at v5.3 42 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/types.h> 18#include <linux/scatterlist.h> 19#include <linux/list.h> 20#include <linux/timer.h> 21#include <linux/completion.h> 22#include <linux/device.h> 23#include <linux/mod_devicetable.h> 24#include <linux/interrupt.h> 25#include <linux/reciprocal_div.h> 26 27#define MAX_PAGE_BUFFER_COUNT 32 28#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 29 30#pragma pack(push, 1) 31 32/* Single-page buffer */ 33struct hv_page_buffer { 34 u32 len; 35 u32 offset; 36 u64 pfn; 37}; 38 39/* Multiple-page buffer */ 40struct hv_multipage_buffer { 41 /* Length and Offset determines the # of pfns in the array */ 42 u32 len; 43 u32 offset; 44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 45}; 46 47/* 48 * Multiple-page buffer array; the pfn array is variable size: 49 * The number of entries in the PFN array is determined by 50 * "len" and "offset". 51 */ 52struct hv_mpb_array { 53 /* Length and Offset determines the # of pfns in the array */ 54 u32 len; 55 u32 offset; 56 u64 pfn_array[]; 57}; 58 59/* 0x18 includes the proprietary packet header */ 60#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 61 (sizeof(struct hv_page_buffer) * \ 62 MAX_PAGE_BUFFER_COUNT)) 63#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 64 sizeof(struct hv_multipage_buffer)) 65 66 67#pragma pack(pop) 68 69struct hv_ring_buffer { 70 /* Offset in bytes from the start of ring data below */ 71 u32 write_index; 72 73 /* Offset in bytes from the start of ring data below */ 74 u32 read_index; 75 76 u32 interrupt_mask; 77 78 /* 79 * WS2012/Win8 and later versions of Hyper-V implement interrupt 80 * driven flow management. The feature bit feat_pending_send_sz 81 * is set by the host on the host->guest ring buffer, and by the 82 * guest on the guest->host ring buffer. 83 * 84 * The meaning of the feature bit is a bit complex in that it has 85 * semantics that apply to both ring buffers. If the guest sets 86 * the feature bit in the guest->host ring buffer, the guest is 87 * telling the host that: 88 * 1) It will set the pending_send_sz field in the guest->host ring 89 * buffer when it is waiting for space to become available, and 90 * 2) It will read the pending_send_sz field in the host->guest 91 * ring buffer and interrupt the host when it frees enough space 92 * 93 * Similarly, if the host sets the feature bit in the host->guest 94 * ring buffer, the host is telling the guest that: 95 * 1) It will set the pending_send_sz field in the host->guest ring 96 * buffer when it is waiting for space to become available, and 97 * 2) It will read the pending_send_sz field in the guest->host 98 * ring buffer and interrupt the guest when it frees enough space 99 * 100 * If either the guest or host does not set the feature bit that it 101 * owns, that guest or host must do polling if it encounters a full 102 * ring buffer, and not signal the other end with an interrupt. 103 */ 104 u32 pending_send_sz; 105 u32 reserved1[12]; 106 union { 107 struct { 108 u32 feat_pending_send_sz:1; 109 }; 110 u32 value; 111 } feature_bits; 112 113 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 114 u8 reserved2[4028]; 115 116 /* 117 * Ring data starts here + RingDataStartOffset 118 * !!! DO NOT place any fields below this !!! 119 */ 120 u8 buffer[0]; 121} __packed; 122 123struct hv_ring_buffer_info { 124 struct hv_ring_buffer *ring_buffer; 125 u32 ring_size; /* Include the shared header */ 126 struct reciprocal_value ring_size_div10_reciprocal; 127 spinlock_t ring_lock; 128 129 u32 ring_datasize; /* < ring_size */ 130 u32 priv_read_index; 131 /* 132 * The ring buffer mutex lock. This lock prevents the ring buffer from 133 * being freed while the ring buffer is being accessed. 134 */ 135 struct mutex ring_buffer_mutex; 136}; 137 138 139static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 140{ 141 u32 read_loc, write_loc, dsize, read; 142 143 dsize = rbi->ring_datasize; 144 read_loc = rbi->ring_buffer->read_index; 145 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 146 147 read = write_loc >= read_loc ? (write_loc - read_loc) : 148 (dsize - read_loc) + write_loc; 149 150 return read; 151} 152 153static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 154{ 155 u32 read_loc, write_loc, dsize, write; 156 157 dsize = rbi->ring_datasize; 158 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 159 write_loc = rbi->ring_buffer->write_index; 160 161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 162 read_loc - write_loc; 163 return write; 164} 165 166static inline u32 hv_get_avail_to_write_percent( 167 const struct hv_ring_buffer_info *rbi) 168{ 169 u32 avail_write = hv_get_bytes_to_write(rbi); 170 171 return reciprocal_divide( 172 (avail_write << 3) + (avail_write << 1), 173 rbi->ring_size_div10_reciprocal); 174} 175 176/* 177 * VMBUS version is 32 bit entity broken up into 178 * two 16 bit quantities: major_number. minor_number. 179 * 180 * 0 . 13 (Windows Server 2008) 181 * 1 . 1 (Windows 7) 182 * 2 . 4 (Windows 8) 183 * 3 . 0 (Windows 8 R2) 184 * 4 . 0 (Windows 10) 185 * 5 . 0 (Newer Windows 10) 186 */ 187 188#define VERSION_WS2008 ((0 << 16) | (13)) 189#define VERSION_WIN7 ((1 << 16) | (1)) 190#define VERSION_WIN8 ((2 << 16) | (4)) 191#define VERSION_WIN8_1 ((3 << 16) | (0)) 192#define VERSION_WIN10 ((4 << 16) | (0)) 193#define VERSION_WIN10_V5 ((5 << 16) | (0)) 194 195#define VERSION_INVAL -1 196 197#define VERSION_CURRENT VERSION_WIN10_V5 198 199/* Make maximum size of pipe payload of 16K */ 200#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 201 202/* Define PipeMode values. */ 203#define VMBUS_PIPE_TYPE_BYTE 0x00000000 204#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 205 206/* The size of the user defined data buffer for non-pipe offers. */ 207#define MAX_USER_DEFINED_BYTES 120 208 209/* The size of the user defined data buffer for pipe offers. */ 210#define MAX_PIPE_USER_DEFINED_BYTES 116 211 212/* 213 * At the center of the Channel Management library is the Channel Offer. This 214 * struct contains the fundamental information about an offer. 