Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/list.h>
9#include <linux/spinlock.h>
10#include <linux/rbtree.h>
11#include <linux/rwsem.h>
12#include <linux/completion.h>
13#include <linux/cpumask.h>
14#include <linux/uprobes.h>
15#include <linux/page-flags-layout.h>
16#include <linux/workqueue.h>
17
18#include <asm/mmu.h>
19
20#ifndef AT_VECTOR_SIZE_ARCH
21#define AT_VECTOR_SIZE_ARCH 0
22#endif
23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
24
25
26struct address_space;
27struct mem_cgroup;
28struct hmm;
29
30/*
31 * Each physical page in the system has a struct page associated with
32 * it to keep track of whatever it is we are using the page for at the
33 * moment. Note that we have no way to track which tasks are using
34 * a page, though if it is a pagecache page, rmap structures can tell us
35 * who is mapping it.
36 *
37 * If you allocate the page using alloc_pages(), you can use some of the
38 * space in struct page for your own purposes. The five words in the main
39 * union are available, except for bit 0 of the first word which must be
40 * kept clear. Many users use this word to store a pointer to an object
41 * which is guaranteed to be aligned. If you use the same storage as
42 * page->mapping, you must restore it to NULL before freeing the page.
43 *
44 * If your page will not be mapped to userspace, you can also use the four
45 * bytes in the mapcount union, but you must call page_mapcount_reset()
46 * before freeing it.
47 *
48 * If you want to use the refcount field, it must be used in such a way
49 * that other CPUs temporarily incrementing and then decrementing the
50 * refcount does not cause problems. On receiving the page from
51 * alloc_pages(), the refcount will be positive.
52 *
53 * If you allocate pages of order > 0, you can use some of the fields
54 * in each subpage, but you may need to restore some of their values
55 * afterwards.
56 *
57 * SLUB uses cmpxchg_double() to atomically update its freelist and
58 * counters. That requires that freelist & counters be adjacent and
59 * double-word aligned. We align all struct pages to double-word
60 * boundaries, and ensure that 'freelist' is aligned within the
61 * struct.
62 */
63#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
64#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
65#else
66#define _struct_page_alignment
67#endif
68
69struct page {
70 unsigned long flags; /* Atomic flags, some possibly
71 * updated asynchronously */
72 /*
73 * Five words (20/40 bytes) are available in this union.
74 * WARNING: bit 0 of the first word is used for PageTail(). That
75 * means the other users of this union MUST NOT use the bit to
76 * avoid collision and false-positive PageTail().
77 */
78 union {
79 struct { /* Page cache and anonymous pages */
80 /**
81 * @lru: Pageout list, eg. active_list protected by
82 * pgdat->lru_lock. Sometimes used as a generic list
83 * by the page owner.
84 */
85 struct list_head lru;
86 /* See page-flags.h for PAGE_MAPPING_FLAGS */
87 struct address_space *mapping;
88 pgoff_t index; /* Our offset within mapping. */
89 /**
90 * @private: Mapping-private opaque data.
91 * Usually used for buffer_heads if PagePrivate.
92 * Used for swp_entry_t if PageSwapCache.
93 * Indicates order in the buddy system if PageBuddy.
94 */
95 unsigned long private;
96 };
97 struct { /* page_pool used by netstack */
98 /**
99 * @dma_addr: might require a 64-bit value even on
100 * 32-bit architectures.
