Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
23#include <asm/page.h>
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
41enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
63#ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65#endif
66 MIGRATE_TYPES
67};
68
69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70extern const char * const migratetype_names[MIGRATE_TYPES];
71
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75#else
76# define is_migrate_cma(migratetype) false
77# define is_migrate_cma_page(_page) false
78#endif
79
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89extern int page_group_by_mobility_disabled;
90
91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101};
102
103/* Used for pages not on another list */
104static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106{
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109}
110
111/* Used for pages not on another list */
112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114{
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117}
118
119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120/* Used to preserve page allocation order entropy */
121void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123#else
124static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126{
127 add_to_free_area(page, area, migratetype);
128}
129#endif
130
131/* Used for pages which are on another list */
132static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134{
135 list_move(&page->lru, &area->free_list[migratetype]);
136}
137
138static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140{
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143}
144
145static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147{
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152}
153
154static inline bool free_area_empty(struct free_area *area, int migratetype)
155{
156 return list_empty(&area->free_list[migratetype]);
157}
158
159struct pglist_data;
160
161/*
162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167#if defined(CONFIG_SMP)
168struct zone_padding {
169 char x[0];
170} ____cacheline_internodealigned_in_smp;
171#define ZONE_PADDING(name) struct zone_padding name;
172#else
173#define ZONE_PADDING(name)
174#endif
175
176#ifdef CONFIG_NUMA
177enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185};
186#else
187#define NR_VM_NUMA_STAT_ITEMS 0
188#endif
189
190enum zone_stat_item {
191 /* First 128 byte cacheline (assuming 64 bit words) */
192 NR_FREE_PAGES,
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
201 NR_PAGETABLE, /* used for pagetables */
202 NR_KERNEL_STACK_KB, /* measured in KiB */
203 /* Second 128 byte cacheline */
204 NR_BOUNCE,
205#if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
207#endif
208 NR_FREE_CMA_PAGES,
209 NR_VM_ZONE_STAT_ITEMS };
210
211enum node_stat_item {
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
218 NR_SLAB_RECLAIMABLE, /* Please do not reorder this item */
219 NR_SLAB_UNRECLAIMABLE, /* and this one without looking at
220 * memcg_flush_percpu_vmstats() first. */
221 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
222 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
223 WORKINGSET_NODES,
224 WORKINGSET_REFAULT,
225 WORKINGSET_ACTIVATE,
226 WORKINGSET_RESTORE,
227 WORKINGSET_NODERECLAIM,
228 NR_ANON_MAPPED, /* Mapped anonymous pages */
229 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
230 only modified from process context */
231 NR_FILE_PAGES,
232 NR_FILE_DIRTY,
233 NR_WRITEBACK,
234 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
235 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
236 NR_SHMEM_THPS,
237 NR_SHMEM_PMDMAPPED,
238 NR_ANON_THPS,
239 NR_UNSTABLE_NFS, /* NFS unstable pages */
240 NR_VMSCAN_WRITE,
241 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
242 NR_DIRTIED, /* page dirtyings since bootup */
243 NR_WRITTEN, /* page writings since bootup */
244 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
245 NR_VM_NODE_STAT_ITEMS
246};
247
248/*
249 * We do arithmetic on the LRU lists in various places in the code,
250 * so it is important to keep the active lists LRU_ACTIVE higher in
251 * the array than the corresponding inactive lists, and to keep
252 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
253 *
254 * This has to be kept in sync with the statistics in zone_stat_item
255 * above and the descriptions in vmstat_text in mm/vmstat.c
256 */
257#define LRU_BASE 0
258#define LRU_ACTIVE 1
259#define LRU_FILE 2
260
261enum lru_list {
262 LRU_INACTIVE_ANON = LRU_BASE,
263 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
264 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
265 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
266 LRU_UNEVICTABLE,
267 NR_LRU_LISTS
268};
269
270#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
271
272#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
273
274static inline int is_file_lru(enum lru_list lru)
275{
276 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
277}
278
279static inline int is_active_lru(enum lru_list lru)
280{
281 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
282}
283
284struct zone_reclaim_stat {
285 /*
286 * The pageout code in vmscan.c keeps track of how many of the
287 * mem/swap backed and file backed pages are referenced.
288 * The higher the rotated/scanned ratio, the more valuable
289 * that cache is.
