at v5.3 92 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30 31struct mempolicy; 32struct anon_vma; 33struct anon_vma_chain; 34struct file_ra_state; 35struct user_struct; 36struct writeback_control; 37struct bdi_writeback; 38 39void init_mm_internals(void); 40 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42extern unsigned long max_mapnr; 43 44static inline void set_max_mapnr(unsigned long limit) 45{ 46 max_mapnr = limit; 47} 48#else 49static inline void set_max_mapnr(unsigned long limit) { } 50#endif 51 52extern atomic_long_t _totalram_pages; 53static inline unsigned long totalram_pages(void) 54{ 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56} 57 58static inline void totalram_pages_inc(void) 59{ 60 atomic_long_inc(&_totalram_pages); 61} 62 63static inline void totalram_pages_dec(void) 64{ 65 atomic_long_dec(&_totalram_pages); 66} 67 68static inline void totalram_pages_add(long count) 69{ 70 atomic_long_add(count, &_totalram_pages); 71} 72 73static inline void totalram_pages_set(long val) 74{ 75 atomic_long_set(&_totalram_pages, val); 76} 77 78extern void * high_memory; 79extern int page_cluster; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/pgtable.h> 100#include <asm/processor.h> 101 102/* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109#ifndef untagged_addr 110#define untagged_addr(addr) (addr) 111#endif 112 113#ifndef __pa_symbol 114#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115#endif 116 117#ifndef page_to_virt 118#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119#endif 120 121#ifndef lm_alias 122#define lm_alias(x) __va(__pa_symbol(x)) 123#endif 124 125/* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132#ifndef mm_forbids_zeropage 133#define mm_forbids_zeropage(X) (0) 134#endif 135 136/* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142#if BITS_PER_LONG == 64 143/* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150static inline void __mm_zero_struct_page(struct page *page) 151{ 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175} 176#else 177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178#endif 179 180/* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196#define MAPCOUNT_ELF_CORE_MARGIN (5) 197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199extern int sysctl_max_map_count; 200 201extern unsigned long sysctl_user_reserve_kbytes; 202extern unsigned long sysctl_admin_reserve_kbytes; 203 204extern int sysctl_overcommit_memory; 205extern int sysctl_overcommit_ratio; 206extern unsigned long sysctl_overcommit_kbytes; 207 208extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215/* to align the pointer to the (next) page boundary */ 216#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223/* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234void vm_area_free(struct vm_area_struct *); 235 236#ifndef CONFIG_MMU 237extern struct rb_root nommu_region_tree; 238extern struct rw_semaphore nommu_region_sem; 239 240extern unsigned int kobjsize(const void *objp); 241#endif 242 243/* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247#define VM_NONE 0x00000000 248 249#define VM_READ 0x00000001 /* currently active flags */ 250#define VM_WRITE 0x00000002 251#define VM_EXEC 0x00000004 252#define VM_SHARED 0x00000008 253 254/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256#define VM_MAYWRITE 0x00000020 257#define VM_MAYEXEC 0x00000040 258#define VM_MAYSHARE 0x00000080 259 260#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266#define VM_LOCKED 0x00002000 267#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279#define VM_SYNC 0x00800000 /* Synchronous page faults */ 280#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284#ifdef CONFIG_MEM_SOFT_DIRTY 285# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286#else 287# define VM_SOFTDIRTY 0 288#endif 289 290#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308#ifdef CONFIG_ARCH_HAS_PKEYS 309# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314#ifdef CONFIG_PPC 315# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316#else 317# define VM_PKEY_BIT4 0 318#endif 319#endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321#if defined(CONFIG_X86) 322# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323#elif defined(CONFIG_PPC) 324# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325#elif defined(CONFIG_PARISC) 326# define VM_GROWSUP VM_ARCH_1 327#elif defined(CONFIG_IA64) 328# define VM_GROWSUP VM_ARCH_1 329#elif defined(CONFIG_SPARC64) 330# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331# define VM_ARCH_CLEAR VM_SPARC_ADI 332#elif !defined(CONFIG_MMU) 333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334#endif 335 336#if defined(CONFIG_X86_INTEL_MPX) 337/* MPX specific bounds table or bounds directory */ 338# define VM_MPX VM_HIGH_ARCH_4 339#else 340# define VM_MPX VM_NONE 341#endif 342 343#ifndef VM_GROWSUP 344# define VM_GROWSUP VM_NONE 345#endif 346 347/* Bits set in the VMA until the stack is in its final location */ 348#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352#endif 353 354#ifdef CONFIG_STACK_GROWSUP 355#define VM_STACK VM_GROWSUP 356#else 357#define VM_STACK VM_GROWSDOWN 358#endif 359 360#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362/* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368/* This mask defines which mm->def_flags a process can inherit its parent */ 369#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371/* This mask is used to clear all the VMA flags used by mlock */ 372#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374/* Arch-specific flags to clear when updating VM flags on protection change */ 375#ifndef VM_ARCH_CLEAR 376# define VM_ARCH_CLEAR VM_NONE 377#endif 378#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380/* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384extern pgprot_t protection_map[16]; 385 386#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391#define FAULT_FLAG_TRIED 0x20 /* Second try */ 392#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396#define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407/* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453}; 454 455/* page entry size for vm->huge_fault() */ 456enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460}; 461 462/* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497#ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519#endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527}; 528 529static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530{ 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537} 538 539static inline void vma_set_anonymous(struct vm_area_struct *vma) 540{ 541 vma->vm_ops = NULL; 542} 543 544static inline bool vma_is_anonymous(struct vm_area_struct *vma) 545{ 546 return !vma->vm_ops; 547} 548 549#ifdef CONFIG_SHMEM 550/* 551 * The vma_is_shmem is not inline because it is used only by slow 552 * paths in userfault. 553 */ 554bool vma_is_shmem(struct vm_area_struct *vma); 555#else 556static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 557#endif 558 559int vma_is_stack_for_current(struct vm_area_struct *vma); 560 561/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 562#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 563 564struct mmu_gather; 565struct inode; 566 567#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 568static inline int pmd_devmap(pmd_t pmd) 569{ 570 return 0; 571} 572static inline int pud_devmap(pud_t pud) 573{ 574 return 0; 575} 576static inline int pgd_devmap(pgd_t pgd) 577{ 578 return 0; 579} 580#endif 581 582/* 583 * FIXME: take this include out, include page-flags.h in 584 * files which need it (119 of them) 585 */ 586#include <linux/page-flags.h> 587#include <linux/huge_mm.h> 588 589/* 590 * Methods to modify the page usage count. 591 * 592 * What counts for a page usage: 593 * - cache mapping (page->mapping) 594 * - private data (page->private) 595 * - page mapped in a task's page tables, each mapping 596 * is counted separately 597 * 598 * Also, many kernel routines increase the page count before a critical 599 * routine so they can be sure the page doesn't go away from under them. 600 */ 601 602/* 603 * Drop a ref, return true if the refcount fell to zero (the page has no users) 604 */ 605static inline int put_page_testzero(struct page *page) 606{ 607 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 608 return page_ref_dec_and_test(page); 609} 610 611/* 612 * Try to grab a ref unless the page has a refcount of zero, return false if 613 * that is the case. 614 * This can be called when MMU is off so it must not access 615 * any of the virtual mappings. 616 */ 617static inline int get_page_unless_zero(struct page *page) 618{ 619 return page_ref_add_unless(page, 1, 0); 620} 621 622extern int page_is_ram(unsigned long pfn); 623 624enum { 625 REGION_INTERSECTS, 626 REGION_DISJOINT, 627 REGION_MIXED, 628}; 629 630int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 631 unsigned long desc); 632 633/* Support for virtually mapped pages */ 634struct page *vmalloc_to_page(const void *addr); 635unsigned long vmalloc_to_pfn(const void *addr); 636 637/* 638 * Determine if an address is within the vmalloc range 639 * 640 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 641 * is no special casing required. 642 */ 643static inline bool is_vmalloc_addr(const void *x) 644{ 645#ifdef CONFIG_MMU 646 unsigned long addr = (unsigned long)x; 647 648 return addr >= VMALLOC_START && addr < VMALLOC_END; 649#else 650 return false; 651#endif 652} 653 654#ifndef is_ioremap_addr 655#define is_ioremap_addr(x) is_vmalloc_addr(x) 656#endif 657 658#ifdef CONFIG_MMU 659extern int is_vmalloc_or_module_addr(const void *x); 660#else 661static inline int is_vmalloc_or_module_addr(const void *x) 662{ 663 return 0; 664} 665#endif 666 667extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 668static inline void *kvmalloc(size_t size, gfp_t flags) 669{ 670 return kvmalloc_node(size, flags, NUMA_NO_NODE); 671} 672static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 673{ 674 return kvmalloc_node(size, flags | __GFP_ZERO, node); 675} 676static inline void *kvzalloc(size_t size, gfp_t flags) 677{ 678 return kvmalloc(size, flags | __GFP_ZERO); 679} 680 681static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 682{ 683 size_t bytes; 684 685 if (unlikely(check_mul_overflow(n, size, &bytes))) 686 return NULL; 687 688 return kvmalloc(bytes, flags); 689} 690 691static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 692{ 693 return kvmalloc_array(n, size, flags | __GFP_ZERO); 694} 695 696extern void kvfree(const void *addr); 697 698static inline atomic_t *compound_mapcount_ptr(struct page *page) 699{ 700 return &page[1].compound_mapcount; 701} 702 703static inline int compound_mapcount(struct page *page) 704{ 705 VM_BUG_ON_PAGE(!PageCompound(page), page); 706 page = compound_head(page); 707 return atomic_read(compound_mapcount_ptr(page)) + 1; 708} 709 710/* 711 * The atomic page->_mapcount, starts from -1: so that transitions 712 * both from it and to it can be tracked, using atomic_inc_and_test 713 * and atomic_add_negative(-1). 