Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4 */
5
6#ifndef __MTD_MTD_H__
7#define __MTD_MTD_H__
8
9#include <linux/types.h>
10#include <linux/uio.h>
11#include <linux/notifier.h>
12#include <linux/device.h>
13#include <linux/of.h>
14#include <linux/nvmem-provider.h>
15
16#include <mtd/mtd-abi.h>
17
18#include <asm/div64.h>
19
20#define MTD_FAIL_ADDR_UNKNOWN -1LL
21
22struct mtd_info;
23
24/*
25 * If the erase fails, fail_addr might indicate exactly which block failed. If
26 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
27 * or was not specific to any particular block.
28 */
29struct erase_info {
30 uint64_t addr;
31 uint64_t len;
32 uint64_t fail_addr;
33};
34
35struct mtd_erase_region_info {
36 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
37 uint32_t erasesize; /* For this region */
38 uint32_t numblocks; /* Number of blocks of erasesize in this region */
39 unsigned long *lockmap; /* If keeping bitmap of locks */
40};
41
42/**
43 * struct mtd_oob_ops - oob operation operands
44 * @mode: operation mode
45 *
46 * @len: number of data bytes to write/read
47 *
48 * @retlen: number of data bytes written/read
49 *
50 * @ooblen: number of oob bytes to write/read
51 * @oobretlen: number of oob bytes written/read
52 * @ooboffs: offset of oob data in the oob area (only relevant when
53 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
54 * @datbuf: data buffer - if NULL only oob data are read/written
55 * @oobbuf: oob data buffer
56 *
57 * Note, some MTD drivers do not allow you to write more than one OOB area at
58 * one go. If you try to do that on such an MTD device, -EINVAL will be
59 * returned. If you want to make your implementation portable on all kind of MTD
60 * devices you should split the write request into several sub-requests when the
61 * request crosses a page boundary.
62 */
63struct mtd_oob_ops {
64 unsigned int mode;
65 size_t len;
66 size_t retlen;
67 size_t ooblen;
68 size_t oobretlen;
69 uint32_t ooboffs;
70 uint8_t *datbuf;
71 uint8_t *oobbuf;
72};
73
74#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
75#define MTD_MAX_ECCPOS_ENTRIES_LARGE 640
76/**
77 * struct mtd_oob_region - oob region definition
78 * @offset: region offset
79 * @length: region length
80 *
81 * This structure describes a region of the OOB area, and is used
82 * to retrieve ECC or free bytes sections.
83 * Each section is defined by an offset within the OOB area and a
84 * length.
85 */
86struct mtd_oob_region {
87 u32 offset;
88 u32 length;
89};
90
91/*
92 * struct mtd_ooblayout_ops - NAND OOB layout operations
93 * @ecc: function returning an ECC region in the OOB area.
94 * Should return -ERANGE if %section exceeds the total number of
95 * ECC sections.
96 * @free: function returning a free region in the OOB area.
97 * Should return -ERANGE if %section exceeds the total number of
98 * free sections.
99 */
100struct mtd_ooblayout_ops {
101 int (*ecc)(struct mtd_info *mtd, int section,
102 struct mtd_oob_region *oobecc);
103 int (*free)(struct mtd_info *mtd, int section,
104 struct mtd_oob_region *oobfree);
105};
106
107/**
108 * struct mtd_pairing_info - page pairing information
109 *
110 * @pair: pair id
111 * @group: group id
112 *
113 * The term "pair" is used here, even though TLC NANDs might group pages by 3
114 * (3 bits in a single cell). A pair should regroup all pages that are sharing
115 * the same cell. Pairs are then indexed in ascending order.
116 *
117 * @group is defining the position of a page in a given pair. It can also be
118 * seen as the bit position in the cell: page attached to bit 0 belongs to
119 * group 0, page attached to bit 1 belongs to group 1, etc.
120 *
121 * Example:
122 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
123 *
124 * group-0 group-1
125 *
126 * pair-0 page-0 page-4
127 * pair-1 page-1 page-5
128 * pair-2 page-2 page-8
129 * ...
130 * pair-127 page-251 page-255
131 *
132 *
133 * Note that the "group" and "pair" terms were extracted from Samsung and
134 * Hynix datasheets, and might be referenced under other names in other
135 * datasheets (Micron is describing this concept as "shared pages").
