Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2016 Broadcom
4 */
5
6#include <linux/err.h>
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/errno.h>
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/platform_device.h>
13#include <linux/scatterlist.h>
14#include <linux/crypto.h>
15#include <linux/kthread.h>
16#include <linux/rtnetlink.h>
17#include <linux/sched.h>
18#include <linux/of_address.h>
19#include <linux/of_device.h>
20#include <linux/io.h>
21#include <linux/bitops.h>
22
23#include <crypto/algapi.h>
24#include <crypto/aead.h>
25#include <crypto/internal/aead.h>
26#include <crypto/aes.h>
27#include <crypto/des.h>
28#include <crypto/hmac.h>
29#include <crypto/sha.h>
30#include <crypto/md5.h>
31#include <crypto/authenc.h>
32#include <crypto/skcipher.h>
33#include <crypto/hash.h>
34#include <crypto/sha3.h>
35
36#include "util.h"
37#include "cipher.h"
38#include "spu.h"
39#include "spum.h"
40#include "spu2.h"
41
42/* ================= Device Structure ================== */
43
44struct device_private iproc_priv;
45
46/* ==================== Parameters ===================== */
47
48int flow_debug_logging;
49module_param(flow_debug_logging, int, 0644);
50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
51
52int packet_debug_logging;
53module_param(packet_debug_logging, int, 0644);
54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
55
56int debug_logging_sleep;
57module_param(debug_logging_sleep, int, 0644);
58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
59
60/*
61 * The value of these module parameters is used to set the priority for each
62 * algo type when this driver registers algos with the kernel crypto API.
63 * To use a priority other than the default, set the priority in the insmod or
64 * modprobe. Changing the module priority after init time has no effect.
65 *
66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67 * algos, but more preferred than generic software algos.
68 */
69static int cipher_pri = 150;
70module_param(cipher_pri, int, 0644);
71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
72
73static int hash_pri = 100;
74module_param(hash_pri, int, 0644);
75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
76
77static int aead_pri = 150;
78module_param(aead_pri, int, 0644);
79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
80
81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
83 * 0x60 - ring 0
84 * 0x68 - ring 1
85 * 0x70 - ring 2
86 * 0x78 - ring 3
87 */
88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
89/*
90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91 * is set dynamically after reading SPU type from device tree.
92 */
93#define BCM_HDR_LEN iproc_priv.bcm_hdr_len
94
95/* min and max time to sleep before retrying when mbox queue is full. usec */
96#define MBOX_SLEEP_MIN 800
97#define MBOX_SLEEP_MAX 1000
98
99/**
100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
101 * channel in round robin order.
102 *
103 * Return: channel index
104 */
105static u8 select_channel(void)
106{
107 u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
108
109 return chan_idx % iproc_priv.spu.num_chan;
110}
111
112/**
113 * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114 * receive a SPU response message for an ablkcipher request. Includes buffers to
115 * catch SPU message headers and the response data.
116 * @mssg: mailbox message containing the receive sg
117 * @rctx: crypto request context
118 * @rx_frag_num: number of scatterlist elements required to hold the
119 * SPU response message
120 * @chunksize: Number of bytes of response data expected
121 * @stat_pad_len: Number of bytes required to pad the STAT field to
122 * a 4-byte boundary
123 *
124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125 * when the request completes, whether the request is handled successfully or
126 * there is an error.
127 *
128 * Returns:
129 * 0 if successful
130 * < 0 if an error
131 */
132static int
133spu_ablkcipher_rx_sg_create(struct brcm_message *mssg,
134 struct iproc_reqctx_s *rctx,
135 u8 rx_frag_num,
136 unsigned int chunksize, u32 stat_pad_len)
137{
138 struct spu_hw *spu = &iproc_priv.spu;
139 struct scatterlist *sg; /* used to build sgs in mbox message */
140 struct iproc_ctx_s *ctx = rctx->ctx;
141 u32 datalen; /* Number of bytes of response data expected */
142
143 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
144 rctx->gfp);
145 if (!mssg->spu.dst)
146 return -ENOMEM;
147
148 sg = mssg->spu.dst;
149 sg_init_table(sg, rx_frag_num);
150 /* Space for SPU message header */
151 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
152
153 /* If XTS tweak in payload, add buffer to receive encrypted tweak */
154 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
155 spu->spu_xts_tweak_in_payload())
156 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
157 SPU_XTS_TWEAK_SIZE);
158
159 /* Copy in each dst sg entry from request, up to chunksize */
160 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
161 rctx->dst_nents, chunksize);
162 if (datalen < chunksize) {
163 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164 __func__, chunksize, datalen);
165 return -EFAULT;
166 }
167
168 if (ctx->cipher.alg == CIPHER_ALG_RC4)
169 /* Add buffer to catch 260-byte SUPDT field for RC4 */
170 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN);
171
172 if (stat_pad_len)
173 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
174
175 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
176 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
177
178 return 0;
179}
180
181/**
182 * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to
183 * send a SPU request message for an ablkcipher request. Includes SPU message
184 * headers and the request data.
185 * @mssg: mailbox message containing the transmit sg
186 * @rctx: crypto request context
187 * @tx_frag_num: number of scatterlist elements required to construct the
188 * SPU request message
189 * @chunksize: Number of bytes of request data
190 * @pad_len: Number of pad bytes
191 *
192 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
193 * when the request completes, whether the request is handled successfully or
194 * there is an error.
195 *
196 * Returns:
197 * 0 if successful
198 * < 0 if an error
199 */
200static int
201spu_ablkcipher_tx_sg_create(struct brcm_message *mssg,
202 struct iproc_reqctx_s *rctx,
203 u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
204{
205 struct spu_hw *spu = &iproc_priv.spu;
206 struct scatterlist *sg; /* used to build sgs in mbox message */
207 struct iproc_ctx_s *ctx = rctx->ctx;
208 u32 datalen; /* Number of bytes of response data expected */
209 u32 stat_len;
210
211 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
212 rctx->gfp);
213 if (unlikely(!mssg->spu.src))
214 return -ENOMEM;
215
216 sg = mssg->spu.src;
217 sg_init_table(sg, tx_frag_num);
218
219 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
220 BCM_HDR_LEN + ctx->spu_req_hdr_len);
221
222 /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
223 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
224 spu->spu_xts_tweak_in_payload())
225 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
226
227 /* Copy in each src sg entry from request, up to chunksize */
228 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
229 rctx->src_nents, chunksize);
230 if (unlikely(datalen < chunksize)) {
231 pr_err("%s(): failed to copy src sg to mbox msg",
232 __func__);
233 return -EFAULT;
234 }
235
236 if (pad_len)
237 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
238
239 stat_len = spu->spu_tx_status_len();
240 if (stat_len) {
241 memset(rctx->msg_buf.tx_stat, 0, stat_len);
242 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
243 }
244 return 0;
245}
246
247static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
248 u8 chan_idx)
249{
250 int err;
251 int retry_cnt = 0;
252 struct device *dev = &(iproc_priv.pdev->dev);
253
254 err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
255 if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
256 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
257 /*
258 * Mailbox queue is full. Since MAY_SLEEP is set, assume
259 * not in atomic context and we can wait and try again.
260 */
261 retry_cnt++;
262 usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
263 err = mbox_send_message(iproc_priv.mbox[chan_idx],
264 mssg);
265 atomic_inc(&iproc_priv.mb_no_spc);
266 }
267 }
268 if (err < 0) {
269 atomic_inc(&iproc_priv.mb_send_fail);
270 return err;
271 }
272
273 /* Check error returned by mailbox controller */
274 err = mssg->error;
275 if (unlikely(err < 0)) {
276 dev_err(dev, "message error %d", err);
277 /* Signal txdone for mailbox channel */
278 }
279
280 /* Signal txdone for mailbox channel */
281 mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
282 return err;
283}
284
285/**
286 * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in
287 * a single SPU request message, starting at the current position in the request
288 * data.
289 * @rctx: Crypto request context
290 *
291 * This may be called on the crypto API thread, or, when a request is so large
292 * it must be broken into multiple SPU messages, on the thread used to invoke
293 * the response callback. When requests are broken into multiple SPU
294 * messages, we assume subsequent messages depend on previous results, and
295 * thus always wait for previous results before submitting the next message.
296 * Because requests are submitted in lock step like this, there is no need
297 * to synchronize access to request data structures.
298 *
299 * Return: -EINPROGRESS: request has been accepted and result will be returned
300 * asynchronously
301 * Any other value indicates an error
302 */
303static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx)
304{
305 struct spu_hw *spu = &iproc_priv.spu;
306 struct crypto_async_request *areq = rctx->parent;
307 struct ablkcipher_request *req =
308 container_of(areq, struct ablkcipher_request, base);
309 struct iproc_ctx_s *ctx = rctx->ctx;
310 struct spu_cipher_parms cipher_parms;
311 int err = 0;
312 unsigned int chunksize = 0; /* Num bytes of request to submit */
313 int remaining = 0; /* Bytes of request still to process */
314 int chunk_start; /* Beginning of data for current SPU msg */
315
316 /* IV or ctr value to use in this SPU msg */
317 u8 local_iv_ctr[MAX_IV_SIZE];
318 u32 stat_pad_len; /* num bytes to align status field */
319 u32 pad_len; /* total length of all padding */
320 bool update_key = false;
321 struct brcm_message *mssg; /* mailbox message */
322
323 /* number of entries in src and dst sg in mailbox message. */
324 u8 rx_frag_num = 2; /* response header and STATUS */
325 u8 tx_frag_num = 1; /* request header */
326
327 flow_log("%s\n", __func__);
328
329 cipher_parms.alg = ctx->cipher.alg;
330 cipher_parms.mode = ctx->cipher.mode;
331 cipher_parms.type = ctx->cipher_type;
332 cipher_parms.key_len = ctx->enckeylen;
333 cipher_parms.key_buf = ctx->enckey;
334 cipher_parms.iv_buf = local_iv_ctr;
335 cipher_parms.iv_len = rctx->iv_ctr_len;
336
337 mssg = &rctx->mb_mssg;
338 chunk_start = rctx->src_sent;
339 remaining = rctx->total_todo - chunk_start;
340
341 /* determine the chunk we are breaking off and update the indexes */
342 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
343 (remaining > ctx->max_payload))
344 chunksize = ctx->max_payload;
345 else
346 chunksize = remaining;
347
348 rctx->src_sent += chunksize;
349 rctx->total_sent = rctx->src_sent;
350
351 /* Count number of sg entries to be included in this request */
352 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
353 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
354
355 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
356 rctx->is_encrypt && chunk_start)
357 /*
358 * Encrypting non-first first chunk. Copy last block of
359 * previous result to IV for this chunk.
