at v5.3 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/bug.h> 14#include <linux/mm.h> 15#include <linux/mmu_notifier.h> 16#include <linux/preempt.h> 17#include <linux/msi.h> 18#include <linux/slab.h> 19#include <linux/vmalloc.h> 20#include <linux/rcupdate.h> 21#include <linux/ratelimit.h> 22#include <linux/err.h> 23#include <linux/irqflags.h> 24#include <linux/context_tracking.h> 25#include <linux/irqbypass.h> 26#include <linux/swait.h> 27#include <linux/refcount.h> 28#include <linux/nospec.h> 29#include <asm/signal.h> 30 31#include <linux/kvm.h> 32#include <linux/kvm_para.h> 33 34#include <linux/kvm_types.h> 35 36#include <asm/kvm_host.h> 37 38#ifndef KVM_MAX_VCPU_ID 39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40#endif 41 42/* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47#define KVM_MEMSLOT_INVALID (1UL << 16) 48 49/* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70/* Two fragments for cross MMIO pages. */ 71#define KVM_MAX_MMIO_FRAGMENTS 2 72 73#ifndef KVM_ADDRESS_SPACE_NUM 74#define KVM_ADDRESS_SPACE_NUM 1 75#endif 76 77/* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84#define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90/* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94static inline bool is_error_pfn(kvm_pfn_t pfn) 95{ 96 return !!(pfn & KVM_PFN_ERR_MASK); 97} 98 99/* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107} 108 109/* noslot pfn indicates that the gfn is not in slot. */ 110static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111{ 112 return pfn == KVM_PFN_NOSLOT; 113} 114 115/* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119#ifndef KVM_HVA_ERR_BAD 120 121#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124static inline bool kvm_is_error_hva(unsigned long addr) 125{ 126 return addr >= PAGE_OFFSET; 127} 128 129#endif 130 131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133static inline bool is_error_page(struct page *page) 134{ 135 return IS_ERR(page); 136} 137 138#define KVM_REQUEST_MASK GENMASK(7,0) 139#define KVM_REQUEST_NO_WAKEUP BIT(8) 140#define KVM_REQUEST_WAIT BIT(9) 141/* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147#define KVM_REQ_PENDING_TIMER 2 148#define KVM_REQ_UNHALT 3 149#define KVM_REQUEST_ARCH_BASE 8 150 151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154}) 155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157#define KVM_USERSPACE_IRQ_SOURCE_ID 0 158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160extern struct kmem_cache *kvm_vcpu_cache; 161 162extern struct mutex kvm_lock; 163extern struct list_head vm_list; 164 165struct kvm_io_range { 166 gpa_t addr; 167 int len; 168 struct kvm_io_device *dev; 169}; 170 171#define NR_IOBUS_DEVS 1000 172 173struct kvm_io_bus { 174 int dev_count; 175 int ioeventfd_count; 176 struct kvm_io_range range[]; 177}; 178 179enum kvm_bus { 180 KVM_MMIO_BUS, 181 KVM_PIO_BUS, 182 KVM_VIRTIO_CCW_NOTIFY_BUS, 183 KVM_FAST_MMIO_BUS, 184 KVM_NR_BUSES 185}; 186 187int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 188 int len, const void *val); 189int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 190 gpa_t addr, int len, const void *val, long cookie); 191int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 192 int len, void *val); 193int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 194 int len, struct kvm_io_device *dev); 195void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 struct kvm_io_device *dev); 197struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 gpa_t addr); 199 200#ifdef CONFIG_KVM_ASYNC_PF 201struct kvm_async_pf { 202 struct work_struct work; 203 struct list_head link; 204 struct list_head queue; 205 struct kvm_vcpu *vcpu; 206 struct mm_struct *mm; 207 gva_t gva; 208 unsigned long addr; 209 struct kvm_arch_async_pf arch; 210 bool wakeup_all; 211}; 212 213void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 214void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 215int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 216 struct kvm_arch_async_pf *arch); 217int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 218#endif 219 220enum { 221 OUTSIDE_GUEST_MODE, 222 IN_GUEST_MODE, 223 EXITING_GUEST_MODE, 224 READING_SHADOW_PAGE_TABLES, 225}; 226 227#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 228 229struct kvm_host_map { 230 /* 231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 232 * a 'struct page' for it. When using mem= kernel parameter some memory 233 * can be used as guest memory but they are not managed by host 234 * kernel). 235 * If 'pfn' is not managed by the host kernel, this field is 236 * initialized to KVM_UNMAPPED_PAGE. 237 */ 238 struct page *page; 239 void *hva; 240 kvm_pfn_t pfn; 241 kvm_pfn_t gfn; 242}; 243 244/* 245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 246 * directly to check for that. 247 */ 248static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 249{ 250 return !!map->hva; 251} 252 253/* 254 * Sometimes a large or cross-page mmio needs to be broken up into separate 255 * exits for userspace servicing. 