at v5.3 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42}; 43 44/** 45 * enum dma_transaction_type - DMA transaction types/indexes 46 * 47 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 48 * automatically set as dma devices are registered. 49 */ 50enum dma_transaction_type { 51 DMA_MEMCPY, 52 DMA_XOR, 53 DMA_PQ, 54 DMA_XOR_VAL, 55 DMA_PQ_VAL, 56 DMA_MEMSET, 57 DMA_MEMSET_SG, 58 DMA_INTERRUPT, 59 DMA_PRIVATE, 60 DMA_ASYNC_TX, 61 DMA_SLAVE, 62 DMA_CYCLIC, 63 DMA_INTERLEAVE, 64/* last transaction type for creation of the capabilities mask */ 65 DMA_TX_TYPE_END, 66}; 67 68/** 69 * enum dma_transfer_direction - dma transfer mode and direction indicator 70 * @DMA_MEM_TO_MEM: Async/Memcpy mode 71 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 72 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 73 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 74 */ 75enum dma_transfer_direction { 76 DMA_MEM_TO_MEM, 77 DMA_MEM_TO_DEV, 78 DMA_DEV_TO_MEM, 79 DMA_DEV_TO_DEV, 80 DMA_TRANS_NONE, 81}; 82 83/** 84 * Interleaved Transfer Request 85 * ---------------------------- 86 * A chunk is collection of contiguous bytes to be transfered. 87 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 88 * ICGs may or maynot change between chunks. 89 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 90 * that when repeated an integral number of times, specifies the transfer. 91 * A transfer template is specification of a Frame, the number of times 92 * it is to be repeated and other per-transfer attributes. 93 * 94 * Practically, a client driver would have ready a template for each 95 * type of transfer it is going to need during its lifetime and 96 * set only 'src_start' and 'dst_start' before submitting the requests. 97 * 98 * 99 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 100 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 101 * 102 * == Chunk size 103 * ... ICG 104 */ 105 106/** 107 * struct data_chunk - Element of scatter-gather list that makes a frame. 108 * @size: Number of bytes to read from source. 109 * size_dst := fn(op, size_src), so doesn't mean much for destination. 110 * @icg: Number of bytes to jump after last src/dst address of this 111 * chunk and before first src/dst address for next chunk. 112 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 113 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 114 * @dst_icg: Number of bytes to jump after last dst address of this 115 * chunk and before the first dst address for next chunk. 116 * Ignored if dst_inc is true and dst_sgl is false. 117 * @src_icg: Number of bytes to jump after last src address of this 118 * chunk and before the first src address for next chunk. 119 * Ignored if src_inc is true and src_sgl is false. 120 */ 121struct data_chunk { 122 size_t size; 123 size_t icg; 124 size_t dst_icg; 125 size_t src_icg; 126}; 127 128/** 129 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 130 * and attributes. 131 * @src_start: Bus address of source for the first chunk. 132 * @dst_start: Bus address of destination for the first chunk. 133 * @dir: Specifies the type of Source and Destination. 134 * @src_inc: If the source address increments after reading from it. 135 * @dst_inc: If the destination address increments after writing to it. 136 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 137 * Otherwise, source is read contiguously (icg ignored). 138 * Ignored if src_inc is false. 139 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 140 * Otherwise, destination is filled contiguously (icg ignored). 141 * Ignored if dst_inc is false. 142 * @numf: Number of frames in this template. 143 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 144 * @sgl: Array of {chunk,icg} pairs that make up a frame. 145 */ 146struct dma_interleaved_template { 147 dma_addr_t src_start; 148 dma_addr_t dst_start; 149 enum dma_transfer_direction dir; 150 bool src_inc; 151 bool dst_inc; 152 bool src_sgl; 153 bool dst_sgl; 154 size_t numf; 155 size_t frame_size; 156 struct data_chunk sgl[0]; 157}; 158 159/** 160 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 161 * control completion, and communicate status. 162 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 163 * this transaction 164 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 165 * acknowledges receipt, i.e. has has a chance to establish any dependency 166 * chains 167 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 168 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 169 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 170 * sources that were the result of a previous operation, in the case of a PQ 171 * operation it continues the calculation with new sources 172 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 173 * on the result of this operation 174 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 175 * cleared or freed 176 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 177 * data and the descriptor should be in different format from normal 178 * data descriptors. 179 */ 180enum dma_ctrl_flags { 181 DMA_PREP_INTERRUPT = (1 << 0), 182 DMA_CTRL_ACK = (1 << 1), 183 DMA_PREP_PQ_DISABLE_P = (1 << 2), 184 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 185 DMA_PREP_CONTINUE = (1 << 4), 186 DMA_PREP_FENCE = (1 << 5), 187 DMA_CTRL_REUSE = (1 << 6), 188 DMA_PREP_CMD = (1 << 7), 189}; 190 191/** 192 * enum sum_check_bits - bit position of pq_check_flags 193 */ 194enum sum_check_bits { 195 SUM_CHECK_P = 0, 196 SUM_CHECK_Q = 1, 197}; 198 199/** 200 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 201 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 202 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 203 */ 204enum sum_check_flags { 205 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 206 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 207}; 208 209 210/** 211 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 212 * See linux/cpumask.h 213 */ 214typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 215 216/** 217 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 218 * @memcpy_count: transaction counter 219 * @bytes_transferred: byte counter 220 */ 221 222struct dma_chan_percpu { 223 /* stats */ 224 unsigned long memcpy_count; 225 unsigned long bytes_transferred; 226}; 227 228/** 229 * struct dma_router - DMA router structure 230 * @dev: pointer to the DMA router device 231 * @route_free: function to be called when the route can be disconnected 232 */ 233struct dma_router { 234 struct device *dev; 235 void (*route_free)(struct device *dev, void *route_data); 236}; 237 238/** 239 * struct dma_chan - devices supply DMA channels, clients use them 240 * @device: ptr to the dma device who supplies this channel, always !