Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct page;
27struct mm_struct;
28struct kmem_cache;
29
30/* Cgroup-specific page state, on top of universal node page state */
31enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40};
41
42enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51};
52
53enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57};
58
59struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 int priority;
62 unsigned int generation;
63};
64
65#ifdef CONFIG_MEMCG
66
67#define MEM_CGROUP_ID_SHIFT 16
68#define MEM_CGROUP_ID_MAX USHRT_MAX
69
70struct mem_cgroup_id {
71 int id;
72 refcount_t ref;
73};
74
75/*
76 * Per memcg event counter is incremented at every pagein/pageout. With THP,
77 * it will be incremated by the number of pages. This counter is used for
78 * for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 */
81enum mem_cgroup_events_target {
82 MEM_CGROUP_TARGET_THRESH,
83 MEM_CGROUP_TARGET_SOFTLIMIT,
84 MEM_CGROUP_TARGET_NUMAINFO,
85 MEM_CGROUP_NTARGETS,
86};
87
88struct memcg_vmstats_percpu {
89 long stat[MEMCG_NR_STAT];
90 unsigned long events[NR_VM_EVENT_ITEMS];
91 unsigned long nr_page_events;
92 unsigned long targets[MEM_CGROUP_NTARGETS];
93};
94
95struct mem_cgroup_reclaim_iter {
96 struct mem_cgroup *position;
97 /* scan generation, increased every round-trip */
98 unsigned int generation;
99};
100
101struct lruvec_stat {
102 long count[NR_VM_NODE_STAT_ITEMS];
103};
104
105/*
106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
107 * which have elements charged to this memcg.
108 */
109struct memcg_shrinker_map {
110 struct rcu_head rcu;
111 unsigned long map[0];
112};
113
114/*
115 * per-zone information in memory controller.
116 */
117struct mem_cgroup_per_node {
118 struct lruvec lruvec;
119
120 /* Legacy local VM stats */
121 struct lruvec_stat __percpu *lruvec_stat_local;
122
123 /* Subtree VM stats (batched updates) */
124 struct lruvec_stat __percpu *lruvec_stat_cpu;
125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
130
131#ifdef CONFIG_MEMCG_KMEM
132 struct memcg_shrinker_map __rcu *shrinker_map;
133#endif
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 bool congested; /* memcg has many dirty pages */
139 /* backed by a congested BDI */
140
141 struct mem_cgroup *memcg; /* Back pointer, we cannot */
142 /* use container_of */
143};
144
145struct mem_cgroup_threshold {
146 struct eventfd_ctx *eventfd;
147 unsigned long threshold;
148};
149
150/* For threshold */
151struct mem_cgroup_threshold_ary {
152 /* An array index points to threshold just below or equal to usage. */
153 int current_threshold;
154 /* Size of entries[] */
155 unsigned int size;
156 /* Array of thresholds */
157 struct mem_cgroup_threshold entries[0];
158};
159
160struct mem_cgroup_thresholds {
161 /* Primary thresholds array */
162 struct mem_cgroup_threshold_ary *primary;
163 /*
164 * Spare threshold array.
165 * This is needed to make mem_cgroup_unregister_event() "never fail".
166 * It must be able to store at least primary->size - 1 entries.
167 */
168 struct mem_cgroup_threshold_ary *spare;
169};
170
171enum memcg_kmem_state {
172 KMEM_NONE,
173 KMEM_ALLOCATED,
174 KMEM_ONLINE,
175};
176
177#if defined(CONFIG_SMP)
178struct memcg_padding {
179 char x[0];
180} ____cacheline_internodealigned_in_smp;
181#define MEMCG_PADDING(name) struct memcg_padding name;
182#else
183#define MEMCG_PADDING(name)
184#endif
185
186/*
187 * The memory controller data structure. The memory controller controls both
188 * page cache and RSS per cgroup. We would eventually like to provide
189 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
190 * to help the administrator determine what knobs to tune.
191 */
192struct mem_cgroup {
193 struct cgroup_subsys_state css;
194
195 /* Private memcg ID. Used to ID objects that outlive the cgroup */
196 struct mem_cgroup_id id;
197
198 /* Accounted resources */
199 struct page_counter memory;
200 struct page_counter swap;
201
202 /* Legacy consumer-oriented counters */
203 struct page_counter memsw;
204 struct page_counter kmem;
205 struct page_counter tcpmem;
206
207 /* Upper bound of normal memory consumption range */
208 unsigned long high;
209
210 /* Range enforcement for interrupt charges */
211 struct work_struct high_work;
212
213 unsigned long soft_limit;
214
215 /* vmpressure notifications */
216 struct vmpressure vmpressure;
217
218 /*
219 * Should the accounting and control be hierarchical, per subtree?