256 */ 257struct kvm_mmio_fragment { 258 gpa_t gpa; 259 void *data; 260 unsigned len; 261}; 262 263struct kvm_vcpu { 264 struct kvm *kvm; 265#ifdef CONFIG_PREEMPT_NOTIFIERS 266 struct preempt_notifier preempt_notifier; 267#endif 268 int cpu; 269 int vcpu_id; 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 int guest_xcr0_loaded; 282 struct swait_queue_head wq; 283 struct pid __rcu *pid; 284 int sigset_active; 285 sigset_t sigset; 286 struct kvm_vcpu_stat stat; 287 unsigned int halt_poll_ns; 288 bool valid_wakeup; 289 290#ifdef CONFIG_HAS_IOMEM 291 int mmio_needed; 292 int mmio_read_completed; 293 int mmio_is_write; 294 int mmio_cur_fragment; 295 int mmio_nr_fragments; 296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 297#endif 298 299#ifdef CONFIG_KVM_ASYNC_PF 300 struct { 301 u32 queued; 302 struct list_head queue; 303 struct list_head done; 304 spinlock_t lock; 305 } async_pf; 306#endif 307 308#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 309 /* 310 * Cpu relax intercept or pause loop exit optimization 311 * in_spin_loop: set when a vcpu does a pause loop exit 312 * or cpu relax intercepted. 313 * dy_eligible: indicates whether vcpu is eligible for directed yield. 314 */ 315 struct { 316 bool in_spin_loop; 317 bool dy_eligible; 318 } spin_loop; 319#endif 320 bool preempted; 321 bool ready; 322 struct kvm_vcpu_arch arch; 323 struct dentry *debugfs_dentry; 324}; 325 326static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 327{ 328 /* 329 * The memory barrier ensures a previous write to vcpu->requests cannot 330 * be reordered with the read of vcpu->mode. It pairs with the general 331 * memory barrier following the write of vcpu->mode in VCPU RUN. 332 */ 333 smp_mb__before_atomic(); 334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 335} 336 337/* 338 * Some of the bitops functions do not support too long bitmaps. 339 * This number must be determined not to exceed such limits. 340 */ 341#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 342 343struct kvm_memory_slot { 344 gfn_t base_gfn; 345 unsigned long npages; 346 unsigned long *dirty_bitmap; 347 struct kvm_arch_memory_slot arch; 348 unsigned long userspace_addr; 349 u32 flags; 350 short id; 351}; 352 353static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 354{ 355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 356} 357 358static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 359{ 360 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 361 362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 363} 364 365struct kvm_s390_adapter_int { 366 u64 ind_addr; 367 u64 summary_addr; 368 u64 ind_offset; 369 u32 summary_offset; 370 u32 adapter_id; 371}; 372 373struct kvm_hv_sint { 374 u32 vcpu; 375 u32 sint; 376}; 377 378struct kvm_kernel_irq_routing_entry { 379 u32 gsi; 380 u32 type; 381 int (*set)(struct kvm_kernel_irq_routing_entry *e, 382 struct kvm *kvm, int irq_source_id, int level, 383 bool line_status); 384 union { 385 struct { 386 unsigned irqchip; 387 unsigned pin; 388 } irqchip; 389 struct { 390 u32 address_lo; 391 u32 address_hi; 392 u32 data; 393 u32 flags; 394 u32 devid; 395 } msi; 396 struct kvm_s390_adapter_int adapter; 397 struct kvm_hv_sint hv_sint; 398 }; 399 struct hlist_node link; 400}; 401 402#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 403struct kvm_irq_routing_table { 404 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 405 u32 nr_rt_entries; 406 /* 407 * Array indexed by gsi. Each entry contains list of irq chips 408 * the gsi is connected to. 409 */ 410 struct hlist_head map[0]; 411}; 412#endif 413 414#ifndef KVM_PRIVATE_MEM_SLOTS 415#define KVM_PRIVATE_MEM_SLOTS 0 416#endif 417 418#ifndef KVM_MEM_SLOTS_NUM 419#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 420#endif 421 422#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 423static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 424{ 425 return 0; 426} 427#endif 428 429/* 430 * Note: 431 * memslots are not sorted by id anymore, please use id_to_memslot() 432 * to get the memslot by its id. 433 */ 434struct kvm_memslots { 435 u64 generation; 436 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 437 /* The mapping table from slot id to the index in memslots[]. */ 438 short id_to_index[KVM_MEM_SLOTS_NUM]; 439 atomic_t lru_slot; 440 int used_slots; 441}; 442 443struct kvm { 444 spinlock_t mmu_lock; 445 struct mutex slots_lock; 446 struct mm_struct *mm; /* userspace tied to this vm */ 447 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 448 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 449 450 /* 451 * created_vcpus is protected by kvm->lock, and is incremented 452 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 453 * incremented after storing the kvm_vcpu pointer in vcpus, 454 * and is accessed atomically. 