290 *
291 * The anon LRU stats live in [0], file LRU stats in [1]
292 */
293 unsigned long recent_rotated[2];
294 unsigned long recent_scanned[2];
295};
296
297struct lruvec {
298 struct list_head lists[NR_LRU_LISTS];
299 struct zone_reclaim_stat reclaim_stat;
300 /* Evictions & activations on the inactive file list */
301 atomic_long_t inactive_age;
302 /* Refaults at the time of last reclaim cycle */
303 unsigned long refaults;
304#ifdef CONFIG_MEMCG
305 struct pglist_data *pgdat;
306#endif
307};
308
309/* Isolate unmapped file */
310#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
311/* Isolate for asynchronous migration */
312#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
313/* Isolate unevictable pages */
314#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
315
316/* LRU Isolation modes. */
317typedef unsigned __bitwise isolate_mode_t;
318
319enum zone_watermarks {
320 WMARK_MIN,
321 WMARK_LOW,
322 WMARK_HIGH,
323 NR_WMARK
324};
325
326#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
327#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
328#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
329#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
330
331struct per_cpu_pages {
332 int count; /* number of pages in the list */
333 int high; /* high watermark, emptying needed */
334 int batch; /* chunk size for buddy add/remove */
335
336 /* Lists of pages, one per migrate type stored on the pcp-lists */
337 struct list_head lists[MIGRATE_PCPTYPES];
338};
339
340struct per_cpu_pageset {
341 struct per_cpu_pages pcp;
342#ifdef CONFIG_NUMA
343 s8 expire;
344 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
345#endif
346#ifdef CONFIG_SMP
347 s8 stat_threshold;
348 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
349#endif
350};
351
352struct per_cpu_nodestat {
353 s8 stat_threshold;
354 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
355};
356
357#endif /* !__GENERATING_BOUNDS.H */
358
359enum zone_type {
360#ifdef CONFIG_ZONE_DMA
361 /*
362 * ZONE_DMA is used when there are devices that are not able
363 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
364 * carve out the portion of memory that is needed for these devices.
365 * The range is arch specific.
366 *
367 * Some examples
368 *
369 * Architecture Limit
370 * ---------------------------
371 * parisc, ia64, sparc <4G
372 * s390, powerpc <2G
373 * arm Various
374 * alpha Unlimited or 0-16MB.
375 *
376 * i386, x86_64 and multiple other arches
377 * <16M.
378 */
379 ZONE_DMA,
380#endif
381#ifdef CONFIG_ZONE_DMA32
382 /*
383 * x86_64 needs two ZONE_DMAs because it supports devices that are
384 * only able to do DMA to the lower 16M but also 32 bit devices that
385 * can only do DMA areas below 4G.
386 */
387 ZONE_DMA32,
388#endif
389 /*
390 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
391 * performed on pages in ZONE_NORMAL if the DMA devices support
392 * transfers to all addressable memory.
393 */
394 ZONE_NORMAL,
395#ifdef CONFIG_HIGHMEM
396 /*
397 * A memory area that is only addressable by the kernel through
398 * mapping portions into its own address space. This is for example
399 * used by i386 to allow the kernel to address the memory beyond
400 * 900MB. The kernel will set up special mappings (page
401 * table entries on i386) for each page that the kernel needs to
402 * access.
403 */
404 ZONE_HIGHMEM,
405#endif
406 ZONE_MOVABLE,
407#ifdef CONFIG_ZONE_DEVICE
408 ZONE_DEVICE,
409#endif
410 __MAX_NR_ZONES
411
412};
413
414#ifndef __GENERATING_BOUNDS_H
415
416struct zone {
417 /* Read-mostly fields */
418
419 /* zone watermarks, access with *_wmark_pages(zone) macros */
420 unsigned long _watermark[NR_WMARK];
421 unsigned long watermark_boost;
422
423 unsigned long nr_reserved_highatomic;
424
425 /*
426 * We don't know if the memory that we're going to allocate will be
427 * freeable or/and it will be released eventually, so to avoid totally
428 * wasting several GB of ram we must reserve some of the lower zone
429 * memory (otherwise we risk to run OOM on the lower zones despite
430 * there being tons of freeable ram on the higher zones). This array is
431 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
432 * changes.
433 */
434 long lowmem_reserve[MAX_NR_ZONES];
435
436#ifdef CONFIG_NUMA
437 int node;
438#endif
439 struct pglist_data *zone_pgdat;
440 struct per_cpu_pageset __percpu *pageset;
441
442#ifndef CONFIG_SPARSEMEM
443 /*
444 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
445 * In SPARSEMEM, this map is stored in struct mem_section
446 */
447 unsigned long *pageblock_flags;
448#endif /* CONFIG_SPARSEMEM */
449
450 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
451 unsigned long zone_start_pfn;
452
453 /*
454 * spanned_pages is the total pages spanned by the zone, including
455 * holes, which is calculated as:
456 * spanned_pages = zone_end_pfn - zone_start_pfn;
457 *
458 * present_pages is physical pages existing within the zone, which
459 * is calculated as:
460 * present_pages = spanned_pages - absent_pages(pages in holes);
461 *
462 * managed_pages is present pages managed by the buddy system, which
463 * is calculated as (reserved_pages includes pages allocated by the
464 * bootmem allocator):
465 * managed_pages = present_pages - reserved_pages;
466 *
467 * So present_pages may be used by memory hotplug or memory power
468 * management logic to figure out unmanaged pages by checking
469 * (present_pages - managed_pages). And managed_pages should be used
470 * by page allocator and vm scanner to calculate all kinds of watermarks
471 * and thresholds.