714 */ 715static inline void page_mapcount_reset(struct page *page) 716{ 717 atomic_set(&(page)->_mapcount, -1); 718} 719 720int __page_mapcount(struct page *page); 721 722static inline int page_mapcount(struct page *page) 723{ 724 VM_BUG_ON_PAGE(PageSlab(page), page); 725 726 if (unlikely(PageCompound(page))) 727 return __page_mapcount(page); 728 return atomic_read(&page->_mapcount) + 1; 729} 730 731#ifdef CONFIG_TRANSPARENT_HUGEPAGE 732int total_mapcount(struct page *page); 733int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 734#else 735static inline int total_mapcount(struct page *page) 736{ 737 return page_mapcount(page); 738} 739static inline int page_trans_huge_mapcount(struct page *page, 740 int *total_mapcount) 741{ 742 int mapcount = page_mapcount(page); 743 if (total_mapcount) 744 *total_mapcount = mapcount; 745 return mapcount; 746} 747#endif 748 749static inline struct page *virt_to_head_page(const void *x) 750{ 751 struct page *page = virt_to_page(x); 752 753 return compound_head(page); 754} 755 756void __put_page(struct page *page); 757 758void put_pages_list(struct list_head *pages); 759 760void split_page(struct page *page, unsigned int order); 761 762/* 763 * Compound pages have a destructor function. Provide a 764 * prototype for that function and accessor functions. 765 * These are _only_ valid on the head of a compound page. 766 */ 767typedef void compound_page_dtor(struct page *); 768 769/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 770enum compound_dtor_id { 771 NULL_COMPOUND_DTOR, 772 COMPOUND_PAGE_DTOR, 773#ifdef CONFIG_HUGETLB_PAGE 774 HUGETLB_PAGE_DTOR, 775#endif 776#ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 TRANSHUGE_PAGE_DTOR, 778#endif 779 NR_COMPOUND_DTORS, 780}; 781extern compound_page_dtor * const compound_page_dtors[]; 782 783static inline void set_compound_page_dtor(struct page *page, 784 enum compound_dtor_id compound_dtor) 785{ 786 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 787 page[1].compound_dtor = compound_dtor; 788} 789 790static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 791{ 792 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 793 return compound_page_dtors[page[1].compound_dtor]; 794} 795 796static inline unsigned int compound_order(struct page *page) 797{ 798 if (!PageHead(page)) 799 return 0; 800 return page[1].compound_order; 801} 802 803static inline void set_compound_order(struct page *page, unsigned int order) 804{ 805 page[1].compound_order = order; 806} 807 808void free_compound_page(struct page *page); 809 810#ifdef CONFIG_MMU 811/* 812 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 813 * servicing faults for write access. In the normal case, do always want 814 * pte_mkwrite. But get_user_pages can cause write faults for mappings 815 * that do not have writing enabled, when used by access_process_vm. 816 */ 817static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 818{ 819 if (likely(vma->vm_flags & VM_WRITE)) 820 pte = pte_mkwrite(pte); 821 return pte; 822} 823 824vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 825 struct page *page); 826vm_fault_t finish_fault(struct vm_fault *vmf); 827vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 828#endif 829 830/* 831 * Multiple processes may "see" the same page. E.g. for untouched 832 * mappings of /dev/null, all processes see the same page full of 833 * zeroes, and text pages of executables and shared libraries have 834 * only one copy in memory, at most, normally. 835 * 836 * For the non-reserved pages, page_count(page) denotes a reference count. 837 * page_count() == 0 means the page is free. page->lru is then used for 838 * freelist management in the buddy allocator. 839 * page_count() > 0 means the page has been allocated. 840 * 841 * Pages are allocated by the slab allocator in order to provide memory 842 * to kmalloc and kmem_cache_alloc. In this case, the management of the 843 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 844 * unless a particular usage is carefully commented. (the responsibility of 845 * freeing the kmalloc memory is the caller's, of course). 846 * 847 * A page may be used by anyone else who does a __get_free_page(). 848 * In this case, page_count still tracks the references, and should only 849 * be used through the normal accessor functions. The top bits of page->flags 850 * and page->virtual store page management information, but all other fields 851 * are unused and could be used privately, carefully. The management of this 852 * page is the responsibility of the one who allocated it, and those who have 853 * subsequently been given references to it. 854 * 855 * The other pages (we may call them "pagecache pages") are completely 856 * managed by the Linux memory manager: I/O, buffers, swapping etc. 857 * The following discussion applies only to them. 858 * 859 * A pagecache page contains an opaque `private' member, which belongs to the 860 * page's address_space. Usually, this is the address of a circular list of 861 * the page's disk buffers. PG_private must be set to tell the VM to call 862 * into the filesystem to release these pages. 863 * 864 * A page may belong to an inode's memory mapping. In this case, page->mapping 865 * is the pointer to the inode, and page->index is the file offset of the page, 866 * in units of PAGE_SIZE. 867 * 868 * If pagecache pages are not associated with an inode, they are said to be 869 * anonymous pages. These may become associated with the swapcache, and in that 870 * case PG_swapcache is set, and page->private is an offset into the swapcache. 871 * 872 * In either case (swapcache or inode backed), the pagecache itself holds one 873 * reference to the page. Setting PG_private should also increment the 874 * refcount. The each user mapping also has a reference to the page. 875 * 876 * The pagecache pages are stored in a per-mapping radix tree, which is 877 * rooted at mapping->i_pages, and indexed by offset. 878 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 879 * lists, we instead now tag pages as dirty/writeback in the radix tree. 880 * 881 * All pagecache pages may be subject to I/O: 882 * - inode pages may need to be read from disk, 883 * - inode pages which have been modified and are MAP_SHARED may need 884 * to be written back to the inode on disk, 885 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 886 * modified may need to be swapped out to swap space and (later) to be read 887 * back into memory. 888 */ 889 890/* 891 * The zone field is never updated after free_area_init_core() 892 * sets it, so none of the operations on it need to be atomic. 893 */ 894 895/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 896#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 897#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 898#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 899#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 900#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 901 902/* 903 * Define the bit shifts to access each section. For non-existent 904 * sections we define the shift as 0; that plus a 0 mask ensures 905 * the compiler will optimise away reference to them. 906 */ 907#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 908#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 909#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 910#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 911#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 912 913/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 914#ifdef NODE_NOT_IN_PAGE_FLAGS 915#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 916#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 917 SECTIONS_PGOFF : ZONES_PGOFF) 918#else 919#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 920#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 921 NODES_PGOFF : ZONES_PGOFF) 922#endif 923 924#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 925 926#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 927#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 928#endif 929 930#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 931#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 932#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 933#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 934#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 935#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 936 937static inline enum zone_type page_zonenum(const struct page *page) 938{ 939 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 940} 941 942#ifdef CONFIG_ZONE_DEVICE 943static inline bool is_zone_device_page(const struct page *page) 944{ 945 return page_zonenum(page) == ZONE_DEVICE; 946} 947extern void memmap_init_zone_device(struct zone *, unsigned long, 948 unsigned long, struct dev_pagemap *); 949#else 950static inline bool is_zone_device_page(const struct page *page) 951{ 952 return false; 953} 954#endif 955 956#ifdef CONFIG_DEV_PAGEMAP_OPS 957void __put_devmap_managed_page(struct page *page); 958DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 959static inline bool put_devmap_managed_page(struct page *page) 960{ 961 if (!static_branch_unlikely(&devmap_managed_key)) 962 return false; 963 if (!is_zone_device_page(page)) 964 return false; 965 switch (page->pgmap->type) { 966 case MEMORY_DEVICE_PRIVATE: 967 case MEMORY_DEVICE_FS_DAX: 968 __put_devmap_managed_page(page); 969 return true; 970 default: 971 break; 972 } 973 return false; 974} 975 976#else /* CONFIG_DEV_PAGEMAP_OPS */ 977static inline bool put_devmap_managed_page(struct page *page) 978{ 979 return false; 980} 981#endif /* CONFIG_DEV_PAGEMAP_OPS */ 982 983static inline bool is_device_private_page(const struct page *page) 984{ 985 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 986 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 987 is_zone_device_page(page) && 988 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 989} 990 991static inline bool is_pci_p2pdma_page(const struct page *page) 992{ 993 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 994 IS_ENABLED(CONFIG_PCI_P2PDMA) && 995 is_zone_device_page(page) && 996 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 997} 998 999/* 127: arbitrary random number, small enough to assemble well */ 1000#define page_ref_zero_or_close_to_overflow(page) \ 1001 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1002 1003static inline void get_page(struct page *page) 1004{ 1005 page = compound_head(page); 1006 /* 1007 * Getting a normal page or the head of a compound page 1008 * requires to already have an elevated page->_refcount. 