360 */
361 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
362 rctx->iv_ctr_len,
363 chunk_start - rctx->iv_ctr_len);
364
365 if (rctx->iv_ctr_len) {
366 /* get our local copy of the iv */
367 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
368 rctx->iv_ctr_len);
369
370 /* generate the next IV if possible */
371 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
372 !rctx->is_encrypt) {
373 /*
374 * CBC Decrypt: next IV is the last ciphertext block in
375 * this chunk
376 */
377 sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
378 rctx->iv_ctr_len,
379 rctx->src_sent - rctx->iv_ctr_len);
380 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
381 /*
382 * The SPU hardware increments the counter once for
383 * each AES block of 16 bytes. So update the counter
384 * for the next chunk, if there is one. Note that for
385 * this chunk, the counter has already been copied to
386 * local_iv_ctr. We can assume a block size of 16,
387 * because we only support CTR mode for AES, not for
388 * any other cipher alg.
389 */
390 add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
391 }
392 }
393
394 if (ctx->cipher.alg == CIPHER_ALG_RC4) {
395 rx_frag_num++;
396 if (chunk_start) {
397 /*
398 * for non-first RC4 chunks, use SUPDT from previous
399 * response as key for this chunk.
400 */
401 cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak;
402 update_key = true;
403 cipher_parms.type = CIPHER_TYPE_UPDT;
404 } else if (!rctx->is_encrypt) {
405 /*
406 * First RC4 chunk. For decrypt, key in pre-built msg
407 * header may have been changed if encrypt required
408 * multiple chunks. So revert the key to the
409 * ctx->enckey value.
410 */
411 update_key = true;
412 cipher_parms.type = CIPHER_TYPE_INIT;
413 }
414 }
415
416 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
417 flow_log("max_payload infinite\n");
418 else
419 flow_log("max_payload %u\n", ctx->max_payload);
420
421 flow_log("sent:%u start:%u remains:%u size:%u\n",
422 rctx->src_sent, chunk_start, remaining, chunksize);
423
424 /* Copy SPU header template created at setkey time */
425 memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
426 sizeof(rctx->msg_buf.bcm_spu_req_hdr));
427
428 /*
429 * Pass SUPDT field as key. Key field in finish() call is only used
430 * when update_key has been set above for RC4. Will be ignored in
431 * all other cases.
432 */
433 spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
434 ctx->spu_req_hdr_len, !(rctx->is_encrypt),
435 &cipher_parms, update_key, chunksize);
436
437 atomic64_add(chunksize, &iproc_priv.bytes_out);
438
439 stat_pad_len = spu->spu_wordalign_padlen(chunksize);
440 if (stat_pad_len)
441 rx_frag_num++;
442 pad_len = stat_pad_len;
443 if (pad_len) {
444 tx_frag_num++;
445 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
446 0, ctx->auth.alg, ctx->auth.mode,
447 rctx->total_sent, stat_pad_len);
448 }
449
450 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
451 ctx->spu_req_hdr_len);
452 packet_log("payload:\n");
453 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
454 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
455
456 /*
457 * Build mailbox message containing SPU request msg and rx buffers
458 * to catch response message
459 */
460 memset(mssg, 0, sizeof(*mssg));
461 mssg->type = BRCM_MESSAGE_SPU;
462 mssg->ctx = rctx; /* Will be returned in response */
463
464 /* Create rx scatterlist to catch result */
465 rx_frag_num += rctx->dst_nents;
466
467 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
468 spu->spu_xts_tweak_in_payload())
469 rx_frag_num++; /* extra sg to insert tweak */
470
471 err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
472 stat_pad_len);
473 if (err)
474 return err;
475
476 /* Create tx scatterlist containing SPU request message */
477 tx_frag_num += rctx->src_nents;
478 if (spu->spu_tx_status_len())
479 tx_frag_num++;
480
481 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
482 spu->spu_xts_tweak_in_payload())
483 tx_frag_num++; /* extra sg to insert tweak */
484
485 err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
486 pad_len);
487 if (err)
488 return err;
489
490 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
491 if (unlikely(err < 0))
492 return err;
493
494 return -EINPROGRESS;
495}
496
497/**
498 * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the
499 * total received count for the request and updates global stats.
500 * @rctx: Crypto request context
501 */
502static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx)
503{
504 struct spu_hw *spu = &iproc_priv.spu;
505#ifdef DEBUG
506 struct crypto_async_request *areq = rctx->parent;
507 struct ablkcipher_request *req = ablkcipher_request_cast(areq);
508#endif
509 struct iproc_ctx_s *ctx = rctx->ctx;
510 u32 payload_len;
511
512 /* See how much data was returned */
513 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
514
515 /*
516 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
517 * encrypted tweak ("i") value; we don't count those.
518 */
519 if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
520 spu->spu_xts_tweak_in_payload() &&
521 (payload_len >= SPU_XTS_TWEAK_SIZE))
522 payload_len -= SPU_XTS_TWEAK_SIZE;
523
524 atomic64_add(payload_len, &iproc_priv.bytes_in);
525
526 flow_log("%s() offset: %u, bd_len: %u BD:\n",
527 __func__, rctx->total_received, payload_len);
528
529 dump_sg(req->dst, rctx->total_received, payload_len);
530 if (ctx->cipher.alg == CIPHER_ALG_RC4)
531 packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak,
532 SPU_SUPDT_LEN);
533
534 rctx->total_received += payload_len;
535 if (rctx->total_received == rctx->total_todo) {
536 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
537 atomic_inc(
538 &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
539 }
540}
541
542/**
543 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
544 * receive a SPU response message for an ahash request.
545 * @mssg: mailbox message containing the receive sg
546 * @rctx: crypto request context
547 * @rx_frag_num: number of scatterlist elements required to hold the
548 * SPU response message
549 * @digestsize: length of hash digest, in bytes
550 * @stat_pad_len: Number of bytes required to pad the STAT field to
551 * a 4-byte boundary
552 *
553 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
554 * when the request completes, whether the request is handled successfully or
555 * there is an error.
556 *
557 * Return:
558 * 0 if successful
559 * < 0 if an error
560 */
561static int
562spu_ahash_rx_sg_create(struct brcm_message *mssg,
563 struct iproc_reqctx_s *rctx,
564 u8 rx_frag_num, unsigned int digestsize,
565 u32 stat_pad_len)
566{
567 struct spu_hw *spu = &iproc_priv.spu;
568 struct scatterlist *sg; /* used to build sgs in mbox message */
569 struct iproc_ctx_s *ctx = rctx->ctx;
570
571 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
572 rctx->gfp);
573 if (!mssg->spu.dst)
574 return -ENOMEM;
575
576 sg = mssg->spu.dst;
577 sg_init_table(sg, rx_frag_num);
578 /* Space for SPU message header */
579 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
580
581 /* Space for digest */
582 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
583
584 if (stat_pad_len)
585 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
586
587 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
588 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
589 return 0;
590}
591
592/**
593 * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send
594 * a SPU request message for an ahash request. Includes SPU message headers and
595 * the request data.
596 * @mssg: mailbox message containing the transmit sg
597 * @rctx: crypto request context
598 * @tx_frag_num: number of scatterlist elements required to construct the
599 * SPU request message
600 * @spu_hdr_len: length in bytes of SPU message header
601 * @hash_carry_len: Number of bytes of data carried over from previous req
602 * @new_data_len: Number of bytes of new request data
603 * @pad_len: Number of pad bytes
604 *
605 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
606 * when the request completes, whether the request is handled successfully or
607 * there is an error.
608 *
609 * Return:
610 * 0 if successful
611 * < 0 if an error
612 */
613static int
614spu_ahash_tx_sg_create(struct brcm_message *mssg,
615 struct iproc_reqctx_s *rctx,
616 u8 tx_frag_num,
617 u32 spu_hdr_len,
618 unsigned int hash_carry_len,
619 unsigned int new_data_len, u32 pad_len)
620{
621 struct spu_hw *spu = &iproc_priv.spu;
622 struct scatterlist *sg; /* used to build sgs in mbox message */
623 u32 datalen; /* Number of bytes of response data expected */
624 u32 stat_len;
625
626 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
627 rctx->gfp);
628 if (!mssg->spu.src)
629 return -ENOMEM;
630
631 sg = mssg->spu.src;
632 sg_init_table(sg, tx_frag_num);
633
634 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
635 BCM_HDR_LEN + spu_hdr_len);
636
637 if (hash_carry_len)
638 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
639
640 if (new_data_len) {
641 /* Copy in each src sg entry from request, up to chunksize */
642 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
643 rctx->src_nents, new_data_len);
644 if (datalen < new_data_len) {
645 pr_err("%s(): failed to copy src sg to mbox msg",
646 __func__);
647 return -EFAULT;
648 }
649 }
650
651 if (pad_len)
652 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
653
654 stat_len = spu->spu_tx_status_len();
655 if (stat_len) {
656 memset(rctx->msg_buf.tx_stat, 0, stat_len);
657 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
658 }
659
660 return 0;
661}
662
663/**
664 * handle_ahash_req() - Process an asynchronous hash request from the crypto
665 * API.
666 * @rctx: Crypto request context
667 *
668 * Builds a SPU request message embedded in a mailbox message and submits the
669 * mailbox message on a selected mailbox channel. The SPU request message is
670 * constructed as a scatterlist, including entries from the crypto API's
671 * src scatterlist to avoid copying the data to be hashed. This function is
672 * called either on the thread from the crypto API, or, in the case that the
673 * crypto API request is too large to fit in a single SPU request message,
674 * on the thread that invokes the receive callback with a response message.
675 * Because some operations require the response from one chunk before the next
676 * chunk can be submitted, we always wait for the response for the previous
677 * chunk before submitting the next chunk. Because requests are submitted in
678 * lock step like this, there is no need to synchronize access to request data
679 * structures.