472 *
473 * Locking rules:
474 *
475 * zone_start_pfn and spanned_pages are protected by span_seqlock.
476 * It is a seqlock because it has to be read outside of zone->lock,
477 * and it is done in the main allocator path. But, it is written
478 * quite infrequently.
479 *
480 * The span_seq lock is declared along with zone->lock because it is
481 * frequently read in proximity to zone->lock. It's good to
482 * give them a chance of being in the same cacheline.
483 *
484 * Write access to present_pages at runtime should be protected by
485 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
486 * present_pages should get_online_mems() to get a stable value.
487 */
488 atomic_long_t managed_pages;
489 unsigned long spanned_pages;
490 unsigned long present_pages;
491
492 const char *name;
493
494#ifdef CONFIG_MEMORY_ISOLATION
495 /*
496 * Number of isolated pageblock. It is used to solve incorrect
497 * freepage counting problem due to racy retrieving migratetype
498 * of pageblock. Protected by zone->lock.
499 */
500 unsigned long nr_isolate_pageblock;
501#endif
502
503#ifdef CONFIG_MEMORY_HOTPLUG
504 /* see spanned/present_pages for more description */
505 seqlock_t span_seqlock;
506#endif
507
508 int initialized;
509
510 /* Write-intensive fields used from the page allocator */
511 ZONE_PADDING(_pad1_)
512
513 /* free areas of different sizes */
514 struct free_area free_area[MAX_ORDER];
515
516 /* zone flags, see below */
517 unsigned long flags;
518
519 /* Primarily protects free_area */
520 spinlock_t lock;
521
522 /* Write-intensive fields used by compaction and vmstats. */
523 ZONE_PADDING(_pad2_)
524
525 /*
526 * When free pages are below this point, additional steps are taken
527 * when reading the number of free pages to avoid per-cpu counter
528 * drift allowing watermarks to be breached
529 */
530 unsigned long percpu_drift_mark;
531
532#if defined CONFIG_COMPACTION || defined CONFIG_CMA
533 /* pfn where compaction free scanner should start */
534 unsigned long compact_cached_free_pfn;
535 /* pfn where async and sync compaction migration scanner should start */
536 unsigned long compact_cached_migrate_pfn[2];
537 unsigned long compact_init_migrate_pfn;
538 unsigned long compact_init_free_pfn;
539#endif
540
541#ifdef CONFIG_COMPACTION
542 /*
543 * On compaction failure, 1<<compact_defer_shift compactions
544 * are skipped before trying again. The number attempted since
545 * last failure is tracked with compact_considered.
546 */
547 unsigned int compact_considered;
548 unsigned int compact_defer_shift;
549 int compact_order_failed;
550#endif
551
552#if defined CONFIG_COMPACTION || defined CONFIG_CMA
553 /* Set to true when the PG_migrate_skip bits should be cleared */
554 bool compact_blockskip_flush;
555#endif
556
557 bool contiguous;
558
559 ZONE_PADDING(_pad3_)
560 /* Zone statistics */
561 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
562 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
563} ____cacheline_internodealigned_in_smp;
564
565enum pgdat_flags {
566 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
567 * a congested BDI
568 */
569 PGDAT_DIRTY, /* reclaim scanning has recently found
570 * many dirty file pages at the tail
571 * of the LRU.
572 */
573 PGDAT_WRITEBACK, /* reclaim scanning has recently found
574 * many pages under writeback
575 */
576 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
577};
578
579enum zone_flags {
580 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
581 * Cleared when kswapd is woken.
582 */
583};
584
585static inline unsigned long zone_managed_pages(struct zone *zone)
586{
587 return (unsigned long)atomic_long_read(&zone->managed_pages);
588}
589
590static inline unsigned long zone_end_pfn(const struct zone *zone)
591{
592 return zone->zone_start_pfn + zone->spanned_pages;
593}
594
595static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
596{
597 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
598}
599
600static inline bool zone_is_initialized(struct zone *zone)
601{
602 return zone->initialized;
603}
604
605static inline bool zone_is_empty(struct zone *zone)
606{
607 return zone->spanned_pages == 0;
608}
609
610/*
611 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
612 * intersection with the given zone
613 */
614static inline bool zone_intersects(struct zone *zone,
615 unsigned long start_pfn, unsigned long nr_pages)
616{
617 if (zone_is_empty(zone))
618 return false;
619 if (start_pfn >= zone_end_pfn(zone) ||
620 start_pfn + nr_pages <= zone->zone_start_pfn)
621 return false;
622
623 return true;
624}
625
626/*
627 * The "priority" of VM scanning is how much of the queues we will scan in one
628 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
629 * queues ("queue_length >> 12") during an aging round.
