at v5.3 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct page; 27struct mm_struct; 28struct kmem_cache; 29 30/* Cgroup-specific page state, on top of universal node page state */ 31enum memcg_stat_item { 32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_RSS, 34 MEMCG_RSS_HUGE, 35 MEMCG_SWAP, 36 MEMCG_SOCK, 37 /* XXX: why are these zone and not node counters? */ 38 MEMCG_KERNEL_STACK_KB, 39 MEMCG_NR_STAT, 40}; 41 42enum memcg_memory_event { 43 MEMCG_LOW, 44 MEMCG_HIGH, 45 MEMCG_MAX, 46 MEMCG_OOM, 47 MEMCG_OOM_KILL, 48 MEMCG_SWAP_MAX, 49 MEMCG_SWAP_FAIL, 50 MEMCG_NR_MEMORY_EVENTS, 51}; 52 53enum mem_cgroup_protection { 54 MEMCG_PROT_NONE, 55 MEMCG_PROT_LOW, 56 MEMCG_PROT_MIN, 57}; 58 59struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 int priority; 62 unsigned int generation; 63}; 64 65#ifdef CONFIG_MEMCG 66 67#define MEM_CGROUP_ID_SHIFT 16 68#define MEM_CGROUP_ID_MAX USHRT_MAX 69 70struct mem_cgroup_id { 71 int id; 72 refcount_t ref; 73}; 74 75/* 76 * Per memcg event counter is incremented at every pagein/pageout. With THP, 77 * it will be incremated by the number of pages. This counter is used for 78 * for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 */ 81enum mem_cgroup_events_target { 82 MEM_CGROUP_TARGET_THRESH, 83 MEM_CGROUP_TARGET_SOFTLIMIT, 84 MEM_CGROUP_TARGET_NUMAINFO, 85 MEM_CGROUP_NTARGETS, 86}; 87 88struct memcg_vmstats_percpu { 89 long stat[MEMCG_NR_STAT]; 90 unsigned long events[NR_VM_EVENT_ITEMS]; 91 unsigned long nr_page_events; 92 unsigned long targets[MEM_CGROUP_NTARGETS]; 93}; 94 95struct mem_cgroup_reclaim_iter { 96 struct mem_cgroup *position; 97 /* scan generation, increased every round-trip */ 98 unsigned int generation; 99}; 100 101struct lruvec_stat { 102 long count[NR_VM_NODE_STAT_ITEMS]; 103}; 104 105/* 106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 107 * which have elements charged to this memcg. 108 */ 109struct memcg_shrinker_map { 110 struct rcu_head rcu; 111 unsigned long map[0]; 112}; 113 114/* 115 * per-zone information in memory controller. 116 */ 117struct mem_cgroup_per_node { 118 struct lruvec lruvec; 119 120 /* Legacy local VM stats */ 121 struct lruvec_stat __percpu *lruvec_stat_local; 122 123 /* Subtree VM stats (batched updates) */ 124 struct lruvec_stat __percpu *lruvec_stat_cpu; 125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 130 131#ifdef CONFIG_MEMCG_KMEM 132 struct memcg_shrinker_map __rcu *shrinker_map; 133#endif 134 struct rb_node tree_node; /* RB tree node */ 135 unsigned long usage_in_excess;/* Set to the value by which */ 136 /* the soft limit is exceeded*/ 137 bool on_tree; 138 bool congested; /* memcg has many dirty pages */ 139 /* backed by a congested BDI */ 140 141 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 142 /* use container_of */ 143}; 144 145struct mem_cgroup_threshold { 146 struct eventfd_ctx *eventfd; 147 unsigned long threshold; 148}; 149 150/* For threshold */ 151struct mem_cgroup_threshold_ary { 152 /* An array index points to threshold just below or equal to usage. */ 153 int current_threshold; 154 /* Size of entries[] */ 155 unsigned int size; 156 /* Array of thresholds */ 157 struct mem_cgroup_threshold entries[0]; 158}; 159 160struct mem_cgroup_thresholds { 161 /* Primary thresholds array */ 162 struct mem_cgroup_threshold_ary *primary; 163 /* 164 * Spare threshold array. 165 * This is needed to make mem_cgroup_unregister_event() "never fail". 166 * It must be able to store at least primary->size - 1 entries. 167 */ 168 struct mem_cgroup_threshold_ary *spare; 169}; 170 171enum memcg_kmem_state { 172 KMEM_NONE, 173 KMEM_ALLOCATED, 174 KMEM_ONLINE, 175}; 176 177#if defined(CONFIG_SMP) 178struct memcg_padding { 179 char x[0]; 180} ____cacheline_internodealigned_in_smp; 181#define MEMCG_PADDING(name) struct memcg_padding name; 182#else 183#define MEMCG_PADDING(name) 184#endif 185 186/* 187 * The memory controller data structure. The memory controller controls both 188 * page cache and RSS per cgroup. We would eventually like to provide 189 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 190 * to help the administrator determine what knobs to tune. 191 */ 192struct mem_cgroup { 193 struct cgroup_subsys_state css; 194 195 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 196 struct mem_cgroup_id id; 197 198 /* Accounted resources */ 199 struct page_counter memory; 200 struct page_counter swap; 201 202 /* Legacy consumer-oriented counters */ 203 struct page_counter memsw; 204 struct page_counter kmem; 205 struct page_counter tcpmem; 206 207 /* Upper bound of normal memory consumption range */ 208 unsigned long high; 209 210 /* Range enforcement for interrupt charges */ 211 struct work_struct high_work; 212 213 unsigned long soft_limit; 214 215 /* vmpressure notifications */ 216 struct vmpressure vmpressure; 217 218 /* 219 * Should the accounting and control be hierarchical, per subtree? 