136 */
137struct mtd_pairing_info {
138 int pair;
139 int group;
140};
141
142/**
143 * struct mtd_pairing_scheme - page pairing scheme description
144 *
145 * @ngroups: number of groups. Should be related to the number of bits
146 * per cell.
147 * @get_info: converts a write-unit (page number within an erase block) into
148 * mtd_pairing information (pair + group). This function should
149 * fill the info parameter based on the wunit index or return
150 * -EINVAL if the wunit parameter is invalid.
151 * @get_wunit: converts pairing information into a write-unit (page) number.
152 * This function should return the wunit index pointed by the
153 * pairing information described in the info argument. It should
154 * return -EINVAL, if there's no wunit corresponding to the
155 * passed pairing information.
156 *
157 * See mtd_pairing_info documentation for a detailed explanation of the
158 * pair and group concepts.
159 *
160 * The mtd_pairing_scheme structure provides a generic solution to represent
161 * NAND page pairing scheme. Instead of exposing two big tables to do the
162 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
163 * implement the ->get_info() and ->get_wunit() functions.
164 *
165 * MTD users will then be able to query these information by using the
166 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
167 *
168 * @ngroups is here to help MTD users iterating over all the pages in a
169 * given pair. This value can be retrieved by MTD users using the
170 * mtd_pairing_groups() helper.
171 *
172 * Examples are given in the mtd_pairing_info_to_wunit() and
173 * mtd_wunit_to_pairing_info() documentation.
174 */
175struct mtd_pairing_scheme {
176 int ngroups;
177 int (*get_info)(struct mtd_info *mtd, int wunit,
178 struct mtd_pairing_info *info);
179 int (*get_wunit)(struct mtd_info *mtd,
180 const struct mtd_pairing_info *info);
181};
182
183struct module; /* only needed for owner field in mtd_info */
184
185/**
186 * struct mtd_debug_info - debugging information for an MTD device.
187 *
188 * @dfs_dir: direntry object of the MTD device debugfs directory
189 */
190struct mtd_debug_info {
191 struct dentry *dfs_dir;
192};
193
194struct mtd_info {
195 u_char type;
196 uint32_t flags;
197 uint32_t orig_flags; /* Flags as before running mtd checks */
198 uint64_t size; // Total size of the MTD
199
200 /* "Major" erase size for the device. Naïve users may take this
201 * to be the only erase size available, or may use the more detailed
202 * information below if they desire
203 */
204 uint32_t erasesize;
205 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
206 * though individual bits can be cleared), in case of NAND flash it is
207 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
208 * it is of ECC block size, etc. It is illegal to have writesize = 0.
209 * Any driver registering a struct mtd_info must ensure a writesize of
210 * 1 or larger.
211 */
212 uint32_t writesize;
213
214 /*
215 * Size of the write buffer used by the MTD. MTD devices having a write
216 * buffer can write multiple writesize chunks at a time. E.g. while
217 * writing 4 * writesize bytes to a device with 2 * writesize bytes
218 * buffer the MTD driver can (but doesn't have to) do 2 writesize
219 * operations, but not 4. Currently, all NANDs have writebufsize
220 * equivalent to writesize (NAND page size). Some NOR flashes do have
221 * writebufsize greater than writesize.
222 */
223 uint32_t writebufsize;
224
225 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
226 uint32_t oobavail; // Available OOB bytes per block
227
228 /*
229 * If erasesize is a power of 2 then the shift is stored in
230 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
231 */
232 unsigned int erasesize_shift;
233 unsigned int writesize_shift;
234 /* Masks based on erasesize_shift and writesize_shift */
235 unsigned int erasesize_mask;
236 unsigned int writesize_mask;
237
238 /*
239 * read ops return -EUCLEAN if max number of bitflips corrected on any
240 * one region comprising an ecc step equals or exceeds this value.
241 * Settable by driver, else defaults to ecc_strength. User can override
242 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
243 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
244 */
245 unsigned int bitflip_threshold;
246
247 /* Kernel-only stuff starts here. */
248 const char *name;
249 int index;
250
251 /* OOB layout description */
252 const struct mtd_ooblayout_ops *ooblayout;
253
254 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
255 const struct mtd_pairing_scheme *pairing;
256
257 /* the ecc step size. */
258 unsigned int ecc_step_size;
259
260 /* max number of correctible bit errors per ecc step */
261 unsigned int ecc_strength;
262
263 /* Data for variable erase regions. If numeraseregions is zero,
264 * it means that the whole device has erasesize as given above.