%NULL 241 * @cookie: last cookie value returned to client 242 * @completed_cookie: last completed cookie for this channel 243 * @chan_id: channel ID for sysfs 244 * @dev: class device for sysfs 245 * @device_node: used to add this to the device chan list 246 * @local: per-cpu pointer to a struct dma_chan_percpu 247 * @client_count: how many clients are using this channel 248 * @table_count: number of appearances in the mem-to-mem allocation table 249 * @router: pointer to the DMA router structure 250 * @route_data: channel specific data for the router 251 * @private: private data for certain client-channel associations 252 */ 253struct dma_chan { 254 struct dma_device *device; 255 dma_cookie_t cookie; 256 dma_cookie_t completed_cookie; 257 258 /* sysfs */ 259 int chan_id; 260 struct dma_chan_dev *dev; 261 262 struct list_head device_node; 263 struct dma_chan_percpu __percpu *local; 264 int client_count; 265 int table_count; 266 267 /* DMA router */ 268 struct dma_router *router; 269 void *route_data; 270 271 void *private; 272}; 273 274/** 275 * struct dma_chan_dev - relate sysfs device node to backing channel device 276 * @chan: driver channel device 277 * @device: sysfs device 278 * @dev_id: parent dma_device dev_id 279 * @idr_ref: reference count to gate release of dma_device dev_id 280 */ 281struct dma_chan_dev { 282 struct dma_chan *chan; 283 struct device device; 284 int dev_id; 285 atomic_t *idr_ref; 286}; 287 288/** 289 * enum dma_slave_buswidth - defines bus width of the DMA slave 290 * device, source or target buses 291 */ 292enum dma_slave_buswidth { 293 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 294 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 295 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 296 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 297 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 298 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 299 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 300 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 301 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 302}; 303 304/** 305 * struct dma_slave_config - dma slave channel runtime config 306 * @direction: whether the data shall go in or out on this slave 307 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 308 * legal values. DEPRECATED, drivers should use the direction argument 309 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 310 * the dir field in the dma_interleaved_template structure. 311 * @src_addr: this is the physical address where DMA slave data 312 * should be read (RX), if the source is memory this argument is 313 * ignored. 314 * @dst_addr: this is the physical address where DMA slave data 315 * should be written (TX), if the source is memory this argument 316 * is ignored. 317 * @src_addr_width: this is the width in bytes of the source (RX) 318 * register where DMA data shall be read. If the source 319 * is memory this may be ignored depending on architecture. 320 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 321 * @dst_addr_width: same as src_addr_width but for destination 322 * target (TX) mutatis mutandis. 323 * @src_maxburst: the maximum number of words (note: words, as in 324 * units of the src_addr_width member, not bytes) that can be sent 325 * in one burst to the device. Typically something like half the 326 * FIFO depth on I/O peripherals so you don't overflow it. This 327 * may or may not be applicable on memory sources. 328 * @dst_maxburst: same as src_maxburst but for destination target 329 * mutatis mutandis. 330 * @src_port_window_size: The length of the register area in words the data need 331 * to be accessed on the device side. It is only used for devices which is using 332 * an area instead of a single register to receive the data. Typically the DMA 333 * loops in this area in order to transfer the data. 334 * @dst_port_window_size: same as src_port_window_size but for the destination 335 * port. 336 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 337 * with 'true' if peripheral should be flow controller. Direction will be 338 * selected at Runtime. 339 * @slave_id: Slave requester id. Only valid for slave channels. The dma 340 * slave peripheral will have unique id as dma requester which need to be 341 * pass as slave config. 342 * 343 * This struct is passed in as configuration data to a DMA engine 344 * in order to set up a certain channel for DMA transport at runtime. 345 * The DMA device/engine has to provide support for an additional 346 * callback in the dma_device structure, device_config and this struct 347 * will then be passed in as an argument to the function. 348 * 349 * The rationale for adding configuration information to this struct is as 350 * follows: if it is likely that more than one DMA slave controllers in 351 * the world will support the configuration option, then make it generic. 