630 */
631#define DEF_PRIORITY 12
632
633/* Maximum number of zones on a zonelist */
634#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
635
636enum {
637 ZONELIST_FALLBACK, /* zonelist with fallback */
638#ifdef CONFIG_NUMA
639 /*
640 * The NUMA zonelists are doubled because we need zonelists that
641 * restrict the allocations to a single node for __GFP_THISNODE.
642 */
643 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
644#endif
645 MAX_ZONELISTS
646};
647
648/*
649 * This struct contains information about a zone in a zonelist. It is stored
650 * here to avoid dereferences into large structures and lookups of tables
651 */
652struct zoneref {
653 struct zone *zone; /* Pointer to actual zone */
654 int zone_idx; /* zone_idx(zoneref->zone) */
655};
656
657/*
658 * One allocation request operates on a zonelist. A zonelist
659 * is a list of zones, the first one is the 'goal' of the
660 * allocation, the other zones are fallback zones, in decreasing
661 * priority.
662 *
663 * To speed the reading of the zonelist, the zonerefs contain the zone index
664 * of the entry being read. Helper functions to access information given
665 * a struct zoneref are
666 *
667 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
668 * zonelist_zone_idx() - Return the index of the zone for an entry
669 * zonelist_node_idx() - Return the index of the node for an entry
670 */
671struct zonelist {
672 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
673};
674
675#ifndef CONFIG_DISCONTIGMEM
676/* The array of struct pages - for discontigmem use pgdat->lmem_map */
677extern struct page *mem_map;
678#endif
679
680/*
681 * On NUMA machines, each NUMA node would have a pg_data_t to describe
682 * it's memory layout. On UMA machines there is a single pglist_data which
683 * describes the whole memory.
684 *
685 * Memory statistics and page replacement data structures are maintained on a
686 * per-zone basis.
687 */
688struct bootmem_data;
689typedef struct pglist_data {
690 struct zone node_zones[MAX_NR_ZONES];
691 struct zonelist node_zonelists[MAX_ZONELISTS];
692 int nr_zones;
693#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
694 struct page *node_mem_map;
695#ifdef CONFIG_PAGE_EXTENSION
696 struct page_ext *node_page_ext;
697#endif
698#endif
699#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
700 /*
701 * Must be held any time you expect node_start_pfn,
702 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
703 *
704 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
705 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
706 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
707 *
708 * Nests above zone->lock and zone->span_seqlock
709 */
710 spinlock_t node_size_lock;
711#endif
712 unsigned long node_start_pfn;
713 unsigned long node_present_pages; /* total number of physical pages */
714 unsigned long node_spanned_pages; /* total size of physical page
715 range, including holes */
716 int node_id;
717 wait_queue_head_t kswapd_wait;
718 wait_queue_head_t pfmemalloc_wait;
719 struct task_struct *kswapd; /* Protected by
720 mem_hotplug_begin/end() */
721 int kswapd_order;
722 enum zone_type kswapd_classzone_idx;
723
724 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
725
726#ifdef CONFIG_COMPACTION
727 int kcompactd_max_order;
728 enum zone_type kcompactd_classzone_idx;
729 wait_queue_head_t kcompactd_wait;
730 struct task_struct *kcompactd;
731#endif
732 /*
733 * This is a per-node reserve of pages that are not available
734 * to userspace allocations.
735 */
736 unsigned long totalreserve_pages;
737
738#ifdef CONFIG_NUMA
739 /*
740 * zone reclaim becomes active if more unmapped pages exist.
741 */
742 unsigned long min_unmapped_pages;
743 unsigned long min_slab_pages;
744#endif /* CONFIG_NUMA */
745
746 /* Write-intensive fields used by page reclaim */
747 ZONE_PADDING(_pad1_)
748 spinlock_t lru_lock;
749
750#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
751 /*
752 * If memory initialisation on large machines is deferred then this
753 * is the first PFN that needs to be initialised.