101 */
102 dma_addr_t dma_addr;
103 };
104 struct { /* slab, slob and slub */
105 union {
106 struct list_head slab_list;
107 struct { /* Partial pages */
108 struct page *next;
109#ifdef CONFIG_64BIT
110 int pages; /* Nr of pages left */
111 int pobjects; /* Approximate count */
112#else
113 short int pages;
114 short int pobjects;
115#endif
116 };
117 };
118 struct kmem_cache *slab_cache; /* not slob */
119 /* Double-word boundary */
120 void *freelist; /* first free object */
121 union {
122 void *s_mem; /* slab: first object */
123 unsigned long counters; /* SLUB */
124 struct { /* SLUB */
125 unsigned inuse:16;
126 unsigned objects:15;
127 unsigned frozen:1;
128 };
129 };
130 };
131 struct { /* Tail pages of compound page */
132 unsigned long compound_head; /* Bit zero is set */
133
134 /* First tail page only */
135 unsigned char compound_dtor;
136 unsigned char compound_order;
137 atomic_t compound_mapcount;
138 };
139 struct { /* Second tail page of compound page */
140 unsigned long _compound_pad_1; /* compound_head */
141 unsigned long _compound_pad_2;
142 struct list_head deferred_list;
143 };
144 struct { /* Page table pages */
145 unsigned long _pt_pad_1; /* compound_head */
146 pgtable_t pmd_huge_pte; /* protected by page->ptl */
147 unsigned long _pt_pad_2; /* mapping */
148 union {
149 struct mm_struct *pt_mm; /* x86 pgds only */
150 atomic_t pt_frag_refcount; /* powerpc */
151 };
152#if ALLOC_SPLIT_PTLOCKS
153 spinlock_t *ptl;
154#else
155 spinlock_t ptl;
156#endif
157 };
158 struct { /* ZONE_DEVICE pages */
159 /** @pgmap: Points to the hosting device page map. */
160 struct dev_pagemap *pgmap;
161 void *zone_device_data;
162 /*
163 * ZONE_DEVICE private pages are counted as being
164 * mapped so the next 3 words hold the mapping, index,
165 * and private fields from the source anonymous or
166 * page cache page while the page is migrated to device
167 * private memory.
168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
169 * use the mapping, index, and private fields when
170 * pmem backed DAX files are mapped.
171 */
172 };
173
174 /** @rcu_head: You can use this to free a page by RCU. */
175 struct rcu_head rcu_head;
176 };
177
178 union { /* This union is 4 bytes in size. */
179 /*
180 * If the page can be mapped to userspace, encodes the number
181 * of times this page is referenced by a page table.
182 */
183 atomic_t _mapcount;
184
185 /*
186 * If the page is neither PageSlab nor mappable to userspace,
187 * the value stored here may help determine what this page
188 * is used for. See page-flags.h for a list of page types
189 * which are currently stored here.
190 */
191 unsigned int page_type;
192
193 unsigned int active; /* SLAB */
194 int units; /* SLOB */
195 };
196
197 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
198 atomic_t _refcount;
199
200#ifdef CONFIG_MEMCG
201 struct mem_cgroup *mem_cgroup;
202#endif
203
204 /*
205 * On machines where all RAM is mapped into kernel address space,
206 * we can simply calculate the virtual address. On machines with
207 * highmem some memory is mapped into kernel virtual memory
208 * dynamically, so we need a place to store that address.
209 * Note that this field could be 16 bits on x86 ... ;)
210 *
211 * Architectures with slow multiplication can define
212 * WANT_PAGE_VIRTUAL in asm/page.h
213 */
214#if defined(WANT_PAGE_VIRTUAL)
215 void *virtual; /* Kernel virtual address (NULL if
216 not kmapped, ie. highmem) */
217#endif /* WANT_PAGE_VIRTUAL */
218
219#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
220 int _last_cpupid;
221#endif
222} _struct_page_alignment;
223
224/*
225 * Used for sizing the vmemmap region on some architectures
226 */
227#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
228
229#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
230#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
231
232#define page_private(page) ((page)->private)
233#define set_page_private(page, v) ((page)->private = (v))
234
235struct page_frag_cache {
236 void * va;
237#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
238 __u16 offset;
239 __u16 size;
240#else
241 __u32 offset;
242#endif
243 /* we maintain a pagecount bias, so that we dont dirty cache line
244 * containing page->_refcount every time we allocate a fragment.
245 */
246 unsigned int pagecnt_bias;
247 bool pfmemalloc;
248};
249
250typedef unsigned long vm_flags_t;
251
252/*
253 * A region containing a mapping of a non-memory backed file under NOMMU
254 * conditions. These are held in a global tree and are pinned by the VMAs that
255 * map parts of them.