352 * If not: if it is fixed so that it be sent in static from the platform 353 * data, then prefer to do that. 354 */ 355struct dma_slave_config { 356 enum dma_transfer_direction direction; 357 phys_addr_t src_addr; 358 phys_addr_t dst_addr; 359 enum dma_slave_buswidth src_addr_width; 360 enum dma_slave_buswidth dst_addr_width; 361 u32 src_maxburst; 362 u32 dst_maxburst; 363 u32 src_port_window_size; 364 u32 dst_port_window_size; 365 bool device_fc; 366 unsigned int slave_id; 367}; 368 369/** 370 * enum dma_residue_granularity - Granularity of the reported transfer residue 371 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 372 * DMA channel is only able to tell whether a descriptor has been completed or 373 * not, which means residue reporting is not supported by this channel. The 374 * residue field of the dma_tx_state field will always be 0. 375 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 376 * completed segment of the transfer (For cyclic transfers this is after each 377 * period). This is typically implemented by having the hardware generate an 378 * interrupt after each transferred segment and then the drivers updates the 379 * outstanding residue by the size of the segment. Another possibility is if 380 * the hardware supports scatter-gather and the segment descriptor has a field 381 * which gets set after the segment has been completed. The driver then counts 382 * the number of segments without the flag set to compute the residue. 383 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 384 * burst. This is typically only supported if the hardware has a progress 385 * register of some sort (E.g. a register with the current read/write address 386 * or a register with the amount of bursts/beats/bytes that have been 387 * transferred or still need to be transferred). 388 */ 389enum dma_residue_granularity { 390 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 391 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 392 DMA_RESIDUE_GRANULARITY_BURST = 2, 393}; 394 395/** 396 * struct dma_slave_caps - expose capabilities of a slave channel only 397 * @src_addr_widths: bit mask of src addr widths the channel supports. 398 * Width is specified in bytes, e.g. for a channel supporting 399 * a width of 4 the mask should have BIT(4) set. 400 * @dst_addr_widths: bit mask of dst addr widths the channel supports 401 * @directions: bit mask of slave directions the channel supports. 402 * Since the enum dma_transfer_direction is not defined as bit flag for 403 * each type, the dma controller should set BIT(<TYPE>) and same 404 * should be checked by controller as well 405 * @max_burst: max burst capability per-transfer 406 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 407 * for resume later) 408 * @cmd_resume: true, if resume is supported 409 * @cmd_terminate: true, if terminate cmd is supported 410 * @residue_granularity: granularity of the reported transfer residue 411 * @descriptor_reuse: if a descriptor can be reused by client and 412 * resubmitted multiple times 413 */ 414struct dma_slave_caps { 415 u32 src_addr_widths; 416 u32 dst_addr_widths; 417 u32 directions; 418 u32 max_burst; 419 bool cmd_pause; 420 bool cmd_resume; 421 bool cmd_terminate; 422 enum dma_residue_granularity residue_granularity; 423 bool descriptor_reuse; 424}; 425 426static inline const char *dma_chan_name(struct dma_chan *chan) 427{ 428 return dev_name(&chan->dev->device); 429} 430 431void dma_chan_cleanup(struct kref *kref); 432 433/** 434 * typedef dma_filter_fn - callback filter for dma_request_channel 435 * @chan: channel to be reviewed 436 * @filter_param: opaque parameter passed through dma_request_channel 437 * 438 * When this optional parameter is specified in a call to dma_request_channel a 439 * suitable channel is passed to this routine for further dispositioning before 440 * being returned. Where 'suitable' indicates a non-busy channel that 441 * satisfies the given capability mask. It returns 'true' to indicate that the 442 * channel is suitable. 443 */ 444typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 445 446typedef void (*dma_async_tx_callback)(void *dma_async_param); 447 448enum dmaengine_tx_result { 449 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 450 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 451 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 452 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 453}; 454 455struct dmaengine_result { 456 enum dmaengine_tx_result result; 457 u32 residue; 458}; 459 460typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 461 const struct dmaengine_result *result); 462 463struct dmaengine_unmap_data { 464#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 465 u16 map_cnt; 466#else 467 u8 map_cnt; 468#endif 469 u8 to_cnt; 470 u8 from_cnt; 471 u8 bidi_cnt; 472 struct device *dev; 473 struct kref kref; 474 size_t len; 475 dma_addr_t addr[0]; 476}; 477 478/** 479 * struct dma_async_tx_descriptor - async transaction descriptor 480 * ---dma generic offload fields--- 481 * @cookie: tracking cookie for this transaction, set to -EBUSY if 482 * this tx is sitting on a dependency list 483 * @flags: flags to augment operation preparation, control completion, and 484 * communicate status 485 * @phys: physical address of the descriptor 486 * @chan: target channel for this operation 487 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 488 * descriptor pending. To be pushed on .issue_pending() call 489 * @callback: routine to call after this operation is complete 490 * @callback_param: general parameter to pass to the callback routine 491 * ---async_tx api specific fields--- 492 * @next: at completion submit this descriptor 493 * @parent: pointer to the next level up in the dependency chain 494 * @lock: protect the parent and next pointers 495 */ 496struct dma_async_tx_descriptor { 497 dma_cookie_t cookie; 498 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 499 dma_addr_t phys; 500 struct dma_chan *chan; 501 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 502 int (*desc_free)(struct dma_async_tx_descriptor *tx); 503 dma_async_tx_callback callback; 504 dma_async_tx_callback_result callback_result; 505 void *callback_param; 506 struct dmaengine_unmap_data *unmap; 