215 */ 216struct vmbus_channel_offer { 217 guid_t if_type; 218 guid_t if_instance; 219 220 /* 221 * These two fields are not currently used. 222 */ 223 u64 reserved1; 224 u64 reserved2; 225 226 u16 chn_flags; 227 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 228 229 union { 230 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 231 struct { 232 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 233 } std; 234 235 /* 236 * Pipes: 237 * The following sructure is an integrated pipe protocol, which 238 * is implemented on top of standard user-defined data. Pipe 239 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 240 * use. 241 */ 242 struct { 243 u32 pipe_mode; 244 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 245 } pipe; 246 } u; 247 /* 248 * The sub_channel_index is defined in win8. 249 */ 250 u16 sub_channel_index; 251 u16 reserved3; 252} __packed; 253 254/* Server Flags */ 255#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 256#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 257#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 258#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 259#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 260#define VMBUS_CHANNEL_PARENT_OFFER 0x200 261#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 262#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 263 264struct vmpacket_descriptor { 265 u16 type; 266 u16 offset8; 267 u16 len8; 268 u16 flags; 269 u64 trans_id; 270} __packed; 271 272struct vmpacket_header { 273 u32 prev_pkt_start_offset; 274 struct vmpacket_descriptor descriptor; 275} __packed; 276 277struct vmtransfer_page_range { 278 u32 byte_count; 279 u32 byte_offset; 280} __packed; 281 282struct vmtransfer_page_packet_header { 283 struct vmpacket_descriptor d; 284 u16 xfer_pageset_id; 285 u8 sender_owns_set; 286 u8 reserved; 287 u32 range_cnt; 288 struct vmtransfer_page_range ranges[1]; 289} __packed; 290 291struct vmgpadl_packet_header { 292 struct vmpacket_descriptor d; 293 u32 gpadl; 294 u32 reserved; 295} __packed; 296 297struct vmadd_remove_transfer_page_set { 298 struct vmpacket_descriptor d; 299 u32 gpadl; 300 u16 xfer_pageset_id; 301 u16 reserved; 302} __packed; 303 304/* 305 * This structure defines a range in guest physical space that can be made to 306 * look virtually contiguous. 307 */ 308struct gpa_range { 309 u32 byte_count; 310 u32 byte_offset; 311 u64 pfn_array[0]; 312}; 313 314/* 315 * This is the format for an Establish Gpadl packet, which contains a handle by 316 * which this GPADL will be known and a set of GPA ranges associated with it. 317 * This can be converted to a MDL by the guest OS. If there are multiple GPA 318 * ranges, then the resulting MDL will be "chained," representing multiple VA 319 * ranges. 320 */ 321struct vmestablish_gpadl { 322 struct vmpacket_descriptor d; 323 u32 gpadl; 324 u32 range_cnt; 325 struct gpa_range range[1]; 326} __packed; 327 328/* 329 * This is the format for a Teardown Gpadl packet, which indicates that the 330 * GPADL handle in the Establish Gpadl packet will never be referenced again. 331 */ 332struct vmteardown_gpadl { 333 struct vmpacket_descriptor d; 334 u32 gpadl; 335 u32 reserved; /* for alignment to a 8-byte boundary */ 336} __packed; 337 338/* 339 * This is the format for a GPA-Direct packet, which contains a set of GPA 340 * ranges, in addition to commands and/or data. 341 */ 342struct vmdata_gpa_direct { 343 struct vmpacket_descriptor d; 344 u32 reserved; 345 u32 range_cnt; 346 struct gpa_range range[1]; 347} __packed; 348 349/* This is the format for a Additional Data Packet. */ 350struct vmadditional_data { 351 struct vmpacket_descriptor d; 352 u64 total_bytes; 353 u32 offset; 354 u32 byte_cnt; 355 unsigned char data[1]; 356} __packed; 357 358union vmpacket_largest_possible_header { 359 struct vmpacket_descriptor simple_hdr; 360 struct vmtransfer_page_packet_header xfer_page_hdr; 361 struct vmgpadl_packet_header gpadl_hdr; 362 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 363 struct vmestablish_gpadl establish_gpadl_hdr; 364 struct vmteardown_gpadl teardown_gpadl_hdr; 365 struct vmdata_gpa_direct data_gpa_direct_hdr; 366}; 367 368#define VMPACKET_DATA_START_ADDRESS(__packet) \ 369 (void *)(((unsigned char *)__packet) + \ 370 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 371 372#define VMPACKET_DATA_LENGTH(__packet) \ 373 ((((struct vmpacket_descriptor)__packet)->len8 - \ 374 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 375 376#define VMPACKET_TRANSFER_MODE(__packet) \ 377 (((struct IMPACT)__packet)->type) 378 379enum vmbus_packet_type { 380 VM_PKT_INVALID = 0x0, 381 VM_PKT_SYNCH = 0x1, 382 VM_PKT_ADD_XFER_PAGESET = 0x2, 383 VM_PKT_RM_XFER_PAGESET = 0x3, 384 VM_PKT_ESTABLISH_GPADL = 0x4, 385 VM_PKT_TEARDOWN_GPADL = 0x5, 386 VM_PKT_DATA_INBAND = 0x6, 387 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 388 VM_PKT_DATA_USING_GPADL = 0x8, 389 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 390 VM_PKT_CANCEL_REQUEST = 0xa, 391 VM_PKT_COMP = 0xb, 392 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 393 VM_PKT_ADDITIONAL_DATA = 0xd 394}; 395 396#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 397 398 399/* Version 1 messages */ 400enum vmbus_channel_message_type { 401 CHANNELMSG_INVALID = 0, 402 CHANNELMSG_OFFERCHANNEL = 1, 403 