680 *
681 * Return:
682 * -EINPROGRESS: request has been submitted to SPU and response will be
683 * returned asynchronously
684 * -EAGAIN: non-final request included a small amount of data, which for
685 * efficiency we did not submit to the SPU, but instead stored
686 * to be submitted to the SPU with the next part of the request
687 * other: an error code
688 */
689static int handle_ahash_req(struct iproc_reqctx_s *rctx)
690{
691 struct spu_hw *spu = &iproc_priv.spu;
692 struct crypto_async_request *areq = rctx->parent;
693 struct ahash_request *req = ahash_request_cast(areq);
694 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
695 struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
696 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
697 struct iproc_ctx_s *ctx = rctx->ctx;
698
699 /* number of bytes still to be hashed in this req */
700 unsigned int nbytes_to_hash = 0;
701 int err = 0;
702 unsigned int chunksize = 0; /* length of hash carry + new data */
703 /*
704 * length of new data, not from hash carry, to be submitted in
705 * this hw request
706 */
707 unsigned int new_data_len;
708
709 unsigned int __maybe_unused chunk_start = 0;
710 u32 db_size; /* Length of data field, incl gcm and hash padding */
711 int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
712 u32 data_pad_len = 0; /* length of GCM/CCM padding */
713 u32 stat_pad_len = 0; /* length of padding to align STATUS word */
714 struct brcm_message *mssg; /* mailbox message */
715 struct spu_request_opts req_opts;
716 struct spu_cipher_parms cipher_parms;
717 struct spu_hash_parms hash_parms;
718 struct spu_aead_parms aead_parms;
719 unsigned int local_nbuf;
720 u32 spu_hdr_len;
721 unsigned int digestsize;
722 u16 rem = 0;
723
724 /*
725 * number of entries in src and dst sg. Always includes SPU msg header.
726 * rx always includes a buffer to catch digest and STATUS.
727 */
728 u8 rx_frag_num = 3;
729 u8 tx_frag_num = 1;
730
731 flow_log("total_todo %u, total_sent %u\n",
732 rctx->total_todo, rctx->total_sent);
733
734 memset(&req_opts, 0, sizeof(req_opts));
735 memset(&cipher_parms, 0, sizeof(cipher_parms));
736 memset(&hash_parms, 0, sizeof(hash_parms));
737 memset(&aead_parms, 0, sizeof(aead_parms));
738
739 req_opts.bd_suppress = true;
740 hash_parms.alg = ctx->auth.alg;
741 hash_parms.mode = ctx->auth.mode;
742 hash_parms.type = HASH_TYPE_NONE;
743 hash_parms.key_buf = (u8 *)ctx->authkey;
744 hash_parms.key_len = ctx->authkeylen;
745
746 /*
747 * For hash algorithms below assignment looks bit odd but
748 * it's needed for AES-XCBC and AES-CMAC hash algorithms
749 * to differentiate between 128, 192, 256 bit key values.
750 * Based on the key values, hash algorithm is selected.
751 * For example for 128 bit key, hash algorithm is AES-128.
752 */
753 cipher_parms.type = ctx->cipher_type;
754
755 mssg = &rctx->mb_mssg;
756 chunk_start = rctx->src_sent;
757
758 /*
759 * Compute the amount remaining to hash. This may include data
760 * carried over from previous requests.
761 */
762 nbytes_to_hash = rctx->total_todo - rctx->total_sent;
763 chunksize = nbytes_to_hash;
764 if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
765 (chunksize > ctx->max_payload))
766 chunksize = ctx->max_payload;
767
768 /*
769 * If this is not a final request and the request data is not a multiple
770 * of a full block, then simply park the extra data and prefix it to the
771 * data for the next request.
772 */
773 if (!rctx->is_final) {
774 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
775 u16 new_len; /* len of data to add to hash carry */
776
777 rem = chunksize % blocksize; /* remainder */
778 if (rem) {
779 /* chunksize not a multiple of blocksize */
780 chunksize -= rem;
781 if (chunksize == 0) {
782 /* Don't have a full block to submit to hw */
783 new_len = rem - rctx->hash_carry_len;
784 sg_copy_part_to_buf(req->src, dest, new_len,
785 rctx->src_sent);
786 rctx->hash_carry_len = rem;
787 flow_log("Exiting with hash carry len: %u\n",
788 rctx->hash_carry_len);
789 packet_dump(" buf: ",
790 rctx->hash_carry,
791 rctx->hash_carry_len);
792 return -EAGAIN;
793 }
794 }
795 }
796
797 /* if we have hash carry, then prefix it to the data in this request */
798 local_nbuf = rctx->hash_carry_len;
799 rctx->hash_carry_len = 0;
800 if (local_nbuf)
801 tx_frag_num++;
802 new_data_len = chunksize - local_nbuf;
803
804 /* Count number of sg entries to be used in this request */
805 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
806 new_data_len);
807
808 /* AES hashing keeps key size in type field, so need to copy it here */
809 if (hash_parms.alg == HASH_ALG_AES)
810 hash_parms.type = (enum hash_type)cipher_parms.type;
811 else
812 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
813
814 digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
815 hash_parms.type);
816 hash_parms.digestsize = digestsize;
817
818 /* update the indexes */
819 rctx->total_sent += chunksize;
820 /* if you sent a prebuf then that wasn't from this req->src */
821 rctx->src_sent += new_data_len;
822
823 if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
824 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
825 hash_parms.mode,
826 chunksize,
827 blocksize);
828
829 /*
830 * If a non-first chunk, then include the digest returned from the
831 * previous chunk so that hw can add to it (except for AES types).
832 */
833 if ((hash_parms.type == HASH_TYPE_UPDT) &&
834 (hash_parms.alg != HASH_ALG_AES)) {
835 hash_parms.key_buf = rctx->incr_hash;
836 hash_parms.key_len = digestsize;
837 }
838
839 atomic64_add(chunksize, &iproc_priv.bytes_out);
840
841 flow_log("%s() final: %u nbuf: %u ",
842 __func__, rctx->is_final, local_nbuf);
843
844 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
845 flow_log("max_payload infinite\n");
846 else
847 flow_log("max_payload %u\n", ctx->max_payload);
848
849 flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
850
851 /* Prepend SPU header with type 3 BCM header */
852 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
853
854 hash_parms.prebuf_len = local_nbuf;
855 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
856 BCM_HDR_LEN,
857 &req_opts, &cipher_parms,
858 &hash_parms, &aead_parms,
859 new_data_len);
860
861 if (spu_hdr_len == 0) {
862 pr_err("Failed to create SPU request header\n");
863 return -EFAULT;
864 }
865
866 /*
867 * Determine total length of padding required. Put all padding in one
868 * buffer.
869 */
870 data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
871 db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
872 0, 0, hash_parms.pad_len);
873 if (spu->spu_tx_status_len())
874 stat_pad_len = spu->spu_wordalign_padlen(db_size);
875 if (stat_pad_len)
876 rx_frag_num++;
877 pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
878 if (pad_len) {
879 tx_frag_num++;
880 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
881 hash_parms.pad_len, ctx->auth.alg,
882 ctx->auth.mode, rctx->total_sent,
883 stat_pad_len);
884 }
885
886 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
887 spu_hdr_len);
888 packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf);
889 flow_log("Data:\n");
890 dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
891 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
892
893 /*
894 * Build mailbox message containing SPU request msg and rx buffers
895 * to catch response message
896 */
897 memset(mssg, 0, sizeof(*mssg));
898 mssg->type = BRCM_MESSAGE_SPU;
899 mssg->ctx = rctx; /* Will be returned in response */
900
901 /* Create rx scatterlist to catch result */
902 err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
903 stat_pad_len);
904 if (err)
905 return err;
906
907 /* Create tx scatterlist containing SPU request message */
908 tx_frag_num += rctx->src_nents;
909 if (spu->spu_tx_status_len())
910 tx_frag_num++;
911 err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
912 local_nbuf, new_data_len, pad_len);
913 if (err)
914 return err;
915
916 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
917 if (unlikely(err < 0))
918 return err;
919
920 return -EINPROGRESS;
921}
922
923/**
924 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
925 * for an HMAC request.
926 * @req: The HMAC request from the crypto API
927 * @ctx: The session context
928 *
929 * Return: 0 if synchronous hash operation successful
930 * -EINVAL if the hash algo is unrecognized
931 * any other value indicates an error
932 */
933static int spu_hmac_outer_hash(struct ahash_request *req,
934 struct iproc_ctx_s *ctx)
935{
936 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
937 unsigned int blocksize =
938 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
939 int rc;
940
941 switch (ctx->auth.alg) {
942 case HASH_ALG_MD5:
943 rc = do_shash("md5", req->result, ctx->opad, blocksize,
944 req->result, ctx->digestsize, NULL, 0);
945 break;
946 case HASH_ALG_SHA1:
947 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
948 req->result, ctx->digestsize, NULL, 0);
949 break;
950 case HASH_ALG_SHA224:
951 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
952 req->result, ctx->digestsize, NULL, 0);
953 break;
954 case HASH_ALG_SHA256:
955 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
956 req->result, ctx->digestsize, NULL, 0);
957 break;
958 case HASH_ALG_SHA384:
959 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
960 req->result, ctx->digestsize, NULL, 0);
961 break;
962 case HASH_ALG_SHA512:
963 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
964 req->result, ctx->digestsize, NULL, 0);
965 break;
966 default:
967 pr_err("%s() Error : unknown hmac type\n", __func__);
968 rc = -EINVAL;
969 }
970 return rc;
971}
972
973/**
974 * ahash_req_done() - Process a hash result from the SPU hardware.
975 * @rctx: Crypto request context
976 *
977 * Return: 0 if successful
978 * < 0 if an error
979 */
980static int ahash_req_done(struct iproc_reqctx_s *rctx)
981{
982 struct spu_hw *spu = &iproc_priv.spu;
983 struct crypto_async_request *areq = rctx->parent;
984 struct ahash_request *req = ahash_request_cast(areq);
985 struct iproc_ctx_s *ctx = rctx->ctx;
986 int err;
987
988 memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
989
990 if (spu->spu_type == SPU_TYPE_SPUM) {
991 /* byte swap the output from the UPDT function to network byte
992 * order
993 */
994 if (ctx->auth.alg == HASH_ALG_MD5) {
995 __swab32s((u32 *)req->result);
996 __swab32s(((u32 *)req->result) + 1);
997 __swab32s(((u32 *)req->result) + 2);
998 __swab32s(((u32 *)req->result) + 3);
999 __swab32s(((u32 *)req->result) + 4);
1000 }
1001 }
1002
1003 flow_dump(" digest ", req->result, ctx->digestsize);
1004
1005 /* if this an HMAC then do the outer hash */
1006 if (rctx->is_sw_hmac) {
1007 err = spu_hmac_outer_hash(req, ctx);
1008 if (err < 0)
1009 return err;
1010 flow_dump(" hmac: ", req->result, ctx->digestsize);
1011 }
1012
1013 if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
1014 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
1015 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
1016 } else {
1017 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
1018 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
1019 }
1020
1021 return 0;
1022}
1023
1024/**
1025 * handle_ahash_resp() - Process a SPU response message for a hash request.