220 */
221 bool use_hierarchy;
222
223 /*
224 * Should the OOM killer kill all belonging tasks, had it kill one?
225 */
226 bool oom_group;
227
228 /* protected by memcg_oom_lock */
229 bool oom_lock;
230 int under_oom;
231
232 int swappiness;
233 /* OOM-Killer disable */
234 int oom_kill_disable;
235
236 /* memory.events and memory.events.local */
237 struct cgroup_file events_file;
238 struct cgroup_file events_local_file;
239
240 /* handle for "memory.swap.events" */
241 struct cgroup_file swap_events_file;
242
243 /* protect arrays of thresholds */
244 struct mutex thresholds_lock;
245
246 /* thresholds for memory usage. RCU-protected */
247 struct mem_cgroup_thresholds thresholds;
248
249 /* thresholds for mem+swap usage. RCU-protected */
250 struct mem_cgroup_thresholds memsw_thresholds;
251
252 /* For oom notifier event fd */
253 struct list_head oom_notify;
254
255 /*
256 * Should we move charges of a task when a task is moved into this
257 * mem_cgroup ? And what type of charges should we move ?
258 */
259 unsigned long move_charge_at_immigrate;
260 /* taken only while moving_account > 0 */
261 spinlock_t move_lock;
262 unsigned long move_lock_flags;
263
264 MEMCG_PADDING(_pad1_);
265
266 /*
267 * set > 0 if pages under this cgroup are moving to other cgroup.
268 */
269 atomic_t moving_account;
270 struct task_struct *move_lock_task;
271
272 /* Legacy local VM stats and events */
273 struct memcg_vmstats_percpu __percpu *vmstats_local;
274
275 /* Subtree VM stats and events (batched updates) */
276 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
277
278 MEMCG_PADDING(_pad2_);
279
280 atomic_long_t vmstats[MEMCG_NR_STAT];
281 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
282
283 /* memory.events */
284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286
287 unsigned long socket_pressure;
288
289 /* Legacy tcp memory accounting */
290 bool tcpmem_active;
291 int tcpmem_pressure;
292
293#ifdef CONFIG_MEMCG_KMEM
294 /* Index in the kmem_cache->memcg_params.memcg_caches array */
295 int kmemcg_id;
296 enum memcg_kmem_state kmem_state;
297 struct list_head kmem_caches;
298#endif
299
300 int last_scanned_node;
301#if MAX_NUMNODES > 1
302 nodemask_t scan_nodes;
303 atomic_t numainfo_events;
304 atomic_t numainfo_updating;
305#endif
306
307#ifdef CONFIG_CGROUP_WRITEBACK
308 struct list_head cgwb_list;
309 struct wb_domain cgwb_domain;
310#endif
311
312 /* List of events which userspace want to receive */
313 struct list_head event_list;
314 spinlock_t event_list_lock;
315
316 struct mem_cgroup_per_node *nodeinfo[0];
317 /* WARNING: nodeinfo must be the last member here */
318};
319
320/*
321 * size of first charge trial. "32" comes from vmscan.c's magic value.
322 * TODO: maybe necessary to use big numbers in big irons.
323 */
324#define MEMCG_CHARGE_BATCH 32U
325
326extern struct mem_cgroup *root_mem_cgroup;
327
328static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
329{
330 return (memcg == root_mem_cgroup);
331}
332
333static inline bool mem_cgroup_disabled(void)
334{
335 return !cgroup_subsys_enabled(memory_cgrp_subsys);
336}
337
338enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
339 struct mem_cgroup *memcg);
340
341int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
342 gfp_t gfp_mask, struct mem_cgroup **memcgp,
343 bool compound);
344int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
345 gfp_t gfp_mask, struct mem_cgroup **memcgp,
346 bool compound);
347void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
348 bool lrucare, bool compound);
349void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
350 bool compound);
351void mem_cgroup_uncharge(struct page *page);
352void mem_cgroup_uncharge_list(struct list_head *page_list);
353
354void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
355
356static struct mem_cgroup_per_node *
357mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
358{
359 return memcg->nodeinfo[nid];
360}
361
362/**
363 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
364 * @node: node of the wanted lruvec
365 * @memcg: memcg of the wanted lruvec
366 *
367 * Returns the lru list vector holding pages for a given @node or a given
368 * @memcg and @zone. This can be the node lruvec, if the memory controller
369 * is disabled.