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 404 CHANNELMSG_REQUESTOFFERS = 3, 405 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 406 CHANNELMSG_OPENCHANNEL = 5, 407 CHANNELMSG_OPENCHANNEL_RESULT = 6, 408 CHANNELMSG_CLOSECHANNEL = 7, 409 CHANNELMSG_GPADL_HEADER = 8, 410 CHANNELMSG_GPADL_BODY = 9, 411 CHANNELMSG_GPADL_CREATED = 10, 412 CHANNELMSG_GPADL_TEARDOWN = 11, 413 CHANNELMSG_GPADL_TORNDOWN = 12, 414 CHANNELMSG_RELID_RELEASED = 13, 415 CHANNELMSG_INITIATE_CONTACT = 14, 416 CHANNELMSG_VERSION_RESPONSE = 15, 417 CHANNELMSG_UNLOAD = 16, 418 CHANNELMSG_UNLOAD_RESPONSE = 17, 419 CHANNELMSG_18 = 18, 420 CHANNELMSG_19 = 19, 421 CHANNELMSG_20 = 20, 422 CHANNELMSG_TL_CONNECT_REQUEST = 21, 423 CHANNELMSG_COUNT 424}; 425 426struct vmbus_channel_message_header { 427 enum vmbus_channel_message_type msgtype; 428 u32 padding; 429} __packed; 430 431/* Query VMBus Version parameters */ 432struct vmbus_channel_query_vmbus_version { 433 struct vmbus_channel_message_header header; 434 u32 version; 435} __packed; 436 437/* VMBus Version Supported parameters */ 438struct vmbus_channel_version_supported { 439 struct vmbus_channel_message_header header; 440 u8 version_supported; 441} __packed; 442 443/* Offer Channel parameters */ 444struct vmbus_channel_offer_channel { 445 struct vmbus_channel_message_header header; 446 struct vmbus_channel_offer offer; 447 u32 child_relid; 448 u8 monitorid; 449 /* 450 * win7 and beyond splits this field into a bit field. 451 */ 452 u8 monitor_allocated:1; 453 u8 reserved:7; 454 /* 455 * These are new fields added in win7 and later. 456 * Do not access these fields without checking the 457 * negotiated protocol. 458 * 459 * If "is_dedicated_interrupt" is set, we must not set the 460 * associated bit in the channel bitmap while sending the 461 * interrupt to the host. 462 * 463 * connection_id is to be used in signaling the host. 464 */ 465 u16 is_dedicated_interrupt:1; 466 u16 reserved1:15; 467 u32 connection_id; 468} __packed; 469 470/* Rescind Offer parameters */ 471struct vmbus_channel_rescind_offer { 472 struct vmbus_channel_message_header header; 473 u32 child_relid; 474} __packed; 475 476static inline u32 477hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi) 478{ 479 return rbi->ring_buffer->pending_send_sz; 480} 481 482/* 483 * Request Offer -- no parameters, SynIC message contains the partition ID 484 * Set Snoop -- no parameters, SynIC message contains the partition ID 485 * Clear Snoop -- no parameters, SynIC message contains the partition ID 486 * All Offers Delivered -- no parameters, SynIC message contains the partition 487 * ID 488 * Flush Client -- no parameters, SynIC message contains the partition ID 489 */ 490 491/* Open Channel parameters */ 492struct vmbus_channel_open_channel { 493 struct vmbus_channel_message_header header; 494 495 /* Identifies the specific VMBus channel that is being opened. */ 496 u32 child_relid; 497 498 /* ID making a particular open request at a channel offer unique. */ 499 u32 openid; 500 501 /* GPADL for the channel's ring buffer. */ 502 u32 ringbuffer_gpadlhandle; 503 504 /* 505 * Starting with win8, this field will be used to specify 506 * the target virtual processor on which to deliver the interrupt for 507 * the host to guest communication. 508 * Prior to win8, incoming channel interrupts would only 509 * be delivered on cpu 0. Setting this value to 0 would 510 * preserve the earlier behavior. 511 */ 512 u32 target_vp; 513 514 /* 515 * The upstream ring buffer begins at offset zero in the memory 516 * described by RingBufferGpadlHandle. The downstream ring buffer 517 * follows it at this offset (in pages). 518 */ 519 u32 downstream_ringbuffer_pageoffset; 520 521 /* User-specific data to be passed along to the server endpoint. */ 522 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 523} __packed; 524 525/* Open Channel Result parameters */ 526struct vmbus_channel_open_result { 527 struct vmbus_channel_message_header header; 528 u32 child_relid; 529 u32 openid; 530 u32 status; 531} __packed; 532 533/* Close channel parameters; */ 534struct vmbus_channel_close_channel { 535 struct vmbus_channel_message_header header; 536 u32 child_relid; 537} __packed; 538 539/* Channel Message GPADL */ 540#define GPADL_TYPE_RING_BUFFER 1 541#define GPADL_TYPE_SERVER_SAVE_AREA 2 542#define GPADL_TYPE_TRANSACTION 8 543 544/* 545 * The number of PFNs in a GPADL message is defined by the number of 546 * pages that would be spanned by ByteCount and ByteOffset. If the 547 * implied number of PFNs won't fit in this packet, there will be a 548 * follow-up packet that contains more. 549 */ 550struct vmbus_channel_gpadl_header { 551 struct vmbus_channel_message_header header; 552 u32 child_relid; 553 u32 gpadl; 554 u16 range_buflen; 555 u16 rangecount; 556 struct gpa_range range[0]; 557} __packed; 558 559/* This is the followup packet that contains more PFNs. */ 560struct vmbus_channel_gpadl_body { 561 struct vmbus_channel_message_header header; 562 u32 msgnumber; 563 u32 gpadl; 564 u64 pfn[0]; 565} __packed; 566 567struct vmbus_channel_gpadl_created { 568 struct vmbus_channel_message_header header; 569 u32 child_relid; 570 u32 gpadl; 571 u32 creation_status; 572} __packed; 573 574struct vmbus_channel_gpadl_teardown { 575 struct vmbus_channel_message_header header; 576 u32 child_relid; 577 u32 gpadl; 578} __packed; 579 580struct vmbus_channel_gpadl_torndown { 581 struct vmbus_channel_message_header header; 582 u32 gpadl; 583} __packed; 584 585struct vmbus_channel_relid_released { 586 struct vmbus_channel_message_header header; 587 u32 child_relid; 588} __packed; 589 590struct vmbus_channel_initiate_contact { 591 struct vmbus_channel_message_header header; 592 