1026 * Checks if the entire crypto API request has been processed, and if so,
1027 * invokes post processing on the result.
1028 * @rctx: Crypto request context
1029 */
1030static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
1031{
1032 struct iproc_ctx_s *ctx = rctx->ctx;
1033#ifdef DEBUG
1034 struct crypto_async_request *areq = rctx->parent;
1035 struct ahash_request *req = ahash_request_cast(areq);
1036 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1037 unsigned int blocksize =
1038 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1039#endif
1040 /*
1041 * Save hash to use as input to next op if incremental. Might be copying
1042 * too much, but that's easier than figuring out actual digest size here
1043 */
1044 memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1045
1046 flow_log("%s() blocksize:%u digestsize:%u\n",
1047 __func__, blocksize, ctx->digestsize);
1048
1049 atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1050
1051 if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1052 ahash_req_done(rctx);
1053}
1054
1055/**
1056 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1057 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1058 * message headers and the response data.
1059 * @mssg: mailbox message containing the receive sg
1060 * @rctx: crypto request context
1061 * @rx_frag_num: number of scatterlist elements required to hold the
1062 * SPU response message
1063 * @assoc_len: Length of associated data included in the crypto request
1064 * @ret_iv_len: Length of IV returned in response
1065 * @resp_len: Number of bytes of response data expected to be written to
1066 * dst buffer from crypto API
1067 * @digestsize: Length of hash digest, in bytes
1068 * @stat_pad_len: Number of bytes required to pad the STAT field to
1069 * a 4-byte boundary
1070 *
1071 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1072 * when the request completes, whether the request is handled successfully or
1073 * there is an error.
1074 *
1075 * Returns:
1076 * 0 if successful
1077 * < 0 if an error
1078 */
1079static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1080 struct aead_request *req,
1081 struct iproc_reqctx_s *rctx,
1082 u8 rx_frag_num,
1083 unsigned int assoc_len,
1084 u32 ret_iv_len, unsigned int resp_len,
1085 unsigned int digestsize, u32 stat_pad_len)
1086{
1087 struct spu_hw *spu = &iproc_priv.spu;
1088 struct scatterlist *sg; /* used to build sgs in mbox message */
1089 struct iproc_ctx_s *ctx = rctx->ctx;
1090 u32 datalen; /* Number of bytes of response data expected */
1091 u32 assoc_buf_len;
1092 u8 data_padlen = 0;
1093
1094 if (ctx->is_rfc4543) {
1095 /* RFC4543: only pad after data, not after AAD */
1096 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1097 assoc_len + resp_len);
1098 assoc_buf_len = assoc_len;
1099 } else {
1100 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1101 resp_len);
1102 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1103 assoc_len, ret_iv_len,
1104 rctx->is_encrypt);
1105 }
1106
1107 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1108 /* ICV (after data) must be in the next 32-bit word for CCM */
1109 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1110 resp_len +
1111 data_padlen);
1112
1113 if (data_padlen)
1114 /* have to catch gcm pad in separate buffer */
1115 rx_frag_num++;
1116
1117 mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1118 rctx->gfp);
1119 if (!mssg->spu.dst)
1120 return -ENOMEM;
1121
1122 sg = mssg->spu.dst;
1123 sg_init_table(sg, rx_frag_num);
1124
1125 /* Space for SPU message header */
1126 sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1127
1128 if (assoc_buf_len) {
1129 /*
1130 * Don't write directly to req->dst, because SPU may pad the
1131 * assoc data in the response
1132 */
1133 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1134 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1135 }
1136
1137 if (resp_len) {
1138 /*
1139 * Copy in each dst sg entry from request, up to chunksize.
1140 * dst sg catches just the data. digest caught in separate buf.
1141 */
1142 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1143 rctx->dst_nents, resp_len);
1144 if (datalen < (resp_len)) {
1145 pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1146 __func__, resp_len, datalen);
1147 return -EFAULT;
1148 }
1149 }
1150
1151 /* If GCM/CCM data is padded, catch padding in separate buffer */
1152 if (data_padlen) {
1153 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1154 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1155 }
1156
1157 /* Always catch ICV in separate buffer */
1158 sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1159
1160 flow_log("stat_pad_len %u\n", stat_pad_len);
1161 if (stat_pad_len) {
1162 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1163 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1164 }
1165
1166 memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1167 sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1168
1169 return 0;
1170}
1171
1172/**
1173 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1174 * SPU request message for an AEAD request. Includes SPU message headers and the
1175 * request data.
1176 * @mssg: mailbox message containing the transmit sg
1177 * @rctx: crypto request context
1178 * @tx_frag_num: number of scatterlist elements required to construct the
1179 * SPU request message
1180 * @spu_hdr_len: length of SPU message header in bytes
1181 * @assoc: crypto API associated data scatterlist
1182 * @assoc_len: length of associated data
1183 * @assoc_nents: number of scatterlist entries containing assoc data
1184 * @aead_iv_len: length of AEAD IV, if included
1185 * @chunksize: Number of bytes of request data
1186 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1187 * @pad_len: Number of pad bytes
1188 * @incl_icv: If true, write separate ICV buffer after data and
1189 * any padding
1190 *
1191 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1192 * when the request completes, whether the request is handled successfully or
1193 * there is an error.
1194 *
1195 * Return:
1196 * 0 if successful
1197 * < 0 if an error
1198 */
1199static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1200 struct iproc_reqctx_s *rctx,
1201 u8 tx_frag_num,
1202 u32 spu_hdr_len,
1203 struct scatterlist *assoc,
1204 unsigned int assoc_len,
1205 int assoc_nents,
1206 unsigned int aead_iv_len,
1207 unsigned int chunksize,
1208 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1209{
1210 struct spu_hw *spu = &iproc_priv.spu;
1211 struct scatterlist *sg; /* used to build sgs in mbox message */
1212 struct scatterlist *assoc_sg = assoc;
1213 struct iproc_ctx_s *ctx = rctx->ctx;
1214 u32 datalen; /* Number of bytes of data to write */
1215 u32 written; /* Number of bytes of data written */
1216 u32 assoc_offset = 0;
1217 u32 stat_len;
1218
1219 mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1220 rctx->gfp);
1221 if (!mssg->spu.src)
1222 return -ENOMEM;
1223
1224 sg = mssg->spu.src;
1225 sg_init_table(sg, tx_frag_num);
1226
1227 sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1228 BCM_HDR_LEN + spu_hdr_len);
1229
1230 if (assoc_len) {
1231 /* Copy in each associated data sg entry from request */
1232 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1233 assoc_nents, assoc_len);
1234 if (written < assoc_len) {
1235 pr_err("%s(): failed to copy assoc sg to mbox msg",
1236 __func__);
1237 return -EFAULT;
1238 }
1239 }
1240
1241 if (aead_iv_len)
1242 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1243
1244 if (aad_pad_len) {
1245 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1246 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1247 }
1248
1249 datalen = chunksize;
1250 if ((chunksize > ctx->digestsize) && incl_icv)
1251 datalen -= ctx->digestsize;
1252 if (datalen) {
1253 /* For aead, a single msg should consume the entire src sg */
1254 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1255 rctx->src_nents, datalen);
1256 if (written < datalen) {
1257 pr_err("%s(): failed to copy src sg to mbox msg",
1258 __func__);
1259 return -EFAULT;
1260 }
1261 }
1262
1263 if (pad_len) {
1264 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1265 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1266 }
1267
1268 if (incl_icv)
1269 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1270
1271 stat_len = spu->spu_tx_status_len();
1272 if (stat_len) {
1273 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1274 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1275 }
1276 return 0;
1277}
1278
1279/**
1280 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1281 * current AEAD request.
1282 * @rctx: Crypto request context
1283 *
1284 * Unlike other operation types, we assume the length of the request fits in
1285 * a single SPU request message. aead_enqueue() makes sure this is true.
1286 * Comments for other op types regarding threads applies here as well.
1287 *
1288 * Unlike incremental hash ops, where the spu returns the entire hash for
1289 * truncated algs like sha-224, the SPU returns just the truncated hash in
1290 * response to aead requests. So digestsize is always ctx->digestsize here.
1291 *
1292 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1293 * returned asynchronously
1294 * Any other value indicates an error
1295 */
1296static int handle_aead_req(struct iproc_reqctx_s *rctx)
1297{
1298 struct spu_hw *spu = &iproc_priv.spu;
1299 struct crypto_async_request *areq = rctx->parent;
1300 struct aead_request *req = container_of(areq,
1301 struct aead_request, base);
1302 struct iproc_ctx_s *ctx = rctx->ctx;
1303 int err;
1304 unsigned int chunksize;
1305 unsigned int resp_len;
1306 u32 spu_hdr_len;
1307 u32 db_size;
1308 u32 stat_pad_len;
1309 u32 pad_len;
1310 struct brcm_message *mssg; /* mailbox message */
1311 struct spu_request_opts req_opts;
1312 struct spu_cipher_parms cipher_parms;
1313 struct spu_hash_parms hash_parms;
1314 struct spu_aead_parms aead_parms;
1315 int assoc_nents = 0;
1316 bool incl_icv = false;
1317 unsigned int digestsize = ctx->digestsize;
1318
1319 /* number of entries in src and dst sg. Always includes SPU msg header.