507#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 508 struct dma_async_tx_descriptor *next; 509 struct dma_async_tx_descriptor *parent; 510 spinlock_t lock; 511#endif 512}; 513 514#ifdef CONFIG_DMA_ENGINE 515static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 516 struct dmaengine_unmap_data *unmap) 517{ 518 kref_get(&unmap->kref); 519 tx->unmap = unmap; 520} 521 522struct dmaengine_unmap_data * 523dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 524void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 525#else 526static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 527 struct dmaengine_unmap_data *unmap) 528{ 529} 530static inline struct dmaengine_unmap_data * 531dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 532{ 533 return NULL; 534} 535static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 536{ 537} 538#endif 539 540static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 541{ 542 if (tx->unmap) { 543 dmaengine_unmap_put(tx->unmap); 544 tx->unmap = NULL; 545 } 546} 547 548#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 549static inline void txd_lock(struct dma_async_tx_descriptor *txd) 550{ 551} 552static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 553{ 554} 555static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 556{ 557 BUG(); 558} 559static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 560{ 561} 562static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 563{ 564} 565static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 566{ 567 return NULL; 568} 569static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 570{ 571 return NULL; 572} 573 574#else 575static inline void txd_lock(struct dma_async_tx_descriptor *txd) 576{ 577 spin_lock_bh(&txd->lock); 578} 579static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 580{ 581 spin_unlock_bh(&txd->lock); 582} 583static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 584{ 585 txd->next = next; 586 next->parent = txd; 587} 588static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 589{ 590 txd->parent = NULL; 591} 592static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 593{ 594 txd->next = NULL; 595} 596static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 597{ 598 return txd->parent; 599} 600static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 601{ 602 return txd->next; 603} 604#endif 605 606/** 607 * struct dma_tx_state - filled in to report the status of 608 * a transfer. 609 * @last: last completed DMA cookie 610 * @used: last issued DMA cookie (i.e. the one in progress) 611 * @residue: the remaining number of bytes left to transmit 612 * on the selected transfer for states DMA_IN_PROGRESS and 613 * DMA_PAUSED if this is implemented in the driver, else 0 614 */ 615struct dma_tx_state { 616 dma_cookie_t last; 617 dma_cookie_t used; 618 u32 residue; 619}; 620 621/** 622 * enum dmaengine_alignment - defines alignment of the DMA async tx 623 * buffers 624 */ 625enum dmaengine_alignment { 626 DMAENGINE_ALIGN_1_BYTE = 0, 627 DMAENGINE_ALIGN_2_BYTES = 1, 628 DMAENGINE_ALIGN_4_BYTES = 2, 629 DMAENGINE_ALIGN_8_BYTES = 3, 630 DMAENGINE_ALIGN_16_BYTES = 4, 631 DMAENGINE_ALIGN_32_BYTES = 5, 632 DMAENGINE_ALIGN_64_BYTES = 6, 633}; 634 635/** 636 * struct dma_slave_map - associates slave device and it's slave channel with 637 * parameter to be used by a filter function 638 * @devname: name of the device 639 * @slave: slave channel name 640 * @param: opaque parameter to pass to struct dma_filter.fn 641 */ 642struct dma_slave_map { 643 const char *devname; 644 const char *slave; 645 void *param; 646}; 647 648/** 649 * struct dma_filter - information for slave device/channel to filter_fn/param 650 * mapping 651 * @fn: filter function callback 652 * @mapcnt: number of slave device/channel in the map 653 * @map: array of channel to filter mapping data 654 */ 655struct dma_filter { 656 dma_filter_fn fn; 657 int mapcnt; 658 const struct dma_slave_map *map; 659}; 660 661/** 662 * struct dma_device - info on the entity supplying DMA services 663 * @chancnt: how many DMA channels are supported 664 * @privatecnt: how many DMA channels are requested by dma_request_channel 665 * @channels: the list of struct dma_chan 666 * @global_node: list_head for global dma_device_list 667 * @filter: information for device/slave to filter function/param mapping 668 * @cap_mask: one or more dma_capability flags 669 * @max_xor: maximum number of xor sources, 0 if no capability 670 * @max_pq: maximum number of PQ sources and PQ-continue capability 671 * @copy_align: alignment shift for memcpy operations 672 * @xor_align: alignment shift for xor operations 673 * @pq_align: alignment shift for pq operations 674 * @fill_align: alignment shift for memset operations 675 * @dev_id: unique device ID 676 * @dev: struct device reference for dma mapping api 677 * @src_addr_widths: bit mask of src addr widths the device supports 678 * Width is specified in bytes, e.g. for a device supporting 679 * a width of 4 the mask should have BIT(4) set. 680 * @dst_addr_widths: bit mask of dst addr widths the device supports 681 * @directions: bit mask of slave directions the device supports. 682 * Since the enum dma_transfer_direction is not defined as bit flag for 683 * each type, the dma controller should set BIT(<TYPE>) and same 684 * should be checked by controller as well 685 * @max_burst: max burst capability per-transfer 686 * @residue_granularity: granularity of the transfer residue reported 687 * by tx_status 688 * @device_alloc_chan_resources: allocate resources and return the 689 * number of allocated descriptors 690 * @device_free_chan_resources: release DMA channel's resources 691 * @device_prep_dma_memcpy: prepares a memcpy operation 692 * @device_prep_dma_xor: prepares a xor operation 693 * @device_prep_dma_xor_val: prepares a xor validation operation 694 * @device_prep_dma_pq: prepares a pq operation 695 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 696 * @device_prep_dma_memset: prepares a memset operation 697 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 698 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 699 * @device_prep_slave_sg: prepares a slave dma operation 700 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 701 * The function takes a buffer of size buf_len. The callback function will 702 * be called after period_len bytes have been transferred. 