u32 vmbus_version_requested; 593 u32 target_vcpu; /* The VCPU the host should respond to */ 594 union { 595 u64 interrupt_page; 596 struct { 597 u8 msg_sint; 598 u8 padding1[3]; 599 u32 padding2; 600 }; 601 }; 602 u64 monitor_page1; 603 u64 monitor_page2; 604} __packed; 605 606/* Hyper-V socket: guest's connect()-ing to host */ 607struct vmbus_channel_tl_connect_request { 608 struct vmbus_channel_message_header header; 609 guid_t guest_endpoint_id; 610 guid_t host_service_id; 611} __packed; 612 613struct vmbus_channel_version_response { 614 struct vmbus_channel_message_header header; 615 u8 version_supported; 616 617 u8 connection_state; 618 u16 padding; 619 620 /* 621 * On new hosts that support VMBus protocol 5.0, we must use 622 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 623 * and for subsequent messages, we must use the Message Connection ID 624 * field in the host-returned Version Response Message. 625 * 626 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 627 */ 628 u32 msg_conn_id; 629} __packed; 630 631enum vmbus_channel_state { 632 CHANNEL_OFFER_STATE, 633 CHANNEL_OPENING_STATE, 634 CHANNEL_OPEN_STATE, 635 CHANNEL_OPENED_STATE, 636}; 637 638/* 639 * Represents each channel msg on the vmbus connection This is a 640 * variable-size data structure depending on the msg type itself 641 */ 642struct vmbus_channel_msginfo { 643 /* Bookkeeping stuff */ 644 struct list_head msglistentry; 645 646 /* So far, this is only used to handle gpadl body message */ 647 struct list_head submsglist; 648 649 /* Synchronize the request/response if needed */ 650 struct completion waitevent; 651 struct vmbus_channel *waiting_channel; 652 union { 653 struct vmbus_channel_version_supported version_supported; 654 struct vmbus_channel_open_result open_result; 655 struct vmbus_channel_gpadl_torndown gpadl_torndown; 656 struct vmbus_channel_gpadl_created gpadl_created; 657 struct vmbus_channel_version_response version_response; 658 } response; 659 660 u32 msgsize; 661 /* 662 * The channel message that goes out on the "wire". 663 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 664 */ 665 unsigned char msg[0]; 666}; 667 668struct vmbus_close_msg { 669 struct vmbus_channel_msginfo info; 670 struct vmbus_channel_close_channel msg; 671}; 672 673/* Define connection identifier type. */ 674union hv_connection_id { 675 u32 asu32; 676 struct { 677 u32 id:24; 678 u32 reserved:8; 679 } u; 680}; 681 682enum hv_numa_policy { 683 HV_BALANCED = 0, 684 HV_LOCALIZED, 685}; 686 687enum vmbus_device_type { 688 HV_IDE = 0, 689 HV_SCSI, 690 HV_FC, 691 HV_NIC, 692 HV_ND, 693 HV_PCIE, 694 HV_FB, 695 HV_KBD, 696 HV_MOUSE, 697 HV_KVP, 698 HV_TS, 699 HV_HB, 700 HV_SHUTDOWN, 701 HV_FCOPY, 702 HV_BACKUP, 703 HV_DM, 704 HV_UNKNOWN, 705}; 706 707struct vmbus_device { 708 u16 dev_type; 709 guid_t guid; 710 bool perf_device; 711}; 712 713struct vmbus_channel { 714 struct list_head listentry; 715 716 struct hv_device *device_obj; 717 718 enum vmbus_channel_state state; 719 720 struct vmbus_channel_offer_channel offermsg; 721 /* 722 * These are based on the OfferMsg.MonitorId. 723 * Save it here for easy access. 724 */ 725 u8 monitor_grp; 726 u8 monitor_bit; 727 728 bool rescind; /* got rescind msg */ 729 struct completion rescind_event; 730 731 u32 ringbuffer_gpadlhandle; 732 733 /* Allocated memory for ring buffer */ 734 struct page *ringbuffer_page; 735 u32 ringbuffer_pagecount; 736 u32 ringbuffer_send_offset; 737 struct hv_ring_buffer_info outbound; /* send to parent */ 738 struct hv_ring_buffer_info inbound; /* receive from parent */ 739 740 struct vmbus_close_msg close_msg; 741 742 /* Statistics */ 743 u64 interrupts; /* Host to Guest interrupts */ 744 u64 sig_events; /* Guest to Host events */ 745 746 /* 747 * Guest to host interrupts caused by the outbound ring buffer changing 748 * from empty to not empty. 749 */ 750 u64 intr_out_empty; 751 752 /* 753 * Indicates that a full outbound ring buffer was encountered. The flag 754 * is set to true when a full outbound ring buffer is encountered and 755 * set to false when a write to the outbound ring buffer is completed. 756 */ 757 bool out_full_flag; 758 759 /* Channel callback's invoked in softirq context */ 760 struct tasklet_struct callback_event; 761 void (*onchannel_callback)(void *context); 762 void *channel_callback_context; 763 764 /* 765 * A channel can be marked for one of three modes of reading: 766 * BATCHED - callback called from taslket and should read 767 * channel until empty. Interrupts from the host 768 * are masked while read is in process (default). 769 * DIRECT - callback called from tasklet (softirq). 770 * ISR - callback called in interrupt context and must 771 * invoke its own deferred processing. 772 * Host interrupts are disabled and must be re-enabled 773 * when ring is empty. 774 */ 775 enum hv_callback_mode { 776 HV_CALL_BATCHED, 777 HV_CALL_DIRECT, 778 HV_CALL_ISR 779 } callback_mode; 780 781 bool is_dedicated_interrupt; 782 u64 sig_event; 783 784 /* 785 * Starting with win8, this field will be used to specify 786 * the target virtual processor on which to deliver the interrupt for 787 * the host to guest communication. 788 * Prior to win8, incoming channel interrupts would only 789 * be delivered on cpu 0. Setting this value to 0 would 790 * preserve the earlier behavior. 791 */ 792 u32 target_vp; 793 /* The corresponding CPUID in the guest */ 794 u32 target_cpu; 795 /* 796 * State to manage the CPU affiliation of channels. 797 */ 798 struct cpumask alloced_cpus_in_node; 799 int numa_node; 800 /* 801 * Support for sub-channels. For high performance devices, 802 * it will be useful to have multiple sub-channels to support 803 * a scalable communication infrastructure with the host. 804 * The support for sub-channels is implemented as an extention 805 * to the current infrastructure. 