220 */ 221 bool use_hierarchy; 222 223 /* 224 * Should the OOM killer kill all belonging tasks, had it kill one? 225 */ 226 bool oom_group; 227 228 /* protected by memcg_oom_lock */ 229 bool oom_lock; 230 int under_oom; 231 232 int swappiness; 233 /* OOM-Killer disable */ 234 int oom_kill_disable; 235 236 /* memory.events and memory.events.local */ 237 struct cgroup_file events_file; 238 struct cgroup_file events_local_file; 239 240 /* handle for "memory.swap.events" */ 241 struct cgroup_file swap_events_file; 242 243 /* protect arrays of thresholds */ 244 struct mutex thresholds_lock; 245 246 /* thresholds for memory usage. RCU-protected */ 247 struct mem_cgroup_thresholds thresholds; 248 249 /* thresholds for mem+swap usage. RCU-protected */ 250 struct mem_cgroup_thresholds memsw_thresholds; 251 252 /* For oom notifier event fd */ 253 struct list_head oom_notify; 254 255 /* 256 * Should we move charges of a task when a task is moved into this 257 * mem_cgroup ? And what type of charges should we move ? 258 */ 259 unsigned long move_charge_at_immigrate; 260 /* taken only while moving_account > 0 */ 261 spinlock_t move_lock; 262 unsigned long move_lock_flags; 263 264 MEMCG_PADDING(_pad1_); 265 266 /* 267 * set > 0 if pages under this cgroup are moving to other cgroup. 268 */ 269 atomic_t moving_account; 270 struct task_struct *move_lock_task; 271 272 /* Legacy local VM stats and events */ 273 struct memcg_vmstats_percpu __percpu *vmstats_local; 274 275 /* Subtree VM stats and events (batched updates) */ 276 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 277 278 MEMCG_PADDING(_pad2_); 279 280 atomic_long_t vmstats[MEMCG_NR_STAT]; 281 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 282 283 /* memory.events */ 284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 286 287 unsigned long socket_pressure; 288 289 /* Legacy tcp memory accounting */ 290 bool tcpmem_active; 291 int tcpmem_pressure; 292 293#ifdef CONFIG_MEMCG_KMEM 294 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 295 int kmemcg_id; 296 enum memcg_kmem_state kmem_state; 297 struct list_head kmem_caches; 298#endif 299 300 int last_scanned_node; 301#if MAX_NUMNODES > 1 302 nodemask_t scan_nodes; 303 atomic_t numainfo_events; 304 atomic_t numainfo_updating; 305#endif 306 307#ifdef CONFIG_CGROUP_WRITEBACK 308 struct list_head cgwb_list; 309 struct wb_domain cgwb_domain; 310#endif 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 316 struct mem_cgroup_per_node *nodeinfo[0]; 317 /* WARNING: nodeinfo must be the last member here */ 318}; 319 320/* 321 * size of first charge trial. "32" comes from vmscan.c's magic value. 322 * TODO: maybe necessary to use big numbers in big irons. 323 */ 324#define MEMCG_CHARGE_BATCH 32U 325 326extern struct mem_cgroup *root_mem_cgroup; 327 328static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 329{ 330 return (memcg == root_mem_cgroup); 331} 332 333static inline bool mem_cgroup_disabled(void) 334{ 335 return !cgroup_subsys_enabled(memory_cgrp_subsys); 336} 337 338enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 339 struct mem_cgroup *memcg); 340 341int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 342 gfp_t gfp_mask, struct mem_cgroup **memcgp, 343 bool compound); 344int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 345 gfp_t gfp_mask, struct mem_cgroup **memcgp, 346 bool compound); 347void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 348 bool lrucare, bool compound); 349void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 350 bool compound); 351void mem_cgroup_uncharge(struct page *page); 352void mem_cgroup_uncharge_list(struct list_head *page_list); 353 354void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 355 356static struct mem_cgroup_per_node * 357mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 358{ 359 return memcg->nodeinfo[nid]; 360} 361 362/** 363 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 364 * @node: node of the wanted lruvec 365 * @memcg: memcg of the wanted lruvec 366 * 367 * Returns the lru list vector holding pages for a given @node or a given 368 * @memcg and @zone. This can be the node lruvec, if the memory controller 369 * is disabled. 