265 */
266 int numeraseregions;
267 struct mtd_erase_region_info *eraseregions;
268
269 /*
270 * Do not call via these pointers, use corresponding mtd_*()
271 * wrappers instead.
272 */
273 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
274 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
275 size_t *retlen, void **virt, resource_size_t *phys);
276 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
277 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
278 size_t *retlen, u_char *buf);
279 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
280 size_t *retlen, const u_char *buf);
281 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
282 size_t *retlen, const u_char *buf);
283 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
284 struct mtd_oob_ops *ops);
285 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
286 struct mtd_oob_ops *ops);
287 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
288 size_t *retlen, struct otp_info *buf);
289 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
290 size_t len, size_t *retlen, u_char *buf);
291 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
292 size_t *retlen, struct otp_info *buf);
293 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
294 size_t len, size_t *retlen, u_char *buf);
295 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
296 size_t len, size_t *retlen, u_char *buf);
297 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
298 size_t len);
299 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
300 unsigned long count, loff_t to, size_t *retlen);
301 void (*_sync) (struct mtd_info *mtd);
302 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
303 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
304 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
305 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
306 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
307 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
308 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
309 int (*_suspend) (struct mtd_info *mtd);
310 void (*_resume) (struct mtd_info *mtd);
311 void (*_reboot) (struct mtd_info *mtd);
312 /*
313 * If the driver is something smart, like UBI, it may need to maintain
314 * its own reference counting. The below functions are only for driver.
315 */
316 int (*_get_device) (struct mtd_info *mtd);
317 void (*_put_device) (struct mtd_info *mtd);
318
319 /*
320 * flag indicates a panic write, low level drivers can take appropriate
321 * action if required to ensure writes go through
322 */
323 bool oops_panic_write;
324
325 struct notifier_block reboot_notifier; /* default mode before reboot */
326
327 /* ECC status information */
328 struct mtd_ecc_stats ecc_stats;
329 /* Subpage shift (NAND) */
330 int subpage_sft;
331
332 void *priv;
333
334 struct module *owner;
335 struct device dev;
336 int usecount;
337 struct mtd_debug_info dbg;
338 struct nvmem_device *nvmem;
339};
340
341int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
342 struct mtd_oob_region *oobecc);
343int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
344 int *section,
345 struct mtd_oob_region *oobregion);
346int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
347 const u8 *oobbuf, int start, int nbytes);
348int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
349 u8 *oobbuf, int start, int nbytes);
350int mtd_ooblayout_free(struct mtd_info *mtd, int section,
351 struct mtd_oob_region *oobfree);
352int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
353 const u8 *oobbuf, int start, int nbytes);
354int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
355 u8 *oobbuf, int start, int nbytes);
356int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
357int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
358
359static inline void mtd_set_ooblayout(struct mtd_info *mtd,
360 const struct mtd_ooblayout_ops *ooblayout)
361{
362 mtd->ooblayout = ooblayout;
363}
364
365static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
366 const struct mtd_pairing_scheme *pairing)
367{
368 mtd->pairing = pairing;
369}
370
371static inline void mtd_set_of_node(struct mtd_info *mtd,
372 struct device_node *np)
373{
374 mtd->dev.of_node = np;
375 if (!mtd->name)
376 of_property_read_string(np, "label", &mtd->name);
377}
378
379static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
380{
381 return dev_of_node(&mtd->dev);
382}
383
384static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
385{
386 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
387}
388
389static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
390 loff_t ofs, size_t len)
391{
392 if (!mtd->_max_bad_blocks)
393 return -ENOTSUPP;
394
395 if (mtd->size < (len + ofs) || ofs < 0)
396 return -EINVAL;
397
398 return mtd->_max_bad_blocks(mtd, ofs, len);
399}
400
401int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
402 struct mtd_pairing_info *info);
403int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
404 const struct mtd_pairing_info *info);
405int mtd_pairing_groups(struct mtd_info *mtd);
406int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
407int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
408 void **virt, resource_size_t *phys);
409int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
410unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
411 unsigned long offset, unsigned long flags);
412int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
413 u_char *buf);
414int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
415 const u_char *buf);
416int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
417 const u_char *buf);
418
419int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
420int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
421
422int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
423 struct otp_info *buf);
424int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
425 size_t *retlen, u_char *buf);
426int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
427 struct otp_info *buf);
428int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
429 size_t *retlen, u_char *buf);
430int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
431 size_t *retlen, u_char *buf);
432int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
433
434int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
435 unsigned long count, loff_t to, size_t *retlen);
436
437static inline void mtd_sync(struct mtd_info *mtd)
438{
439 if (mtd->_sync)
440 mtd->_sync(mtd);
441}
442
443int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
444int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
445int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
446int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
447int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
448int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
449
450static inline int mtd_suspend(struct mtd_info *mtd)
451{
452 return mtd->_suspend ? mtd->_suspend(mtd) : 0;
453}
454
455static inline void mtd_resume(struct mtd_info *mtd)
456{
457 if (mtd->_resume)
458 mtd->_resume(mtd);
459}
460
461static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
462{
463 if (mtd->erasesize_shift)
464 return sz >> mtd->erasesize_shift;
465 do_div(sz, mtd->erasesize);
466 return sz;
467}
468
469static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
470{
471 if (mtd->erasesize_shift)
472 return sz & mtd->erasesize_mask;
473 return do_div(sz, mtd->erasesize);
474}
475
476/**
477 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
478 * boundaries.
