAP 380static __always_inline int PageSwapCache(struct page *page) 381{ 382#ifdef CONFIG_THP_SWAP 383 page = compound_head(page); 384#endif 385 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 386 387} 388SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 389CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 390#else 391PAGEFLAG_FALSE(SwapCache) 392#endif 393 394PAGEFLAG(Unevictable, unevictable, PF_HEAD) 395 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 396 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 397 398#ifdef CONFIG_MMU 399PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 400 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 401 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 402#else 403PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 404 TESTSCFLAG_FALSE(Mlocked) 405#endif 406 407#ifdef CONFIG_ARCH_USES_PG_UNCACHED 408PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 409#else 410PAGEFLAG_FALSE(Uncached) 411#endif 412 413#ifdef CONFIG_MEMORY_FAILURE 414PAGEFLAG(HWPoison, hwpoison, PF_ANY) 415TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 416#define __PG_HWPOISON (1UL << PG_hwpoison) 417extern bool set_hwpoison_free_buddy_page(struct page *page); 418#else 419PAGEFLAG_FALSE(HWPoison) 420static inline bool set_hwpoison_free_buddy_page(struct page *page) 421{ 422 return 0; 423} 424#define __PG_HWPOISON 0 425#endif 426 427#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 428TESTPAGEFLAG(Young, young, PF_ANY) 429SETPAGEFLAG(Young, young, PF_ANY) 430TESTCLEARFLAG(Young, young, PF_ANY) 431PAGEFLAG(Idle, idle, PF_ANY) 432#endif 433 434/* 435 * On an anonymous page mapped into a user virtual memory area, 436 * page->mapping points to its anon_vma, not to a struct address_space; 437 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 438 * 439 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 440 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 441 * bit; and then page->mapping points, not to an anon_vma, but to a private 442 * structure which KSM associates with that merged page. See ksm.h. 443 * 444 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 445 * page and then page->mapping points a struct address_space. 446 * 447 * Please note that, confusingly, "page_mapping" refers to the inode 448 * address_space which maps the page from disk; whereas "page_mapped" 449 * refers to user virtual address space into which the page is mapped. 450 */ 451#define PAGE_MAPPING_ANON 0x1 452#define PAGE_MAPPING_MOVABLE 0x2 453#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 454#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 455 456static __always_inline int PageMappingFlags(struct page *page) 457{ 458 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 459} 460 461static __always_inline int PageAnon(struct page *page) 462{ 463 page = compound_head(page); 464 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 465} 466 467static __always_inline int __PageMovable(struct page *page) 468{ 469 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 470 PAGE_MAPPING_MOVABLE; 471} 472 473#ifdef CONFIG_KSM 474/* 475 * A KSM page is one of those write-protected "shared pages" or "merged pages" 476 * which KSM maps into multiple mms, wherever identical anonymous page content 477 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 478 * anon_vma, but to that page's node of the stable tree. 479 */ 480static __always_inline int PageKsm(struct page *page) 481{ 482 page = compound_head(page); 483 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 484 PAGE_MAPPING_KSM; 485} 486#else 487TESTPAGEFLAG_FALSE(Ksm) 488#endif 489 490u64 stable_page_flags(struct page *page); 491 492static inline int PageUptodate(struct page *page) 493{ 494 int ret; 495 page = compound_head(page); 496 ret = test_bit(PG_uptodate, &(page)->flags); 497 /* 498 * Must ensure that the data we read out of the page is loaded 499 * _after_ we've loaded page->flags to check for PageUptodate. 500 * We can skip the barrier if the page is not uptodate, because 501 * we wouldn't be reading anything from it. 502 * 503 * See SetPageUptodate() for the other side of the story. 