455 */ 456 atomic_t online_vcpus; 457 int created_vcpus; 458 int last_boosted_vcpu; 459 struct list_head vm_list; 460 struct mutex lock; 461 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 462#ifdef CONFIG_HAVE_KVM_EVENTFD 463 struct { 464 spinlock_t lock; 465 struct list_head items; 466 struct list_head resampler_list; 467 struct mutex resampler_lock; 468 } irqfds; 469 struct list_head ioeventfds; 470#endif 471 struct kvm_vm_stat stat; 472 struct kvm_arch arch; 473 refcount_t users_count; 474#ifdef CONFIG_KVM_MMIO 475 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 476 spinlock_t ring_lock; 477 struct list_head coalesced_zones; 478#endif 479 480 struct mutex irq_lock; 481#ifdef CONFIG_HAVE_KVM_IRQCHIP 482 /* 483 * Update side is protected by irq_lock. 484 */ 485 struct kvm_irq_routing_table __rcu *irq_routing; 486#endif 487#ifdef CONFIG_HAVE_KVM_IRQFD 488 struct hlist_head irq_ack_notifier_list; 489#endif 490 491#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 492 struct mmu_notifier mmu_notifier; 493 unsigned long mmu_notifier_seq; 494 long mmu_notifier_count; 495#endif 496 long tlbs_dirty; 497 struct list_head devices; 498 bool manual_dirty_log_protect; 499 struct dentry *debugfs_dentry; 500 struct kvm_stat_data **debugfs_stat_data; 501 struct srcu_struct srcu; 502 struct srcu_struct irq_srcu; 503 pid_t userspace_pid; 504}; 505 506#define kvm_err(fmt, ...) \ 507 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 508#define kvm_info(fmt, ...) \ 509 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510#define kvm_debug(fmt, ...) \ 511 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512#define kvm_debug_ratelimited(fmt, ...) \ 513 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 514 ## __VA_ARGS__) 515#define kvm_pr_unimpl(fmt, ...) \ 516 pr_err_ratelimited("kvm [%i]: " fmt, \ 517 task_tgid_nr(current), ## __VA_ARGS__) 518 519/* The guest did something we don't support. */ 520#define vcpu_unimpl(vcpu, fmt, ...) \ 521 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 522 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 523 524#define vcpu_debug(vcpu, fmt, ...) \ 525 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 526#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 527 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 528 ## __VA_ARGS__) 529#define vcpu_err(vcpu, fmt, ...) \ 530 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 531 532static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 533{ 534 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 535 lockdep_is_held(&kvm->slots_lock) || 536 !refcount_read(&kvm->users_count)); 537} 538 539static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 540{ 541 int num_vcpus = atomic_read(&kvm->online_vcpus); 542 i = array_index_nospec(i, num_vcpus); 543 544 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 545 smp_rmb(); 546 return kvm->vcpus[i]; 547} 548 549#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 550 for (idx = 0; \ 551 idx < atomic_read(&kvm->online_vcpus) && \ 552 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 553 idx++) 554 555static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 556{ 557 struct kvm_vcpu *vcpu = NULL; 558 int i; 559 560 if (id < 0) 561 return NULL; 562 if (id < KVM_MAX_VCPUS) 563 vcpu = kvm_get_vcpu(kvm, id); 564 if (vcpu && vcpu->vcpu_id == id) 565 return vcpu; 566 kvm_for_each_vcpu(i, vcpu, kvm) 567 if (vcpu->vcpu_id == id) 568 return vcpu; 569 return NULL; 570} 571 572static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 573{ 574 struct kvm_vcpu *tmp; 575 int idx; 576 577 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 578 if (tmp == vcpu) 579 return idx; 580 BUG(); 581} 582 583#define kvm_for_each_memslot(memslot, slots) \ 584 for (memslot = &slots->memslots[0]; \ 585 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 586 memslot++) 587 588int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 589void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 590 591void vcpu_load(struct kvm_vcpu *vcpu); 592void vcpu_put(struct kvm_vcpu *vcpu); 593 594#ifdef __KVM_HAVE_IOAPIC 595void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 596void kvm_arch_post_irq_routing_update(struct kvm *kvm); 597#else 598static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 599{ 600} 601static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 602{ 603} 604#endif 605 606#ifdef CONFIG_HAVE_KVM_IRQFD 607int kvm_irqfd_init(void); 608void kvm_irqfd_exit(void); 609#else 610static inline int kvm_irqfd_init(void) 611{ 612 return 0; 613} 614 615static inline void kvm_irqfd_exit(void) 616{ 617} 618#endif 619int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 620 struct module *module); 621void kvm_exit(void); 622 623void kvm_get_kvm(struct kvm *kvm); 624void kvm_put_kvm(struct kvm *kvm); 625 626static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 627{ 628 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 629 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 630 lockdep_is_held(&kvm->slots_lock) || 631 !refcount_read(&kvm->users_count)); 