806 * The initial offer is considered the primary channel and this 807 * offer message will indicate if the host supports sub-channels. 808 * The guest is free to ask for sub-channels to be offerred and can 809 * open these sub-channels as a normal "primary" channel. However, 810 * all sub-channels will have the same type and instance guids as the 811 * primary channel. Requests sent on a given channel will result in a 812 * response on the same channel. 813 */ 814 815 /* 816 * Sub-channel creation callback. This callback will be called in 817 * process context when a sub-channel offer is received from the host. 818 * The guest can open the sub-channel in the context of this callback. 819 */ 820 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 821 822 /* 823 * Channel rescind callback. Some channels (the hvsock ones), need to 824 * register a callback which is invoked in vmbus_onoffer_rescind(). 825 */ 826 void (*chn_rescind_callback)(struct vmbus_channel *channel); 827 828 /* 829 * The spinlock to protect the structure. It is being used to protect 830 * test-and-set access to various attributes of the structure as well 831 * as all sc_list operations. 832 */ 833 spinlock_t lock; 834 /* 835 * All Sub-channels of a primary channel are linked here. 836 */ 837 struct list_head sc_list; 838 /* 839 * The primary channel this sub-channel belongs to. 840 * This will be NULL for the primary channel. 841 */ 842 struct vmbus_channel *primary_channel; 843 /* 844 * Support per-channel state for use by vmbus drivers. 845 */ 846 void *per_channel_state; 847 /* 848 * To support per-cpu lookup mapping of relid to channel, 849 * link up channels based on their CPU affinity. 850 */ 851 struct list_head percpu_list; 852 853 /* 854 * Defer freeing channel until after all cpu's have 855 * gone through grace period. 856 */ 857 struct rcu_head rcu; 858 859 /* 860 * For sysfs per-channel properties. 861 */ 862 struct kobject kobj; 863 864 /* 865 * For performance critical channels (storage, networking 866 * etc,), Hyper-V has a mechanism to enhance the throughput 867 * at the expense of latency: 868 * When the host is to be signaled, we just set a bit in a shared page 869 * and this bit will be inspected by the hypervisor within a certain 870 * window and if the bit is set, the host will be signaled. The window 871 * of time is the monitor latency - currently around 100 usecs. This 872 * mechanism improves throughput by: 873 * 874 * A) Making the host more efficient - each time it wakes up, 875 * potentially it will process morev number of packets. The 876 * monitor latency allows a batch to build up. 877 * B) By deferring the hypercall to signal, we will also minimize 878 * the interrupts. 879 * 880 * Clearly, these optimizations improve throughput at the expense of 881 * latency. Furthermore, since the channel is shared for both 882 * control and data messages, control messages currently suffer 883 * unnecessary latency adversley impacting performance and boot 884 * time. To fix this issue, permit tagging the channel as being 885 * in "low latency" mode. In this mode, we will bypass the monitor 886 * mechanism. 887 */ 888 bool low_latency; 889 890 /* 891 * NUMA distribution policy: 892 * We support two policies: 893 * 1) Balanced: Here all performance critical channels are 894 * distributed evenly amongst all the NUMA nodes. 895 * This policy will be the default policy. 896 * 2) Localized: All channels of a given instance of a 897 * performance critical service will be assigned CPUs 898 * within a selected NUMA node. 899 */ 900 enum hv_numa_policy affinity_policy; 901 902 bool probe_done; 903 904 /* 905 * We must offload the handling of the primary/sub channels 906 * from the single-threaded vmbus_connection.work_queue to 907 * two different workqueue, otherwise we can block 908 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 909 */ 910 struct work_struct add_channel_work; 911 912 /* 913 * Guest to host interrupts caused by the inbound ring buffer changing 914 * from full to not full while a packet is waiting. 915 */ 916 u64 intr_in_full; 917 918 /* 919 * The total number of write operations that encountered a full 920 * outbound ring buffer. 921 */ 922 u64 out_full_total; 923 924 /* 925 * The number of write operations that were the first to encounter a 926 * full outbound ring buffer. 927 */ 928 u64 out_full_first; 929}; 930 931static inline bool is_hvsock_channel(const struct vmbus_channel *c) 932{ 933 return !!(c->offermsg.offer.chn_flags & 934 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 935} 936 937static inline void set_channel_affinity_state(struct vmbus_channel *c, 938 enum hv_numa_policy policy) 939{ 940 c->affinity_policy = policy; 941} 942 943static inline void set_channel_read_mode(struct vmbus_channel *c, 944 enum hv_callback_mode mode) 945{ 946 c->callback_mode = mode; 947} 948 949static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 950{ 951 c->per_channel_state = s; 952} 953 954static inline void *get_per_channel_state(struct vmbus_channel *c) 955{ 956 return c->per_channel_state; 957} 958 959static inline void set_channel_pending_send_size(struct vmbus_channel *c, 960 u32 size) 961{ 962 unsigned long flags; 963 964 if (size) { 965 spin_lock_irqsave(&c->outbound.ring_lock, flags); 966 ++c->out_full_total; 967 968 if (!c->out_full_flag) { 969 ++c->out_full_first; 970 c->out_full_flag = true; 971 } 972 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 973 } else { 974 c->out_full_flag = false; 975 } 976 977 c->outbound.ring_buffer->pending_send_sz = size; 978} 979 980static inline void set_low_latency_mode(struct vmbus_channel *c) 981{ 982 c->low_latency = true; 983} 984 985static inline void clear_low_latency_mode(struct vmbus_channel *c) 986{ 987 c->low_latency = false; 988} 989 990void vmbus_onmessage(void *context); 991 992int vmbus_request_offers(void); 993 994/* 995 * APIs for managing sub-channels. 