370 */ 371static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 372 struct mem_cgroup *memcg) 373{ 374 struct mem_cgroup_per_node *mz; 375 struct lruvec *lruvec; 376 377 if (mem_cgroup_disabled()) { 378 lruvec = node_lruvec(pgdat); 379 goto out; 380 } 381 382 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 383 lruvec = &mz->lruvec; 384out: 385 /* 386 * Since a node can be onlined after the mem_cgroup was created, 387 * we have to be prepared to initialize lruvec->pgdat here; 388 * and if offlined then reonlined, we need to reinitialize it. 389 */ 390 if (unlikely(lruvec->pgdat != pgdat)) 391 lruvec->pgdat = pgdat; 392 return lruvec; 393} 394 395struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 396 397struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 398 399struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 400 401struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 402 403static inline 404struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 405 return css ? container_of(css, struct mem_cgroup, css) : NULL; 406} 407 408static inline void mem_cgroup_put(struct mem_cgroup *memcg) 409{ 410 if (memcg) 411 css_put(&memcg->css); 412} 413 414#define mem_cgroup_from_counter(counter, member) \ 415 container_of(counter, struct mem_cgroup, member) 416 417struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 418 struct mem_cgroup *, 419 struct mem_cgroup_reclaim_cookie *); 420void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 421int mem_cgroup_scan_tasks(struct mem_cgroup *, 422 int (*)(struct task_struct *, void *), void *); 423 424static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 425{ 426 if (mem_cgroup_disabled()) 427 return 0; 428 429 return memcg->id.id; 430} 431struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 432 433static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 434{ 435 return mem_cgroup_from_css(seq_css(m)); 436} 437 438static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 439{ 440 struct mem_cgroup_per_node *mz; 441 442 if (mem_cgroup_disabled()) 443 return NULL; 444 445 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 446 return mz->memcg; 447} 448 449/** 450 * parent_mem_cgroup - find the accounting parent of a memcg 451 * @memcg: memcg whose parent to find 452 * 453 * Returns the parent memcg, or NULL if this is the root or the memory 454 * controller is in legacy no-hierarchy mode. 455 */ 456static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 457{ 458 if (!memcg->memory.parent) 459 return NULL; 460 return mem_cgroup_from_counter(memcg->memory.parent, memory); 461} 462 463static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 464 struct mem_cgroup *root) 465{ 466 if (root == memcg) 467 return true; 468 if (!root->use_hierarchy) 469 return false; 470 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 471} 472 473static inline bool mm_match_cgroup(struct mm_struct *mm, 474 struct mem_cgroup *memcg) 475{ 476 struct mem_cgroup *task_memcg; 477 bool match = false; 478 479 rcu_read_lock(); 480 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 481 if (task_memcg) 482 match = mem_cgroup_is_descendant(task_memcg, memcg); 483 rcu_read_unlock(); 484 return match; 485} 486 487struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 488ino_t page_cgroup_ino(struct page *page); 489 490static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 491{ 492 if (mem_cgroup_disabled()) 493 return true; 494 return !!(memcg->css.flags & CSS_ONLINE); 495} 496 497/* 498 * For memory reclaim. 