1009 */ 1010 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1011 page_ref_inc(page); 1012} 1013 1014static inline __must_check bool try_get_page(struct page *page) 1015{ 1016 page = compound_head(page); 1017 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1018 return false; 1019 page_ref_inc(page); 1020 return true; 1021} 1022 1023static inline void put_page(struct page *page) 1024{ 1025 page = compound_head(page); 1026 1027 /* 1028 * For devmap managed pages we need to catch refcount transition from 1029 * 2 to 1, when refcount reach one it means the page is free and we 1030 * need to inform the device driver through callback. See 1031 * include/linux/memremap.h and HMM for details. 1032 */ 1033 if (put_devmap_managed_page(page)) 1034 return; 1035 1036 if (put_page_testzero(page)) 1037 __put_page(page); 1038} 1039 1040/** 1041 * put_user_page() - release a gup-pinned page 1042 * @page: pointer to page to be released 1043 * 1044 * Pages that were pinned via get_user_pages*() must be released via 1045 * either put_user_page(), or one of the put_user_pages*() routines 1046 * below. This is so that eventually, pages that are pinned via 1047 * get_user_pages*() can be separately tracked and uniquely handled. In 1048 * particular, interactions with RDMA and filesystems need special 1049 * handling. 1050 * 1051 * put_user_page() and put_page() are not interchangeable, despite this early 1052 * implementation that makes them look the same. put_user_page() calls must 1053 * be perfectly matched up with get_user_page() calls. 1054 */ 1055static inline void put_user_page(struct page *page) 1056{ 1057 put_page(page); 1058} 1059 1060void put_user_pages_dirty(struct page **pages, unsigned long npages); 1061void put_user_pages_dirty_lock(struct page **pages, unsigned long npages); 1062void put_user_pages(struct page **pages, unsigned long npages); 1063 1064#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1065#define SECTION_IN_PAGE_FLAGS 1066#endif 1067 1068/* 1069 * The identification function is mainly used by the buddy allocator for 1070 * determining if two pages could be buddies. We are not really identifying 1071 * the zone since we could be using the section number id if we do not have 1072 * node id available in page flags. 1073 * We only guarantee that it will return the same value for two combinable 1074 * pages in a zone. 1075 */ 1076static inline int page_zone_id(struct page *page) 1077{ 1078 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1079} 1080 1081#ifdef NODE_NOT_IN_PAGE_FLAGS 1082extern int page_to_nid(const struct page *page); 1083#else 1084static inline int page_to_nid(const struct page *page) 1085{ 1086 struct page *p = (struct page *)page; 1087 1088 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1089} 1090#endif 1091 1092#ifdef CONFIG_NUMA_BALANCING 1093static inline int cpu_pid_to_cpupid(int cpu, int pid) 1094{ 1095 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1096} 1097 1098static inline int cpupid_to_pid(int cpupid) 1099{ 1100 return cpupid & LAST__PID_MASK; 1101} 1102 1103static inline int cpupid_to_cpu(int cpupid) 1104{ 1105 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1106} 1107 1108static inline int cpupid_to_nid(int cpupid) 1109{ 1110 return cpu_to_node(cpupid_to_cpu(cpupid)); 1111} 1112 1113static inline bool cpupid_pid_unset(int cpupid) 1114{ 1115 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1116} 1117 1118static inline bool cpupid_cpu_unset(int cpupid) 1119{ 1120 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1121} 1122 1123static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1124{ 1125 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1126} 1127 1128#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1129#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1130static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1131{ 1132 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1133} 1134 1135static inline int page_cpupid_last(struct page *page) 1136{ 1137 return page->_last_cpupid; 1138} 1139static inline void page_cpupid_reset_last(struct page *page) 1140{ 1141 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1142} 1143#else 1144static inline int page_cpupid_last(struct page *page) 1145{ 1146 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1147} 1148 1149extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1150 1151static inline void page_cpupid_reset_last(struct page *page) 1152{ 1153 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1154} 1155#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1156#else /* !CONFIG_NUMA_BALANCING */ 1157static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1158{ 1159 return page_to_nid(page); /* XXX */ 1160} 1161 1162static inline int page_cpupid_last(struct page *page) 1163{ 1164 return page_to_nid(page); /* XXX */ 1165} 1166 1167static inline int cpupid_to_nid(int cpupid) 1168{ 1169 return -1; 1170} 1171 1172static inline int cpupid_to_pid(int cpupid) 1173{ 1174 return -1; 1175} 1176 1177static inline int cpupid_to_cpu(int cpupid) 1178{ 1179 return -1; 1180} 1181 1182static inline int cpu_pid_to_cpupid(int nid, int pid) 1183{ 1184 return -1; 1185} 1186 1187static inline bool cpupid_pid_unset(int cpupid) 1188{ 1189 return 1; 1190} 1191 1192static inline void page_cpupid_reset_last(struct page *page) 1193{ 1194} 1195 1196static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1197{ 1198 return false; 1199} 1200#endif /* CONFIG_NUMA_BALANCING */ 1201 1202#ifdef CONFIG_KASAN_SW_TAGS 1203static inline u8 page_kasan_tag(const struct page *page) 1204{ 1205 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1206} 1207 1208static inline void page_kasan_tag_set(struct page *page, u8 tag) 1209{ 1210 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1211 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1212} 1213 1214static inline void page_kasan_tag_reset(struct page *page) 1215{ 1216 page_kasan_tag_set(page, 0xff); 1217} 1218#else 1219static inline u8 page_kasan_tag(const struct page *page) 1220{ 1221 return 0xff; 1222} 1223 1224static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1225static inline void page_kasan_tag_reset(struct page *page) { } 1226#endif 1227 1228static inline struct zone *page_zone(const struct page *page) 1229{ 1230 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1231} 1232 1233static inline pg_data_t *page_pgdat(const struct page *page) 1234{ 1235 return NODE_DATA(page_to_nid(page)); 1236} 1237 1238#ifdef SECTION_IN_PAGE_FLAGS 1239static inline void set_page_section(struct page *page, unsigned long section) 1240{ 1241 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1242 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1243} 1244 1245static inline unsigned long page_to_section(const struct page *page) 1246{ 1247 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1248} 1249#endif 1250 1251static inline void set_page_zone(struct page *page, enum zone_type zone) 1252{ 1253 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1254 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1255} 1256 1257static inline void set_page_node(struct page *page, unsigned long node) 1258{ 1259 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1260 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1261} 1262 1263static inline void set_page_links(struct page *page, enum zone_type zone, 1264 unsigned long node, unsigned long pfn) 1265{ 1266 set_page_zone(page, zone); 1267 set_page_node(page, node); 1268#ifdef SECTION_IN_PAGE_FLAGS 1269 set_page_section(page, pfn_to_section_nr(pfn)); 1270#endif 1271} 1272 1273#ifdef CONFIG_MEMCG 1274static inline struct mem_cgroup *page_memcg(struct page *page) 1275{ 1276 return page->mem_cgroup; 1277} 1278static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1279{ 1280 WARN_ON_ONCE(!rcu_read_lock_held()); 1281 return READ_ONCE(page->mem_cgroup); 1282} 1283#else 1284static inline struct mem_cgroup *page_memcg(struct page *page) 1285{ 1286 return NULL; 1287} 1288static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1289{ 1290 WARN_ON_ONCE(!rcu_read_lock_held()); 1291 return NULL; 1292} 1293#endif 1294 1295/* 1296 * Some inline functions in vmstat.h depend on page_zone() 1297 */ 1298#include <linux/vmstat.h> 1299 1300static __always_inline void *lowmem_page_address(const struct page *page) 1301{ 1302 return page_to_virt(page); 1303} 1304 1305#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1306#define HASHED_PAGE_VIRTUAL 1307#endif 1308 1309#if defined(WANT_PAGE_VIRTUAL) 1310static inline void *page_address(const struct page *page) 1311{ 1312 return page->virtual; 1313} 1314static inline void set_page_address(struct page *page, void *address) 1315{ 1316 page->virtual = address; 1317} 1318#define page_address_init() do { } while(0) 1319#endif 1320 1321#if defined(HASHED_PAGE_VIRTUAL) 1322void *page_address(const struct page *page); 1323void set_page_address(struct page *page, void *virtual); 1324void page_address_init(void); 1325#endif 1326 1327#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1328#define page_address(page) lowmem_page_address(page) 1329#define set_page_address(page, address) do { } while(0) 1330#define page_address_init() do { } while(0) 1331#endif 1332 1333extern void *page_rmapping(struct page *page); 1334extern struct anon_vma *page_anon_vma(struct page *page); 1335extern struct address_space *page_mapping(struct page *page); 1336 1337extern struct address_space *__page_file_mapping(struct page *); 1338 1339static inline 1340struct address_space *page_file_mapping(struct page *page) 1341{ 1342 if (unlikely(PageSwapCache(page))) 1343 return __page_file_mapping(page); 1344 1345 return page->mapping; 1346} 1347 1348extern pgoff_t __page_file_index(struct page *page); 1349 1350/* 1351 * Return the pagecache index of the passed page. Regular pagecache pages 1352 * use ->index whereas swapcache pages use swp_offset(->private) 1353 */ 1354static inline pgoff_t page_index(struct page *page) 1355{ 1356 if (unlikely(PageSwapCache(page))) 1357 return __page_file_index(page); 1358 return page->index; 1359} 1360 1361bool page_mapped(struct page *page); 1362struct address_space *page_mapping(struct page *page); 1363struct address_space *page_mapping_file(struct page *page); 1364 1365/* 1366 * Return true only if the page has been allocated with 1367 * ALLOC_NO_WATERMARKS and the low watermark was not 1368 * met implying that the system is under some pressure. 