754 */
755 unsigned long first_deferred_pfn;
756#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
757
758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
759 spinlock_t split_queue_lock;
760 struct list_head split_queue;
761 unsigned long split_queue_len;
762#endif
763
764 /* Fields commonly accessed by the page reclaim scanner */
765 struct lruvec lruvec;
766
767 unsigned long flags;
768
769 ZONE_PADDING(_pad2_)
770
771 /* Per-node vmstats */
772 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
773 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
774} pg_data_t;
775
776#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
777#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
778#ifdef CONFIG_FLAT_NODE_MEM_MAP
779#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
780#else
781#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
782#endif
783#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
784
785#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
786#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
787
788static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
789{
790 return &pgdat->lruvec;
791}
792
793static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
794{
795 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
796}
797
798static inline bool pgdat_is_empty(pg_data_t *pgdat)
799{
800 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
801}
802
803#include <linux/memory_hotplug.h>
804
805void build_all_zonelists(pg_data_t *pgdat);
806void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
807 enum zone_type classzone_idx);
808bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
809 int classzone_idx, unsigned int alloc_flags,
810 long free_pages);
811bool zone_watermark_ok(struct zone *z, unsigned int order,
812 unsigned long mark, int classzone_idx,
813 unsigned int alloc_flags);
814bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
815 unsigned long mark, int classzone_idx);
816enum memmap_context {
817 MEMMAP_EARLY,
818 MEMMAP_HOTPLUG,
819};
820extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
821 unsigned long size);
822
823extern void lruvec_init(struct lruvec *lruvec);
824
825static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
826{
827#ifdef CONFIG_MEMCG
828 return lruvec->pgdat;
829#else
830 return container_of(lruvec, struct pglist_data, lruvec);
831#endif
832}
833
834extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
835
836#ifdef CONFIG_HAVE_MEMORY_PRESENT
837void memory_present(int nid, unsigned long start, unsigned long end);
838#else
839static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
840#endif
841
842#if defined(CONFIG_SPARSEMEM)
843void memblocks_present(void);
844#else
845static inline void memblocks_present(void) {}
846#endif
847
848#ifdef CONFIG_HAVE_MEMORYLESS_NODES
849int local_memory_node(int node_id);
850#else
851static inline int local_memory_node(int node_id) { return node_id; };
852#endif
853
854/*
855 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
856 */
857#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
858
859/*
860 * Returns true if a zone has pages managed by the buddy allocator.
861 * All the reclaim decisions have to use this function rather than
862 * populated_zone(). If the whole zone is reserved then we can easily
863 * end up with populated_zone() && !managed_zone().
864 */
865static inline bool managed_zone(struct zone *zone)
866{
867 return zone_managed_pages(zone);
868}
869
870/* Returns true if a zone has memory */
871static inline bool populated_zone(struct zone *zone)
872{
873 return zone->present_pages;
874}
875
876#ifdef CONFIG_NUMA
877static inline int zone_to_nid(struct zone *zone)
878{
879 return zone->node;
880}
881
882static inline void zone_set_nid(struct zone *zone, int nid)
883{
884 zone->node = nid;
885}
886#else
887static inline int zone_to_nid(struct zone *zone)
888{
889 return 0;
890}
891
892static inline void zone_set_nid(struct zone *zone, int nid) {}
893#endif
894
895extern int movable_zone;
896
897#ifdef CONFIG_HIGHMEM
898static inline int zone_movable_is_highmem(void)
899{
900#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
901 return movable_zone == ZONE_HIGHMEM;
902#else
903 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
904#endif
905}
906#endif
907
908static inline int is_highmem_idx(enum zone_type idx)
909{
910#ifdef CONFIG_HIGHMEM
911 return (idx == ZONE_HIGHMEM ||
912 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
913#else
914 return 0;
915#endif
916}
917
918/**
919 * is_highmem - helper function to quickly check if a struct zone is a
920 * highmem zone or not. This is an attempt to keep references
921 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
922 * @zone - pointer to struct zone variable
923 */
924static inline int is_highmem(struct zone *zone)
925{
926#ifdef CONFIG_HIGHMEM
927 return is_highmem_idx(zone_idx(zone));
928#else
929 return 0;
930#endif
931}
932
933/* These two functions are used to setup the per zone pages min values */
934struct ctl_table;
935int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
936 void __user *, size_t *, loff_t *);
937int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
938 void __user *, size_t *, loff_t *);
939int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
940 void __user *, size_t *, loff_t *);
941extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
942int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
943 void __user *, size_t *, loff_t *);
944int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
945 void __user *, size_t *, loff_t *);
946int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
947 void __user *, size_t *, loff_t *);
948int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
949 void __user *, size_t *, loff_t *);
950
951extern int numa_zonelist_order_handler(struct ctl_table *, int,
952 void __user *, size_t *, loff_t *);
953extern char numa_zonelist_order[];
954#define NUMA_ZONELIST_ORDER_LEN 16
955
956#ifndef CONFIG_NEED_MULTIPLE_NODES
957
958extern struct pglist_data contig_page_data;
959#define NODE_DATA(nid) (&contig_page_data)
960#define NODE_MEM_MAP(nid) mem_map
961
962#else /* CONFIG_NEED_MULTIPLE_NODES */
963
964#include <asm/mmzone.h>
965
966#endif /* !CONFIG_NEED_MULTIPLE_NODES */
967
968extern struct pglist_data *first_online_pgdat(void);
969extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
970extern struct zone *next_zone(struct zone *zone);
971
972/**
973 * for_each_online_pgdat - helper macro to iterate over all online nodes
974 * @pgdat - pointer to a pg_data_t variable
975 */
976#define for_each_online_pgdat(pgdat) \
977 for (pgdat = first_online_pgdat(); \
978 pgdat; \
979 pgdat = next_online_pgdat(pgdat))
980/**
981 * for_each_zone - helper macro to iterate over all memory zones
982 * @zone - pointer to struct zone variable
983 *
984 * The user only needs to declare the zone variable, for_each_zone
985 * fills it in.