504 */ 505 if (ret) 506 smp_rmb(); 507 508 return ret; 509} 510 511static __always_inline void __SetPageUptodate(struct page *page) 512{ 513 VM_BUG_ON_PAGE(PageTail(page), page); 514 smp_wmb(); 515 __set_bit(PG_uptodate, &page->flags); 516} 517 518static __always_inline void SetPageUptodate(struct page *page) 519{ 520 VM_BUG_ON_PAGE(PageTail(page), page); 521 /* 522 * Memory barrier must be issued before setting the PG_uptodate bit, 523 * so that all previous stores issued in order to bring the page 524 * uptodate are actually visible before PageUptodate becomes true. 525 */ 526 smp_wmb(); 527 set_bit(PG_uptodate, &page->flags); 528} 529 530CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 531 532int test_clear_page_writeback(struct page *page); 533int __test_set_page_writeback(struct page *page, bool keep_write); 534 535#define test_set_page_writeback(page) \ 536 __test_set_page_writeback(page, false) 537#define test_set_page_writeback_keepwrite(page) \ 538 __test_set_page_writeback(page, true) 539 540static inline void set_page_writeback(struct page *page) 541{ 542 test_set_page_writeback(page); 543} 544 545static inline void set_page_writeback_keepwrite(struct page *page) 546{ 547 test_set_page_writeback_keepwrite(page); 548} 549 550__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 551 552static __always_inline void set_compound_head(struct page *page, struct page *head) 553{ 554 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 555} 556 557static __always_inline void clear_compound_head(struct page *page) 558{ 559 WRITE_ONCE(page->compound_head, 0); 560} 561 562#ifdef CONFIG_TRANSPARENT_HUGEPAGE 563static inline void ClearPageCompound(struct page *page) 564{ 565 BUG_ON(!PageHead(page)); 566 ClearPageHead(page); 567} 568#endif 569 570#define PG_head_mask ((1UL << PG_head)) 571 572#ifdef CONFIG_HUGETLB_PAGE 573int PageHuge(struct page *page); 574int PageHeadHuge(struct page *page); 575bool page_huge_active(struct page *page); 576#else 577TESTPAGEFLAG_FALSE(Huge) 578TESTPAGEFLAG_FALSE(HeadHuge) 579 580static inline bool page_huge_active(struct page *page) 581{ 582 return 0; 583} 584#endif 585 586 587#ifdef CONFIG_TRANSPARENT_HUGEPAGE 588/* 589 * PageHuge() only returns true for hugetlbfs pages, but not for 590 * normal or transparent huge pages. 591 * 592 * PageTransHuge() returns true for both transparent huge and 593 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 594 * called only in the core VM paths where hugetlbfs pages can't exist. 595 */ 596static inline int PageTransHuge(struct page *page) 597{ 598 VM_BUG_ON_PAGE(PageTail(page), page); 599 return PageHead(page); 600} 601 602/* 603 * PageTransCompound returns true for both transparent huge pages 604 * and hugetlbfs pages, so it should only be called when it's known 605 * that hugetlbfs pages aren't involved. 606 */ 607static inline int PageTransCompound(struct page *page) 608{ 609 return PageCompound(page); 610} 611 612/* 613 * PageTransCompoundMap is the same as PageTransCompound, but it also 614 * guarantees the primary MMU has the entire compound page mapped 615 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 616 * can also map the entire compound page. This allows the secondary 617 * MMUs to call get_user_pages() only once for each compound page and 618 * to immediately map the entire compound page with a single secondary 619 * MMU fault. If there will be a pmd split later, the secondary MMUs 620 * will get an update through the MMU notifier invalidation through 621 * split_huge_pmd(). 622 * 623 * Unlike PageTransCompound, this is safe to be called only while 624 * split_huge_pmd() cannot run from under us, like if protected by the 625 * MMU notifier, otherwise it may result in page->_mapcount < 0 false 626 * positives. 627 */ 628static inline int PageTransCompoundMap(struct page *page) 629{ 630 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0; 631} 632 633/* 634 * PageTransTail returns true for both transparent huge pages 635 * and hugetlbfs pages, so it should only be called when it's known 636 * that hugetlbfs pages aren't involved. 637 */ 638static inline int PageTransTail(struct page *page) 639{ 640 return PageTail(page); 641} 642 643/* 644 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 645 * as PMDs. 646 * 647 * This is required for optimization of rmap operations for THP: we can postpone 648 * per small page mapcount accounting (and its overhead from atomic operations) 649 * until the first PMD split. 650 * 651 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 652 * by one. This reference will go away with last compound_mapcount. 653 * 654 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 655 */ 656static inline int PageDoubleMap(struct page *page) 657{ 658 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 659} 660 661static inline void SetPageDoubleMap(struct page *page) 662{ 663 VM_BUG_ON_PAGE(!PageHead(page), page); 664 set_bit(PG_double_map, &page[1].flags); 665} 666 667static inline void ClearPageDoubleMap(struct page *page) 668{ 669 VM_BUG_ON_PAGE(!PageHead(page), page); 670 clear_bit(PG_double_map, &page[1].flags); 671} 672static inline int TestSetPageDoubleMap(struct page *page) 673{ 674 VM_BUG_ON_PAGE(!PageHead(page), page); 675 return test_and_set_bit(PG_double_map, &page[1].flags); 676} 677 678static inline int TestClearPageDoubleMap(struct page *page) 679{ 680 VM_BUG_ON_PAGE(!PageHead(page), page); 681 return test_and_clear_bit(PG_double_map, &page[1].flags); 682} 683 684#else 685TESTPAGEFLAG_FALSE(TransHuge) 686TESTPAGEFLAG_FALSE(TransCompound) 687TESTPAGEFLAG_FALSE(TransCompoundMap) 688TESTPAGEFLAG_FALSE(TransTail) 689PAGEFLAG_FALSE(DoubleMap) 690 TESTSETFLAG_FALSE(DoubleMap) 691 TESTCLEARFLAG_FALSE(DoubleMap) 692#endif 693 694/* 695 * For pages that are never mapped to userspace (and aren't PageSlab), 696 * page_type may be used. Because it is initialised to -1, we invert the 697 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 698 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 699 * low bits so that an underflow or overflow of page_mapcount() won't be 700 * mistaken for a page type value. 