632} 633 634static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 635{ 636 return __kvm_memslots(kvm, 0); 637} 638 639static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 640{ 641 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 642 643 return __kvm_memslots(vcpu->kvm, as_id); 644} 645 646static inline struct kvm_memory_slot * 647id_to_memslot(struct kvm_memslots *slots, int id) 648{ 649 int index = slots->id_to_index[id]; 650 struct kvm_memory_slot *slot; 651 652 slot = &slots->memslots[index]; 653 654 WARN_ON(slot->id != id); 655 return slot; 656} 657 658/* 659 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 660 * - create a new memory slot 661 * - delete an existing memory slot 662 * - modify an existing memory slot 663 * -- move it in the guest physical memory space 664 * -- just change its flags 665 * 666 * Since flags can be changed by some of these operations, the following 667 * differentiation is the best we can do for __kvm_set_memory_region(): 668 */ 669enum kvm_mr_change { 670 KVM_MR_CREATE, 671 KVM_MR_DELETE, 672 KVM_MR_MOVE, 673 KVM_MR_FLAGS_ONLY, 674}; 675 676int kvm_set_memory_region(struct kvm *kvm, 677 const struct kvm_userspace_memory_region *mem); 678int __kvm_set_memory_region(struct kvm *kvm, 679 const struct kvm_userspace_memory_region *mem); 680void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 681 struct kvm_memory_slot *dont); 682int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 683 unsigned long npages); 684void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 685int kvm_arch_prepare_memory_region(struct kvm *kvm, 686 struct kvm_memory_slot *memslot, 687 const struct kvm_userspace_memory_region *mem, 688 enum kvm_mr_change change); 689void kvm_arch_commit_memory_region(struct kvm *kvm, 690 const struct kvm_userspace_memory_region *mem, 691 const struct kvm_memory_slot *old, 692 const struct kvm_memory_slot *new, 693 enum kvm_mr_change change); 694bool kvm_largepages_enabled(void); 695void kvm_disable_largepages(void); 696/* flush all memory translations */ 697void kvm_arch_flush_shadow_all(struct kvm *kvm); 698/* flush memory translations pointing to 'slot' */ 699void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 700 struct kvm_memory_slot *slot); 701 702int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 703 struct page **pages, int nr_pages); 704 705struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 706unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 707unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 708unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 709unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 710 bool *writable); 711void kvm_release_page_clean(struct page *page); 712void kvm_release_page_dirty(struct page *page); 713void kvm_set_page_accessed(struct page *page); 714 715kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 716kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 717kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 718 bool *writable); 719kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 720kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 721kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 722 bool atomic, bool *async, bool write_fault, 723 bool *writable); 724 725void kvm_release_pfn_clean(kvm_pfn_t pfn); 726void kvm_release_pfn_dirty(kvm_pfn_t pfn); 727void kvm_set_pfn_dirty(kvm_pfn_t pfn); 728void kvm_set_pfn_accessed(kvm_pfn_t pfn); 729void kvm_get_pfn(kvm_pfn_t pfn); 730 731int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 732 int len); 733int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 734 unsigned long len); 735int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 736int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 737 void *data, unsigned long len); 738int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 739 int offset, int len); 740int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 741 unsigned long len); 742int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 743 void *data, unsigned long len); 744int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 745 void *data, unsigned int offset, 746 unsigned long len); 747int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 748 gpa_t gpa, unsigned long len); 749int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 750int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 751struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 752bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 753unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 754void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 755 756struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 757struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 758kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 759kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 760int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 761struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 762void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 763unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 764unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 765int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 766 int len); 767int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 768 unsigned long len); 769int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 770 unsigned long len); 771int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 772 int offset, int len); 773int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 774 unsigned long len); 775void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 776 777void kvm_sigset_activate(struct kvm_vcpu *vcpu); 778void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 779 780void kvm_vcpu_block(struct kvm_vcpu *vcpu); 781void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 782void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 783bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 784void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 785int kvm_vcpu_yield_to(struct kvm_vcpu *target); 786void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 787 788void kvm_flush_remote_tlbs(struct kvm *kvm); 789void kvm_reload_remote_mmus(struct kvm *kvm); 790 791bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 792 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 793bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 794 795long kvm_arch_dev_ioctl(struct file *filp, 796 unsigned int ioctl, unsigned long arg); 797long kvm_arch_vcpu_ioctl(struct file *filp, 798 unsigned int ioctl, unsigned long arg); 799vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 800 801int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 802 803int kvm_get_dirty_log(struct kvm *kvm, 804 struct kvm_dirty_log *log, int *is_dirty); 805 806int kvm_get_dirty_log_protect(struct kvm *kvm, 807 struct kvm_dirty_log *log, bool *flush); 808int kvm_clear_dirty_log_protect(struct kvm *kvm, 809 struct kvm_clear_dirty_log *log, bool *flush); 810 811void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 812 struct kvm_memory_slot *slot, 813 gfn_t gfn_offset, 814 unsigned long mask); 815 816int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 817 struct kvm_dirty_log *log); 818int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 819 struct kvm_clear_dirty_log *log); 820 821int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 822 bool line_status); 823int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 824 struct kvm_enable_cap *cap); 825long kvm_arch_vm_ioctl(struct file *filp, 826 unsigned int ioctl, unsigned long arg); 827 828int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 829int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 830 831int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 832 struct kvm_translation *tr); 833 834int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 835int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 836int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 837 struct kvm_sregs *sregs); 838int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 839 struct kvm_sregs *sregs); 840int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 841 struct kvm_mp_state *mp_state); 842int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 843 struct kvm_mp_state *mp_state); 844int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 845 struct kvm_guest_debug *dbg); 846int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 847 848int kvm_arch_init(void *opaque); 849void kvm_arch_exit(void); 850 851int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 852void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 853 854void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 855 856void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 857void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 858void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 859struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 860int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 861void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 862void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 863 864#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 865void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 866#endif 867 868int kvm_arch_hardware_enable(void); 869void kvm_arch_hardware_disable(void); 870int kvm_arch_hardware_setup(void); 871void kvm_arch_hardware_unsetup(void); 872int kvm_arch_check_processor_compat(void); 873int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 874bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 875int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 876bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 877 878#ifndef __KVM_HAVE_ARCH_VM_ALLOC 879/* 880 * All architectures that want to use vzalloc currently also 881 * need their own kvm_arch_alloc_vm implementation. 