1369 */ 1370static inline bool page_is_pfmemalloc(struct page *page) 1371{ 1372 /* 1373 * Page index cannot be this large so this must be 1374 * a pfmemalloc page. 1375 */ 1376 return page->index == -1UL; 1377} 1378 1379/* 1380 * Only to be called by the page allocator on a freshly allocated 1381 * page. 1382 */ 1383static inline void set_page_pfmemalloc(struct page *page) 1384{ 1385 page->index = -1UL; 1386} 1387 1388static inline void clear_page_pfmemalloc(struct page *page) 1389{ 1390 page->index = 0; 1391} 1392 1393/* 1394 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1395 */ 1396extern void pagefault_out_of_memory(void); 1397 1398#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1399 1400/* 1401 * Flags passed to show_mem() and show_free_areas() to suppress output in 1402 * various contexts. 1403 */ 1404#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1405 1406extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1407 1408extern bool can_do_mlock(void); 1409extern int user_shm_lock(size_t, struct user_struct *); 1410extern void user_shm_unlock(size_t, struct user_struct *); 1411 1412/* 1413 * Parameter block passed down to zap_pte_range in exceptional cases. 1414 */ 1415struct zap_details { 1416 struct address_space *check_mapping; /* Check page->mapping if set */ 1417 pgoff_t first_index; /* Lowest page->index to unmap */ 1418 pgoff_t last_index; /* Highest page->index to unmap */ 1419}; 1420 1421struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1422 pte_t pte); 1423struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1424 pmd_t pmd); 1425 1426void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1427 unsigned long size); 1428void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1429 unsigned long size); 1430void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1431 unsigned long start, unsigned long end); 1432 1433/** 1434 * mm_walk - callbacks for walk_page_range 1435 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1436 * this handler should only handle pud_trans_huge() puds. 1437 * the pmd_entry or pte_entry callbacks will be used for 1438 * regular PUDs. 1439 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1440 * this handler is required to be able to handle 1441 * pmd_trans_huge() pmds. They may simply choose to 1442 * split_huge_page() instead of handling it explicitly. 1443 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1444 * @pte_hole: if set, called for each hole at all levels 1445 * @hugetlb_entry: if set, called for each hugetlb entry 1446 * @test_walk: caller specific callback function to determine whether 1447 * we walk over the current vma or not. Returning 0 1448 * value means "do page table walk over the current vma," 1449 * and a negative one means "abort current page table walk 1450 * right now." 1 means "skip the current vma." 1451 * @mm: mm_struct representing the target process of page table walk 1452 * @vma: vma currently walked (NULL if walking outside vmas) 1453 * @private: private data for callbacks' usage 1454 * 1455 * (see the comment on walk_page_range() for more details) 1456 */ 1457struct mm_walk { 1458 int (*pud_entry)(pud_t *pud, unsigned long addr, 1459 unsigned long next, struct mm_walk *walk); 1460 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1461 unsigned long next, struct mm_walk *walk); 1462 int (*pte_entry)(pte_t *pte, unsigned long addr, 1463 unsigned long next, struct mm_walk *walk); 1464 int (*pte_hole)(unsigned long addr, unsigned long next, 1465 struct mm_walk *walk); 1466 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1467 unsigned long addr, unsigned long next, 1468 struct mm_walk *walk); 1469 int (*test_walk)(unsigned long addr, unsigned long next, 1470 struct mm_walk *walk); 1471 struct mm_struct *mm; 1472 struct vm_area_struct *vma; 1473 void *private; 1474}; 1475 1476struct mmu_notifier_range; 1477 1478int walk_page_range(unsigned long addr, unsigned long end, 1479 struct mm_walk *walk); 1480int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1481void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1482 unsigned long end, unsigned long floor, unsigned long ceiling); 1483int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1484 struct vm_area_struct *vma); 1485int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1486 struct mmu_notifier_range *range, 1487 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1488int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1489 unsigned long *pfn); 1490int follow_phys(struct vm_area_struct *vma, unsigned long address, 1491 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1492int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1493 void *buf, int len, int write); 1494 1495extern void truncate_pagecache(struct inode *inode, loff_t new); 1496extern void truncate_setsize(struct inode *inode, loff_t newsize); 1497void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1498void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1499int truncate_inode_page(struct address_space *mapping, struct page *page); 1500int generic_error_remove_page(struct address_space *mapping, struct page *page); 1501int invalidate_inode_page(struct page *page); 1502 1503#ifdef CONFIG_MMU 1504extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1505 unsigned long address, unsigned int flags); 1506extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1507 unsigned long address, unsigned int fault_flags, 1508 bool *unlocked); 1509void unmap_mapping_pages(struct address_space *mapping, 1510 pgoff_t start, pgoff_t nr, bool even_cows); 1511void unmap_mapping_range(struct address_space *mapping, 1512 loff_t const holebegin, loff_t const holelen, int even_cows); 1513#else 1514static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1515 unsigned long address, unsigned int flags) 1516{ 1517 /* should never happen if there's no MMU */ 1518 BUG(); 1519 return VM_FAULT_SIGBUS; 1520} 1521static inline int fixup_user_fault(struct task_struct *tsk, 1522 struct mm_struct *mm, unsigned long address, 1523 unsigned int fault_flags, bool *unlocked) 1524{ 1525 /* should never happen if there's no MMU */ 1526 BUG(); 1527 return -EFAULT; 1528} 1529static inline void unmap_mapping_pages(struct address_space *mapping, 1530 pgoff_t start, pgoff_t nr, bool even_cows) { } 1531static inline void unmap_mapping_range(struct address_space *mapping, 1532 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1533#endif 1534 1535static inline void unmap_shared_mapping_range(struct address_space *mapping, 1536 loff_t const holebegin, loff_t const holelen) 1537{ 1538 unmap_mapping_range(mapping, holebegin, holelen, 0); 1539} 1540 1541extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1542 void *buf, int len, unsigned int gup_flags); 1543extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1544 void *buf, int len, unsigned int gup_flags); 1545extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1546 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1547 1548long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1549 unsigned long start, unsigned long nr_pages, 1550 unsigned int gup_flags, struct page **pages, 1551 struct vm_area_struct **vmas, int *locked); 1552long get_user_pages(unsigned long start, unsigned long nr_pages, 1553 unsigned int gup_flags, struct page **pages, 1554 struct vm_area_struct **vmas); 1555long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1556 unsigned int gup_flags, struct page **pages, int *locked); 1557long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1558 struct page **pages, unsigned int gup_flags); 1559 1560int get_user_pages_fast(unsigned long start, int nr_pages, 1561 unsigned int gup_flags, struct page **pages); 1562 1563int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1564int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1565 struct task_struct *task, bool bypass_rlim); 1566 1567/* Container for pinned pfns / pages */ 1568struct frame_vector { 1569 unsigned int nr_allocated; /* Number of frames we have space for */ 1570 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1571 bool got_ref; /* Did we pin pages by getting page ref? */ 1572 bool is_pfns; /* Does array contain pages or pfns? */ 1573 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1574 * pfns_vector_pages() or pfns_vector_pfns() 1575 * for access */ 1576}; 1577 1578struct frame_vector *frame_vector_create(unsigned int nr_frames); 1579void frame_vector_destroy(struct frame_vector *vec); 1580int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1581 unsigned int gup_flags, struct frame_vector *vec); 1582void put_vaddr_frames(struct frame_vector *vec); 1583int frame_vector_to_pages(struct frame_vector *vec); 1584void frame_vector_to_pfns(struct frame_vector *vec); 1585 1586static inline unsigned int frame_vector_count(struct frame_vector *vec) 1587{ 1588 return vec->nr_frames; 1589} 1590 1591static inline struct page **frame_vector_pages(struct frame_vector *vec) 1592{ 1593 if (vec->is_pfns) { 1594 int err = frame_vector_to_pages(vec); 1595 1596 if (err) 1597 return ERR_PTR(err); 1598 } 1599 return (struct page **)(vec->ptrs); 1600} 1601 1602static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1603{ 1604 if (!vec->is_pfns) 1605 frame_vector_to_pfns(vec); 1606 return (unsigned long *)(vec->ptrs); 1607} 1608 1609struct kvec; 1610int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1611 struct page **pages); 1612int get_kernel_page(unsigned long start, int write, struct page **pages); 1613struct page *get_dump_page(unsigned long addr); 1614 1615extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1616extern void do_invalidatepage(struct page *page, unsigned int offset, 1617 unsigned int length); 1618 1619void __set_page_dirty(struct page *, struct address_space *, int warn); 1620int __set_page_dirty_nobuffers(struct page *page); 1621int __set_page_dirty_no_writeback(struct page *page); 1622int redirty_page_for_writepage(struct writeback_control *wbc, 1623 struct page *page); 1624void account_page_dirtied(struct page *page, struct address_space *mapping); 1625void account_page_cleaned(struct page *page, struct address_space *mapping, 1626 struct bdi_writeback *wb); 1627int set_page_dirty(struct page *page); 1628int set_page_dirty_lock(struct page *page); 1629void __cancel_dirty_page(struct page *page); 1630static inline void cancel_dirty_page(struct page *page) 1631{ 1632 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1633 if (PageDirty(page)) 1634 __cancel_dirty_page(page); 1635} 1636int clear_page_dirty_for_io(struct page *page); 1637 1638int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1639 1640extern unsigned long move_page_tables(struct vm_area_struct *vma, 1641 unsigned long old_addr, struct vm_area_struct *new_vma, 1642 unsigned long new_addr, unsigned long len, 1643 bool need_rmap_locks); 1644extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1645 unsigned long end, pgprot_t newprot, 1646 int dirty_accountable, int prot_numa); 1647extern int mprotect_fixup(struct vm_area_struct *vma, 1648 struct vm_area_struct **pprev, unsigned long start, 1649 unsigned long end, unsigned long newflags); 1650 1651/* 1652 * doesn't attempt to fault and will return short. 