986 */
987#define for_each_zone(zone) \
988 for (zone = (first_online_pgdat())->node_zones; \
989 zone; \
990 zone = next_zone(zone))
991
992#define for_each_populated_zone(zone) \
993 for (zone = (first_online_pgdat())->node_zones; \
994 zone; \
995 zone = next_zone(zone)) \
996 if (!populated_zone(zone)) \
997 ; /* do nothing */ \
998 else
999
1000static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1001{
1002 return zoneref->zone;
1003}
1004
1005static inline int zonelist_zone_idx(struct zoneref *zoneref)
1006{
1007 return zoneref->zone_idx;
1008}
1009
1010static inline int zonelist_node_idx(struct zoneref *zoneref)
1011{
1012 return zone_to_nid(zoneref->zone);
1013}
1014
1015struct zoneref *__next_zones_zonelist(struct zoneref *z,
1016 enum zone_type highest_zoneidx,
1017 nodemask_t *nodes);
1018
1019/**
1020 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1021 * @z - The cursor used as a starting point for the search
1022 * @highest_zoneidx - The zone index of the highest zone to return
1023 * @nodes - An optional nodemask to filter the zonelist with
1024 *
1025 * This function returns the next zone at or below a given zone index that is
1026 * within the allowed nodemask using a cursor as the starting point for the
1027 * search. The zoneref returned is a cursor that represents the current zone
1028 * being examined. It should be advanced by one before calling
1029 * next_zones_zonelist again.
1030 */
1031static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1032 enum zone_type highest_zoneidx,
1033 nodemask_t *nodes)
1034{
1035 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1036 return z;
1037 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1038}
1039
1040/**
1041 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1042 * @zonelist - The zonelist to search for a suitable zone
1043 * @highest_zoneidx - The zone index of the highest zone to return
1044 * @nodes - An optional nodemask to filter the zonelist with
1045 * @return - Zoneref pointer for the first suitable zone found (see below)
1046 *
1047 * This function returns the first zone at or below a given zone index that is
1048 * within the allowed nodemask. The zoneref returned is a cursor that can be
1049 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1050 * one before calling.
1051 *
1052 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1053 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1054 * update due to cpuset modification.
1055 */
1056static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1057 enum zone_type highest_zoneidx,
1058 nodemask_t *nodes)
1059{
1060 return next_zones_zonelist(zonelist->_zonerefs,
1061 highest_zoneidx, nodes);
1062}
1063
1064/**
1065 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1066 * @zone - The current zone in the iterator
1067 * @z - The current pointer within zonelist->zones being iterated
1068 * @zlist - The zonelist being iterated
1069 * @highidx - The zone index of the highest zone to return
1070 * @nodemask - Nodemask allowed by the allocator
1071 *
1072 * This iterator iterates though all zones at or below a given zone index and
1073 * within a given nodemask
1074 */
1075#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1076 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1077 zone; \
1078 z = next_zones_zonelist(++z, highidx, nodemask), \
1079 zone = zonelist_zone(z))
1080
1081#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1082 for (zone = z->zone; \
1083 zone; \
1084 z = next_zones_zonelist(++z, highidx, nodemask), \
1085 zone = zonelist_zone(z))
1086
1087
1088/**
1089 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1090 * @zone - The current zone in the iterator
1091 * @z - The current pointer within zonelist->zones being iterated
1092 * @zlist - The zonelist being iterated
1093 * @highidx - The zone index of the highest zone to return
1094 *
1095 * This iterator iterates though all zones at or below a given zone index.