499 */ 500int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 501 502void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 503 int zid, int nr_pages); 504 505static inline 506unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 507 enum lru_list lru, int zone_idx) 508{ 509 struct mem_cgroup_per_node *mz; 510 511 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 512 return mz->lru_zone_size[zone_idx][lru]; 513} 514 515void mem_cgroup_handle_over_high(void); 516 517unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 518 519void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 520 struct task_struct *p); 521 522void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 523 524static inline void mem_cgroup_enter_user_fault(void) 525{ 526 WARN_ON(current->in_user_fault); 527 current->in_user_fault = 1; 528} 529 530static inline void mem_cgroup_exit_user_fault(void) 531{ 532 WARN_ON(!current->in_user_fault); 533 current->in_user_fault = 0; 534} 535 536static inline bool task_in_memcg_oom(struct task_struct *p) 537{ 538 return p->memcg_in_oom; 539} 540 541bool mem_cgroup_oom_synchronize(bool wait); 542struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 543 struct mem_cgroup *oom_domain); 544void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 545 546#ifdef CONFIG_MEMCG_SWAP 547extern int do_swap_account; 548#endif 549 550struct mem_cgroup *lock_page_memcg(struct page *page); 551void __unlock_page_memcg(struct mem_cgroup *memcg); 552void unlock_page_memcg(struct page *page); 553 554/* 555 * idx can be of type enum memcg_stat_item or node_stat_item. 556 * Keep in sync with memcg_exact_page_state(). 557 */ 558static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 559{ 560 long x = atomic_long_read(&memcg->vmstats[idx]); 561#ifdef CONFIG_SMP 562 if (x < 0) 563 x = 0; 564#endif 565 return x; 566} 567 568/* 569 * idx can be of type enum memcg_stat_item or node_stat_item. 570 * Keep in sync with memcg_exact_page_state(). 571 */ 572static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 573 int idx) 574{ 575 long x = 0; 576 int cpu; 577 578 for_each_possible_cpu(cpu) 579 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 580#ifdef CONFIG_SMP 581 if (x < 0) 582 x = 0; 583#endif 584 return x; 585} 586 587void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 588 589/* idx can be of type enum memcg_stat_item or node_stat_item */ 590static inline void mod_memcg_state(struct mem_cgroup *memcg, 591 int idx, int val) 592{ 593 unsigned long flags; 594 595 local_irq_save(flags); 596 __mod_memcg_state(memcg, idx, val); 597 local_irq_restore(flags); 598} 599 600/** 601 * mod_memcg_page_state - update page state statistics 602 * @page: the page 603 * @idx: page state item to account 604 * @val: number of pages (positive or negative) 605 * 606 * The @page must be locked or the caller must use lock_page_memcg() 607 * to prevent double accounting when the page is concurrently being 608 * moved to another memcg: 609 * 610 * lock_page(page) or lock_page_memcg(page) 611 * if (TestClearPageState(page)) 612 * mod_memcg_page_state(page, state, -1); 613 * unlock_page(page) or unlock_page_memcg(page) 614 * 615 * Kernel pages are an exception to this, since they'll never move. 616 */ 617static inline void __mod_memcg_page_state(struct page *page, 618 int idx, int val) 619{ 620 if (page->mem_cgroup) 621 __mod_memcg_state(page->mem_cgroup, idx, val); 622} 623 624static inline void mod_memcg_page_state(struct page *page, 625 int idx, int val) 626{ 627 if (page->mem_cgroup) 628 mod_memcg_state(page->mem_cgroup, idx, val); 629} 630 631static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 632 enum node_stat_item idx) 633{ 634 struct mem_cgroup_per_node *pn; 635 long x; 636 637 if (mem_cgroup_disabled()) 638 return node_page_state(lruvec_pgdat(lruvec), idx); 639 640 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 641 x = atomic_long_read(&pn->lruvec_stat[idx]); 642#ifdef CONFIG_SMP 643 if (x < 0) 644 x = 0; 645#endif 646 return x; 647} 648 649static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 650 enum node_stat_item idx) 651{ 652 struct mem_cgroup_per_node *pn; 653 long x = 0; 654 int cpu; 655 656 if (mem_cgroup_disabled()) 657 return node_page_state(lruvec_pgdat(lruvec), idx); 658 659 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 660 for_each_possible_cpu(cpu) 661 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 662#ifdef CONFIG_SMP 663 if (x < 0) 664 x = 0; 665#endif 666 return x; 667} 668 669void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 670 int val); 671void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 672 673static inline void mod_lruvec_state(struct lruvec *lruvec, 674 enum node_stat_item idx, int val) 675{ 676 unsigned long flags; 677 678 local_irq_save(flags); 679 __mod_lruvec_state(lruvec, idx, val); 680 local_irq_restore(flags); 681} 682 683static inline void __mod_lruvec_page_state(struct page *page, 684 enum node_stat_item idx, int val) 685{ 686 pg_data_t *pgdat = page_pgdat(page); 687 struct lruvec *lruvec; 688 689 /* Untracked pages