1653 */ 1654int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1655 struct page **pages); 1656/* 1657 * per-process(per-mm_struct) statistics. 1658 */ 1659static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1660{ 1661 long val = atomic_long_read(&mm->rss_stat.count[member]); 1662 1663#ifdef SPLIT_RSS_COUNTING 1664 /* 1665 * counter is updated in asynchronous manner and may go to minus. 1666 * But it's never be expected number for users. 1667 */ 1668 if (val < 0) 1669 val = 0; 1670#endif 1671 return (unsigned long)val; 1672} 1673 1674static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1675{ 1676 atomic_long_add(value, &mm->rss_stat.count[member]); 1677} 1678 1679static inline void inc_mm_counter(struct mm_struct *mm, int member) 1680{ 1681 atomic_long_inc(&mm->rss_stat.count[member]); 1682} 1683 1684static inline void dec_mm_counter(struct mm_struct *mm, int member) 1685{ 1686 atomic_long_dec(&mm->rss_stat.count[member]); 1687} 1688 1689/* Optimized variant when page is already known not to be PageAnon */ 1690static inline int mm_counter_file(struct page *page) 1691{ 1692 if (PageSwapBacked(page)) 1693 return MM_SHMEMPAGES; 1694 return MM_FILEPAGES; 1695} 1696 1697static inline int mm_counter(struct page *page) 1698{ 1699 if (PageAnon(page)) 1700 return MM_ANONPAGES; 1701 return mm_counter_file(page); 1702} 1703 1704static inline unsigned long get_mm_rss(struct mm_struct *mm) 1705{ 1706 return get_mm_counter(mm, MM_FILEPAGES) + 1707 get_mm_counter(mm, MM_ANONPAGES) + 1708 get_mm_counter(mm, MM_SHMEMPAGES); 1709} 1710 1711static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1712{ 1713 return max(mm->hiwater_rss, get_mm_rss(mm)); 1714} 1715 1716static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1717{ 1718 return max(mm->hiwater_vm, mm->total_vm); 1719} 1720 1721static inline void update_hiwater_rss(struct mm_struct *mm) 1722{ 1723 unsigned long _rss = get_mm_rss(mm); 1724 1725 if ((mm)->hiwater_rss < _rss) 1726 (mm)->hiwater_rss = _rss; 1727} 1728 1729static inline void update_hiwater_vm(struct mm_struct *mm) 1730{ 1731 if (mm->hiwater_vm < mm->total_vm) 1732 mm->hiwater_vm = mm->total_vm; 1733} 1734 1735static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1736{ 1737 mm->hiwater_rss = get_mm_rss(mm); 1738} 1739 1740static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1741 struct mm_struct *mm) 1742{ 1743 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1744 1745 if (*maxrss < hiwater_rss) 1746 *maxrss = hiwater_rss; 1747} 1748 1749#if defined(SPLIT_RSS_COUNTING) 1750void sync_mm_rss(struct mm_struct *mm); 1751#else 1752static inline void sync_mm_rss(struct mm_struct *mm) 1753{ 1754} 1755#endif 1756 1757#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1758static inline int pte_devmap(pte_t pte) 1759{ 1760 return 0; 1761} 1762#endif 1763 1764int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1765 1766extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1767 spinlock_t **ptl); 1768static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1769 spinlock_t **ptl) 1770{ 1771 pte_t *ptep; 1772 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1773 return ptep; 1774} 1775 1776#ifdef __PAGETABLE_P4D_FOLDED 1777static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1778 unsigned long address) 1779{ 1780 return 0; 1781} 1782#else 1783int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1784#endif 1785 1786#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1787static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1788 unsigned long address) 1789{ 1790 return 0; 1791} 1792static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1793static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1794 1795#else 1796int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1797 1798static inline void mm_inc_nr_puds(struct mm_struct *mm) 1799{ 1800 if (mm_pud_folded(mm)) 1801 return; 1802 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1803} 1804 1805static inline void mm_dec_nr_puds(struct mm_struct *mm) 1806{ 1807 if (mm_pud_folded(mm)) 1808 return; 1809 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1810} 1811#endif 1812 1813#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1814static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1815 unsigned long address) 1816{ 1817 return 0; 1818} 1819 1820static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1821static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1822 1823#else 1824int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1825 1826static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1827{ 1828 if (mm_pmd_folded(mm)) 1829 return; 1830 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1831} 1832 1833static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1834{ 1835 if (mm_pmd_folded(mm)) 1836 return; 1837 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1838} 1839#endif 1840 1841#ifdef CONFIG_MMU 1842static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1843{ 1844 atomic_long_set(&mm->pgtables_bytes, 0); 1845} 1846 1847static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1848{ 1849 return atomic_long_read(&mm->pgtables_bytes); 1850} 1851 1852static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1853{ 1854 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1855} 1856 1857static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1858{ 1859 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1860} 1861#else 1862 1863static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1864static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1865{ 1866 return 0; 1867} 1868 1869static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1870static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1871#endif 1872 1873int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1874int __pte_alloc_kernel(pmd_t *pmd); 1875 1876/* 1877 * The following ifdef needed to get the 4level-fixup.h header to work. 1878 * Remove it when 4level-fixup.h has been removed. 1879 */ 1880#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1881 1882#ifndef __ARCH_HAS_5LEVEL_HACK 1883static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1884 unsigned long address) 1885{ 1886 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1887 NULL : p4d_offset(pgd, address); 1888} 1889 1890static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1891 unsigned long address) 1892{ 1893 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1894 NULL : pud_offset(p4d, address); 1895} 1896#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1897 1898static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1899{ 1900 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1901 NULL: pmd_offset(pud, address); 1902} 1903#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1904 1905#if USE_SPLIT_PTE_PTLOCKS 1906#if ALLOC_SPLIT_PTLOCKS 1907void __init ptlock_cache_init(void); 1908extern bool ptlock_alloc(struct page *page); 1909extern void ptlock_free(struct page *page); 1910 1911static inline spinlock_t *ptlock_ptr(struct page *page) 1912{ 1913 return page->ptl; 1914} 1915#else /* ALLOC_SPLIT_PTLOCKS */ 1916static inline void ptlock_cache_init(void) 1917{ 1918} 1919 1920static inline bool ptlock_alloc(struct page *page) 1921{ 1922 return true; 1923} 1924 1925static inline void ptlock_free(struct page *page) 1926{ 1927} 1928 1929static inline spinlock_t *ptlock_ptr(struct page *page) 1930{ 1931 return &page->ptl; 1932} 1933#endif /* ALLOC_SPLIT_PTLOCKS */ 1934 1935static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1936{ 1937 return ptlock_ptr(pmd_page(*pmd)); 1938} 1939 1940static inline bool ptlock_init(struct page *page) 1941{ 1942 /* 1943 * prep_new_page() initialize page->private (and therefore page->ptl) 1944 * with 0. Make sure nobody took it in use in between. 