370 */
371static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
372 struct mem_cgroup *memcg)
373{
374 struct mem_cgroup_per_node *mz;
375 struct lruvec *lruvec;
376
377 if (mem_cgroup_disabled()) {
378 lruvec = node_lruvec(pgdat);
379 goto out;
380 }
381
382 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
383 lruvec = &mz->lruvec;
384out:
385 /*
386 * Since a node can be onlined after the mem_cgroup was created,
387 * we have to be prepared to initialize lruvec->pgdat here;
388 * and if offlined then reonlined, we need to reinitialize it.
389 */
390 if (unlikely(lruvec->pgdat != pgdat))
391 lruvec->pgdat = pgdat;
392 return lruvec;
393}
394
395struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
396
397struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
398
399struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
400
401struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
402
403static inline
404struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
405 return css ? container_of(css, struct mem_cgroup, css) : NULL;
406}
407
408static inline void mem_cgroup_put(struct mem_cgroup *memcg)
409{
410 if (memcg)
411 css_put(&memcg->css);
412}
413
414#define mem_cgroup_from_counter(counter, member) \
415 container_of(counter, struct mem_cgroup, member)
416
417struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
418 struct mem_cgroup *,
419 struct mem_cgroup_reclaim_cookie *);
420void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
421int mem_cgroup_scan_tasks(struct mem_cgroup *,
422 int (*)(struct task_struct *, void *), void *);
423
424static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
425{
426 if (mem_cgroup_disabled())
427 return 0;
428
429 return memcg->id.id;
430}
431struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
432
433static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
434{
435 return mem_cgroup_from_css(seq_css(m));
436}
437
438static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
439{
440 struct mem_cgroup_per_node *mz;
441
442 if (mem_cgroup_disabled())
443 return NULL;
444
445 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
446 return mz->memcg;
447}
448
449/**
450 * parent_mem_cgroup - find the accounting parent of a memcg
451 * @memcg: memcg whose parent to find
452 *
453 * Returns the parent memcg, or NULL if this is the root or the memory
454 * controller is in legacy no-hierarchy mode.
455 */
456static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
457{
458 if (!memcg->memory.parent)
459 return NULL;
460 return mem_cgroup_from_counter(memcg->memory.parent, memory);
461}
462
463static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
464 struct mem_cgroup *root)
465{
466 if (root == memcg)
467 return true;
468 if (!root->use_hierarchy)
469 return false;
470 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
471}
472
473static inline bool mm_match_cgroup(struct mm_struct *mm,
474 struct mem_cgroup *memcg)
475{
476 struct mem_cgroup *task_memcg;
477 bool match = false;
478
479 rcu_read_lock();
480 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
481 if (task_memcg)
482 match = mem_cgroup_is_descendant(task_memcg, memcg);
483 rcu_read_unlock();
484 return match;
485}
486
487struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
488ino_t page_cgroup_ino(struct page *page);
489
490static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
491{
492 if (mem_cgroup_disabled())
493 return true;
494 return !!(memcg->css.flags & CSS_ONLINE);
495}
496
497/*
498 * For memory reclaim.
499 */
500int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
501
502void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
503 int zid, int nr_pages);
504
505static inline
506unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
507 enum lru_list lru, int zone_idx)
508{
509 struct mem_cgroup_per_node *mz;
510
511 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
512 return mz->lru_zone_size[zone_idx][lru];
513}
514
515void mem_cgroup_handle_over_high(void);
516
517unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
518
519void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
520 struct task_struct *p);
521
522void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
523
524static inline void mem_cgroup_enter_user_fault(void)
525{
526 WARN_ON(current->in_user_fault);
527 current->in_user_fault = 1;
528}
529
530static inline void mem_cgroup_exit_user_fault(void)
531{
532 WARN_ON(!current->in_user_fault);
533 current->in_user_fault = 0;
534}
535
536static inline bool task_in_memcg_oom(struct task_struct *p)
537{
538 return p->memcg_in_oom;
539}
540
541bool mem_cgroup_oom_synchronize(bool wait);
542struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
543 struct mem_cgroup *oom_domain);
544void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
545
546#ifdef CONFIG_MEMCG_SWAP
547extern int do_swap_account;
548#endif
549
550struct mem_cgroup *lock_page_memcg(struct page *page);
551void __unlock_page_memcg(struct mem_cgroup *memcg);
552void unlock_page_memcg(struct page *page);
553
554/*
555 * idx can be of type enum memcg_stat_item or node_stat_item.