703 * @device_prep_interleaved_dma: Transfer expression in a generic way. 704 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 705 * @device_config: Pushes a new configuration to a channel, return 0 or an error 706 * code 707 * @device_pause: Pauses any transfer happening on a channel. Returns 708 * 0 or an error code 709 * @device_resume: Resumes any transfer on a channel previously 710 * paused. Returns 0 or an error code 711 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 712 * or an error code 713 * @device_synchronize: Synchronizes the termination of a transfers to the 714 * current context. 715 * @device_tx_status: poll for transaction completion, the optional 716 * txstate parameter can be supplied with a pointer to get a 717 * struct with auxiliary transfer status information, otherwise the call 718 * will just return a simple status code 719 * @device_issue_pending: push pending transactions to hardware 720 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 721 */ 722struct dma_device { 723 724 unsigned int chancnt; 725 unsigned int privatecnt; 726 struct list_head channels; 727 struct list_head global_node; 728 struct dma_filter filter; 729 dma_cap_mask_t cap_mask; 730 unsigned short max_xor; 731 unsigned short max_pq; 732 enum dmaengine_alignment copy_align; 733 enum dmaengine_alignment xor_align; 734 enum dmaengine_alignment pq_align; 735 enum dmaengine_alignment fill_align; 736 #define DMA_HAS_PQ_CONTINUE (1 << 15) 737 738 int dev_id; 739 struct device *dev; 740 741 u32 src_addr_widths; 742 u32 dst_addr_widths; 743 u32 directions; 744 u32 max_burst; 745 bool descriptor_reuse; 746 enum dma_residue_granularity residue_granularity; 747 748 int (*device_alloc_chan_resources)(struct dma_chan *chan); 749 void (*device_free_chan_resources)(struct dma_chan *chan); 750 751 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 752 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 753 size_t len, unsigned long flags); 754 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 755 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 756 unsigned int src_cnt, size_t len, unsigned long flags); 757 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 758 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 759 size_t len, enum sum_check_flags *result, unsigned long flags); 760 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 761 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 762 unsigned int src_cnt, const unsigned char *scf, 763 size_t len, unsigned long flags); 764 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 765 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 766 unsigned int src_cnt, const unsigned char *scf, size_t len, 767 enum sum_check_flags *pqres, unsigned long flags); 768 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 769 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 770 unsigned long flags); 771 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 772 struct dma_chan *chan, struct scatterlist *sg, 773 unsigned int nents, int value, unsigned long flags); 774 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 775 struct dma_chan *chan, unsigned long flags); 776 777 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 778 struct dma_chan *chan, struct scatterlist *sgl, 779 unsigned int sg_len, enum dma_transfer_direction direction, 780 unsigned long flags, void *context); 781 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 782 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 783 size_t period_len, enum dma_transfer_direction direction, 784 unsigned long flags); 785 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 786 struct dma_chan *chan, struct dma_interleaved_template *xt, 787 unsigned long flags); 788 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 789 struct dma_chan *chan, dma_addr_t dst, u64 data, 790 unsigned long flags); 791 792 int (*device_config)(struct dma_chan *chan, 793 struct dma_slave_config *config); 794 int (*device_pause)(struct dma_chan *chan); 795 int (*device_resume)(struct dma_chan *chan); 796 int (*device_terminate_all)(struct dma_chan *chan); 797 void (*device_synchronize)(struct dma_chan *chan); 798 799 enum dma_status (*device_tx_status)(struct dma_chan *chan, 800 dma_cookie_t cookie, 801 struct dma_tx_state *txstate); 802 void (*device_issue_pending)(struct dma_chan *chan); 803}; 804 805static inline int dmaengine_slave_config(struct dma_chan *chan, 806 struct dma_slave_config *config) 807{ 808 if (chan->device->device_config) 809 return chan->device->device_config(chan, config); 810 811 return -ENOSYS; 812} 813 814static inline bool is_slave_direction(enum dma_transfer_direction direction) 815{ 816 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 817} 818 819static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 820 struct dma_chan *chan, dma_addr_t buf, size_t len, 821 enum dma_transfer_direction dir, unsigned long flags) 822{ 823 struct scatterlist sg; 824 sg_init_table(&sg, 1); 825 sg_dma_address(&sg) = buf; 826 sg_dma_len(&sg) = len; 827 828 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 829 return NULL; 830 831 return chan->device->device_prep_slave_sg(chan, &sg, 1, 832 dir, flags, NULL); 833} 834 835static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 836 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 837 enum dma_transfer_direction dir, unsigned long flags) 838{ 839 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 840 return NULL; 841 842 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 