1945 * 1946 * It can happen if arch try to use slab for page table allocation: 1947 * slab code uses page->slab_cache, which share storage with page->ptl. 1948 */ 1949 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1950 if (!ptlock_alloc(page)) 1951 return false; 1952 spin_lock_init(ptlock_ptr(page)); 1953 return true; 1954} 1955 1956#else /* !USE_SPLIT_PTE_PTLOCKS */ 1957/* 1958 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1959 */ 1960static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1961{ 1962 return &mm->page_table_lock; 1963} 1964static inline void ptlock_cache_init(void) {} 1965static inline bool ptlock_init(struct page *page) { return true; } 1966static inline void ptlock_free(struct page *page) {} 1967#endif /* USE_SPLIT_PTE_PTLOCKS */ 1968 1969static inline void pgtable_init(void) 1970{ 1971 ptlock_cache_init(); 1972 pgtable_cache_init(); 1973} 1974 1975static inline bool pgtable_page_ctor(struct page *page) 1976{ 1977 if (!ptlock_init(page)) 1978 return false; 1979 __SetPageTable(page); 1980 inc_zone_page_state(page, NR_PAGETABLE); 1981 return true; 1982} 1983 1984static inline void pgtable_page_dtor(struct page *page) 1985{ 1986 ptlock_free(page); 1987 __ClearPageTable(page); 1988 dec_zone_page_state(page, NR_PAGETABLE); 1989} 1990 1991#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1992({ \ 1993 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1994 pte_t *__pte = pte_offset_map(pmd, address); \ 1995 *(ptlp) = __ptl; \ 1996 spin_lock(__ptl); \ 1997 __pte; \ 1998}) 1999 2000#define pte_unmap_unlock(pte, ptl) do { \ 2001 spin_unlock(ptl); \ 2002 pte_unmap(pte); \ 2003} while (0) 2004 2005#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2006 2007#define pte_alloc_map(mm, pmd, address) \ 2008 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2009 2010#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2011 (pte_alloc(mm, pmd) ? \ 2012 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2013 2014#define pte_alloc_kernel(pmd, address) \ 2015 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2016 NULL: pte_offset_kernel(pmd, address)) 2017 2018#if USE_SPLIT_PMD_PTLOCKS 2019 2020static struct page *pmd_to_page(pmd_t *pmd) 2021{ 2022 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2023 return virt_to_page((void *)((unsigned long) pmd & mask)); 2024} 2025 2026static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2027{ 2028 return ptlock_ptr(pmd_to_page(pmd)); 2029} 2030 2031static inline bool pgtable_pmd_page_ctor(struct page *page) 2032{ 2033#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2034 page->pmd_huge_pte = NULL; 2035#endif 2036 return ptlock_init(page); 2037} 2038 2039static inline void pgtable_pmd_page_dtor(struct page *page) 2040{ 2041#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2042 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2043#endif 2044 ptlock_free(page); 2045} 2046 2047#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2048 2049#else 2050 2051static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2052{ 2053 return &mm->page_table_lock; 2054} 2055 2056static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2057static inline void pgtable_pmd_page_dtor(struct page *page) {} 2058 2059#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2060 2061#endif 2062 2063static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2064{ 2065 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2066 spin_lock(ptl); 2067 return ptl; 2068} 2069 2070/* 2071 * No scalability reason to split PUD locks yet, but follow the same pattern 2072 * as the PMD locks to make it easier if we decide to. The VM should not be 2073 * considered ready to switch to split PUD locks yet; there may be places 2074 * which need to be converted from page_table_lock. 2075 */ 2076static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2077{ 2078 return &mm->page_table_lock; 2079} 2080 2081static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2082{ 2083 spinlock_t *ptl = pud_lockptr(mm, pud); 2084 2085 spin_lock(ptl); 2086 return ptl; 2087} 2088 2089extern void __init pagecache_init(void); 2090extern void free_area_init(unsigned long * zones_size); 2091extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2092 unsigned long zone_start_pfn, unsigned long *zholes_size); 2093extern void free_initmem(void); 2094 2095/* 2096 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2097 * into the buddy system. The freed pages will be poisoned with pattern 2098 * "poison" if it's within range [0, UCHAR_MAX]. 2099 * Return pages freed into the buddy system. 2100 */ 2101extern unsigned long free_reserved_area(void *start, void *end, 2102 int poison, const char *s); 2103 2104#ifdef CONFIG_HIGHMEM 2105/* 2106 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2107 * and totalram_pages. 2108 */ 2109extern void free_highmem_page(struct page *page); 2110#endif 2111 2112extern void adjust_managed_page_count(struct page *page, long count); 2113extern void mem_init_print_info(const char *str); 2114 2115extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2116 2117/* Free the reserved page into the buddy system, so it gets managed. */ 2118static inline void __free_reserved_page(struct page *page) 2119{ 2120 ClearPageReserved(page); 2121 init_page_count(page); 2122 __free_page(page); 2123} 2124 2125static inline void free_reserved_page(struct page *page) 2126{ 2127 __free_reserved_page(page); 2128 adjust_managed_page_count(page, 1); 2129} 2130 2131static inline void mark_page_reserved(struct page *page) 2132{ 2133 SetPageReserved(page); 2134 adjust_managed_page_count(page, -1); 2135} 2136 2137/* 2138 * Default method to free all the __init memory into the buddy system. 2139 * The freed pages will be poisoned with pattern "poison" if it's within 2140 * range [0, UCHAR_MAX]. 2141 * Return pages freed into the buddy system. 2142 */ 2143static inline unsigned long free_initmem_default(int poison) 2144{ 2145 extern char __init_begin[], __init_end[]; 2146 2147 return free_reserved_area(&__init_begin, &__init_end, 2148 poison, "unused kernel"); 2149} 2150 2151static inline unsigned long get_num_physpages(void) 2152{ 2153 int nid; 2154 unsigned long phys_pages = 0; 2155 2156 for_each_online_node(nid) 2157 phys_pages += node_present_pages(nid); 2158 2159 return phys_pages; 2160} 2161 2162#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2163/* 2164 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2165 * zones, allocate the backing mem_map and account for memory holes in a more 2166 * architecture independent manner. This is a substitute for creating the 2167 * zone_sizes[] and zholes_size[] arrays and passing them to 2168 * free_area_init_node() 2169 * 2170 * An architecture is expected to register range of page frames backed by 2171 * physical memory with memblock_add[_node]() before calling 2172 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2173 * usage, an architecture is expected to do something like 2174 * 2175 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2176 * max_highmem_pfn}; 2177 * for_each_valid_physical_page_range() 2178 * memblock_add_node(base, size, nid) 2179 * free_area_init_nodes(max_zone_pfns); 2180 * 2181 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2182 * registered physical page range. Similarly 2183 * sparse_memory_present_with_active_regions() calls memory_present() for 2184 * each range when SPARSEMEM is enabled. 2185 * 2186 * See mm/page_alloc.c for more information on each function exposed by 2187 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2188 */ 2189extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2190unsigned long node_map_pfn_alignment(void); 2191unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2192 unsigned long end_pfn); 2193extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2194 unsigned long end_pfn); 2195extern void get_pfn_range_for_nid(unsigned int nid, 2196 unsigned long *start_pfn, unsigned long *end_pfn); 2197extern unsigned long find_min_pfn_with_active_regions(void); 2198extern void free_bootmem_with_active_regions(int nid, 2199 unsigned long max_low_pfn); 2200extern void sparse_memory_present_with_active_regions(int nid); 2201 2202#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2203 2204#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2205 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2206static inline int __early_pfn_to_nid(unsigned long pfn, 2207 struct mminit_pfnnid_cache *state) 2208{ 2209 return 0; 2210} 2211#else 2212/* please see mm/page_alloc.c */ 2213extern int __meminit early_pfn_to_nid(unsigned long pfn); 2214/* there is a per-arch backend function. */ 2215extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2216 struct mminit_pfnnid_cache *state); 2217#endif 2218 2219#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2220void zero_resv_unavail(void); 2221#else 2222static inline void zero_resv_unavail(void) {} 2223#endif 2224 2225extern void set_dma_reserve(unsigned long new_dma_reserve); 2226extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2227 enum memmap_context, struct vmem_altmap *); 2228extern void setup_per_zone_wmarks(void); 2229extern int __meminit init_per_zone_wmark_min(void); 2230extern void mem_init(void); 2231extern void __init mmap_init(void); 2232extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2233extern long si_mem_available(void); 2234extern void si_meminfo(struct sysinfo * val); 2235extern void si_meminfo_node(struct sysinfo *val, int nid); 2236#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2237extern unsigned long arch_reserved_kernel_pages(void); 2238#endif 2239 2240extern __printf(3, 4) 2241void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2242 2243extern void setup_per_cpu_pageset(void); 2244 2245extern void zone_pcp_update(struct zone *zone); 2246extern void zone_pcp_reset(struct zone *zone); 2247 2248/* page_alloc.c */ 2249extern int min_free_kbytes; 2250extern int watermark_boost_factor; 2251extern int watermark_scale_factor; 2252 2253/* nommu.c */ 2254extern atomic_long_t mmap_pages_allocated; 2255extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2256 2257/* interval_tree.c */ 2258void vma_interval_tree_insert(struct vm_area_struct *node, 2259 struct rb_root_cached *root); 2260void vma_interval_tree_insert_after(struct vm_area_struct *node, 2261 struct vm_area_struct *prev, 2262 struct rb_root_cached *root); 2263void vma_interval_tree_remove(struct vm_area_struct *node, 2264 struct rb_root_cached *root); 2265struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2266 unsigned long start, unsigned long last); 2267struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2268 unsigned long start, unsigned long last); 2269 2270#define vma_interval_tree_foreach(vma, root, start, last) \ 2271 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2272 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2273 2274void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2275 struct rb_root_cached *root); 2276void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2277 struct rb_root_cached *root); 2278struct anon_vma_chain * 2279anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2280 unsigned long start, unsigned long last); 2281struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2282 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2283#ifdef CONFIG_DEBUG_VM_RB 2284void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2285#endif 2286 2287#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2288 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2289 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2290 2291/* mmap.c */ 2292extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2293extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2294 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2295 struct vm_area_struct *expand); 