have no memcg, no lruvec. Update only the node */ 690 if (!page->mem_cgroup) { 691 __mod_node_page_state(pgdat, idx, val); 692 return; 693 } 694 695 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 696 __mod_lruvec_state(lruvec, idx, val); 697} 698 699static inline void mod_lruvec_page_state(struct page *page, 700 enum node_stat_item idx, int val) 701{ 702 unsigned long flags; 703 704 local_irq_save(flags); 705 __mod_lruvec_page_state(page, idx, val); 706 local_irq_restore(flags); 707} 708 709unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 710 gfp_t gfp_mask, 711 unsigned long *total_scanned); 712 713void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 714 unsigned long count); 715 716static inline void count_memcg_events(struct mem_cgroup *memcg, 717 enum vm_event_item idx, 718 unsigned long count) 719{ 720 unsigned long flags; 721 722 local_irq_save(flags); 723 __count_memcg_events(memcg, idx, count); 724 local_irq_restore(flags); 725} 726 727static inline void count_memcg_page_event(struct page *page, 728 enum vm_event_item idx) 729{ 730 if (page->mem_cgroup) 731 count_memcg_events(page->mem_cgroup, idx, 1); 732} 733 734static inline void count_memcg_event_mm(struct mm_struct *mm, 735 enum vm_event_item idx) 736{ 737 struct mem_cgroup *memcg; 738 739 if (mem_cgroup_disabled()) 740 return; 741 742 rcu_read_lock(); 743 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 744 if (likely(memcg)) 745 count_memcg_events(memcg, idx, 1); 746 rcu_read_unlock(); 747} 748 749static inline void memcg_memory_event(struct mem_cgroup *memcg, 750 enum memcg_memory_event event) 751{ 752 atomic_long_inc(&memcg->memory_events_local[event]); 753 cgroup_file_notify(&memcg->events_local_file); 754 755 do { 756 atomic_long_inc(&memcg->memory_events[event]); 757 cgroup_file_notify(&memcg->events_file); 758 759 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 760 break; 761 } while ((memcg = parent_mem_cgroup(memcg)) && 762 !mem_cgroup_is_root(memcg)); 763} 764 765static inline void memcg_memory_event_mm(struct mm_struct *mm, 766 enum memcg_memory_event event) 767{ 768 struct mem_cgroup *memcg; 769 770 if (mem_cgroup_disabled()) 771 return; 772 773 rcu_read_lock(); 774 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 775 if (likely(memcg)) 776 memcg_memory_event(memcg, event); 777 rcu_read_unlock(); 778} 779 780#ifdef CONFIG_TRANSPARENT_HUGEPAGE 781void mem_cgroup_split_huge_fixup(struct page *head); 782#endif 783 784#else /* CONFIG_MEMCG */ 785 786#define MEM_CGROUP_ID_SHIFT 0 787#define MEM_CGROUP_ID_MAX 0 788 789struct mem_cgroup; 790 791static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 792{ 793 return true; 794} 795 796static inline bool mem_cgroup_disabled(void) 797{ 798 return true; 799} 800 801static inline void memcg_memory_event(struct mem_cgroup *memcg, 802 enum memcg_memory_event event) 803{ 804} 805 806static inline void memcg_memory_event_mm(struct mm_struct *mm, 807 enum memcg_memory_event event) 808{ 809} 810 811static inline enum mem_cgroup_protection mem_cgroup_protected( 812 struct mem_cgroup *root, struct mem_cgroup *memcg) 813{ 814 return MEMCG_PROT_NONE; 815} 816 817static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 818 gfp_t gfp_mask, 819 struct mem_cgroup **memcgp, 820 bool compound) 821{ 822 *memcgp = NULL; 823 return 0; 824} 825 826static inline int mem_cgroup_try_charge_delay(struct page *page, 827 struct mm_struct *mm, 828 gfp_t gfp_mask, 829 struct mem_cgroup **memcgp, 830 bool compound) 831{ 832 *memcgp = NULL; 833 return 0; 834} 835 836static inline void mem_cgroup_commit_charge(struct page *page, 837 struct mem_cgroup *memcg, 838 bool lrucare, bool compound) 839{ 840} 841 842static inline void mem_cgroup_cancel_charge(struct page *page, 843 struct mem_cgroup *memcg, 844 bool compound) 845{ 846} 847 848static inline void mem_cgroup_uncharge(struct page *page) 849{ 850} 851 852static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 853{ 854} 855 856static inline void mem_cgroup_migrate(struct page *old, struct page *new) 857{ 858} 859 860static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 861 struct mem_cgroup *memcg) 862{ 863 return node_lruvec(pgdat); 864} 865 866static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 867 struct pglist_data *pgdat) 868{ 869 return &pgdat->lruvec; 870} 871 872static inline bool mm_match_cgroup(struct mm_struct *mm, 873 struct mem_cgroup *memcg) 874{ 875 