1320 */
1321 u8 rx_frag_num = 2; /* and STATUS */
1322 u8 tx_frag_num = 1;
1323
1324 /* doing the whole thing at once */
1325 chunksize = rctx->total_todo;
1326
1327 flow_log("%s: chunksize %u\n", __func__, chunksize);
1328
1329 memset(&req_opts, 0, sizeof(req_opts));
1330 memset(&hash_parms, 0, sizeof(hash_parms));
1331 memset(&aead_parms, 0, sizeof(aead_parms));
1332
1333 req_opts.is_inbound = !(rctx->is_encrypt);
1334 req_opts.auth_first = ctx->auth_first;
1335 req_opts.is_aead = true;
1336 req_opts.is_esp = ctx->is_esp;
1337
1338 cipher_parms.alg = ctx->cipher.alg;
1339 cipher_parms.mode = ctx->cipher.mode;
1340 cipher_parms.type = ctx->cipher_type;
1341 cipher_parms.key_buf = ctx->enckey;
1342 cipher_parms.key_len = ctx->enckeylen;
1343 cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1344 cipher_parms.iv_len = rctx->iv_ctr_len;
1345
1346 hash_parms.alg = ctx->auth.alg;
1347 hash_parms.mode = ctx->auth.mode;
1348 hash_parms.type = HASH_TYPE_NONE;
1349 hash_parms.key_buf = (u8 *)ctx->authkey;
1350 hash_parms.key_len = ctx->authkeylen;
1351 hash_parms.digestsize = digestsize;
1352
1353 if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1354 (ctx->authkeylen < SHA224_DIGEST_SIZE))
1355 hash_parms.key_len = SHA224_DIGEST_SIZE;
1356
1357 aead_parms.assoc_size = req->assoclen;
1358 if (ctx->is_esp && !ctx->is_rfc4543) {
1359 /*
1360 * 8-byte IV is included assoc data in request. SPU2
1361 * expects AAD to include just SPI and seqno. So
1362 * subtract off the IV len.
1363 */
1364 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1365
1366 if (rctx->is_encrypt) {
1367 aead_parms.return_iv = true;
1368 aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1369 aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1370 }
1371 } else {
1372 aead_parms.ret_iv_len = 0;
1373 }
1374
1375 /*
1376 * Count number of sg entries from the crypto API request that are to
1377 * be included in this mailbox message. For dst sg, don't count space
1378 * for digest. Digest gets caught in a separate buffer and copied back
1379 * to dst sg when processing response.
1380 */
1381 rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1382 rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1383 if (aead_parms.assoc_size)
1384 assoc_nents = spu_sg_count(rctx->assoc, 0,
1385 aead_parms.assoc_size);
1386
1387 mssg = &rctx->mb_mssg;
1388
1389 rctx->total_sent = chunksize;
1390 rctx->src_sent = chunksize;
1391 if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1392 aead_parms.assoc_size,
1393 aead_parms.ret_iv_len,
1394 rctx->is_encrypt))
1395 rx_frag_num++;
1396
1397 aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1398 rctx->iv_ctr_len);
1399
1400 if (ctx->auth.alg == HASH_ALG_AES)
1401 hash_parms.type = (enum hash_type)ctx->cipher_type;
1402
1403 /* General case AAD padding (CCM and RFC4543 special cases below) */
1404 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1405 aead_parms.assoc_size);
1406
1407 /* General case data padding (CCM decrypt special case below) */
1408 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1409 chunksize);
1410
1411 if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1412 /*
1413 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1414 * 128-bit aligned
1415 */
1416 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1417 ctx->cipher.mode,
1418 aead_parms.assoc_size + 2);
1419
1420 /*
1421 * And when decrypting CCM, need to pad without including
1422 * size of ICV which is tacked on to end of chunk
1423 */
1424 if (!rctx->is_encrypt)
1425 aead_parms.data_pad_len =
1426 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1427 chunksize - digestsize);
1428
1429 /* CCM also requires software to rewrite portions of IV: */
1430 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1431 chunksize, rctx->is_encrypt,
1432 ctx->is_esp);
1433 }
1434
1435 if (ctx->is_rfc4543) {
1436 /*
1437 * RFC4543: data is included in AAD, so don't pad after AAD
1438 * and pad data based on both AAD + data size
1439 */
1440 aead_parms.aad_pad_len = 0;
1441 if (!rctx->is_encrypt)
1442 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1443 ctx->cipher.mode,
1444 aead_parms.assoc_size + chunksize -
1445 digestsize);
1446 else
1447 aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1448 ctx->cipher.mode,
1449 aead_parms.assoc_size + chunksize);
1450
1451 req_opts.is_rfc4543 = true;
1452 }
1453
1454 if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1455 incl_icv = true;
1456 tx_frag_num++;
1457 /* Copy ICV from end of src scatterlist to digest buf */
1458 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1459 req->assoclen + rctx->total_sent -
1460 digestsize);
1461 }
1462
1463 atomic64_add(chunksize, &iproc_priv.bytes_out);
1464
1465 flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1466
1467 /* Prepend SPU header with type 3 BCM header */
1468 memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1469
1470 spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1471 BCM_HDR_LEN, &req_opts,
1472 &cipher_parms, &hash_parms,
1473 &aead_parms, chunksize);
1474
1475 /* Determine total length of padding. Put all padding in one buffer. */
1476 db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1477 chunksize, aead_parms.aad_pad_len,
1478 aead_parms.data_pad_len, 0);
1479
1480 stat_pad_len = spu->spu_wordalign_padlen(db_size);
1481
1482 if (stat_pad_len)
1483 rx_frag_num++;
1484 pad_len = aead_parms.data_pad_len + stat_pad_len;
1485 if (pad_len) {
1486 tx_frag_num++;
1487 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1488 aead_parms.data_pad_len, 0,
1489 ctx->auth.alg, ctx->auth.mode,
1490 rctx->total_sent, stat_pad_len);
1491 }
1492
1493 spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1494 spu_hdr_len);
1495 dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1496 packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1497 packet_log("BD:\n");
1498 dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1499 packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1500
1501 /*
1502 * Build mailbox message containing SPU request msg and rx buffers
1503 * to catch response message
1504 */
1505 memset(mssg, 0, sizeof(*mssg));
1506 mssg->type = BRCM_MESSAGE_SPU;
1507 mssg->ctx = rctx; /* Will be returned in response */
1508
1509 /* Create rx scatterlist to catch result */
1510 rx_frag_num += rctx->dst_nents;
1511 resp_len = chunksize;
1512
1513 /*
1514 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1515 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1516 * sends entire digest back.
1517 */
1518 rx_frag_num++;
1519
1520 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1521 (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1522 /*
1523 * Input is ciphertxt plus ICV, but ICV not incl
1524 * in output.
1525 */
1526 resp_len -= ctx->digestsize;
1527 if (resp_len == 0)
1528 /* no rx frags to catch output data */
1529 rx_frag_num -= rctx->dst_nents;
1530 }
1531
1532 err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1533 aead_parms.assoc_size,
1534 aead_parms.ret_iv_len, resp_len, digestsize,
1535 stat_pad_len);
1536 if (err)
1537 return err;
1538
1539 /* Create tx scatterlist containing SPU request message */
1540 tx_frag_num += rctx->src_nents;
1541 tx_frag_num += assoc_nents;
1542 if (aead_parms.aad_pad_len)
1543 tx_frag_num++;
1544 if (aead_parms.iv_len)
1545 tx_frag_num++;
1546 if (spu->spu_tx_status_len())
1547 tx_frag_num++;
1548 err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1549 rctx->assoc, aead_parms.assoc_size,
1550 assoc_nents, aead_parms.iv_len, chunksize,
1551 aead_parms.aad_pad_len, pad_len, incl_icv);
1552 if (err)
1553 return err;
1554
1555 err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1556 if (unlikely(err < 0))
1557 return err;
1558
1559 return -EINPROGRESS;
1560}
1561
1562/**
1563 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1564 * @rctx: Crypto request context
1565 */
1566static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1567{
1568 struct spu_hw *spu = &iproc_priv.spu;
1569 struct crypto_async_request *areq = rctx->parent;
1570 struct aead_request *req = container_of(areq,
1571 struct aead_request, base);
1572 struct iproc_ctx_s *ctx = rctx->ctx;
1573 u32 payload_len;
1574 unsigned int icv_offset;
1575 u32 result_len;
1576
1577 /* See how much data was returned */
1578 payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1579 flow_log("payload_len %u\n", payload_len);
1580
1581 /* only count payload */
1582 atomic64_add(payload_len, &iproc_priv.bytes_in);
1583
1584 if (req->assoclen)
1585 packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad,
1586 req->assoclen);
1587
1588 /*
1589 * Copy the ICV back to the destination
1590 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1591 * API doesn't expect ICV in dst buffer.
1592 */
1593 result_len = req->cryptlen;
1594 if (rctx->is_encrypt) {
1595 icv_offset = req->assoclen + rctx->total_sent;
1596 packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1597 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1598 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1599 ctx->digestsize, icv_offset);
1600 result_len += ctx->digestsize;
1601 }
1602
1603 packet_log("response data: ");
1604 dump_sg(req->dst, req->assoclen, result_len);
1605
1606 atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1607 if (ctx->cipher.alg == CIPHER_ALG_AES) {
1608 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1609 atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1610 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1611 atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1612 else
1613 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1614 } else {
1615 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1616 }
1617}
1618
1619/**
1620 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1621 * @rctx: request context
1622 *
1623 * Mailbox scatterlists are allocated for each chunk. So free them after
1624 * processing each chunk.
1625 */
1626static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1627{
1628 /* mailbox message used to tx request */
1629 struct brcm_message *mssg = &rctx->mb_mssg;
1630
1631 kfree(mssg->spu.src);
1632 kfree(mssg->spu.dst);
1633 memset(mssg, 0, sizeof(struct brcm_message));
1634}
1635
1636/**
1637 * finish_req() - Used to invoke the complete callback from the requester when
1638 * a request has been handled asynchronously.