2296static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2297 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2298{ 2299 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2300} 2301extern struct vm_area_struct *vma_merge(struct mm_struct *, 2302 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2303 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2304 struct mempolicy *, struct vm_userfaultfd_ctx); 2305extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2306extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2307 unsigned long addr, int new_below); 2308extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2309 unsigned long addr, int new_below); 2310extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2311extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2312 struct rb_node **, struct rb_node *); 2313extern void unlink_file_vma(struct vm_area_struct *); 2314extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2315 unsigned long addr, unsigned long len, pgoff_t pgoff, 2316 bool *need_rmap_locks); 2317extern void exit_mmap(struct mm_struct *); 2318 2319static inline int check_data_rlimit(unsigned long rlim, 2320 unsigned long new, 2321 unsigned long start, 2322 unsigned long end_data, 2323 unsigned long start_data) 2324{ 2325 if (rlim < RLIM_INFINITY) { 2326 if (((new - start) + (end_data - start_data)) > rlim) 2327 return -ENOSPC; 2328 } 2329 2330 return 0; 2331} 2332 2333extern int mm_take_all_locks(struct mm_struct *mm); 2334extern void mm_drop_all_locks(struct mm_struct *mm); 2335 2336extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2337extern struct file *get_mm_exe_file(struct mm_struct *mm); 2338extern struct file *get_task_exe_file(struct task_struct *task); 2339 2340extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2341extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2342 2343extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2344 const struct vm_special_mapping *sm); 2345extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2346 unsigned long addr, unsigned long len, 2347 unsigned long flags, 2348 const struct vm_special_mapping *spec); 2349/* This is an obsolete alternative to _install_special_mapping. */ 2350extern int install_special_mapping(struct mm_struct *mm, 2351 unsigned long addr, unsigned long len, 2352 unsigned long flags, struct page **pages); 2353 2354extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2355 2356extern unsigned long mmap_region(struct file *file, unsigned long addr, 2357 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2358 struct list_head *uf); 2359extern unsigned long do_mmap(struct file *file, unsigned long addr, 2360 unsigned long len, unsigned long prot, unsigned long flags, 2361 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2362 struct list_head *uf); 2363extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2364 struct list_head *uf, bool downgrade); 2365extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2366 struct list_head *uf); 2367 2368static inline unsigned long 2369do_mmap_pgoff(struct file *file, unsigned long addr, 2370 unsigned long len, unsigned long prot, unsigned long flags, 2371 unsigned long pgoff, unsigned long *populate, 2372 struct list_head *uf) 2373{ 2374 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2375} 2376 2377#ifdef CONFIG_MMU 2378extern int __mm_populate(unsigned long addr, unsigned long len, 2379 int ignore_errors); 2380static inline void mm_populate(unsigned long addr, unsigned long len) 2381{ 2382 /* Ignore errors */ 2383 (void) __mm_populate(addr, len, 1); 2384} 2385#else 2386static inline void mm_populate(unsigned long addr, unsigned long len) {} 2387#endif 2388 2389/* These take the mm semaphore themselves */ 2390extern int __must_check vm_brk(unsigned long, unsigned long); 2391extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2392extern int vm_munmap(unsigned long, size_t); 2393extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2394 unsigned long, unsigned long, 2395 unsigned long, unsigned long); 2396 2397struct vm_unmapped_area_info { 2398#define VM_UNMAPPED_AREA_TOPDOWN 1 2399 unsigned long flags; 2400 unsigned long length; 2401 unsigned long low_limit; 2402 unsigned long high_limit; 2403 unsigned long align_mask; 2404 unsigned long align_offset; 2405}; 2406 2407extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2408extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2409 2410/* 2411 * Search for an unmapped address range. 2412 * 2413 * We are looking for a range that: 2414 * - does not intersect with any VMA; 2415 * - is contained within the [low_limit, high_limit) interval; 2416 * - is at least the desired size. 2417 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2418 */ 2419static inline unsigned long 2420vm_unmapped_area(struct vm_unmapped_area_info *info) 2421{ 2422 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2423 return unmapped_area_topdown(info); 2424 else 2425 return unmapped_area(info); 2426} 2427 2428/* truncate.c */ 2429extern void truncate_inode_pages(struct address_space *, loff_t); 2430extern void truncate_inode_pages_range(struct address_space *, 2431 loff_t lstart, loff_t lend); 2432extern void truncate_inode_pages_final(struct address_space *); 2433 2434/* generic vm_area_ops exported for stackable file systems */ 2435extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2436extern void filemap_map_pages(struct vm_fault *vmf, 2437 pgoff_t start_pgoff, pgoff_t end_pgoff); 2438extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2439 2440/* mm/page-writeback.c */ 2441int __must_check write_one_page(struct page *page); 2442void task_dirty_inc(struct task_struct *tsk); 2443 2444/* readahead.c */ 2445#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2446 2447int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2448 pgoff_t offset, unsigned long nr_to_read); 2449 2450void page_cache_sync_readahead(struct address_space *mapping, 2451 struct file_ra_state *ra, 2452 struct file *filp, 2453 pgoff_t offset, 2454 unsigned long size); 2455 2456void page_cache_async_readahead(struct address_space *mapping, 2457 struct file_ra_state *ra, 2458 struct file *filp, 2459 struct page *pg, 2460 pgoff_t offset, 2461 unsigned long size); 2462 2463extern unsigned long stack_guard_gap; 2464/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2465extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2466 2467/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2468extern int expand_downwards(struct vm_area_struct *vma, 2469 unsigned long address); 2470#if VM_GROWSUP 2471extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2472#else 2473 #define expand_upwards(vma, address) (0) 2474#endif 2475 2476/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2477extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2478extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2479 struct vm_area_struct **pprev); 2480 2481/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2482 NULL if none. Assume start_addr < end_addr. */ 2483static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2484{ 2485 struct vm_area_struct * vma = find_vma(mm,start_addr); 2486 2487 if (vma && end_addr <= vma->vm_start) 2488 vma = NULL; 2489 return vma; 2490} 2491 2492static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2493{ 2494 unsigned long vm_start = vma->vm_start; 2495 2496 if (vma->vm_flags & VM_GROWSDOWN) { 2497 vm_start -= stack_guard_gap; 2498 if (vm_start > vma->vm_start) 2499 vm_start = 0; 2500 } 2501 return vm_start; 2502} 2503 2504static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2505{ 2506 unsigned long vm_end = vma->vm_end; 2507 2508 if (vma->vm_flags & VM_GROWSUP) { 2509 vm_end += stack_guard_gap; 2510 if (vm_end < vma->vm_end) 2511 vm_end = -PAGE_SIZE; 2512 } 2513 return vm_end; 2514} 2515 2516static inline unsigned long vma_pages(struct vm_area_struct *vma) 2517{ 2518 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2519} 2520 2521/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2522static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2523 unsigned long vm_start, unsigned long vm_end) 2524{ 2525 struct vm_area_struct *vma = find_vma(mm, vm_start); 2526 2527 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2528 vma = NULL; 2529 2530 return vma; 2531} 2532 2533static inline bool range_in_vma(struct vm_area_struct *vma, 2534 unsigned long start, unsigned long end) 2535{ 2536 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2537} 2538 2539#ifdef CONFIG_MMU 2540pgprot_t vm_get_page_prot(unsigned long vm_flags); 2541void vma_set_page_prot(struct vm_area_struct *vma); 2542#else 2543static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2544{ 2545 return __pgprot(0); 2546} 2547static inline void vma_set_page_prot(struct vm_area_struct *vma) 2548{ 2549 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2550} 2551#endif 2552 2553#ifdef CONFIG_NUMA_BALANCING 2554unsigned long change_prot_numa(struct vm_area_struct *vma, 2555 unsigned long start, unsigned long end); 2556#endif 2557 2558struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2559int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2560 unsigned long pfn, unsigned long size, pgprot_t); 2561int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2562int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2563 unsigned long num); 2564int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2565 unsigned long num); 2566vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2567 unsigned long pfn); 2568vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2569 unsigned long pfn, pgprot_t pgprot); 2570vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2571 pfn_t pfn); 2572vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2573 unsigned long addr, pfn_t pfn); 2574int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2575 2576static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2577 unsigned long addr, struct page *page) 2578{ 2579 int err = vm_insert_page(vma, addr, page); 2580 2581 if (err == -ENOMEM) 2582 return VM_FAULT_OOM; 2583 if (err < 0 && err != -EBUSY) 2584 return VM_FAULT_SIGBUS; 2585 2586 return VM_FAULT_NOPAGE; 2587} 2588 2589static inline vm_fault_t vmf_error(int err) 2590{ 2591 if (err == -ENOMEM) 2592 return VM_FAULT_OOM; 2593 return VM_FAULT_SIGBUS; 2594} 2595 2596struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2597 unsigned int foll_flags); 2598 2599#define FOLL_WRITE 0x01 /* check pte is writable */ 2600#define FOLL_TOUCH 0x02 /* mark page accessed */ 2601#define FOLL_GET 0x04 /* do get_page on page */ 2602#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2603#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2604#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2605 * and return without waiting upon it */ 2606#define FOLL_POPULATE 0x40 /* fault in page */ 2607#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2608#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2609#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2610#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2611#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2612#define FOLL_MLOCK 0x1000 /* lock present pages */ 2613#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2614#define FOLL_COW 0x4000 /* internal GUP flag */ 2615#define FOLL_ANON 0x8000 /* don't do file mappings */ 2616#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2617 2618/* 2619 * NOTE on FOLL_LONGTERM: 2620 * 2621 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2622 * period _often_ under userspace control. This is contrasted with 2623 * iov_iter_get_pages() where usages which are transient. 