996 */ 997 998void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 999 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1000 1001void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1002 void (*chn_rescind_cb)(struct vmbus_channel *)); 1003 1004/* 1005 * Check if sub-channels have already been offerred. This API will be useful 1006 * when the driver is unloaded after establishing sub-channels. In this case, 1007 * when the driver is re-loaded, the driver would have to check if the 1008 * subchannels have already been established before attempting to request 1009 * the creation of sub-channels. 1010 * This function returns TRUE to indicate that subchannels have already been 1011 * created. 1012 * This function should be invoked after setting the callback function for 1013 * sub-channel creation. 1014 */ 1015bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1016 1017/* The format must be the same as struct vmdata_gpa_direct */ 1018struct vmbus_channel_packet_page_buffer { 1019 u16 type; 1020 u16 dataoffset8; 1021 u16 length8; 1022 u16 flags; 1023 u64 transactionid; 1024 u32 reserved; 1025 u32 rangecount; 1026 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1027} __packed; 1028 1029/* The format must be the same as struct vmdata_gpa_direct */ 1030struct vmbus_channel_packet_multipage_buffer { 1031 u16 type; 1032 u16 dataoffset8; 1033 u16 length8; 1034 u16 flags; 1035 u64 transactionid; 1036 u32 reserved; 1037 u32 rangecount; /* Always 1 in this case */ 1038 struct hv_multipage_buffer range; 1039} __packed; 1040 1041/* The format must be the same as struct vmdata_gpa_direct */ 1042struct vmbus_packet_mpb_array { 1043 u16 type; 1044 u16 dataoffset8; 1045 u16 length8; 1046 u16 flags; 1047 u64 transactionid; 1048 u32 reserved; 1049 u32 rangecount; /* Always 1 in this case */ 1050 struct hv_mpb_array range; 1051} __packed; 1052 1053int vmbus_alloc_ring(struct vmbus_channel *channel, 1054 u32 send_size, u32 recv_size); 1055void vmbus_free_ring(struct vmbus_channel *channel); 1056 1057int vmbus_connect_ring(struct vmbus_channel *channel, 1058 void (*onchannel_callback)(void *context), 1059 void *context); 1060int vmbus_disconnect_ring(struct vmbus_channel *channel); 1061 1062extern int vmbus_open(struct vmbus_channel *channel, 1063 u32 send_ringbuffersize, 1064 u32 recv_ringbuffersize, 1065 void *userdata, 1066 u32 userdatalen, 1067 void (*onchannel_callback)(void *context), 1068 void *context); 1069 1070extern void vmbus_close(struct vmbus_channel *channel); 1071 1072extern int vmbus_sendpacket(struct vmbus_channel *channel, 1073 void *buffer, 1074 u32 bufferLen, 1075 u64 requestid, 1076 enum vmbus_packet_type type, 1077 u32 flags); 1078 1079extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1080 struct hv_page_buffer pagebuffers[], 1081 u32 pagecount, 1082 void *buffer, 1083 u32 bufferlen, 1084 u64 requestid); 1085 1086extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1087 struct vmbus_packet_mpb_array *mpb, 1088 u32 desc_size, 1089 void *buffer, 1090 u32 bufferlen, 1091 u64 requestid); 1092 1093extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1094 void *kbuffer, 1095 u32 size, 1096 u32 *gpadl_handle); 1097 1098extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1099 u32 gpadl_handle); 1100 1101void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1102 1103extern int vmbus_recvpacket(struct vmbus_channel *channel, 1104 void *buffer, 1105 u32 bufferlen, 1106 u32 *buffer_actual_len, 1107 u64 *requestid); 1108 1109extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1110 void *buffer, 1111 u32 bufferlen, 1112 u32 *buffer_actual_len, 1113 u64 *requestid); 1114 1115 1116extern void vmbus_ontimer(unsigned long data); 1117 1118/* Base driver object */ 1119struct hv_driver { 1120 const char *name; 1121 1122 /* 1123 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1124 * channel flag, actually doesn't mean a synthetic device because the 1125 * offer's if_type/if_instance can change for every new hvsock 1126 * connection. 1127 * 1128 * However, to facilitate the notification of new-offer/rescind-offer 1129 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1130 * a special vmbus device, and hence we need the below flag to 1131 * indicate if the driver is the hvsock driver or not: we need to 1132 * specially treat the hvosck offer & driver in vmbus_match(). 1133 */ 1134 bool hvsock; 1135 1136 /* the device type supported by this driver */ 1137 guid_t dev_type; 1138 const struct hv_vmbus_device_id *id_table; 1139 1140 struct device_driver driver; 1141 1142 /* dynamic device GUID's */ 1143 struct { 1144 spinlock_t lock; 1145 struct list_head list; 1146 } dynids; 1147 1148 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1149 int (*remove)(struct hv_device *); 1150 void (*shutdown)(struct hv_device *); 1151 1152}; 1153 1154/* Base device object */ 1155struct hv_device { 1156 /* the device type id of this device */ 1157 guid_t dev_type; 1158 1159 /* the device instance id of this device */ 1160 guid_t dev_instance; 1161 u16 vendor_id; 1162 u16 device_id; 1163 1164 struct device device; 1165 char *driver_override; /* Driver name to force a match */ 1166 1167 struct vmbus_channel *channel; 1168 struct kset *channels_kset; 1169}; 1170 1171 1172static inline struct hv_device *device_to_hv_device(struct device *d) 1173{ 1174 return container_of(d, struct