701 */ 702 703#define PAGE_TYPE_BASE 0xf0000000 704/* Reserve 0x0000007f to catch underflows of page_mapcount */ 705#define PAGE_MAPCOUNT_RESERVE -128 706#define PG_buddy 0x00000080 707#define PG_offline 0x00000100 708#define PG_kmemcg 0x00000200 709#define PG_table 0x00000400 710#define PG_guard 0x00000800 711 712#define PageType(page, flag) \ 713 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 714 715static inline int page_has_type(struct page *page) 716{ 717 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 718} 719 720#define PAGE_TYPE_OPS(uname, lname) \ 721static __always_inline int Page##uname(struct page *page) \ 722{ \ 723 return PageType(page, PG_##lname); \ 724} \ 725static __always_inline void __SetPage##uname(struct page *page) \ 726{ \ 727 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 728 page->page_type &= ~PG_##lname; \ 729} \ 730static __always_inline void __ClearPage##uname(struct page *page) \ 731{ \ 732 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 733 page->page_type |= PG_##lname; \ 734} 735 736/* 737 * PageBuddy() indicates that the page is free and in the buddy system 738 * (see mm/page_alloc.c). 739 */ 740PAGE_TYPE_OPS(Buddy, buddy) 741 742/* 743 * PageOffline() indicates that the page is logically offline although the 744 * containing section is online. (e.g. inflated in a balloon driver or 745 * not onlined when onlining the section). 746 * The content of these pages is effectively stale. Such pages should not 747 * be touched (read/write/dump/save) except by their owner. 748 */ 749PAGE_TYPE_OPS(Offline, offline) 750 751/* 752 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 753 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 754 */ 755PAGE_TYPE_OPS(Kmemcg, kmemcg) 756 757/* 758 * Marks pages in use as page tables. 759 */ 760PAGE_TYPE_OPS(Table, table) 761 762/* 763 * Marks guardpages used with debug_pagealloc. 764 */ 765PAGE_TYPE_OPS(Guard, guard) 766 767extern bool is_free_buddy_page(struct page *page); 768 769__PAGEFLAG(Isolated, isolated, PF_ANY); 770 771/* 772 * If network-based swap is enabled, sl*b must keep track of whether pages 773 * were allocated from pfmemalloc reserves. 774 */ 775static inline int PageSlabPfmemalloc(struct page *page) 776{ 777 VM_BUG_ON_PAGE(!PageSlab(page), page); 778 return PageActive(page); 779} 780 781static inline void SetPageSlabPfmemalloc(struct page *page) 782{ 783 VM_BUG_ON_PAGE(!PageSlab(page), page); 784 SetPageActive(page); 785} 786 787static inline void __ClearPageSlabPfmemalloc(struct page *page) 788{ 789 VM_BUG_ON_PAGE(!PageSlab(page), page); 790 __ClearPageActive(page); 791} 792 793static inline void ClearPageSlabPfmemalloc(struct page *page) 794{ 795 VM_BUG_ON_PAGE(!PageSlab(page), page); 796 ClearPageActive(page); 797} 798 799#ifdef CONFIG_MMU 800#define __PG_MLOCKED (1UL << PG_mlocked) 801#else 802#define __PG_MLOCKED 0 803#endif 804 805/* 806 * Flags checked when a page is freed. Pages being freed should not have 807 * these flags set. It they are, there is a problem. 808 */ 809#define PAGE_FLAGS_CHECK_AT_FREE \ 810 (1UL << PG_lru | 1UL << PG_locked | \ 811 1UL << PG_private | 1UL << PG_private_2 | \ 812 1UL << PG_writeback | 1UL << PG_reserved | \ 813 1UL << PG_slab | 1UL << PG_active | \ 814 1UL << PG_unevictable | __PG_MLOCKED) 815 816/* 817 * Flags checked when a page is prepped for return by the page allocator. 818 * Pages being prepped should not have these flags set. It they are set, 819 * there has been a kernel bug or struct page corruption. 820 * 821 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 822 * alloc-free cycle to prevent from reusing the page. 823 */ 824#define PAGE_FLAGS_CHECK_AT_PREP \ 825 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 826 827#define PAGE_FLAGS_PRIVATE \ 828 (1UL << PG_private | 1UL << PG_private_2) 829/** 830 * page_has_private - Determine if page has private stuff 831 * @page: The page to be checked 832 * 833 * Determine if a page has private stuff, indicating that release routines 834 * should be invoked upon it. 835 */ 836static inline int page_has_private(struct page *page) 837{ 838 return !!(page->flags & PAGE_FLAGS_PRIVATE); 839} 840 841#undef PF_ANY 842#undef PF_HEAD 843#undef PF_ONLY_HEAD 844#undef PF_NO_TAIL 845#undef PF_NO_COMPOUND 846#endif /* !__GENERATING_BOUNDS_H */ 847 848#endif /* PAGE_FLAGS_H */