882 */ 883static inline struct kvm *kvm_arch_alloc_vm(void) 884{ 885 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 886} 887 888static inline void kvm_arch_free_vm(struct kvm *kvm) 889{ 890 kfree(kvm); 891} 892#endif 893 894#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 895static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 896{ 897 return -ENOTSUPP; 898} 899#endif 900 901#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 902void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 903void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 904bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 905#else 906static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 907{ 908} 909 910static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 911{ 912} 913 914static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 915{ 916 return false; 917} 918#endif 919#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 920void kvm_arch_start_assignment(struct kvm *kvm); 921void kvm_arch_end_assignment(struct kvm *kvm); 922bool kvm_arch_has_assigned_device(struct kvm *kvm); 923#else 924static inline void kvm_arch_start_assignment(struct kvm *kvm) 925{ 926} 927 928static inline void kvm_arch_end_assignment(struct kvm *kvm) 929{ 930} 931 932static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 933{ 934 return false; 935} 936#endif 937 938static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 939{ 940#ifdef __KVM_HAVE_ARCH_WQP 941 return vcpu->arch.wqp; 942#else 943 return &vcpu->wq; 944#endif 945} 946 947#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 948/* 949 * returns true if the virtual interrupt controller is initialized and 950 * ready to accept virtual IRQ. On some architectures the virtual interrupt 951 * controller is dynamically instantiated and this is not always true. 952 */ 953bool kvm_arch_intc_initialized(struct kvm *kvm); 954#else 955static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 956{ 957 return true; 958} 959#endif 960 961int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 962void kvm_arch_destroy_vm(struct kvm *kvm); 963void kvm_arch_sync_events(struct kvm *kvm); 964 965int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 966void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 967 968bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 969 970struct kvm_irq_ack_notifier { 971 struct hlist_node link; 972 unsigned gsi; 973 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 974}; 975 976int kvm_irq_map_gsi(struct kvm *kvm, 977 struct kvm_kernel_irq_routing_entry *entries, int gsi); 978int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 979 980int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 981 bool line_status); 982int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 983 int irq_source_id, int level, bool line_status); 984int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 985 struct kvm *kvm, int irq_source_id, 986 int level, bool line_status); 987bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 988void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 989void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 990void kvm_register_irq_ack_notifier(struct kvm *kvm, 991 struct kvm_irq_ack_notifier *kian); 992void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 993 struct kvm_irq_ack_notifier *kian); 994int kvm_request_irq_source_id(struct kvm *kvm); 995void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 996bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 997 998/* 999 * search_memslots() and __gfn_to_memslot() are here because they are 1000 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1001 * gfn_to_memslot() itself isn't here as an inline because that would 1002 * bloat other code too much. 1003 */ 1004static inline struct kvm_memory_slot * 1005search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1006{ 1007 int start = 0, end = slots->used_slots; 1008 int slot = atomic_read(&slots->lru_slot); 1009 struct kvm_memory_slot *memslots = slots->memslots; 1010 1011 if (gfn >= memslots[slot].base_gfn && 1012 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1013 return &memslots[slot]; 1014 1015 while (start < end) { 1016 slot = start + (end - start) / 2; 1017 1018 if (gfn >= memslots[slot].base_gfn) 1019 end = slot; 1020 else 1021 start = slot + 1; 1022 } 1023 1024 if (gfn >= memslots[start].base_gfn && 1025 gfn < memslots[start].base_gfn + memslots[start].npages) { 1026 atomic_set(&slots->lru_slot, start); 1027 return &memslots[start]; 1028 } 1029 1030 return NULL; 1031} 1032 1033static inline struct kvm_memory_slot * 1034__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1035{ 1036 return search_memslots(slots, gfn); 1037} 1038 1039static inline unsigned long 1040__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1041{ 1042 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1043} 1044 1045static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1046{ 