556 * Keep in sync with memcg_exact_page_state().
557 */
558static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
559{
560 long x = atomic_long_read(&memcg->vmstats[idx]);
561#ifdef CONFIG_SMP
562 if (x < 0)
563 x = 0;
564#endif
565 return x;
566}
567
568/*
569 * idx can be of type enum memcg_stat_item or node_stat_item.
570 * Keep in sync with memcg_exact_page_state().
571 */
572static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
573 int idx)
574{
575 long x = 0;
576 int cpu;
577
578 for_each_possible_cpu(cpu)
579 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
580#ifdef CONFIG_SMP
581 if (x < 0)
582 x = 0;
583#endif
584 return x;
585}
586
587void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
588
589/* idx can be of type enum memcg_stat_item or node_stat_item */
590static inline void mod_memcg_state(struct mem_cgroup *memcg,
591 int idx, int val)
592{
593 unsigned long flags;
594
595 local_irq_save(flags);
596 __mod_memcg_state(memcg, idx, val);
597 local_irq_restore(flags);
598}
599
600/**
601 * mod_memcg_page_state - update page state statistics
602 * @page: the page
603 * @idx: page state item to account
604 * @val: number of pages (positive or negative)
605 *
606 * The @page must be locked or the caller must use lock_page_memcg()
607 * to prevent double accounting when the page is concurrently being
608 * moved to another memcg:
609 *
610 * lock_page(page) or lock_page_memcg(page)
611 * if (TestClearPageState(page))
612 * mod_memcg_page_state(page, state, -1);
613 * unlock_page(page) or unlock_page_memcg(page)
614 *
615 * Kernel pages are an exception to this, since they'll never move.
616 */
617static inline void __mod_memcg_page_state(struct page *page,
618 int idx, int val)
619{
620 if (page->mem_cgroup)
621 __mod_memcg_state(page->mem_cgroup, idx, val);
622}
623
624static inline void mod_memcg_page_state(struct page *page,
625 int idx, int val)
626{
627 if (page->mem_cgroup)
628 mod_memcg_state(page->mem_cgroup, idx, val);
629}
630
631static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
632 enum node_stat_item idx)
633{
634 struct mem_cgroup_per_node *pn;
635 long x;
636
637 if (mem_cgroup_disabled())
638 return node_page_state(lruvec_pgdat(lruvec), idx);
639
640 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
641 x = atomic_long_read(&pn->lruvec_stat[idx]);
642#ifdef CONFIG_SMP
643 if (x < 0)
644 x = 0;
645#endif
646 return x;
647}
648
649static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
650 enum node_stat_item idx)
651{
652 struct mem_cgroup_per_node *pn;
653 long x = 0;
654 int cpu;
655
656 if (mem_cgroup_disabled())
657 return node_page_state(lruvec_pgdat(lruvec), idx);
658
659 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
660 for_each_possible_cpu(cpu)
661 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
662#ifdef CONFIG_SMP
663 if (x < 0)
664 x = 0;
665#endif
666 return x;
667}
668
669void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
670 int val);
671void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
672
673static inline void mod_lruvec_state(struct lruvec *lruvec,
674 enum node_stat_item idx, int val)
675{
676 unsigned long flags;
677
678 local_irq_save(flags);
679 __mod_lruvec_state(lruvec, idx, val);
680 local_irq_restore(flags);
681}
682
683static inline void __mod_lruvec_page_state(struct page *page,
684 enum node_stat_item idx, int val)
685{
686 pg_data_t *pgdat = page_pgdat(page);
687 struct lruvec *lruvec;
688
689 /* Untracked pages have no memcg, no lruvec. Update only the node */
690 if (!page->mem_cgroup) {
691 __mod_node_page_state(pgdat, idx, val);
692 return;
693 }
694
695 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
696 __mod_lruvec_state(lruvec, idx, val);
697}
698
699static inline void mod_lruvec_page_state(struct page *page,
700 enum node_stat_item idx, int val)
701{
702 unsigned long flags;
703
704 local_irq_save(flags);
705 __mod_lruvec_page_state(page, idx, val);
706 local_irq_restore(flags);
707}
708
709unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
710 gfp_t gfp_mask,
711 unsigned long *total_scanned);
712
713void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
714 unsigned long count);
715
716static inline void count_memcg_events(struct mem_cgroup *memcg,