843 dir, flags, NULL); 844} 845 846#ifdef CONFIG_RAPIDIO_DMA_ENGINE 847struct rio_dma_ext; 848static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 849 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 850 enum dma_transfer_direction dir, unsigned long flags, 851 struct rio_dma_ext *rio_ext) 852{ 853 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 854 return NULL; 855 856 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 857 dir, flags, rio_ext); 858} 859#endif 860 861static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 862 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 863 size_t period_len, enum dma_transfer_direction dir, 864 unsigned long flags) 865{ 866 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 867 return NULL; 868 869 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 870 period_len, dir, flags); 871} 872 873static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 874 struct dma_chan *chan, struct dma_interleaved_template *xt, 875 unsigned long flags) 876{ 877 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 878 return NULL; 879 880 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 881} 882 883static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 884 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 885 unsigned long flags) 886{ 887 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 888 return NULL; 889 890 return chan->device->device_prep_dma_memset(chan, dest, value, 891 len, flags); 892} 893 894static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 895 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 896 size_t len, unsigned long flags) 897{ 898 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 899 return NULL; 900 901 return chan->device->device_prep_dma_memcpy(chan, dest, src, 902 len, flags); 903} 904 905/** 906 * dmaengine_terminate_all() - Terminate all active DMA transfers 907 * @chan: The channel for which to terminate the transfers 908 * 909 * This function is DEPRECATED use either dmaengine_terminate_sync() or 910 * dmaengine_terminate_async() instead. 911 */ 912static inline int dmaengine_terminate_all(struct dma_chan *chan) 913{ 914 if (chan->device->device_terminate_all) 915 return chan->device->device_terminate_all(chan); 916 917 return -ENOSYS; 918} 919 920/** 921 * dmaengine_terminate_async() - Terminate all active DMA transfers 922 * @chan: The channel for which to terminate the transfers 923 * 924 * Calling this function will terminate all active and pending descriptors 925 * that have previously been submitted to the channel. It is not guaranteed 926 * though that the transfer for the active descriptor has stopped when the 927 * function returns. Furthermore it is possible the complete callback of a 928 * submitted transfer is still running when this function returns. 929 * 930 * dmaengine_synchronize() needs to be called before it is safe to free 931 * any memory that is accessed by previously submitted descriptors or before 932 * freeing any resources accessed from within the completion callback of any 933 * perviously submitted descriptors. 934 * 935 * This function can be called from atomic context as well as from within a 936 * complete callback of a descriptor submitted on the same channel. 937 * 938 * If none of the two conditions above apply consider using 939 * dmaengine_terminate_sync() instead. 940 */ 941static inline int dmaengine_terminate_async(struct dma_chan *chan) 942{ 943 if (chan->device->device_terminate_all) 944 return chan->device->device_terminate_all(chan); 945 946 return -EINVAL; 947} 948 949/** 950 * dmaengine_synchronize() - Synchronize DMA channel termination 951 * @chan: The channel to synchronize 952 * 953 * Synchronizes to the DMA channel termination to the current context. When this 954 * function returns it is guaranteed that all transfers for previously issued 955 * descriptors have stopped and and it is safe to free the memory assoicated 956 * with them. Furthermore it is guaranteed that all complete callback functions 957 * for a previously submitted descriptor have finished running and it is safe to 958 * free resources accessed from within the complete callbacks. 959 * 960 * The behavior of this function is undefined if dma_async_issue_pending() has 961 * been called between dmaengine_terminate_async() and this function. 962 * 963 * This function must only be called from non-atomic context and must not be 964 * called from within a complete callback of a descriptor submitted on the same 965 * channel. 966 */ 967static inline void dmaengine_synchronize(struct dma_chan *chan) 968{ 969 might_sleep(); 970 971 if (chan->device->device_synchronize) 972 chan->device->device_synchronize(chan); 973} 974 975/** 976 * dmaengine_terminate_sync() - Terminate all active DMA transfers 977 * @chan: The channel for which to terminate the transfers 978 * 979 * Calling this function will terminate all active and pending transfers 980 * that have previously been submitted to the channel. It is similar to 981 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 982 * stopped and that all complete callbacks have finished running when the 983 * function returns. 984 * 985 * This function must only be called from non-atomic context and must not be 986 * called from within a complete callback of a descriptor submitted on the same 987 * channel. 