256 */
257struct vm_region {
258 struct rb_node vm_rb; /* link in global region tree */
259 vm_flags_t vm_flags; /* VMA vm_flags */
260 unsigned long vm_start; /* start address of region */
261 unsigned long vm_end; /* region initialised to here */
262 unsigned long vm_top; /* region allocated to here */
263 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
264 struct file *vm_file; /* the backing file or NULL */
265
266 int vm_usage; /* region usage count (access under nommu_region_sem) */
267 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
268 * this region */
269};
270
271#ifdef CONFIG_USERFAULTFD
272#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
273struct vm_userfaultfd_ctx {
274 struct userfaultfd_ctx *ctx;
275};
276#else /* CONFIG_USERFAULTFD */
277#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
278struct vm_userfaultfd_ctx {};
279#endif /* CONFIG_USERFAULTFD */
280
281/*
282 * This struct defines a memory VMM memory area. There is one of these
283 * per VM-area/task. A VM area is any part of the process virtual memory
284 * space that has a special rule for the page-fault handlers (ie a shared
285 * library, the executable area etc).
286 */
287struct vm_area_struct {
288 /* The first cache line has the info for VMA tree walking. */
289
290 unsigned long vm_start; /* Our start address within vm_mm. */
291 unsigned long vm_end; /* The first byte after our end address
292 within vm_mm. */
293
294 /* linked list of VM areas per task, sorted by address */
295 struct vm_area_struct *vm_next, *vm_prev;
296
297 struct rb_node vm_rb;
298
299 /*
300 * Largest free memory gap in bytes to the left of this VMA.
301 * Either between this VMA and vma->vm_prev, or between one of the
302 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
303 * get_unmapped_area find a free area of the right size.
304 */
305 unsigned long rb_subtree_gap;
306
307 /* Second cache line starts here. */
308
309 struct mm_struct *vm_mm; /* The address space we belong to. */
310 pgprot_t vm_page_prot; /* Access permissions of this VMA. */
311 unsigned long vm_flags; /* Flags, see mm.h. */
312
313 /*
314 * For areas with an address space and backing store,
315 * linkage into the address_space->i_mmap interval tree.
316 */
317 struct {
318 struct rb_node rb;
319 unsigned long rb_subtree_last;
320 } shared;
321
322 /*
323 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
324 * list, after a COW of one of the file pages. A MAP_SHARED vma
325 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
326 * or brk vma (with NULL file) can only be in an anon_vma list.
327 */
328 struct list_head anon_vma_chain; /* Serialized by mmap_sem &
329 * page_table_lock */
330 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
331
332 /* Function pointers to deal with this struct. */
333 const struct vm_operations_struct *vm_ops;
334
335 /* Information about our backing store: */
336 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
337 units */
338 struct file * vm_file; /* File we map to (can be NULL). */
339 void * vm_private_data; /* was vm_pte (shared mem) */
340
341#ifdef CONFIG_SWAP
342 atomic_long_t swap_readahead_info;
343#endif
344#ifndef CONFIG_MMU
345 struct vm_region *vm_region; /* NOMMU mapping region */
346#endif
347#ifdef CONFIG_NUMA
348 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
349#endif
350 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
351} __randomize_layout;
352
353struct core_thread {
354 struct task_struct *task;
355 struct core_thread *next;
356};
357
358struct core_state {
359 atomic_t nr_threads;
360 struct core_thread dumper;
361 struct completion startup;
362};
363
364struct kioctx_table;
365struct mm_struct {
366 struct {
367 struct vm_area_struct *mmap; /* list of VMAs */
368 struct rb_root mm_rb;
369 u64 vmacache_seqnum; /* per-thread vmacache */
370#ifdef CONFIG_MMU
371 unsigned long (*get_unmapped_area) (struct file *filp,
372 unsigned long addr, unsigned long len,
373 unsigned long pgoff, unsigned long flags);
374#endif
375 unsigned long mmap_base; /* base of mmap area */
376 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
377#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
378 /* Base adresses for compatible mmap() */
379 unsigned long mmap_compat_base;
380 unsigned long mmap_compat_legacy_base;
381#endif
382 unsigned long task_size; /* size of task vm space */
383 unsigned long highest_vm_end; /* highest vma end address */
384 pgd_t * pgd;
385
386 /**
387 * @mm_users: The number of users including userspace.