717 enum vm_event_item idx,
718 unsigned long count)
719{
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __count_memcg_events(memcg, idx, count);
724 local_irq_restore(flags);
725}
726
727static inline void count_memcg_page_event(struct page *page,
728 enum vm_event_item idx)
729{
730 if (page->mem_cgroup)
731 count_memcg_events(page->mem_cgroup, idx, 1);
732}
733
734static inline void count_memcg_event_mm(struct mm_struct *mm,
735 enum vm_event_item idx)
736{
737 struct mem_cgroup *memcg;
738
739 if (mem_cgroup_disabled())
740 return;
741
742 rcu_read_lock();
743 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
744 if (likely(memcg))
745 count_memcg_events(memcg, idx, 1);
746 rcu_read_unlock();
747}
748
749static inline void memcg_memory_event(struct mem_cgroup *memcg,
750 enum memcg_memory_event event)
751{
752 atomic_long_inc(&memcg->memory_events_local[event]);
753 cgroup_file_notify(&memcg->events_local_file);
754
755 do {
756 atomic_long_inc(&memcg->memory_events[event]);
757 cgroup_file_notify(&memcg->events_file);
758
759 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
760 break;
761 } while ((memcg = parent_mem_cgroup(memcg)) &&
762 !mem_cgroup_is_root(memcg));
763}
764
765static inline void memcg_memory_event_mm(struct mm_struct *mm,
766 enum memcg_memory_event event)
767{
768 struct mem_cgroup *memcg;
769
770 if (mem_cgroup_disabled())
771 return;
772
773 rcu_read_lock();
774 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
775 if (likely(memcg))
776 memcg_memory_event(memcg, event);
777 rcu_read_unlock();
778}
779
780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
781void mem_cgroup_split_huge_fixup(struct page *head);
782#endif
783
784#else /* CONFIG_MEMCG */
785
786#define MEM_CGROUP_ID_SHIFT 0
787#define MEM_CGROUP_ID_MAX 0
788
789struct mem_cgroup;
790
791static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
792{
793 return true;
794}
795
796static inline bool mem_cgroup_disabled(void)
797{
798 return true;
799}
800
801static inline void memcg_memory_event(struct mem_cgroup *memcg,
802 enum memcg_memory_event event)
803{
804}
805
806static inline void memcg_memory_event_mm(struct mm_struct *mm,
807 enum memcg_memory_event event)
808{
809}
810
811static inline enum mem_cgroup_protection mem_cgroup_protected(
812 struct mem_cgroup *root, struct mem_cgroup *memcg)
813{
814 return MEMCG_PROT_NONE;
815}
816
817static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
818 gfp_t gfp_mask,
819 struct mem_cgroup **memcgp,
820 bool compound)
821{
822 *memcgp = NULL;
823 return 0;
824}
825
826static inline int mem_cgroup_try_charge_delay(struct page *page,
827 struct mm_struct *mm,
828 gfp_t gfp_mask,
829 struct mem_cgroup **memcgp,
830 bool compound)
831{
832 *memcgp = NULL;
833 return 0;
834}
835
836static inline void mem_cgroup_commit_charge(struct page *page,
837 struct mem_cgroup *memcg,
838 bool lrucare, bool compound)
839{
840}
841
842static inline void mem_cgroup_cancel_charge(struct page *page,
843 struct mem_cgroup *memcg,
844 bool compound)
845{
846}
847
848static inline void mem_cgroup_uncharge(struct page *page)
849{
850}
851
852static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
853{
854}
855
856static inline void mem_cgroup_migrate(struct page *old, struct page *new)
857{
858}
859
860static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
861 struct mem_cgroup *memcg)
862{
863 return node_lruvec(pgdat);
864}
865
866static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
867 struct pglist_data *pgdat)
868{
869 return &pgdat->lruvec;
870}
871
872static inline bool mm_match_cgroup(struct mm_struct *mm,
873 struct mem_cgroup *memcg)
874{
875 return true;
876}
877
878static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
879{
880 return NULL;
881}
882
883static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
884{
885 return NULL;
886}
887
888static inline void mem_cgroup_put(struct mem_cgroup *memcg)
889{
890}
891
892static inline struct mem_cgroup *
893mem_cgroup_iter(struct mem_cgroup *root,
894 struct mem_cgroup *prev,
895 struct mem_cgroup_reclaim_cookie *reclaim)
896{
897 return NULL;
898}
899
900static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902{
903}