hv_device, device); 1175} 1176 1177static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1178{ 1179 return container_of(d, struct hv_driver, driver); 1180} 1181 1182static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1183{ 1184 dev_set_drvdata(&dev->device, data); 1185} 1186 1187static inline void *hv_get_drvdata(struct hv_device *dev) 1188{ 1189 return dev_get_drvdata(&dev->device); 1190} 1191 1192struct hv_ring_buffer_debug_info { 1193 u32 current_interrupt_mask; 1194 u32 current_read_index; 1195 u32 current_write_index; 1196 u32 bytes_avail_toread; 1197 u32 bytes_avail_towrite; 1198}; 1199 1200 1201int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1202 struct hv_ring_buffer_debug_info *debug_info); 1203 1204/* Vmbus interface */ 1205#define vmbus_driver_register(driver) \ 1206 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1207int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1208 struct module *owner, 1209 const char *mod_name); 1210void vmbus_driver_unregister(struct hv_driver *hv_driver); 1211 1212void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1213 1214int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1215 resource_size_t min, resource_size_t max, 1216 resource_size_t size, resource_size_t align, 1217 bool fb_overlap_ok); 1218void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1219 1220/* 1221 * GUID definitions of various offer types - services offered to the guest. 1222 */ 1223 1224/* 1225 * Network GUID 1226 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1227 */ 1228#define HV_NIC_GUID \ 1229 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1230 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1231 1232/* 1233 * IDE GUID 1234 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1235 */ 1236#define HV_IDE_GUID \ 1237 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1238 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1239 1240/* 1241 * SCSI GUID 1242 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1243 */ 1244#define HV_SCSI_GUID \ 1245 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1246 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1247 1248/* 1249 * Shutdown GUID 1250 * {0e0b6031-5213-4934-818b-38d90ced39db} 1251 */ 1252#define HV_SHUTDOWN_GUID \ 1253 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1254 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1255 1256/* 1257 * Time Synch GUID 1258 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1259 */ 1260#define HV_TS_GUID \ 1261 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1262 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1263 1264/* 1265 * Heartbeat GUID 1266 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1267 */ 1268#define HV_HEART_BEAT_GUID \ 1269 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1270 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1271 1272/* 1273 * KVP GUID 1274 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1275 */ 1276#define HV_KVP_GUID \ 1277 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1278 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1279 1280/* 1281 * Dynamic memory GUID 1282 * {525074dc-8985-46e2-8057-a307dc18a502} 1283 */ 1284#define HV_DM_GUID \ 1285 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1286 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1287 1288/* 1289 * Mouse GUID 1290 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1291 */ 1292#define HV_MOUSE_GUID \ 1293 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1294 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1295 1296/* 1297 * Keyboard GUID 1298 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1299 */ 1300#define HV_KBD_GUID \ 1301 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1302 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1303 1304/* 1305 * VSS (Backup/Restore) GUID 1306 */ 1307#define HV_VSS_GUID \ 1308 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1309 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1310/* 1311 * Synthetic Video GUID 1312 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1313 */ 1314#define HV_SYNTHVID_GUID \ 1315 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1316 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1317 1318/* 1319 * Synthetic FC GUID 1320 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1321 */ 1322#define HV_SYNTHFC_GUID \ 1323 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1324 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1325 1326/* 1327 * Guest File Copy Service 1328 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1329 */ 1330 1331#define HV_FCOPY_GUID \ 1332 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1333 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1334 1335/* 1336 * NetworkDirect. This is the guest RDMA service. 1337 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1338 */ 1339#define HV_ND_GUID \ 1340 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1341 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1342 1343/* 1344 * PCI Express Pass Through 1345 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1346 */ 1347 1348#define HV_PCIE_GUID \ 1349 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1350 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1351 1352/* 1353 * Linux doesn't support the 3 devices: the first two are for 1354 * Automatic Virtual Machine Activation, and the third is for 1355 * Remote Desktop Virtualization. 