2624 * 2625 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2626 * lifetime enforced by the filesystem and we need guarantees that longterm 2627 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2628 * the filesystem. Ideas for this coordination include revoking the longterm 2629 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2630 * added after the problem with filesystems was found FS DAX VMAs are 2631 * specifically failed. Filesystem pages are still subject to bugs and use of 2632 * FOLL_LONGTERM should be avoided on those pages. 2633 * 2634 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2635 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2636 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2637 * is due to an incompatibility with the FS DAX check and 2638 * FAULT_FLAG_ALLOW_RETRY 2639 * 2640 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2641 * that region. And so CMA attempts to migrate the page before pinning when 2642 * FOLL_LONGTERM is specified. 2643 */ 2644 2645static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2646{ 2647 if (vm_fault & VM_FAULT_OOM) 2648 return -ENOMEM; 2649 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2650 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2651 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2652 return -EFAULT; 2653 return 0; 2654} 2655 2656typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2657extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2658 unsigned long size, pte_fn_t fn, void *data); 2659 2660 2661#ifdef CONFIG_PAGE_POISONING 2662extern bool page_poisoning_enabled(void); 2663extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2664#else 2665static inline bool page_poisoning_enabled(void) { return false; } 2666static inline void kernel_poison_pages(struct page *page, int numpages, 2667 int enable) { } 2668#endif 2669 2670#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2671DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2672#else 2673DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2674#endif 2675static inline bool want_init_on_alloc(gfp_t flags) 2676{ 2677 if (static_branch_unlikely(&init_on_alloc) && 2678 !page_poisoning_enabled()) 2679 return true; 2680 return flags & __GFP_ZERO; 2681} 2682 2683#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2684DECLARE_STATIC_KEY_TRUE(init_on_free); 2685#else 2686DECLARE_STATIC_KEY_FALSE(init_on_free); 2687#endif 2688static inline bool want_init_on_free(void) 2689{ 2690 return static_branch_unlikely(&init_on_free) && 2691 !page_poisoning_enabled(); 2692} 2693 2694#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 2695DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 2696#else 2697DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2698#endif 2699 2700static inline bool debug_pagealloc_enabled(void) 2701{ 2702 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2703 return false; 2704 2705 return static_branch_unlikely(&_debug_pagealloc_enabled); 2706} 2707 2708#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2709extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2710 2711static inline void 2712kernel_map_pages(struct page *page, int numpages, int enable) 2713{ 2714 __kernel_map_pages(page, numpages, enable); 2715} 2716#ifdef CONFIG_HIBERNATION 2717extern bool kernel_page_present(struct page *page); 2718#endif /* CONFIG_HIBERNATION */ 2719#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2720static inline void 2721kernel_map_pages(struct page *page, int numpages, int enable) {} 2722#ifdef CONFIG_HIBERNATION 2723static inline bool kernel_page_present(struct page *page) { return true; } 2724#endif /* CONFIG_HIBERNATION */ 2725#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2726 2727#ifdef __HAVE_ARCH_GATE_AREA 2728extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2729extern int in_gate_area_no_mm(unsigned long addr); 2730extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2731#else 2732static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2733{ 2734 return NULL; 2735} 2736static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2737static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2738{ 2739 return 0; 2740} 2741#endif /* __HAVE_ARCH_GATE_AREA */ 2742 2743extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2744 2745#ifdef CONFIG_SYSCTL 2746extern int sysctl_drop_caches; 2747int drop_caches_sysctl_handler(struct ctl_table *, int, 2748 void __user *, size_t *, loff_t *); 2749#endif 2750 2751void drop_slab(void); 2752void drop_slab_node(int nid); 2753 2754#ifndef CONFIG_MMU 2755#define randomize_va_space 0 2756#else 2757extern int randomize_va_space; 2758#endif 2759 2760const char * arch_vma_name(struct vm_area_struct *vma); 2761#ifdef CONFIG_MMU 2762void print_vma_addr(char *prefix, unsigned long rip); 2763#else 2764static inline void print_vma_addr(char *prefix, unsigned long rip) 2765{ 2766} 2767#endif 2768 2769void *sparse_buffer_alloc(unsigned long size); 2770struct page * __populate_section_memmap(unsigned long pfn, 2771 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2772pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2773p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2774pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2775pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2776pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2777void *vmemmap_alloc_block(unsigned long size, int node); 2778struct vmem_altmap; 2779void *vmemmap_alloc_block_buf(unsigned long size, int node); 2780void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2781void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2782int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2783 int node); 2784int vmemmap_populate(unsigned long start, unsigned long end, int node, 2785 struct vmem_altmap *altmap); 2786void vmemmap_populate_print_last(void); 2787#ifdef CONFIG_MEMORY_HOTPLUG 2788void vmemmap_free(unsigned long start, unsigned long end, 2789 struct vmem_altmap *altmap); 2790#endif 2791void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2792 unsigned long nr_pages); 2793 2794enum mf_flags { 2795 MF_COUNT_INCREASED = 1 << 0, 2796 MF_ACTION_REQUIRED = 1 << 1, 2797 MF_MUST_KILL = 1 << 2, 2798 MF_SOFT_OFFLINE = 1 << 3, 2799}; 2800extern int memory_failure(unsigned long pfn, int flags); 2801extern void memory_failure_queue(unsigned long pfn, int flags); 2802extern int unpoison_memory(unsigned long pfn); 2803extern int get_hwpoison_page(struct page *page); 2804#define put_hwpoison_page(page) put_page(page) 2805extern int sysctl_memory_failure_early_kill; 2806extern int sysctl_memory_failure_recovery; 2807extern void shake_page(struct page *p, int access); 2808extern atomic_long_t num_poisoned_pages __read_mostly; 2809extern int soft_offline_page(struct page *page, int flags); 2810 2811 2812/* 2813 * Error handlers for various types of pages. 2814 */ 2815enum mf_result { 2816 MF_IGNORED, /* Error: cannot be handled */ 2817 MF_FAILED, /* Error: handling failed */ 2818 MF_DELAYED, /* Will be handled later */ 2819 MF_RECOVERED, /* Successfully recovered */ 2820}; 2821 2822enum mf_action_page_type { 2823 MF_MSG_KERNEL, 2824 MF_MSG_KERNEL_HIGH_ORDER, 2825 MF_MSG_SLAB, 2826 MF_MSG_DIFFERENT_COMPOUND, 2827 MF_MSG_POISONED_HUGE, 2828 MF_MSG_HUGE, 2829 MF_MSG_FREE_HUGE, 2830 MF_MSG_NON_PMD_HUGE, 2831 MF_MSG_UNMAP_FAILED, 2832 MF_MSG_DIRTY_SWAPCACHE, 2833 MF_MSG_CLEAN_SWAPCACHE, 2834 MF_MSG_DIRTY_MLOCKED_LRU, 2835 MF_MSG_CLEAN_MLOCKED_LRU, 2836 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2837 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2838 MF_MSG_DIRTY_LRU, 2839 MF_MSG_CLEAN_LRU, 2840 MF_MSG_TRUNCATED_LRU, 2841 MF_MSG_BUDDY, 2842 MF_MSG_BUDDY_2ND, 2843 MF_MSG_DAX, 2844 MF_MSG_UNKNOWN, 2845}; 2846 2847#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2848extern void clear_huge_page(struct page *page, 2849 unsigned long addr_hint, 2850 unsigned int pages_per_huge_page); 2851extern void copy_user_huge_page(struct page *dst, struct page *src, 2852 unsigned long addr_hint, 2853 struct vm_area_struct *vma, 2854 unsigned int pages_per_huge_page); 2855extern long copy_huge_page_from_user(struct page *dst_page, 2856 const void __user *usr_src, 2857 unsigned int pages_per_huge_page, 2858 bool allow_pagefault); 2859#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2860 2861#ifdef CONFIG_DEBUG_PAGEALLOC 2862extern unsigned int _debug_guardpage_minorder; 2863DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2864 2865static inline unsigned int debug_guardpage_minorder(void) 2866{ 2867 return _debug_guardpage_minorder; 2868} 2869 2870static inline bool debug_guardpage_enabled(void) 2871{ 2872 return static_branch_unlikely(&_debug_guardpage_enabled); 2873} 2874 2875static inline bool page_is_guard(struct page *page) 2876{ 2877 if (!debug_guardpage_enabled()) 2878 return false; 2879 2880 return PageGuard(page); 2881} 2882#else 2883static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2884static inline bool debug_guardpage_enabled(void) { return false; } 2885static inline bool page_is_guard(struct page *page) { return false; } 2886#endif /* CONFIG_DEBUG_PAGEALLOC */ 2887 2888#if MAX_NUMNODES > 1 2889void __init setup_nr_node_ids(void); 2890#else 2891static inline void setup_nr_node_ids(void) {} 2892#endif 2893 2894#endif /* __KERNEL__ */ 2895#endif /* _LINUX_MM_H */