1639 * @rctx: Request context
1640 * @err: Indicates whether the request was successful or not
1641 *
1642 * Ensures that cleanup has been done for request
1643 */
1644static void finish_req(struct iproc_reqctx_s *rctx, int err)
1645{
1646 struct crypto_async_request *areq = rctx->parent;
1647
1648 flow_log("%s() err:%d\n\n", __func__, err);
1649
1650 /* No harm done if already called */
1651 spu_chunk_cleanup(rctx);
1652
1653 if (areq)
1654 areq->complete(areq, err);
1655}
1656
1657/**
1658 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1659 * @cl: mailbox client structure for SPU driver
1660 * @msg: mailbox message containing SPU response
1661 */
1662static void spu_rx_callback(struct mbox_client *cl, void *msg)
1663{
1664 struct spu_hw *spu = &iproc_priv.spu;
1665 struct brcm_message *mssg = msg;
1666 struct iproc_reqctx_s *rctx;
1667 int err = 0;
1668
1669 rctx = mssg->ctx;
1670 if (unlikely(!rctx)) {
1671 /* This is fatal */
1672 pr_err("%s(): no request context", __func__);
1673 err = -EFAULT;
1674 goto cb_finish;
1675 }
1676
1677 /* process the SPU status */
1678 err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1679 if (err != 0) {
1680 if (err == SPU_INVALID_ICV)
1681 atomic_inc(&iproc_priv.bad_icv);
1682 err = -EBADMSG;
1683 goto cb_finish;
1684 }
1685
1686 /* Process the SPU response message */
1687 switch (rctx->ctx->alg->type) {
1688 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1689 handle_ablkcipher_resp(rctx);
1690 break;
1691 case CRYPTO_ALG_TYPE_AHASH:
1692 handle_ahash_resp(rctx);
1693 break;
1694 case CRYPTO_ALG_TYPE_AEAD:
1695 handle_aead_resp(rctx);
1696 break;
1697 default:
1698 err = -EINVAL;
1699 goto cb_finish;
1700 }
1701
1702 /*
1703 * If this response does not complete the request, then send the next
1704 * request chunk.
1705 */
1706 if (rctx->total_sent < rctx->total_todo) {
1707 /* Deallocate anything specific to previous chunk */
1708 spu_chunk_cleanup(rctx);
1709
1710 switch (rctx->ctx->alg->type) {
1711 case CRYPTO_ALG_TYPE_ABLKCIPHER:
1712 err = handle_ablkcipher_req(rctx);
1713 break;
1714 case CRYPTO_ALG_TYPE_AHASH:
1715 err = handle_ahash_req(rctx);
1716 if (err == -EAGAIN)
1717 /*
1718 * we saved data in hash carry, but tell crypto
1719 * API we successfully completed request.
1720 */
1721 err = 0;
1722 break;
1723 case CRYPTO_ALG_TYPE_AEAD:
1724 err = handle_aead_req(rctx);
1725 break;
1726 default:
1727 err = -EINVAL;
1728 }
1729
1730 if (err == -EINPROGRESS)
1731 /* Successfully submitted request for next chunk */
1732 return;
1733 }
1734
1735cb_finish:
1736 finish_req(rctx, err);
1737}
1738
1739/* ==================== Kernel Cryptographic API ==================== */
1740
1741/**
1742 * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request.
1743 * @req: Crypto API request
1744 * @encrypt: true if encrypting; false if decrypting
1745 *
1746 * Return: -EINPROGRESS if request accepted and result will be returned
1747 * asynchronously
1748 * < 0 if an error
1749 */
1750static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt)
1751{
1752 struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req);
1753 struct iproc_ctx_s *ctx =
1754 crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1755 int err;
1756
1757 flow_log("%s() enc:%u\n", __func__, encrypt);
1758
1759 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1760 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1761 rctx->parent = &req->base;
1762 rctx->is_encrypt = encrypt;
1763 rctx->bd_suppress = false;
1764 rctx->total_todo = req->nbytes;
1765 rctx->src_sent = 0;
1766 rctx->total_sent = 0;
1767 rctx->total_received = 0;
1768 rctx->ctx = ctx;
1769
1770 /* Initialize current position in src and dst scatterlists */
1771 rctx->src_sg = req->src;
1772 rctx->src_nents = 0;
1773 rctx->src_skip = 0;
1774 rctx->dst_sg = req->dst;
1775 rctx->dst_nents = 0;
1776 rctx->dst_skip = 0;
1777
1778 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1779 ctx->cipher.mode == CIPHER_MODE_CTR ||
1780 ctx->cipher.mode == CIPHER_MODE_OFB ||
1781 ctx->cipher.mode == CIPHER_MODE_XTS ||
1782 ctx->cipher.mode == CIPHER_MODE_GCM ||
1783 ctx->cipher.mode == CIPHER_MODE_CCM) {
1784 rctx->iv_ctr_len =
1785 crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
1786 memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len);
1787 } else {
1788 rctx->iv_ctr_len = 0;
1789 }
1790
1791 /* Choose a SPU to process this request */
1792 rctx->chan_idx = select_channel();
1793 err = handle_ablkcipher_req(rctx);
1794 if (err != -EINPROGRESS)
1795 /* synchronous result */
1796 spu_chunk_cleanup(rctx);
1797
1798 return err;
1799}
1800
1801static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1802 unsigned int keylen)
1803{
1804 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1805 u32 tmp[DES_EXPKEY_WORDS];
1806
1807 if (keylen == DES_KEY_SIZE) {
1808 if (des_ekey(tmp, key) == 0) {
1809 if (crypto_ablkcipher_get_flags(cipher) &
1810 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
1811 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
1812
1813 crypto_ablkcipher_set_flags(cipher, flags);
1814 return -EINVAL;
1815 }
1816 }
1817
1818 ctx->cipher_type = CIPHER_TYPE_DES;
1819 } else {
1820 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1821 return -EINVAL;
1822 }
1823 return 0;
1824}
1825
1826static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1827 unsigned int keylen)
1828{
1829 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1830
1831 if (keylen == (DES_KEY_SIZE * 3)) {
1832 u32 flags;
1833 int ret;
1834
1835 flags = crypto_ablkcipher_get_flags(cipher);
1836 ret = __des3_verify_key(&flags, key);
1837 if (unlikely(ret)) {
1838 crypto_ablkcipher_set_flags(cipher, flags);
1839 return ret;
1840 }
1841
1842 ctx->cipher_type = CIPHER_TYPE_3DES;
1843 } else {
1844 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1845 return -EINVAL;
1846 }
1847 return 0;
1848}
1849
1850static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1851 unsigned int keylen)
1852{
1853 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1854
1855 if (ctx->cipher.mode == CIPHER_MODE_XTS)
1856 /* XTS includes two keys of equal length */
1857 keylen = keylen / 2;
1858
1859 switch (keylen) {
1860 case AES_KEYSIZE_128:
1861 ctx->cipher_type = CIPHER_TYPE_AES128;
1862 break;
1863 case AES_KEYSIZE_192:
1864 ctx->cipher_type = CIPHER_TYPE_AES192;
1865 break;
1866 case AES_KEYSIZE_256:
1867 ctx->cipher_type = CIPHER_TYPE_AES256;
1868 break;
1869 default:
1870 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1871 return -EINVAL;
1872 }
1873 WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1874 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1875 return 0;
1876}
1877
1878static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1879 unsigned int keylen)
1880{
1881 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1882 int i;
1883
1884 ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE;
1885
1886 ctx->enckey[0] = 0x00; /* 0x00 */
1887 ctx->enckey[1] = 0x00; /* i */
1888 ctx->enckey[2] = 0x00; /* 0x00 */
1889 ctx->enckey[3] = 0x00; /* j */
1890 for (i = 0; i < ARC4_MAX_KEY_SIZE; i++)
1891 ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen];
1892
1893 ctx->cipher_type = CIPHER_TYPE_INIT;
1894
1895 return 0;
1896}
1897
1898static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1899 unsigned int keylen)
1900{
1901 struct spu_hw *spu = &iproc_priv.spu;
1902 struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher);
1903 struct spu_cipher_parms cipher_parms;
1904 u32 alloc_len = 0;
1905 int err;
1906
1907 flow_log("ablkcipher_setkey() keylen: %d\n", keylen);
1908 flow_dump(" key: ", key, keylen);
1909
1910 switch (ctx->cipher.alg) {
1911 case CIPHER_ALG_DES:
1912 err = des_setkey(cipher, key, keylen);
1913 break;
1914 case CIPHER_ALG_3DES:
1915 err = threedes_setkey(cipher, key, keylen);
1916 break;
1917 case CIPHER_ALG_AES:
1918 err = aes_setkey(cipher, key, keylen);
1919 break;
1920 case CIPHER_ALG_RC4:
1921 err = rc4_setkey(cipher, key, keylen);
1922 break;
1923 default:
1924 pr_err("%s() Error: unknown cipher alg\n", __func__);
1925 err = -EINVAL;
1926 }
1927 if (err)
1928 return err;
1929
1930 /* RC4 already populated ctx->enkey */
1931 if (ctx->cipher.alg != CIPHER_ALG_RC4) {
1932 memcpy(ctx->enckey, key, keylen);
1933 ctx->enckeylen = keylen;
1934 }
1935 /* SPU needs XTS keys in the reverse order the crypto API presents */
1936 if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1937 (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1938 unsigned int xts_keylen = keylen / 2;
1939
1940 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1941 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1942 }
1943
1944 if (spu->spu_type == SPU_TYPE_SPUM)
1945 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1946 else if (spu->spu_type == SPU_TYPE_SPU2)
1947 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1948 memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1949 cipher_parms.iv_buf = NULL;
1950 cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher);
1951 flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1952
1953 cipher_parms.alg = ctx->cipher.alg;
1954 cipher_parms.mode = ctx->cipher.mode;
1955 cipher_parms.type = ctx->cipher_type;
1956 cipher_parms.key_buf = ctx->enckey;
1957 cipher_parms.key_len = ctx->enckeylen;
1958
1959 /* Prepend SPU request message with BCM header */
1960 memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1961 ctx->spu_req_hdr_len =
1962 spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1963 &cipher_parms);
1964
1965 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1966 ctx->enckeylen,
1967 false);
1968
1969 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1970
1971 return 0;
1972}
1973
1974static int ablkcipher_encrypt(struct ablkcipher_request *req)
1975{
1976 flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes);
1977
1978 return ablkcipher_enqueue(req, true);
1979}
1980
1981static int ablkcipher_decrypt(struct ablkcipher_request *req)
1982{
1983 flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes);
1984 return ablkcipher_enqueue(req, false);
1985}
1986
1987static int ahash_enqueue(struct ahash_request *req)
1988{
1989 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1990 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1991 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1992 int err = 0;
1993 const char *alg_name;
1994
1995 flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1996
1997 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1998 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1999 rctx->parent = &req->base;
2000 rctx->ctx = ctx;
2001 rctx->bd_suppress = true;
2002 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2003
2004 /* Initialize position in src scatterlist */
2005 rctx->src_sg = req->src;
2006 rctx->src_skip = 0;
2007 rctx->src_nents = 0;
2008 rctx->dst_sg = NULL;
2009 rctx->dst_skip = 0;
2010 rctx->dst_nents = 0;
2011
2012 /* SPU2 hardware does not compute hash of zero length data */
2013 if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
2014 (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
2015 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2016 flow_log("Doing %sfinal %s zero-len hash request in software\n",
2017 rctx->is_final ? "" : "non-", alg_name);
2018 err = do_shash((unsigned char *)alg_name, req->result,
2019 NULL, 0, NULL, 0, ctx->authkey,
2020 ctx->authkeylen);
2021 if (err < 0)
2022 flow_log("Hash request failed with error %d\n", err);
2023 return err;
2024 }
2025 /* Choose a SPU to process this request */
2026 rctx->chan_idx = select_channel();
2027
2028 err = handle_ahash_req(rctx);
2029 if (err != -EINPROGRESS)
2030 /* synchronous result */
2031 spu_chunk_cleanup(rctx);
2032
2033 if (err == -EAGAIN)
2034 /*
2035 * we saved data in hash carry, but tell crypto API
2036 * we successfully completed request.