479 * @mtd: the MTD device this erase request applies on
480 * @req: the erase request to adjust
481 *
482 * This function will adjust @req->addr and @req->len to align them on
483 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
484 */
485static inline void mtd_align_erase_req(struct mtd_info *mtd,
486 struct erase_info *req)
487{
488 u32 mod;
489
490 if (WARN_ON(!mtd->erasesize))
491 return;
492
493 mod = mtd_mod_by_eb(req->addr, mtd);
494 if (mod) {
495 req->addr -= mod;
496 req->len += mod;
497 }
498
499 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
500 if (mod)
501 req->len += mtd->erasesize - mod;
502}
503
504static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
505{
506 if (mtd->writesize_shift)
507 return sz >> mtd->writesize_shift;
508 do_div(sz, mtd->writesize);
509 return sz;
510}
511
512static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
513{
514 if (mtd->writesize_shift)
515 return sz & mtd->writesize_mask;
516 return do_div(sz, mtd->writesize);
517}
518
519static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
520{
521 return mtd->erasesize / mtd->writesize;
522}
523
524static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
525{
526 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
527}
528
529static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
530 int wunit)
531{
532 return base + (wunit * mtd->writesize);
533}
534
535
536static inline int mtd_has_oob(const struct mtd_info *mtd)
537{
538 return mtd->_read_oob && mtd->_write_oob;
539}
540
541static inline int mtd_type_is_nand(const struct mtd_info *mtd)
542{
543 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
544}
545
546static inline int mtd_can_have_bb(const struct mtd_info *mtd)
547{
548 return !!mtd->_block_isbad;
549}
550
551 /* Kernel-side ioctl definitions */
552
553struct mtd_partition;
554struct mtd_part_parser_data;
555
556extern int mtd_device_parse_register(struct mtd_info *mtd,
557 const char * const *part_probe_types,
558 struct mtd_part_parser_data *parser_data,
559 const struct mtd_partition *defparts,
560 int defnr_parts);
561#define mtd_device_register(master, parts, nr_parts) \
562 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
563extern int mtd_device_unregister(struct mtd_info *master);
564extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
565extern int __get_mtd_device(struct mtd_info *mtd);
566extern void __put_mtd_device(struct mtd_info *mtd);
567extern struct mtd_info *get_mtd_device_nm(const char *name);
568extern void put_mtd_device(struct mtd_info *mtd);
569
570
571struct mtd_notifier {
572 void (*add)(struct mtd_info *mtd);
573 void (*remove)(struct mtd_info *mtd);
574 struct list_head list;
575};
576
577
578extern void register_mtd_user (struct mtd_notifier *new);
579extern int unregister_mtd_user (struct mtd_notifier *old);
580void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
581
582static inline int mtd_is_bitflip(int err) {
583 return err == -EUCLEAN;
584}
585
586static inline int mtd_is_eccerr(int err) {
587 return err == -EBADMSG;
588}
589
590static inline int mtd_is_bitflip_or_eccerr(int err) {
591 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
592}
593
594unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
595
596#endif /* __MTD_MTD_H__ */