1047 return gfn_to_memslot(kvm, gfn)->id; 1048} 1049 1050static inline gfn_t 1051hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1052{ 1053 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1054 1055 return slot->base_gfn + gfn_offset; 1056} 1057 1058static inline gpa_t gfn_to_gpa(gfn_t gfn) 1059{ 1060 return (gpa_t)gfn << PAGE_SHIFT; 1061} 1062 1063static inline gfn_t gpa_to_gfn(gpa_t gpa) 1064{ 1065 return (gfn_t)(gpa >> PAGE_SHIFT); 1066} 1067 1068static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1069{ 1070 return (hpa_t)pfn << PAGE_SHIFT; 1071} 1072 1073static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1074 gpa_t gpa) 1075{ 1076 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1077} 1078 1079static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1080{ 1081 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1082 1083 return kvm_is_error_hva(hva); 1084} 1085 1086enum kvm_stat_kind { 1087 KVM_STAT_VM, 1088 KVM_STAT_VCPU, 1089}; 1090 1091struct kvm_stat_data { 1092 int offset; 1093 struct kvm *kvm; 1094}; 1095 1096struct kvm_stats_debugfs_item { 1097 const char *name; 1098 int offset; 1099 enum kvm_stat_kind kind; 1100}; 1101extern struct kvm_stats_debugfs_item debugfs_entries[]; 1102extern struct dentry *kvm_debugfs_dir; 1103 1104#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1105static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1106{ 1107 if (unlikely(kvm->mmu_notifier_count)) 1108 return 1; 1109 /* 1110 * Ensure the read of mmu_notifier_count happens before the read 1111 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1112 * mmu_notifier_invalidate_range_end to make sure that the caller 1113 * either sees the old (non-zero) value of mmu_notifier_count or 1114 * the new (incremented) value of mmu_notifier_seq. 1115 * PowerPC Book3s HV KVM calls this under a per-page lock 1116 * rather than under kvm->mmu_lock, for scalability, so 1117 * can't rely on kvm->mmu_lock to keep things ordered. 1118 */ 1119 smp_rmb(); 1120 if (kvm->mmu_notifier_seq != mmu_seq) 1121 return 1; 1122 return 0; 1123} 1124#endif 1125 1126#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1127 1128#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1129 1130bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1131int kvm_set_irq_routing(struct kvm *kvm, 1132 const struct kvm_irq_routing_entry *entries, 1133 unsigned nr, 1134 unsigned flags); 1135int kvm_set_routing_entry(struct kvm *kvm, 1136 struct kvm_kernel_irq_routing_entry *e, 1137 const struct kvm_irq_routing_entry *ue); 1138void kvm_free_irq_routing(struct kvm *kvm); 1139 1140#else 1141 1142static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1143 1144#endif 1145 1146int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1147 1148#ifdef CONFIG_HAVE_KVM_EVENTFD 1149 1150void kvm_eventfd_init(struct kvm *kvm); 1151int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1152 1153#ifdef CONFIG_HAVE_KVM_IRQFD 1154int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1155void kvm_irqfd_release(struct kvm *kvm); 1156void kvm_irq_routing_update(struct kvm *); 1157#else 1158static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1159{ 1160 return -EINVAL; 1161} 1162 1163static inline void kvm_irqfd_release(struct kvm *kvm) {} 1164#endif 1165 1166#else 1167 1168static inline void kvm_eventfd_init(struct kvm *kvm) {} 1169 1170static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1171{ 1172 return -EINVAL; 1173} 1174 1175static inline void kvm_irqfd_release(struct kvm *kvm) {} 1176 1177#ifdef CONFIG_HAVE_KVM_IRQCHIP 1178static inline void kvm_irq_routing_update(struct kvm *kvm) 1179{ 1180} 1181#endif 1182 1183static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1184{ 1185 return -ENOSYS; 1186} 1187 1188#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1189 1190void kvm_arch_irq_routing_update(struct kvm *kvm); 1191 1192static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1193{ 1194 /* 1195 * Ensure the rest of the request is published to kvm_check_request's 1196 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1197 */ 1198 smp_wmb(); 1199 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1200} 1201 1202static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1203{ 1204 return READ_ONCE(vcpu->requests); 1205} 1206 1207static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1208{ 1209 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1210} 1211 1212static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1213{ 1214 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1215} 1216 1217static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1218{ 1219 if (kvm_test_request(req, vcpu)) { 1220 kvm_clear_request(req, vcpu); 1221 1222 /* 1223 * Ensure the rest of the request is visible to kvm_check_request's 1224 * caller. Paired with the smp_wmb in kvm_make_request. 