904
905static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
906 int (*fn)(struct task_struct *, void *), void *arg)
907{
908 return 0;
909}
910
911static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
912{
913 return 0;
914}
915
916static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
917{
918 WARN_ON_ONCE(id);
919 /* XXX: This should always return root_mem_cgroup */
920 return NULL;
921}
922
923static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
924{
925 return NULL;
926}
927
928static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
929{
930 return NULL;
931}
932
933static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
934{
935 return true;
936}
937
938static inline
939unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
940 enum lru_list lru, int zone_idx)
941{
942 return 0;
943}
944
945static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
946{
947 return 0;
948}
949
950static inline void
951mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
952{
953}
954
955static inline void
956mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
957{
958}
959
960static inline struct mem_cgroup *lock_page_memcg(struct page *page)
961{
962 return NULL;
963}
964
965static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
966{
967}
968
969static inline void unlock_page_memcg(struct page *page)
970{
971}
972
973static inline void mem_cgroup_handle_over_high(void)
974{
975}
976
977static inline void mem_cgroup_enter_user_fault(void)
978{
979}
980
981static inline void mem_cgroup_exit_user_fault(void)
982{
983}
984
985static inline bool task_in_memcg_oom(struct task_struct *p)
986{
987 return false;
988}
989
990static inline bool mem_cgroup_oom_synchronize(bool wait)
991{
992 return false;
993}
994
995static inline struct mem_cgroup *mem_cgroup_get_oom_group(
996 struct task_struct *victim, struct mem_cgroup *oom_domain)
997{
998 return NULL;
999}
1000
1001static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1002{
1003}
1004
1005static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1006{
1007 return 0;
1008}
1009
1010static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1011 int idx)
1012{
1013 return 0;
1014}
1015
1016static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1017 int idx,
1018 int nr)
1019{
1020}
1021
1022static inline void mod_memcg_state(struct mem_cgroup *memcg,
1023 int idx,
1024 int nr)
1025{
1026}
1027
1028static inline void __mod_memcg_page_state(struct page *page,
1029 int idx,
1030 int nr)
1031{
1032}
1033
1034static inline void mod_memcg_page_state(struct page *page,
1035 int idx,
1036 int nr)
1037{
1038}
1039
1040static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1041 enum node_stat_item idx)
1042{
1043 return node_page_state(lruvec_pgdat(lruvec), idx);
1044}
1045
1046static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1047 enum node_stat_item idx)
1048{
1049 return node_page_state(lruvec_pgdat(lruvec), idx);
1050}
1051
1052static inline void __mod_lruvec_state(struct lruvec *lruvec,
1053 enum node_stat_item idx, int val)
1054{
1055 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1056}
1057
1058static inline void mod_lruvec_state(struct lruvec *lruvec,
1059 enum node_stat_item idx, int val)
1060{
1061 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1062}
1063
1064static inline void __mod_lruvec_page_state(struct page *page,
1065 enum node_stat_item idx, int val)
1066{
1067 __mod_node_page_state(page_pgdat(page), idx, val);
1068}
1069
1070static inline void mod_lruvec_page_state(struct page *page,
1071 enum node_stat_item idx, int val)
1072{
1073 mod_node_page_state(page_pgdat(page), idx, val);
1074}
1075
1076static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1077 int val)
1078{
1079 struct page *page = virt_to_head_page(p);
1080
1081 __mod_node_page_state(page_pgdat(page), idx, val);
1082}
1083
1084static inline
1085unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1086 gfp_t gfp_mask,
1087 unsigned long *total_scanned)
1088{
1089 return 0;
1090}
1091
1092static inline void mem_cgroup_split_huge_fixup(struct page *head)
1093{
1094}
1095
1096static inline void count_memcg_events(struct mem_cgroup *memcg,
1097 enum vm_event_item idx,
1098 unsigned long count)