388 *
389 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
390 * drops to 0 (i.e. when the task exits and there are no other
391 * temporary reference holders), we also release a reference on
392 * @mm_count (which may then free the &struct mm_struct if
393 * @mm_count also drops to 0).
394 */
395 atomic_t mm_users;
396
397 /**
398 * @mm_count: The number of references to &struct mm_struct
399 * (@mm_users count as 1).
400 *
401 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
402 * &struct mm_struct is freed.
403 */
404 atomic_t mm_count;
405
406#ifdef CONFIG_MMU
407 atomic_long_t pgtables_bytes; /* PTE page table pages */
408#endif
409 int map_count; /* number of VMAs */
410
411 spinlock_t page_table_lock; /* Protects page tables and some
412 * counters
413 */
414 struct rw_semaphore mmap_sem;
415
416 struct list_head mmlist; /* List of maybe swapped mm's. These
417 * are globally strung together off
418 * init_mm.mmlist, and are protected
419 * by mmlist_lock
420 */
421
422
423 unsigned long hiwater_rss; /* High-watermark of RSS usage */
424 unsigned long hiwater_vm; /* High-water virtual memory usage */
425
426 unsigned long total_vm; /* Total pages mapped */
427 unsigned long locked_vm; /* Pages that have PG_mlocked set */
428 atomic64_t pinned_vm; /* Refcount permanently increased */
429 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
430 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
431 unsigned long stack_vm; /* VM_STACK */
432 unsigned long def_flags;
433
434 spinlock_t arg_lock; /* protect the below fields */
435 unsigned long start_code, end_code, start_data, end_data;
436 unsigned long start_brk, brk, start_stack;
437 unsigned long arg_start, arg_end, env_start, env_end;
438
439 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
440
441 /*
442 * Special counters, in some configurations protected by the
443 * page_table_lock, in other configurations by being atomic.
444 */
445 struct mm_rss_stat rss_stat;
446
447 struct linux_binfmt *binfmt;
448
449 /* Architecture-specific MM context */
450 mm_context_t context;
451
452 unsigned long flags; /* Must use atomic bitops to access */
453
454 struct core_state *core_state; /* coredumping support */
455#ifdef CONFIG_MEMBARRIER
456 atomic_t membarrier_state;
457#endif
458#ifdef CONFIG_AIO
459 spinlock_t ioctx_lock;
460 struct kioctx_table __rcu *ioctx_table;
461#endif
462#ifdef CONFIG_MEMCG
463 /*
464 * "owner" points to a task that is regarded as the canonical
465 * user/owner of this mm. All of the following must be true in
466 * order for it to be changed:
467 *
468 * current == mm->owner
469 * current->mm != mm
470 * new_owner->mm == mm
471 * new_owner->alloc_lock is held
472 */
473 struct task_struct __rcu *owner;
474#endif
475 struct user_namespace *user_ns;
476
477 /* store ref to file /proc/<pid>/exe symlink points to */
478 struct file __rcu *exe_file;
479#ifdef CONFIG_MMU_NOTIFIER
480 struct mmu_notifier_mm *mmu_notifier_mm;
481#endif
482#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
483 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
484#endif
485#ifdef CONFIG_NUMA_BALANCING
486 /*
487 * numa_next_scan is the next time that the PTEs will be marked
488 * pte_numa. NUMA hinting faults will gather statistics and
489 * migrate pages to new nodes if necessary.
490 */
491 unsigned long numa_next_scan;
492
493 /* Restart point for scanning and setting pte_numa */
494 unsigned long numa_scan_offset;
495
496 /* numa_scan_seq prevents two threads setting pte_numa */
497 int numa_scan_seq;
498#endif
499 /*
500 * An operation with batched TLB flushing is going on. Anything
501 * that can move process memory needs to flush the TLB when
502 * moving a PROT_NONE or PROT_NUMA mapped page.