return true; 876} 877 878static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 879{ 880 return NULL; 881} 882 883static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 884{ 885 return NULL; 886} 887 888static inline void mem_cgroup_put(struct mem_cgroup *memcg) 889{ 890} 891 892static inline struct mem_cgroup * 893mem_cgroup_iter(struct mem_cgroup *root, 894 struct mem_cgroup *prev, 895 struct mem_cgroup_reclaim_cookie *reclaim) 896{ 897 return NULL; 898} 899 900static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 901 struct mem_cgroup *prev) 902{ 903} 904 905static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 906 int (*fn)(struct task_struct *, void *), void *arg) 907{ 908 return 0; 909} 910 911static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 912{ 913 return 0; 914} 915 916static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 917{ 918 WARN_ON_ONCE(id); 919 /* XXX: This should always return root_mem_cgroup */ 920 return NULL; 921} 922 923static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 924{ 925 return NULL; 926} 927 928static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 929{ 930 return NULL; 931} 932 933static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 934{ 935 return true; 936} 937 938static inline 939unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 940 enum lru_list lru, int zone_idx) 941{ 942 return 0; 943} 944 945static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 946{ 947 return 0; 948} 949 950static inline void 951mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 952{ 953} 954 955static inline void 956mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 957{ 958} 959 960static inline struct mem_cgroup *lock_page_memcg(struct page *page) 961{ 962 return NULL; 963} 964 965static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 966{ 967} 968 969static inline void unlock_page_memcg(struct page *page) 970{ 971} 972 973static inline void mem_cgroup_handle_over_high(void) 974{ 975} 976 977static inline void mem_cgroup_enter_user_fault(void) 978{ 979} 980 981static inline void mem_cgroup_exit_user_fault(void) 982{ 983} 984 985static inline bool task_in_memcg_oom(struct task_struct *p) 986{ 987 return false; 988} 989 990static inline bool mem_cgroup_oom_synchronize(bool wait) 991{ 992 return false; 993} 994 995static inline struct mem_cgroup *mem_cgroup_get_oom_group( 996 struct task_struct *victim, struct mem_cgroup *oom_domain) 997{ 998 return NULL; 999} 1000 1001static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1002{ 1003} 1004 1005static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1006{ 1007 return 0; 1008} 1009 1010static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1011 int idx) 1012{ 1013 return 0; 1014} 1015 1016static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1017 int idx, 1018 int nr) 1019{ 1020} 1021 1022static inline void mod_memcg_state(struct mem_cgroup *memcg, 1023 int idx, 1024 int nr) 1025{ 1026} 1027 1028static inline void __mod_memcg_page_state(struct page *page, 1029 int idx, 1030 int nr) 1031{ 1032} 1033 1034static inline void mod_memcg_page_state(struct page *page, 1035 int idx, 1036 int nr) 1037{ 1038} 1039 1040static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1041 enum node_stat_item idx) 1042{ 1043 return node_page_state(lruvec_pgdat(lruvec), idx); 1044} 1045 1046static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1047 enum node_stat_item idx) 1048{ 1049 return node_page_state(lruvec_pgdat(lruvec), idx); 1050} 1051 1052static inline void __mod_lruvec_state(struct lruvec *lruvec, 1053 enum node_stat_item idx, int val) 1054{ 1055 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1056} 1057 1058static inline void mod_lruvec_state(struct lruvec *lruvec, 1059 enum node_stat_item idx, int val) 1060{ 1061 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1062} 1063 1064static inline void __mod_lruvec_page_state(struct page *page, 1065 enum node_stat_item idx, int val) 1066{ 1067 __mod_node_page_state(page_pgdat(page), idx, val); 1068} 1069 1070static inline void mod_lruvec_page_state(struct page *page, 1071 enum node_stat_item idx, int val) 1072{ 1073 mod_node_page_state(page_pgdat(page), idx, val); 1074} 1075 1076static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1077 int val) 1078{ 1079 struct page *page = virt_to_head_page(p); 1080 1081 __mod_node_page_state(page_pgdat(page), idx, val); 