988 */ 989static inline int dmaengine_terminate_sync(struct dma_chan *chan) 990{ 991 int ret; 992 993 ret = dmaengine_terminate_async(chan); 994 if (ret) 995 return ret; 996 997 dmaengine_synchronize(chan); 998 999 return 0; 1000} 1001 1002static inline int dmaengine_pause(struct dma_chan *chan) 1003{ 1004 if (chan->device->device_pause) 1005 return chan->device->device_pause(chan); 1006 1007 return -ENOSYS; 1008} 1009 1010static inline int dmaengine_resume(struct dma_chan *chan) 1011{ 1012 if (chan->device->device_resume) 1013 return chan->device->device_resume(chan); 1014 1015 return -ENOSYS; 1016} 1017 1018static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1019 dma_cookie_t cookie, struct dma_tx_state *state) 1020{ 1021 return chan->device->device_tx_status(chan, cookie, state); 1022} 1023 1024static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1025{ 1026 return desc->tx_submit(desc); 1027} 1028 1029static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1030 size_t off1, size_t off2, size_t len) 1031{ 1032 size_t mask; 1033 1034 if (!align) 1035 return true; 1036 mask = (1 << align) - 1; 1037 if (mask & (off1 | off2 | len)) 1038 return false; 1039 return true; 1040} 1041 1042static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1043 size_t off2, size_t len) 1044{ 1045 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1046} 1047 1048static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1049 size_t off2, size_t len) 1050{ 1051 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1052} 1053 1054static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1055 size_t off2, size_t len) 1056{ 1057 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1058} 1059 1060static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1061 size_t off2, size_t len) 1062{ 1063 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1064} 1065 1066static inline void 1067dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1068{ 1069 dma->max_pq = maxpq; 1070 if (has_pq_continue) 1071 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1072} 1073 1074static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1075{ 1076 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1077} 1078 1079static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1080{ 1081 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1082 1083 return (flags & mask) == mask; 1084} 1085 1086static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1087{ 1088 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1089} 1090 1091static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1092{ 1093 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1094} 1095 1096/* dma_maxpq - reduce maxpq in the face of continued operations 1097 * @dma - dma device with PQ capability 1098 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1099 * 1100 * When an engine does not support native continuation we need 3 extra 1101 * source slots to reuse P and Q with the following coefficients: 1102 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1103 * 2/ {01} * Q : use Q to continue Q' calculation 1104 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1105 * 1106 * In the case where P is disabled we only need 1 extra source: 1107 * 1/ {01} * Q : use Q to continue Q' calculation 1108 */ 1109static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1110{ 1111 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1112 return dma_dev_to_maxpq(dma); 1113 else if (dmaf_p_disabled_continue(flags)) 1114 return dma_dev_to_maxpq(dma) - 1; 1115 else if (dmaf_continue(flags)) 1116 return dma_dev_to_maxpq(dma) - 3; 1117 BUG(); 1118} 1119 1120static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1121 size_t dir_icg) 1122{ 1123 if (inc) { 1124 if (dir_icg) 1125 return dir_icg; 1126 else if (sgl) 1127 return icg; 1128 } 1129 1130 return 0; 1131} 1132 1133static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1134 struct data_chunk *chunk) 1135{ 1136 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1137 chunk->icg, chunk->dst_icg); 1138} 1139 1140static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1141 struct data_chunk *chunk) 1142{ 1143 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1144 chunk->icg, chunk->src_icg); 1145} 1146 1147/* --- public DMA engine API --- */ 1148 1149#ifdef CONFIG_DMA_ENGINE 1150void dmaengine_get(void); 1151void dmaengine_put(void); 1152#else 1153static inline void dmaengine_get(void) 1154{ 1155} 1156static inline void dmaengine_put(void) 1157{ 1158} 1159#endif 1160 1161#ifdef CONFIG_ASYNC_TX_DMA 1162#define async_dmaengine_get() dmaengine_get() 1163#define async_dmaengine_put() dmaengine_put() 1164#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1165#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1166#else 1167#define async_dma_find_channel(type) dma_find_channel(type) 1168#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1169#else 1170static inline void async_dmaengine_get(void) 1171{ 1172} 1173static inline void async_dmaengine_put(void) 1174{ 1175} 1176static inline struct dma_chan * 1177async_dma_find_channel(enum dma_transaction_type type) 1178{ 1179 return NULL; 1180} 1181#endif /* CONFIG_ASYNC_TX_DMA */ 1182void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1183 struct dma_chan *chan); 1184 1185static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1186{ 1187 tx->flags |= DMA_CTRL_ACK; 1188} 1189 1190static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1191{ 1192 tx->flags &= ~DMA_CTRL_ACK; 1193} 1194 1195static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1196{ 1197 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1198} 1199 1200#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1201static inline void 1202__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1203{ 1204 set_bit(tx_type, dstp->bits); 1205} 1206 1207#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1208static inline void 1209__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1210{ 1211 clear_bit(tx_type, dstp->bits); 1212} 1213 1214#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1215static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1216{ 1217 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1218} 1219 1220#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1221static inline int 1222__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1223{ 1224 return test_bit(tx_type, srcp->bits); 1225} 1226 1227#define for_each_dma_cap_mask(cap, mask) \ 1228 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1229 1230/** 1231 * dma_async_issue_pending - flush pending transactions to HW 1232 * @chan: target DMA channel 1233 * 1234 * This allows drivers to push copies to HW in batches, 1235 * reducing MMIO writes where possible. 