1096 */
1097#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1098 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1099
1100#ifdef CONFIG_SPARSEMEM
1101#include <asm/sparsemem.h>
1102#endif
1103
1104#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1105 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1106static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1107{
1108 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1109 return 0;
1110}
1111#endif
1112
1113#ifdef CONFIG_FLATMEM
1114#define pfn_to_nid(pfn) (0)
1115#endif
1116
1117#ifdef CONFIG_SPARSEMEM
1118
1119/*
1120 * SECTION_SHIFT #bits space required to store a section #
1121 *
1122 * PA_SECTION_SHIFT physical address to/from section number
1123 * PFN_SECTION_SHIFT pfn to/from section number
1124 */
1125#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1126#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1127
1128#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1129
1130#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1131#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1132
1133#define SECTION_BLOCKFLAGS_BITS \
1134 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1135
1136#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1137#error Allocator MAX_ORDER exceeds SECTION_SIZE
1138#endif
1139
1140static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1141{
1142 return pfn >> PFN_SECTION_SHIFT;
1143}
1144static inline unsigned long section_nr_to_pfn(unsigned long sec)
1145{
1146 return sec << PFN_SECTION_SHIFT;
1147}
1148
1149#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1150#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1151
1152#define SUBSECTION_SHIFT 21
1153
1154#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1155#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1156#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1157
1158#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1159#error Subsection size exceeds section size
1160#else
1161#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1162#endif
1163
1164#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1165#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1166
1167struct mem_section_usage {
1168 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1169 /* See declaration of similar field in struct zone */
1170 unsigned long pageblock_flags[0];
1171};
1172
1173void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1174
1175struct page;
1176struct page_ext;
1177struct mem_section {
1178 /*
1179 * This is, logically, a pointer to an array of struct
1180 * pages. However, it is stored with some other magic.
1181 * (see sparse.c::sparse_init_one_section())
1182 *
1183 * Additionally during early boot we encode node id of
1184 * the location of the section here to guide allocation.
1185 * (see sparse.c::memory_present())
1186 *
1187 * Making it a UL at least makes someone do a cast
1188 * before using it wrong.
1189 */
1190 unsigned long section_mem_map;
1191
1192 struct mem_section_usage *usage;
1193#ifdef CONFIG_PAGE_EXTENSION
1194 /*
1195 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1196 * section. (see page_ext.h about this.)
1197 */
1198 struct page_ext *page_ext;
1199 unsigned long pad;
1200#endif
1201 /*
1202 * WARNING: mem_section must be a power-of-2 in size for the
1203 * calculation and use of SECTION_ROOT_MASK to make sense.
1204 */
1205};
1206
1207#ifdef CONFIG_SPARSEMEM_EXTREME
1208#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1209#else
1210#define SECTIONS_PER_ROOT 1
1211#endif
1212
1213#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1214#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1215#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1216
1217#ifdef CONFIG_SPARSEMEM_EXTREME
1218extern struct mem_section **mem_section;
1219#else
1220extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1221#endif
1222
1223static inline unsigned long *section_to_usemap(struct mem_section *ms)
1224{
1225 return ms->usage->pageblock_flags;
1226}
1227
1228static inline struct mem_section *__nr_to_section(unsigned long nr)
1229{
1230#ifdef CONFIG_SPARSEMEM_EXTREME
1231 if (!mem_section)
1232 return NULL;
1233#endif
1234 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1235 return NULL;
1236 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1237}
1238extern unsigned long __section_nr(struct mem_section *ms);
1239extern size_t mem_section_usage_size(void);
1240
1241/*
1242 * We use the lower bits of the mem_map pointer to store
1243 * a little bit of information. The pointer is calculated
1244 * as mem_map - section_nr_to_pfn(pnum). The result is
1245 * aligned to the minimum alignment of the two values:
1246 * 1. All mem_map arrays are page-aligned.
1247 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1248 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1249 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1250 * worst combination is powerpc with 256k pages,
1251 * which results in PFN_SECTION_SHIFT equal 6.
1252 * To sum it up, at least 6 bits are available.