1082} 1083 1084static inline 1085unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1086 gfp_t gfp_mask, 1087 unsigned long *total_scanned) 1088{ 1089 return 0; 1090} 1091 1092static inline void mem_cgroup_split_huge_fixup(struct page *head) 1093{ 1094} 1095 1096static inline void count_memcg_events(struct mem_cgroup *memcg, 1097 enum vm_event_item idx, 1098 unsigned long count) 1099{ 1100} 1101 1102static inline void __count_memcg_events(struct mem_cgroup *memcg, 1103 enum vm_event_item idx, 1104 unsigned long count) 1105{ 1106} 1107 1108static inline void count_memcg_page_event(struct page *page, 1109 int idx) 1110{ 1111} 1112 1113static inline 1114void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1115{ 1116} 1117#endif /* CONFIG_MEMCG */ 1118 1119/* idx can be of type enum memcg_stat_item or node_stat_item */ 1120static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1121 int idx) 1122{ 1123 __mod_memcg_state(memcg, idx, 1); 1124} 1125 1126/* idx can be of type enum memcg_stat_item or node_stat_item */ 1127static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1128 int idx) 1129{ 1130 __mod_memcg_state(memcg, idx, -1); 1131} 1132 1133/* idx can be of type enum memcg_stat_item or node_stat_item */ 1134static inline void __inc_memcg_page_state(struct page *page, 1135 int idx) 1136{ 1137 __mod_memcg_page_state(page, idx, 1); 1138} 1139 1140/* idx can be of type enum memcg_stat_item or node_stat_item */ 1141static inline void __dec_memcg_page_state(struct page *page, 1142 int idx) 1143{ 1144 __mod_memcg_page_state(page, idx, -1); 1145} 1146 1147static inline void __inc_lruvec_state(struct lruvec *lruvec, 1148 enum node_stat_item idx) 1149{ 1150 __mod_lruvec_state(lruvec, idx, 1); 1151} 1152 1153static inline void __dec_lruvec_state(struct lruvec *lruvec, 1154 enum node_stat_item idx) 1155{ 1156 __mod_lruvec_state(lruvec, idx, -1); 1157} 1158 1159static inline void __inc_lruvec_page_state(struct page *page, 1160 enum node_stat_item idx) 1161{ 1162 __mod_lruvec_page_state(page, idx, 1); 1163} 1164 1165static inline void __dec_lruvec_page_state(struct page *page, 1166 enum node_stat_item idx) 1167{ 1168 __mod_lruvec_page_state(page, idx, -1); 1169} 1170 1171static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1172{ 1173 __mod_lruvec_slab_state(p, idx, 1); 1174} 1175 1176static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1177{ 1178 __mod_lruvec_slab_state(p, idx, -1); 1179} 1180 1181/* idx can be of type enum memcg_stat_item or node_stat_item */ 1182static inline void inc_memcg_state(struct mem_cgroup *memcg, 1183 int idx) 1184{ 1185 mod_memcg_state(memcg, idx, 1); 1186} 1187 1188/* idx can be of type enum memcg_stat_item or node_stat_item */ 1189static inline void dec_memcg_state(struct mem_cgroup *memcg, 1190 int idx) 1191{ 1192 mod_memcg_state(memcg, idx, -1); 1193} 1194 1195/* idx can be of type enum memcg_stat_item or node_stat_item */ 1196static inline void inc_memcg_page_state(struct page *page, 1197 int idx) 1198{ 1199 mod_memcg_page_state(page, idx, 1); 1200} 1201 1202/* idx can be of type enum memcg_stat_item or node_stat_item */ 1203static inline void dec_memcg_page_state(struct page *page, 1204 int idx) 1205{ 1206 mod_memcg_page_state(page, idx, -1); 1207} 1208 1209static inline void inc_lruvec_state(struct lruvec *lruvec, 1210 enum node_stat_item idx) 1211{ 1212 mod_lruvec_state(lruvec, idx, 1); 1213} 1214 1215static inline void dec_lruvec_state(struct lruvec *lruvec, 1216 enum node_stat_item idx) 1217{ 1218 mod_lruvec_state(lruvec, idx, -1); 1219} 1220 1221static inline void inc_lruvec_page_state(struct page *page, 1222 enum node_stat_item idx) 1223{ 1224 mod_lruvec_page_state(page, idx, 1); 1225} 1226 1227static inline void dec_lruvec_page_state(struct page *page, 1228 enum node_stat_item idx) 1229{ 1230 mod_lruvec_page_state(page, idx, -1); 1231} 1232 1233#ifdef CONFIG_CGROUP_WRITEBACK 1234 1235struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1236void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1237 unsigned long *pheadroom, unsigned long *pdirty, 1238 unsigned long *pwriteback); 1239 1240#else /* CONFIG_CGROUP_WRITEBACK */ 1241 1242static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1243{ 1244 return NULL; 1245} 1246 1247static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1248 unsigned long *pfilepages, 1249 unsigned long *pheadroom, 1250 unsigned long *pdirty, 1251 unsigned