1099{
1100}
1101
1102static inline void __count_memcg_events(struct mem_cgroup *memcg,
1103 enum vm_event_item idx,
1104 unsigned long count)
1105{
1106}
1107
1108static inline void count_memcg_page_event(struct page *page,
1109 int idx)
1110{
1111}
1112
1113static inline
1114void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1115{
1116}
1117#endif /* CONFIG_MEMCG */
1118
1119/* idx can be of type enum memcg_stat_item or node_stat_item */
1120static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1121 int idx)
1122{
1123 __mod_memcg_state(memcg, idx, 1);
1124}
1125
1126/* idx can be of type enum memcg_stat_item or node_stat_item */
1127static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1128 int idx)
1129{
1130 __mod_memcg_state(memcg, idx, -1);
1131}
1132
1133/* idx can be of type enum memcg_stat_item or node_stat_item */
1134static inline void __inc_memcg_page_state(struct page *page,
1135 int idx)
1136{
1137 __mod_memcg_page_state(page, idx, 1);
1138}
1139
1140/* idx can be of type enum memcg_stat_item or node_stat_item */
1141static inline void __dec_memcg_page_state(struct page *page,
1142 int idx)
1143{
1144 __mod_memcg_page_state(page, idx, -1);
1145}
1146
1147static inline void __inc_lruvec_state(struct lruvec *lruvec,
1148 enum node_stat_item idx)
1149{
1150 __mod_lruvec_state(lruvec, idx, 1);
1151}
1152
1153static inline void __dec_lruvec_state(struct lruvec *lruvec,
1154 enum node_stat_item idx)
1155{
1156 __mod_lruvec_state(lruvec, idx, -1);
1157}
1158
1159static inline void __inc_lruvec_page_state(struct page *page,
1160 enum node_stat_item idx)
1161{
1162 __mod_lruvec_page_state(page, idx, 1);
1163}
1164
1165static inline void __dec_lruvec_page_state(struct page *page,
1166 enum node_stat_item idx)
1167{
1168 __mod_lruvec_page_state(page, idx, -1);
1169}
1170
1171static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1172{
1173 __mod_lruvec_slab_state(p, idx, 1);
1174}
1175
1176static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1177{
1178 __mod_lruvec_slab_state(p, idx, -1);
1179}
1180
1181/* idx can be of type enum memcg_stat_item or node_stat_item */
1182static inline void inc_memcg_state(struct mem_cgroup *memcg,
1183 int idx)
1184{
1185 mod_memcg_state(memcg, idx, 1);
1186}
1187
1188/* idx can be of type enum memcg_stat_item or node_stat_item */
1189static inline void dec_memcg_state(struct mem_cgroup *memcg,
1190 int idx)
1191{
1192 mod_memcg_state(memcg, idx, -1);
1193}
1194
1195/* idx can be of type enum memcg_stat_item or node_stat_item */
1196static inline void inc_memcg_page_state(struct page *page,
1197 int idx)
1198{
1199 mod_memcg_page_state(page, idx, 1);
1200}
1201
1202/* idx can be of type enum memcg_stat_item or node_stat_item */
1203static inline void dec_memcg_page_state(struct page *page,
1204 int idx)
1205{
1206 mod_memcg_page_state(page, idx, -1);
1207}
1208
1209static inline void inc_lruvec_state(struct lruvec *lruvec,
1210 enum node_stat_item idx)
1211{
1212 mod_lruvec_state(lruvec, idx, 1);
1213}
1214
1215static inline void dec_lruvec_state(struct lruvec *lruvec,
1216 enum node_stat_item idx)
1217{
1218 mod_lruvec_state(lruvec, idx, -1);
1219}
1220
1221static inline void inc_lruvec_page_state(struct page *page,
1222 enum node_stat_item idx)
1223{
1224 mod_lruvec_page_state(page, idx, 1);
1225}
1226
1227static inline void dec_lruvec_page_state(struct page *page,
1228 enum node_stat_item idx)
1229{
1230 mod_lruvec_page_state(page, idx, -1);
1231}
1232
1233#ifdef CONFIG_CGROUP_WRITEBACK
1234
1235struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1236void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1237 unsigned long *pheadroom, unsigned long *pdirty,
1238 unsigned long *pwriteback);
1239
1240#else /* CONFIG_CGROUP_WRITEBACK */
1241
1242static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1243{
1244 return NULL;
1245}
1246
1247static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1248 unsigned long *pfilepages,
1249 unsigned long *pheadroom,
1250 unsigned long *pdirty,
1251 unsigned long *pwriteback)
1252{
1253}
1254
1255#endif /* CONFIG_CGROUP_WRITEBACK */
1256
1257struct sock;
1258bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1259void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1260#ifdef CONFIG_MEMCG