1236 */ 1237static inline void dma_async_issue_pending(struct dma_chan *chan) 1238{ 1239 chan->device->device_issue_pending(chan); 1240} 1241 1242/** 1243 * dma_async_is_tx_complete - poll for transaction completion 1244 * @chan: DMA channel 1245 * @cookie: transaction identifier to check status of 1246 * @last: returns last completed cookie, can be NULL 1247 * @used: returns last issued cookie, can be NULL 1248 * 1249 * If @last and @used are passed in, upon return they reflect the driver 1250 * internal state and can be used with dma_async_is_complete() to check 1251 * the status of multiple cookies without re-checking hardware state. 1252 */ 1253static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1254 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1255{ 1256 struct dma_tx_state state; 1257 enum dma_status status; 1258 1259 status = chan->device->device_tx_status(chan, cookie, &state); 1260 if (last) 1261 *last = state.last; 1262 if (used) 1263 *used = state.used; 1264 return status; 1265} 1266 1267/** 1268 * dma_async_is_complete - test a cookie against chan state 1269 * @cookie: transaction identifier to test status of 1270 * @last_complete: last know completed transaction 1271 * @last_used: last cookie value handed out 1272 * 1273 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1274 * the test logic is separated for lightweight testing of multiple cookies 1275 */ 1276static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1277 dma_cookie_t last_complete, dma_cookie_t last_used) 1278{ 1279 if (last_complete <= last_used) { 1280 if ((cookie <= last_complete) || (cookie > last_used)) 1281 return DMA_COMPLETE; 1282 } else { 1283 if ((cookie <= last_complete) && (cookie > last_used)) 1284 return DMA_COMPLETE; 1285 } 1286 return DMA_IN_PROGRESS; 1287} 1288 1289static inline void 1290dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1291{ 1292 if (st) { 1293 st->last = last; 1294 st->used = used; 1295 st->residue = residue; 1296 } 1297} 1298 1299#ifdef CONFIG_DMA_ENGINE 1300struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1301enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1302enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1303void dma_issue_pending_all(void); 1304struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1305 dma_filter_fn fn, void *fn_param, 1306 struct device_node *np); 1307struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1308 1309struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1310struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1311 1312void dma_release_channel(struct dma_chan *chan); 1313int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1314#else 1315static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1316{ 1317 return NULL; 1318} 1319static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1320{ 1321 return DMA_COMPLETE; 1322} 1323static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1324{ 1325 return DMA_COMPLETE; 1326} 1327static inline void dma_issue_pending_all(void) 1328{ 1329} 1330static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1331 dma_filter_fn fn, 1332 void *fn_param, 1333 struct device_node *np) 1334{ 1335 return NULL; 1336} 1337static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1338 const char *name) 1339{ 1340 return NULL; 1341} 1342static inline struct dma_chan *dma_request_chan(struct device *dev, 1343 const char *name) 1344{ 1345 return ERR_PTR(-ENODEV); 1346} 1347static inline struct dma_chan *dma_request_chan_by_mask( 1348 const dma_cap_mask_t *mask) 1349{ 1350 return ERR_PTR(-ENODEV); 1351} 1352static inline void dma_release_channel(struct dma_chan *chan) 1353{ 1354} 1355static inline int dma_get_slave_caps(struct dma_chan *chan, 1356 struct dma_slave_caps *caps) 1357{ 1358 return -ENXIO; 1359} 1360#endif 1361 1362#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name) 1363 1364static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1365{ 1366 struct dma_slave_caps caps; 1367 1368 dma_get_slave_caps(tx->chan, &caps); 1369 1370 if (caps.descriptor_reuse) { 1371 tx->flags |= DMA_CTRL_REUSE; 1372 return 0; 1373 } else { 1374 return -EPERM; 1375 } 1376} 1377 1378static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1379{ 1380 tx->flags &= ~DMA_CTRL_REUSE; 1381} 1382 1383static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1384{ 1385 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1386} 1387 1388static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1389{ 1390 /* this is supported for reusable desc, so check that */ 1391 if (dmaengine_desc_test_reuse(desc)) 1392 return desc->desc_free(desc); 1393 else 1394 return -EPERM; 1395} 1396 1397/* --- DMA device --- */ 1398 1399int dma_async_device_register(struct dma_device *device); 1400int dmaenginem_async_device_register(struct dma_device *device); 1401void dma_async_device_unregister(struct dma_device *device); 1402void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1403struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1404struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1405#define dma_request_channel(mask, x, y) \ 1406 __dma_request_channel(&(mask), x, y, NULL) 1407#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1408 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1409 1410static inline struct dma_chan 1411*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1412 dma_filter_fn fn, void *fn_param, 1413 struct device *dev, const char *name) 1414{ 1415 struct dma_chan *chan; 1416 1417 chan = dma_request_slave_channel(dev, name); 1418 if (chan) 1419 return chan; 1420 1421 if (!fn || !fn_param) 1422 return NULL; 1423 1424 return __dma_request_channel(mask, fn, fn_param, NULL); 1425} 1426#endif /* DMAENGINE_H */