1356 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1357 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1358 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1359 */ 1360 1361#define HV_AVMA1_GUID \ 1362 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1363 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1364 1365#define HV_AVMA2_GUID \ 1366 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1367 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1368 1369#define HV_RDV_GUID \ 1370 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1371 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1372 1373/* 1374 * Common header for Hyper-V ICs 1375 */ 1376 1377#define ICMSGTYPE_NEGOTIATE 0 1378#define ICMSGTYPE_HEARTBEAT 1 1379#define ICMSGTYPE_KVPEXCHANGE 2 1380#define ICMSGTYPE_SHUTDOWN 3 1381#define ICMSGTYPE_TIMESYNC 4 1382#define ICMSGTYPE_VSS 5 1383 1384#define ICMSGHDRFLAG_TRANSACTION 1 1385#define ICMSGHDRFLAG_REQUEST 2 1386#define ICMSGHDRFLAG_RESPONSE 4 1387 1388 1389/* 1390 * While we want to handle util services as regular devices, 1391 * there is only one instance of each of these services; so 1392 * we statically allocate the service specific state. 1393 */ 1394 1395struct hv_util_service { 1396 u8 *recv_buffer; 1397 void *channel; 1398 void (*util_cb)(void *); 1399 int (*util_init)(struct hv_util_service *); 1400 void (*util_deinit)(void); 1401}; 1402 1403struct vmbuspipe_hdr { 1404 u32 flags; 1405 u32 msgsize; 1406} __packed; 1407 1408struct ic_version { 1409 u16 major; 1410 u16 minor; 1411} __packed; 1412 1413struct icmsg_hdr { 1414 struct ic_version icverframe; 1415 u16 icmsgtype; 1416 struct ic_version icvermsg; 1417 u16 icmsgsize; 1418 u32 status; 1419 u8 ictransaction_id; 1420 u8 icflags; 1421 u8 reserved[2]; 1422} __packed; 1423 1424struct icmsg_negotiate { 1425 u16 icframe_vercnt; 1426 u16 icmsg_vercnt; 1427 u32 reserved; 1428 struct ic_version icversion_data[1]; /* any size array */ 1429} __packed; 1430 1431struct shutdown_msg_data { 1432 u32 reason_code; 1433 u32 timeout_seconds; 1434 u32 flags; 1435 u8 display_message[2048]; 1436} __packed; 1437 1438struct heartbeat_msg_data { 1439 u64 seq_num; 1440 u32 reserved[8]; 1441} __packed; 1442 1443/* Time Sync IC defs */ 1444#define ICTIMESYNCFLAG_PROBE 0 1445#define ICTIMESYNCFLAG_SYNC 1 1446#define ICTIMESYNCFLAG_SAMPLE 2 1447 1448#ifdef __x86_64__ 1449#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1450#else 1451#define WLTIMEDELTA 116444736000000000LL 1452#endif 1453 1454struct ictimesync_data { 1455 u64 parenttime; 1456 u64 childtime; 1457 u64 roundtriptime; 1458 u8 flags; 1459} __packed; 1460 1461struct ictimesync_ref_data { 1462 u64 parenttime; 1463 u64 vmreferencetime; 1464 u8 flags; 1465 char leapflags; 1466 char stratum; 1467 u8 reserved[3]; 1468} __packed; 1469 1470struct hyperv_service_callback { 1471 u8 msg_type; 1472 char *log_msg; 1473 guid_t data; 1474 struct vmbus_channel *channel; 1475 void (*callback)(void *context); 1476}; 1477 1478#define MAX_SRV_VER 0x7ffffff 1479extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1480 const int *fw_version, int fw_vercnt, 1481 const int *srv_version, int srv_vercnt, 1482 int *nego_fw_version, int *nego_srv_version); 1483 1484void hv_process_channel_removal(struct vmbus_channel *channel); 1485 1486void vmbus_setevent(struct vmbus_channel *channel); 1487/* 1488 * Negotiated version with the Host. 1489 */ 1490 1491extern __u32 vmbus_proto_version; 1492 1493int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1494 const guid_t *shv_host_servie_id); 1495void vmbus_set_event(struct vmbus_channel *channel); 1496 1497/* Get the start of the ring buffer. */ 1498static inline void * 1499hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1500{ 1501 return ring_info->ring_buffer->buffer; 1502} 1503 1504/* 1505 * Mask off host interrupt callback notifications 1506 */ 1507static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1508{ 1509 rbi->ring_buffer->interrupt_mask = 1; 1510 1511 /* make sure mask update is not reordered */ 1512 virt_mb(); 1513} 1514 1515/* 1516 * Re-enable host callback and return number of outstanding bytes 1517 */ 1518static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1519{ 1520 1521 rbi->ring_buffer->interrupt_mask = 0; 1522 1523 /* make sure mask update is not reordered */ 1524 virt_mb(); 1525 1526 /* 1527 * Now check to see if the ring buffer is still empty. 1528 * If it is not, we raced and we need to process new 1529 * incoming messages. 1530 */ 1531 return hv_get_bytes_to_read(rbi); 1532} 1533 1534/* 1535 * An API to support in-place processing of incoming VMBUS packets. 1536 */ 1537 1538/* Get data payload associated with descriptor */ 1539static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1540{ 1541 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1542} 1543 1544/* Get data size associated with descriptor */ 1545static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1546{ 1547 return (desc->len8 << 3) - (desc->offset8 << 3); 1548} 1549 1550 1551struct vmpacket_descriptor * 1552hv_pkt_iter_first(struct vmbus_channel *channel); 1553 1554struct vmpacket_descriptor * 1555__hv_pkt_iter_next(struct vmbus_channel *channel, 1556 const struct vmpacket_descriptor *pkt); 1557 1558void hv_pkt_iter_close(struct vmbus_channel *channel); 1559 1560/* 1561 * Get next packet descriptor from iterator 1562 * If at end of list, return NULL and update host. 1563 */ 1564static inline struct vmpacket_descriptor * 1565hv_pkt_iter_next(struct vmbus_channel *channel, 1566 const struct vmpacket_descriptor *pkt) 1567{ 1568 struct vmpacket_descriptor *nxt; 1569 1570 nxt = __hv_pkt_iter_next(channel, pkt); 1571 if (!nxt) 1572 hv_pkt_iter_close(channel); 1573 1574 return nxt; 1575} 1576 1577#define foreach_vmbus_pkt(pkt, channel) \ 1578 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1579 pkt = hv_pkt_iter_next(channel, pkt)) 1580 1581#endif /* _HYPERV_H */