1261extern struct static_key_false memcg_sockets_enabled_key;
1262#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1263void mem_cgroup_sk_alloc(struct sock *sk);
1264void mem_cgroup_sk_free(struct sock *sk);
1265static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1266{
1267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1268 return true;
1269 do {
1270 if (time_before(jiffies, memcg->socket_pressure))
1271 return true;
1272 } while ((memcg = parent_mem_cgroup(memcg)));
1273 return false;
1274}
1275#else
1276#define mem_cgroup_sockets_enabled 0
1277static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1278static inline void mem_cgroup_sk_free(struct sock *sk) { };
1279static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1280{
1281 return false;
1282}
1283#endif
1284
1285struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1286void memcg_kmem_put_cache(struct kmem_cache *cachep);
1287
1288#ifdef CONFIG_MEMCG_KMEM
1289int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1290void __memcg_kmem_uncharge(struct page *page, int order);
1291int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1292 struct mem_cgroup *memcg);
1293void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
1294 unsigned int nr_pages);
1295
1296extern struct static_key_false memcg_kmem_enabled_key;
1297extern struct workqueue_struct *memcg_kmem_cache_wq;
1298
1299extern int memcg_nr_cache_ids;
1300void memcg_get_cache_ids(void);
1301void memcg_put_cache_ids(void);
1302
1303/*
1304 * Helper macro to loop through all memcg-specific caches. Callers must still
1305 * check if the cache is valid (it is either valid or NULL).
1306 * the slab_mutex must be held when looping through those caches
1307 */
1308#define for_each_memcg_cache_index(_idx) \
1309 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1310
1311static inline bool memcg_kmem_enabled(void)
1312{
1313 return static_branch_unlikely(&memcg_kmem_enabled_key);
1314}
1315
1316static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1317{
1318 if (memcg_kmem_enabled())
1319 return __memcg_kmem_charge(page, gfp, order);
1320 return 0;
1321}
1322
1323static inline void memcg_kmem_uncharge(struct page *page, int order)
1324{
1325 if (memcg_kmem_enabled())
1326 __memcg_kmem_uncharge(page, order);
1327}
1328
1329static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1330 int order, struct mem_cgroup *memcg)
1331{
1332 if (memcg_kmem_enabled())
1333 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1334 return 0;
1335}
1336
1337static inline void memcg_kmem_uncharge_memcg(struct page *page, int order,
1338 struct mem_cgroup *memcg)
1339{
1340 if (memcg_kmem_enabled())
1341 __memcg_kmem_uncharge_memcg(memcg, 1 << order);
1342}
1343
1344/*
1345 * helper for accessing a memcg's index. It will be used as an index in the
1346 * child cache array in kmem_cache, and also to derive its name. This function
1347 * will return -1 when this is not a kmem-limited memcg.
1348 */
1349static inline int memcg_cache_id(struct mem_cgroup *memcg)
1350{
1351 return memcg ? memcg->kmemcg_id : -1;
1352}
1353
1354extern int memcg_expand_shrinker_maps(int new_id);
1355
1356extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1357 int nid, int shrinker_id);
1358#else
1359
1360static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1361{
1362 return 0;
1363}
1364
1365static inline void memcg_kmem_uncharge(struct page *page, int order)
1366{
1367}
1368
1369static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1370{
1371 return 0;
1372}
1373
1374static inline void __memcg_kmem_uncharge(struct page *page, int order)
1375{
1376}
1377
1378#define for_each_memcg_cache_index(_idx) \
1379 for (; NULL; )
1380
1381static inline bool memcg_kmem_enabled(void)
1382{
1383 return false;
1384}
1385
1386static inline int memcg_cache_id(struct mem_cgroup *memcg)
1387{
1388 return -1;
1389}
1390
1391static inline void memcg_get_cache_ids(void)
1392{
1393}
1394
1395static inline void memcg_put_cache_ids(void)
1396{
1397}
1398
1399static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1400 int nid, int shrinker_id) { }
1401#endif /* CONFIG_MEMCG_KMEM */
1402
1403#endif /* _LINUX_MEMCONTROL_H */