1253 */
1254#define SECTION_MARKED_PRESENT (1UL<<0)
1255#define SECTION_HAS_MEM_MAP (1UL<<1)
1256#define SECTION_IS_ONLINE (1UL<<2)
1257#define SECTION_IS_EARLY (1UL<<3)
1258#define SECTION_MAP_LAST_BIT (1UL<<4)
1259#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1260#define SECTION_NID_SHIFT 3
1261
1262static inline struct page *__section_mem_map_addr(struct mem_section *section)
1263{
1264 unsigned long map = section->section_mem_map;
1265 map &= SECTION_MAP_MASK;
1266 return (struct page *)map;
1267}
1268
1269static inline int present_section(struct mem_section *section)
1270{
1271 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1272}
1273
1274static inline int present_section_nr(unsigned long nr)
1275{
1276 return present_section(__nr_to_section(nr));
1277}
1278
1279static inline int valid_section(struct mem_section *section)
1280{
1281 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1282}
1283
1284static inline int early_section(struct mem_section *section)
1285{
1286 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1287}
1288
1289static inline int valid_section_nr(unsigned long nr)
1290{
1291 return valid_section(__nr_to_section(nr));
1292}
1293
1294static inline int online_section(struct mem_section *section)
1295{
1296 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1297}
1298
1299static inline int online_section_nr(unsigned long nr)
1300{
1301 return online_section(__nr_to_section(nr));
1302}
1303
1304#ifdef CONFIG_MEMORY_HOTPLUG
1305void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1306#ifdef CONFIG_MEMORY_HOTREMOVE
1307void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1308#endif
1309#endif
1310
1311static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1312{
1313 return __nr_to_section(pfn_to_section_nr(pfn));
1314}
1315
1316extern unsigned long __highest_present_section_nr;
1317
1318static inline int subsection_map_index(unsigned long pfn)
1319{
1320 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1321}
1322
1323#ifdef CONFIG_SPARSEMEM_VMEMMAP
1324static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1325{
1326 int idx = subsection_map_index(pfn);
1327
1328 return test_bit(idx, ms->usage->subsection_map);
1329}
1330#else
1331static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1332{
1333 return 1;
1334}
1335#endif
1336
1337#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1338static inline int pfn_valid(unsigned long pfn)
1339{
1340 struct mem_section *ms;
1341
1342 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1343 return 0;
1344 ms = __nr_to_section(pfn_to_section_nr(pfn));
1345 if (!valid_section(ms))
1346 return 0;
1347 /*
1348 * Traditionally early sections always returned pfn_valid() for
1349 * the entire section-sized span.
1350 */
1351 return early_section(ms) || pfn_section_valid(ms, pfn);
1352}
1353#endif
1354
1355static inline int pfn_present(unsigned long pfn)
1356{
1357 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1358 return 0;
1359 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1360}
1361
1362/*
1363 * These are _only_ used during initialisation, therefore they
1364 * can use __initdata ... They could have names to indicate
1365 * this restriction.
1366 */
1367#ifdef CONFIG_NUMA
1368#define pfn_to_nid(pfn) \
1369({ \
1370 unsigned long __pfn_to_nid_pfn = (pfn); \
1371 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1372})
1373#else
1374#define pfn_to_nid(pfn) (0)
1375#endif
1376
1377#define early_pfn_valid(pfn) pfn_valid(pfn)
1378void sparse_init(void);
1379#else
1380#define sparse_init() do {} while (0)
1381#define sparse_index_init(_sec, _nid) do {} while (0)
1382#define pfn_present pfn_valid
1383#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1384#endif /* CONFIG_SPARSEMEM */
1385
1386/*
1387 * During memory init memblocks map pfns to nids. The search is expensive and
1388 * this caches recent lookups. The implementation of __early_pfn_to_nid
1389 * may treat start/end as pfns or sections.
1390 */
1391struct mminit_pfnnid_cache {
1392 unsigned long last_start;
1393 unsigned long last_end;
1394 int last_nid;
1395};
1396
1397#ifndef early_pfn_valid
1398#define early_pfn_valid(pfn) (1)
1399#endif
1400
1401void memory_present(int nid, unsigned long start, unsigned long end);
1402
1403/*
1404 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1405 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1406 * pfn_valid_within() should be used in this case; we optimise this away
1407 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1408 */
1409#ifdef CONFIG_HOLES_IN_ZONE
1410#define pfn_valid_within(pfn) pfn_valid(pfn)
1411#else
1412#define pfn_valid_within(pfn) (1)
1413#endif
1414
1415#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1416/*
1417 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1418 * associated with it or not. This means that a struct page exists for this
1419 * pfn. The caller cannot assume the page is fully initialized in general.
1420 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1421 * will ensure the struct page is fully online and initialized. Special pages
1422 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1423 *
1424 * In FLATMEM, it is expected that holes always have valid memmap as long as
1425 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1426 * that a valid section has a memmap for the entire section.
1427 *
1428 * However, an ARM, and maybe other embedded architectures in the future
1429 * free memmap backing holes to save memory on the assumption the memmap is
1430 * never used. The page_zone linkages are then broken even though pfn_valid()
1431 * returns true. A walker of the full memmap must then do this additional
1432 * check to ensure the memmap they are looking at is sane by making sure
1433 * the zone and PFN linkages are still valid. This is expensive, but walkers
1434 * of the full memmap are extremely rare.
1435 */
1436bool memmap_valid_within(unsigned long pfn,
1437 struct page *page, struct zone *zone);
1438#else
1439static inline bool memmap_valid_within(unsigned long pfn,
1440 struct page *page, struct zone *zone)
1441{
1442 return true;
1443}
1444#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1445
1446#endif /* !__GENERATING_BOUNDS.H */
1447#endif /* !__ASSEMBLY__ */
1448#endif /* _LINUX_MMZONE_H */