1225 */ 1226 smp_mb__after_atomic(); 1227 return true; 1228 } else { 1229 return false; 1230 } 1231} 1232 1233extern bool kvm_rebooting; 1234 1235extern unsigned int halt_poll_ns; 1236extern unsigned int halt_poll_ns_grow; 1237extern unsigned int halt_poll_ns_grow_start; 1238extern unsigned int halt_poll_ns_shrink; 1239 1240struct kvm_device { 1241 struct kvm_device_ops *ops; 1242 struct kvm *kvm; 1243 void *private; 1244 struct list_head vm_node; 1245}; 1246 1247/* create, destroy, and name are mandatory */ 1248struct kvm_device_ops { 1249 const char *name; 1250 1251 /* 1252 * create is called holding kvm->lock and any operations not suitable 1253 * to do while holding the lock should be deferred to init (see 1254 * below). 1255 */ 1256 int (*create)(struct kvm_device *dev, u32 type); 1257 1258 /* 1259 * init is called after create if create is successful and is called 1260 * outside of holding kvm->lock. 1261 */ 1262 void (*init)(struct kvm_device *dev); 1263 1264 /* 1265 * Destroy is responsible for freeing dev. 1266 * 1267 * Destroy may be called before or after destructors are called 1268 * on emulated I/O regions, depending on whether a reference is 1269 * held by a vcpu or other kvm component that gets destroyed 1270 * after the emulated I/O. 1271 */ 1272 void (*destroy)(struct kvm_device *dev); 1273 1274 /* 1275 * Release is an alternative method to free the device. It is 1276 * called when the device file descriptor is closed. Once 1277 * release is called, the destroy method will not be called 1278 * anymore as the device is removed from the device list of 1279 * the VM. kvm->lock is held. 1280 */ 1281 void (*release)(struct kvm_device *dev); 1282 1283 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1284 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1285 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1286 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1287 unsigned long arg); 1288 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1289}; 1290 1291void kvm_device_get(struct kvm_device *dev); 1292void kvm_device_put(struct kvm_device *dev); 1293struct kvm_device *kvm_device_from_filp(struct file *filp); 1294int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1295void kvm_unregister_device_ops(u32 type); 1296 1297extern struct kvm_device_ops kvm_mpic_ops; 1298extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1299extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1300 1301#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1302 1303static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1304{ 1305 vcpu->spin_loop.in_spin_loop = val; 1306} 1307static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1308{ 1309 vcpu->spin_loop.dy_eligible = val; 1310} 1311 1312#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1313 1314static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1315{ 1316} 1317 1318static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1319{ 1320} 1321#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1322 1323#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1324bool kvm_arch_has_irq_bypass(void); 1325int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1326 struct irq_bypass_producer *); 1327void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1328 struct irq_bypass_producer *); 1329void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1330void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1331int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1332 uint32_t guest_irq, bool set); 1333#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1334 1335#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1336/* If we wakeup during the poll time, was it a sucessful poll? */ 1337static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1338{ 1339 return vcpu->valid_wakeup; 1340} 1341 1342#else 1343static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1344{ 1345 return true; 1346} 1347#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1348 1349#ifdef CONFIG_HAVE_KVM_NO_POLL 1350/* Callback that tells if we must not poll */ 1351bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1352#else 1353static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1354{ 1355 return false; 1356} 1357#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1358 1359#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1360long kvm_arch_vcpu_async_ioctl(struct file *filp, 1361 unsigned int ioctl, unsigned long arg); 1362#else 1363static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1364 unsigned int ioctl, 1365 unsigned long arg) 1366{ 1367 return -ENOIOCTLCMD; 1368} 1369#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1370 1371int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1372 unsigned long start, unsigned long end, bool blockable); 1373 1374#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1375int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1376#else 1377static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1378{ 1379 return 0; 1380} 1381#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1382 1383#endif