2037 */
2038 err = 0;
2039
2040 return err;
2041}
2042
2043static int __ahash_init(struct ahash_request *req)
2044{
2045 struct spu_hw *spu = &iproc_priv.spu;
2046 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2047 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2048 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2049
2050 flow_log("%s()\n", __func__);
2051
2052 /* Initialize the context */
2053 rctx->hash_carry_len = 0;
2054 rctx->is_final = 0;
2055
2056 rctx->total_todo = 0;
2057 rctx->src_sent = 0;
2058 rctx->total_sent = 0;
2059 rctx->total_received = 0;
2060
2061 ctx->digestsize = crypto_ahash_digestsize(tfm);
2062 /* If we add a hash whose digest is larger, catch it here. */
2063 WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
2064
2065 rctx->is_sw_hmac = false;
2066
2067 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
2068 true);
2069
2070 return 0;
2071}
2072
2073/**
2074 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
2075 * @ctx: Crypto session context
2076 *
2077 * SPU-2 does not support incremental hashing (we'll have to revisit and
2078 * condition based on chip revision or device tree entry if future versions do
2079 * support incremental hash)
2080 *
2081 * SPU-M also doesn't support incremental hashing of AES-XCBC
2082 *
2083 * Return: true if incremental hashing is not supported
2084 * false otherwise
2085 */
2086static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2087{
2088 struct spu_hw *spu = &iproc_priv.spu;
2089
2090 if (spu->spu_type == SPU_TYPE_SPU2)
2091 return true;
2092
2093 if ((ctx->auth.alg == HASH_ALG_AES) &&
2094 (ctx->auth.mode == HASH_MODE_XCBC))
2095 return true;
2096
2097 /* Otherwise, incremental hashing is supported */
2098 return false;
2099}
2100
2101static int ahash_init(struct ahash_request *req)
2102{
2103 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2104 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2105 const char *alg_name;
2106 struct crypto_shash *hash;
2107 int ret;
2108 gfp_t gfp;
2109
2110 if (spu_no_incr_hash(ctx)) {
2111 /*
2112 * If we get an incremental hashing request and it's not
2113 * supported by the hardware, we need to handle it in software
2114 * by calling synchronous hash functions.
2115 */
2116 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2117 hash = crypto_alloc_shash(alg_name, 0, 0);
2118 if (IS_ERR(hash)) {
2119 ret = PTR_ERR(hash);
2120 goto err;
2121 }
2122
2123 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2124 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2125 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2126 crypto_shash_descsize(hash), gfp);
2127 if (!ctx->shash) {
2128 ret = -ENOMEM;
2129 goto err_hash;
2130 }
2131 ctx->shash->tfm = hash;
2132
2133 /* Set the key using data we already have from setkey */
2134 if (ctx->authkeylen > 0) {
2135 ret = crypto_shash_setkey(hash, ctx->authkey,
2136 ctx->authkeylen);
2137 if (ret)
2138 goto err_shash;
2139 }
2140
2141 /* Initialize hash w/ this key and other params */
2142 ret = crypto_shash_init(ctx->shash);
2143 if (ret)
2144 goto err_shash;
2145 } else {
2146 /* Otherwise call the internal function which uses SPU hw */
2147 ret = __ahash_init(req);
2148 }
2149
2150 return ret;
2151
2152err_shash:
2153 kfree(ctx->shash);
2154err_hash:
2155 crypto_free_shash(hash);
2156err:
2157 return ret;
2158}
2159
2160static int __ahash_update(struct ahash_request *req)
2161{
2162 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2163
2164 flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2165
2166 if (!req->nbytes)
2167 return 0;
2168 rctx->total_todo += req->nbytes;
2169 rctx->src_sent = 0;
2170
2171 return ahash_enqueue(req);
2172}
2173
2174static int ahash_update(struct ahash_request *req)
2175{
2176 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2177 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2178 u8 *tmpbuf;
2179 int ret;
2180 int nents;
2181 gfp_t gfp;
2182
2183 if (spu_no_incr_hash(ctx)) {
2184 /*
2185 * If we get an incremental hashing request and it's not
2186 * supported by the hardware, we need to handle it in software
2187 * by calling synchronous hash functions.
2188 */
2189 if (req->src)
2190 nents = sg_nents(req->src);
2191 else
2192 return -EINVAL;
2193
2194 /* Copy data from req scatterlist to tmp buffer */
2195 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2196 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2197 tmpbuf = kmalloc(req->nbytes, gfp);
2198 if (!tmpbuf)
2199 return -ENOMEM;
2200
2201 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2202 req->nbytes) {
2203 kfree(tmpbuf);
2204 return -EINVAL;
2205 }
2206
2207 /* Call synchronous update */
2208 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2209 kfree(tmpbuf);
2210 } else {
2211 /* Otherwise call the internal function which uses SPU hw */
2212 ret = __ahash_update(req);
2213 }
2214
2215 return ret;
2216}
2217
2218static int __ahash_final(struct ahash_request *req)
2219{
2220 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2221
2222 flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2223
2224 rctx->is_final = 1;
2225
2226 return ahash_enqueue(req);
2227}
2228
2229static int ahash_final(struct ahash_request *req)
2230{
2231 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2232 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2233 int ret;
2234
2235 if (spu_no_incr_hash(ctx)) {
2236 /*
2237 * If we get an incremental hashing request and it's not
2238 * supported by the hardware, we need to handle it in software
2239 * by calling synchronous hash functions.
2240 */
2241 ret = crypto_shash_final(ctx->shash, req->result);
2242
2243 /* Done with hash, can deallocate it now */
2244 crypto_free_shash(ctx->shash->tfm);
2245 kfree(ctx->shash);
2246
2247 } else {
2248 /* Otherwise call the internal function which uses SPU hw */
2249 ret = __ahash_final(req);
2250 }
2251
2252 return ret;
2253}
2254
2255static int __ahash_finup(struct ahash_request *req)
2256{
2257 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2258
2259 flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2260
2261 rctx->total_todo += req->nbytes;
2262 rctx->src_sent = 0;
2263 rctx->is_final = 1;
2264
2265 return ahash_enqueue(req);
2266}
2267
2268static int ahash_finup(struct ahash_request *req)
2269{
2270 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2271 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2272 u8 *tmpbuf;
2273 int ret;
2274 int nents;
2275 gfp_t gfp;
2276
2277 if (spu_no_incr_hash(ctx)) {
2278 /*
2279 * If we get an incremental hashing request and it's not
2280 * supported by the hardware, we need to handle it in software
2281 * by calling synchronous hash functions.
2282 */
2283 if (req->src) {
2284 nents = sg_nents(req->src);
2285 } else {
2286 ret = -EINVAL;
2287 goto ahash_finup_exit;
2288 }
2289
2290 /* Copy data from req scatterlist to tmp buffer */
2291 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2292 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2293 tmpbuf = kmalloc(req->nbytes, gfp);
2294 if (!tmpbuf) {
2295 ret = -ENOMEM;
2296 goto ahash_finup_exit;
2297 }
2298
2299 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2300 req->nbytes) {
2301 ret = -EINVAL;
2302 goto ahash_finup_free;
2303 }
2304
2305 /* Call synchronous update */
2306 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2307 req->result);
2308 } else {
2309 /* Otherwise call the internal function which uses SPU hw */
2310 return __ahash_finup(req);
2311 }
2312ahash_finup_free:
2313 kfree(tmpbuf);
2314
2315ahash_finup_exit:
2316 /* Done with hash, can deallocate it now */
2317 crypto_free_shash(ctx->shash->tfm);
2318 kfree(ctx->shash);
2319 return ret;
2320}
2321
2322static int ahash_digest(struct ahash_request *req)
2323{
2324 int err = 0;
2325
2326 flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2327
2328 /* whole thing at once */
2329 err = __ahash_init(req);
2330 if (!err)
2331 err = __ahash_finup(req);
2332
2333 return err;
2334}
2335
2336static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2337 unsigned int keylen)
2338{
2339 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2340
2341 flow_log("%s() ahash:%p key:%p keylen:%u\n",
2342 __func__, ahash, key, keylen);
2343 flow_dump(" key: ", key, keylen);
2344
2345 if (ctx->auth.alg == HASH_ALG_AES) {
2346 switch (keylen) {
2347 case AES_KEYSIZE_128:
2348 ctx->cipher_type = CIPHER_TYPE_AES128;
2349 break;
2350 case AES_KEYSIZE_192:
2351 ctx->cipher_type = CIPHER_TYPE_AES192;
2352 break;
2353 case AES_KEYSIZE_256:
2354 ctx->cipher_type = CIPHER_TYPE_AES256;
2355 break;
2356 default:
2357 pr_err("%s() Error: Invalid key length\n", __func__);
2358 return -EINVAL;
2359 }
2360 } else {
2361 pr_err("%s() Error: unknown hash alg\n", __func__);
2362 return -EINVAL;
2363 }
2364 memcpy(ctx->authkey, key, keylen);
2365 ctx->authkeylen = keylen;
2366
2367 return 0;
2368}
2369
2370static int ahash_export(struct ahash_request *req, void *out)
2371{
2372 const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2373 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2374
2375 spu_exp->total_todo = rctx->total_todo;
2376 spu_exp->total_sent = rctx->total_sent;
2377 spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2378 memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2379 spu_exp->hash_carry_len = rctx->hash_carry_len;
2380 memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2381
2382 return 0;
2383}
2384
2385static int ahash_import(struct ahash_request *req, const void *in)
2386{
2387 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2388 struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2389
2390 rctx->total_todo = spu_exp->total_todo;
2391 rctx->total_sent = spu_exp->total_sent;
2392 rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2393 memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2394 rctx->hash_carry_len = spu_exp->hash_carry_len;
2395 memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2396
2397 return 0;
2398}
2399
2400static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2401 unsigned int keylen)
2402{
2403 struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2404 unsigned int blocksize =
2405 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2406 unsigned int digestsize = crypto_ahash_digestsize(ahash);
2407 unsigned int index;
2408 int rc;
2409
2410 flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2411 __func__, ahash, key, keylen, blocksize, digestsize);
2412 flow_dump(" key: ", key, keylen);
2413
2414 if (keylen > blocksize) {
2415 switch (ctx->auth.alg) {
2416 case HASH_ALG_MD5:
2417 rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2418 0, NULL, 0);
2419 break;
2420 case HASH_ALG_SHA1:
2421 rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2422 0, NULL, 0);
2423 break;
2424 case HASH_ALG_SHA224:
2425 rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2426 0, NULL, 0);
2427 break;
2428 case HASH_ALG_SHA256:
2429 rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2430 0, NULL, 0);
2431 break;
2432 case HASH_ALG_SHA384:
2433 rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2434 0, NULL, 0);
2435 break;
2436 case HASH_ALG_SHA512:
2437 rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2438 0, NULL, 0);
2439 break;
2440 case HASH_ALG_SHA3_224:
2441 rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2442 NULL, 0, NULL, 0);
2443 break;
2444 case HASH_ALG_SHA3_256:
2445 rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2446 NULL, 0, NULL, 0);
2447 break;
2448 case HASH_ALG_SHA3_384:
2449 rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2450 NULL, 0, NULL, 0);
2451 break;
2452 case HASH_ALG_SHA3_512:
2453 rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2454 NULL, 0, NULL, 0);
2455 break;
2456 default:
2457 pr_err("%s() Error: unknown hash alg\n", __func__);
2458 return -EINVAL;
2459 }
2460 if (rc < 0) {
2461 pr_err("%s() Error %d computing shash for %s\n",
2462 __func__, rc, hash_alg_name[ctx->auth.alg]);
2463 return rc;
2464 }
2465 ctx->authkeylen = digestsize;
2466
2467 flow_log(" keylen > digestsize... hashed\n");
2468 flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen);
2469 } else {
2470 memcpy(ctx->authkey, key, keylen);
2471 ctx->authkeylen = keylen;
2472 }
2473
2474 /*
2475 * Full HMAC operation in SPUM is not verified,
2476 * So keeping the generation of IPAD, OPAD and
2477 * outer hashing in software.