long *pwriteback) 1252{ 1253} 1254 1255#endif /* CONFIG_CGROUP_WRITEBACK */ 1256 1257struct sock; 1258bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1259void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1260#ifdef CONFIG_MEMCG 1261extern struct static_key_false memcg_sockets_enabled_key; 1262#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1263void mem_cgroup_sk_alloc(struct sock *sk); 1264void mem_cgroup_sk_free(struct sock *sk); 1265static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1266{ 1267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1268 return true; 1269 do { 1270 if (time_before(jiffies, memcg->socket_pressure)) 1271 return true; 1272 } while ((memcg = parent_mem_cgroup(memcg))); 1273 return false; 1274} 1275#else 1276#define mem_cgroup_sockets_enabled 0 1277static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1278static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1279static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1280{ 1281 return false; 1282} 1283#endif 1284 1285struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1286void memcg_kmem_put_cache(struct kmem_cache *cachep); 1287 1288#ifdef CONFIG_MEMCG_KMEM 1289int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1290void __memcg_kmem_uncharge(struct page *page, int order); 1291int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1292 struct mem_cgroup *memcg); 1293void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 1294 unsigned int nr_pages); 1295 1296extern struct static_key_false memcg_kmem_enabled_key; 1297extern struct workqueue_struct *memcg_kmem_cache_wq; 1298 1299extern int memcg_nr_cache_ids; 1300void memcg_get_cache_ids(void); 1301void memcg_put_cache_ids(void); 1302 1303/* 1304 * Helper macro to loop through all memcg-specific caches. Callers must still 1305 * check if the cache is valid (it is either valid or NULL). 1306 * the slab_mutex must be held when looping through those caches 1307 */ 1308#define for_each_memcg_cache_index(_idx) \ 1309 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1310 1311static inline bool memcg_kmem_enabled(void) 1312{ 1313 return static_branch_unlikely(&memcg_kmem_enabled_key); 1314} 1315 1316static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1317{ 1318 if (memcg_kmem_enabled()) 1319 return __memcg_kmem_charge(page, gfp, order); 1320 return 0; 1321} 1322 1323static inline void memcg_kmem_uncharge(struct page *page, int order) 1324{ 1325 if (memcg_kmem_enabled()) 1326 __memcg_kmem_uncharge(page, order); 1327} 1328 1329static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1330 int order, struct mem_cgroup *memcg) 1331{ 1332 if (memcg_kmem_enabled()) 1333 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1334 return 0; 1335} 1336 1337static inline void memcg_kmem_uncharge_memcg(struct page *page, int order, 1338 struct mem_cgroup *memcg) 1339{ 1340 if (memcg_kmem_enabled()) 1341 __memcg_kmem_uncharge_memcg(memcg, 1 << order); 1342} 1343 1344/* 1345 * helper for accessing a memcg's index. It will be used as an index in the 1346 * child cache array in kmem_cache, and also to derive its name. This function 1347 * will return -1 when this is not a kmem-limited memcg. 1348 */ 1349static inline int memcg_cache_id(struct mem_cgroup *memcg) 1350{ 1351 return memcg ? memcg->kmemcg_id : -1; 1352} 1353 1354extern int memcg_expand_shrinker_maps(int new_id); 1355 1356extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1357 int nid, int shrinker_id); 1358#else 1359 1360static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1361{ 1362 return 0; 1363} 1364 1365static inline void memcg_kmem_uncharge(struct page *page, int order) 1366{ 1367} 1368 1369static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1370{ 1371 return 0; 1372} 1373 1374static inline void __memcg_kmem_uncharge(struct page *page, int order) 1375{ 1376} 1377 1378#define for_each_memcg_cache_index(_idx) \ 1379 for (; NULL; ) 1380 1381static inline bool memcg_kmem_enabled(void) 1382{ 1383 return false; 1384} 1385 1386static inline int memcg_cache_id(struct mem_cgroup *memcg) 1387{ 1388 return -1; 1389} 1390 1391static inline void memcg_get_cache_ids(void) 1392{ 1393} 1394 1395static inline void memcg_put_cache_ids(void) 1396{ 1397} 1398 1399static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1400 int nid, int shrinker_id) { } 1401#endif /* CONFIG_MEMCG_KMEM */ 1402 1403#endif /* _LINUX_MEMCONTROL_H */