503 */
504 atomic_t tlb_flush_pending;
505#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
506 /* See flush_tlb_batched_pending() */
507 bool tlb_flush_batched;
508#endif
509 struct uprobes_state uprobes_state;
510#ifdef CONFIG_HUGETLB_PAGE
511 atomic_long_t hugetlb_usage;
512#endif
513 struct work_struct async_put_work;
514
515#ifdef CONFIG_HMM_MIRROR
516 /* HMM needs to track a few things per mm */
517 struct hmm *hmm;
518#endif
519 } __randomize_layout;
520
521 /*
522 * The mm_cpumask needs to be at the end of mm_struct, because it
523 * is dynamically sized based on nr_cpu_ids.
524 */
525 unsigned long cpu_bitmap[];
526};
527
528extern struct mm_struct init_mm;
529
530/* Pointer magic because the dynamic array size confuses some compilers. */
531static inline void mm_init_cpumask(struct mm_struct *mm)
532{
533 unsigned long cpu_bitmap = (unsigned long)mm;
534
535 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
536 cpumask_clear((struct cpumask *)cpu_bitmap);
537}
538
539/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
540static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
541{
542 return (struct cpumask *)&mm->cpu_bitmap;
543}
544
545struct mmu_gather;
546extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
547 unsigned long start, unsigned long end);
548extern void tlb_finish_mmu(struct mmu_gather *tlb,
549 unsigned long start, unsigned long end);
550
551static inline void init_tlb_flush_pending(struct mm_struct *mm)
552{
553 atomic_set(&mm->tlb_flush_pending, 0);
554}
555
556static inline void inc_tlb_flush_pending(struct mm_struct *mm)
557{
558 atomic_inc(&mm->tlb_flush_pending);
559 /*
560 * The only time this value is relevant is when there are indeed pages
561 * to flush. And we'll only flush pages after changing them, which
562 * requires the PTL.
563 *
564 * So the ordering here is:
565 *
566 * atomic_inc(&mm->tlb_flush_pending);
567 * spin_lock(&ptl);
568 * ...
569 * set_pte_at();
570 * spin_unlock(&ptl);
571 *
572 * spin_lock(&ptl)
573 * mm_tlb_flush_pending();
574 * ....
575 * spin_unlock(&ptl);
576 *
577 * flush_tlb_range();
578 * atomic_dec(&mm->tlb_flush_pending);
579 *
580 * Where the increment if constrained by the PTL unlock, it thus
581 * ensures that the increment is visible if the PTE modification is
582 * visible. After all, if there is no PTE modification, nobody cares
583 * about TLB flushes either.
584 *
585 * This very much relies on users (mm_tlb_flush_pending() and
586 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
587 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
588 * locks (PPC) the unlock of one doesn't order against the lock of
589 * another PTL.
590 *
591 * The decrement is ordered by the flush_tlb_range(), such that
592 * mm_tlb_flush_pending() will not return false unless all flushes have
593 * completed.
594 */
595}
596
597static inline void dec_tlb_flush_pending(struct mm_struct *mm)
598{
599 /*
600 * See inc_tlb_flush_pending().
601 *
602 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
603 * not order against TLB invalidate completion, which is what we need.
604 *
605 * Therefore we must rely on tlb_flush_*() to guarantee order.
606 */
607 atomic_dec(&mm->tlb_flush_pending);
608}
609
610static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
611{
612 /*
613 * Must be called after having acquired the PTL; orders against that
614 * PTLs release and therefore ensures that if we observe the modified
615 * PTE we must also observe the increment from inc_tlb_flush_pending().
616 *
617 * That is, it only guarantees to return true if there is a flush
618 * pending for _this_ PTL.
619 */
620 return atomic_read(&mm->tlb_flush_pending);
621}
622
623static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
624{
625 /*
626 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
627 * for which there is a TLB flush pending in order to guarantee
628 * we've seen both that PTE modification and the increment.
629 *
630 * (no requirement on actually still holding the PTL, that is irrelevant)
631 */
632 return atomic_read(&mm->tlb_flush_pending) > 1;
633}
634
635struct vm_fault;
636
637/**
638 * typedef vm_fault_t - Return type for page fault handlers.
639 *
640 * Page fault handlers return a bitmask of %VM_FAULT values.
641 */
642typedef __bitwise unsigned int vm_fault_t;
643
644/**
645 * enum vm_fault_reason - Page fault handlers return a bitmask of
646 * these values to tell the core VM what happened when handling the
647 * fault. Used to decide whether a process gets delivered SIGBUS or
648 * just gets major/minor fault counters bumped up.
649 *
650 * @VM_FAULT_OOM: Out Of Memory
651 * @VM_FAULT_SIGBUS: Bad access
652 * @VM_FAULT_MAJOR: Page read from storage
653 * @VM_FAULT_WRITE: Special case for get_user_pages
654 * @VM_FAULT_HWPOISON: Hit poisoned small page
655 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
656 * in upper bits
657 * @VM_FAULT_SIGSEGV: segmentation fault
658 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
659 * @VM_FAULT_LOCKED: ->fault locked the returned page
660 * @VM_FAULT_RETRY: ->fault blocked, must retry
661 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
662 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
663 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
664 * fsync() to complete (for synchronous page faults
665 * in DAX)
666 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
667 *
668 */
669enum vm_fault_reason {
670 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
671 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
672 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
673 VM_FAULT_WRITE = (__force vm_fault_t)0x000008,
674 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
675 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
676 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
677 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
678 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
679 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
680 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
681 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
682 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
683 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
684};
685
686/* Encode hstate index for a hwpoisoned large page */
687#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
688#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
689
690#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
691 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
692 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
693
694#define VM_FAULT_RESULT_TRACE \
695 { VM_FAULT_OOM, "OOM" }, \
696 { VM_FAULT_SIGBUS, "SIGBUS" }, \
697 { VM_FAULT_MAJOR, "MAJOR" }, \
698 { VM_FAULT_WRITE, "WRITE" }, \
699 { VM_FAULT_HWPOISON, "HWPOISON" }, \
700 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
701 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
702 { VM_FAULT_NOPAGE, "NOPAGE" }, \
703 { VM_FAULT_LOCKED, "LOCKED" }, \
704 { VM_FAULT_RETRY, "RETRY" }, \
705 { VM_FAULT_FALLBACK, "FALLBACK" }, \
706 { VM_FAULT_DONE_COW, "DONE_COW" }, \
707 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
708
709struct vm_special_mapping {
710 const char *name; /* The name, e.g. "[vdso]". */
711
712 /*
713 * If .fault is not provided, this points to a
714 * NULL-terminated array of pages that back the special mapping.
715 *
716 * This must not be NULL unless .fault is provided.
717 */
718 struct page **pages;
719
720 /*
721 * If non-NULL, then this is called to resolve page faults
722 * on the special mapping. If used, .pages is not checked.
723 */
724 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
725 struct vm_area_struct *vma,
726 struct vm_fault *vmf);
727
728 int (*mremap)(const struct vm_special_mapping *sm,
729 struct vm_area_struct *new_vma);
730};
731
732enum tlb_flush_reason {
733 TLB_FLUSH_ON_TASK_SWITCH,
734 TLB_REMOTE_SHOOTDOWN,
735 TLB_LOCAL_SHOOTDOWN,
736 TLB_LOCAL_MM_SHOOTDOWN,
737 TLB_REMOTE_SEND_IPI,
738 NR_TLB_FLUSH_REASONS,
739};
740
741 /*
742 * A swap entry has to fit into a "unsigned long", as the entry is hidden
743 * in the "index" field of the swapper address space.
744 */
745typedef struct {
746 unsigned long val;
747} swp_entry_t;
748
749#endif /* _LINUX_MM_TYPES_H */