2478 */
2479 if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2480 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2481 memset(ctx->ipad + ctx->authkeylen, 0,
2482 blocksize - ctx->authkeylen);
2483 ctx->authkeylen = 0;
2484 memcpy(ctx->opad, ctx->ipad, blocksize);
2485
2486 for (index = 0; index < blocksize; index++) {
2487 ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2488 ctx->opad[index] ^= HMAC_OPAD_VALUE;
2489 }
2490
2491 flow_dump(" ipad: ", ctx->ipad, blocksize);
2492 flow_dump(" opad: ", ctx->opad, blocksize);
2493 }
2494 ctx->digestsize = digestsize;
2495 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2496
2497 return 0;
2498}
2499
2500static int ahash_hmac_init(struct ahash_request *req)
2501{
2502 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2503 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2504 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2505 unsigned int blocksize =
2506 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2507
2508 flow_log("ahash_hmac_init()\n");
2509
2510 /* init the context as a hash */
2511 ahash_init(req);
2512
2513 if (!spu_no_incr_hash(ctx)) {
2514 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2515 rctx->is_sw_hmac = true;
2516 ctx->auth.mode = HASH_MODE_HASH;
2517 /* start with a prepended ipad */
2518 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2519 rctx->hash_carry_len = blocksize;
2520 rctx->total_todo += blocksize;
2521 }
2522
2523 return 0;
2524}
2525
2526static int ahash_hmac_update(struct ahash_request *req)
2527{
2528 flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2529
2530 if (!req->nbytes)
2531 return 0;
2532
2533 return ahash_update(req);
2534}
2535
2536static int ahash_hmac_final(struct ahash_request *req)
2537{
2538 flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2539
2540 return ahash_final(req);
2541}
2542
2543static int ahash_hmac_finup(struct ahash_request *req)
2544{
2545 flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2546
2547 return ahash_finup(req);
2548}
2549
2550static int ahash_hmac_digest(struct ahash_request *req)
2551{
2552 struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2553 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2554 struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2555 unsigned int blocksize =
2556 crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2557
2558 flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2559
2560 /* Perform initialization and then call finup */
2561 __ahash_init(req);
2562
2563 if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2564 /*
2565 * SPU2 supports full HMAC implementation in the
2566 * hardware, need not to generate IPAD, OPAD and
2567 * outer hash in software.
2568 * Only for hash key len > hash block size, SPU2
2569 * expects to perform hashing on the key, shorten
2570 * it to digest size and feed it as hash key.
2571 */
2572 rctx->is_sw_hmac = false;
2573 ctx->auth.mode = HASH_MODE_HMAC;
2574 } else {
2575 rctx->is_sw_hmac = true;
2576 ctx->auth.mode = HASH_MODE_HASH;
2577 /* start with a prepended ipad */
2578 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2579 rctx->hash_carry_len = blocksize;
2580 rctx->total_todo += blocksize;
2581 }
2582
2583 return __ahash_finup(req);
2584}
2585
2586/* aead helpers */
2587
2588static int aead_need_fallback(struct aead_request *req)
2589{
2590 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2591 struct spu_hw *spu = &iproc_priv.spu;
2592 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2593 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2594 u32 payload_len;
2595
2596 /*
2597 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2598 * and AAD are both 0 bytes long. So use fallback in this case.
2599 */
2600 if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2601 (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2602 (req->assoclen == 0)) {
2603 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2604 (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2605 flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2606 return 1;
2607 }
2608 }
2609
2610 /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2611 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2612 (spu->spu_type == SPU_TYPE_SPUM) &&
2613 (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2614 (ctx->digestsize != 16)) {
2615 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2616 __func__, ctx->digestsize);
2617 return 1;
2618 }
2619
2620 /*
2621 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2622 * when AAD size is 0
2623 */
2624 if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2625 (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2626 (req->assoclen == 0)) {
2627 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2628 __func__);
2629 return 1;
2630 }
2631
2632 payload_len = req->cryptlen;
2633 if (spu->spu_type == SPU_TYPE_SPUM)
2634 payload_len += req->assoclen;
2635
2636 flow_log("%s() payload len: %u\n", __func__, payload_len);
2637
2638 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2639 return 0;
2640 else
2641 return payload_len > ctx->max_payload;
2642}
2643
2644static void aead_complete(struct crypto_async_request *areq, int err)
2645{
2646 struct aead_request *req =
2647 container_of(areq, struct aead_request, base);
2648 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2649 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2650
2651 flow_log("%s() err:%d\n", __func__, err);
2652
2653 areq->tfm = crypto_aead_tfm(aead);
2654
2655 areq->complete = rctx->old_complete;
2656 areq->data = rctx->old_data;
2657
2658 areq->complete(areq, err);
2659}
2660
2661static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2662{
2663 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2664 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2665 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2666 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2667 int err;
2668 u32 req_flags;
2669
2670 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2671
2672 if (ctx->fallback_cipher) {
2673 /* Store the cipher tfm and then use the fallback tfm */
2674 rctx->old_tfm = tfm;
2675 aead_request_set_tfm(req, ctx->fallback_cipher);
2676 /*
2677 * Save the callback and chain ourselves in, so we can restore
2678 * the tfm
2679 */
2680 rctx->old_complete = req->base.complete;
2681 rctx->old_data = req->base.data;
2682 req_flags = aead_request_flags(req);
2683 aead_request_set_callback(req, req_flags, aead_complete, req);
2684 err = is_encrypt ? crypto_aead_encrypt(req) :
2685 crypto_aead_decrypt(req);
2686
2687 if (err == 0) {
2688 /*
2689 * fallback was synchronous (did not return
2690 * -EINPROGRESS). So restore request state here.
2691 */
2692 aead_request_set_callback(req, req_flags,
2693 rctx->old_complete, req);
2694 req->base.data = rctx->old_data;
2695 aead_request_set_tfm(req, aead);
2696 flow_log("%s() fallback completed successfully\n\n",
2697 __func__);
2698 }
2699 } else {
2700 err = -EINVAL;
2701 }
2702
2703 return err;
2704}
2705
2706static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2707{
2708 struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2709 struct crypto_aead *aead = crypto_aead_reqtfm(req);
2710 struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2711 int err;
2712
2713 flow_log("%s() enc:%u\n", __func__, is_encrypt);
2714
2715 if (req->assoclen > MAX_ASSOC_SIZE) {
2716 pr_err
2717 ("%s() Error: associated data too long. (%u > %u bytes)\n",
2718 __func__, req->assoclen, MAX_ASSOC_SIZE);
2719 return -EINVAL;
2720 }
2721
2722 rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2723 CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2724 rctx->parent = &req->base;
2725 rctx->is_encrypt = is_encrypt;
2726 rctx->bd_suppress = false;
2727 rctx->total_todo = req->cryptlen;
2728 rctx->src_sent = 0;
2729 rctx->total_sent = 0;
2730 rctx->total_received = 0;
2731 rctx->is_sw_hmac = false;
2732 rctx->ctx = ctx;
2733 memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2734
2735 /* assoc data is at start of src sg */
2736 rctx->assoc = req->src;
2737
2738 /*
2739 * Init current position in src scatterlist to be after assoc data.
2740 * src_skip set to buffer offset where data begins. (Assoc data could
2741 * end in the middle of a buffer.)
2742 */
2743 if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2744 &rctx->src_skip) < 0) {
2745 pr_err("%s() Error: Unable to find start of src data\n",
2746 __func__);
2747 return -EINVAL;
2748 }
2749
2750 rctx->src_nents = 0;
2751 rctx->dst_nents = 0;
2752 if (req->dst == req->src) {
2753 rctx->dst_sg = rctx->src_sg;
2754 rctx->dst_skip = rctx->src_skip;
2755 } else {
2756 /*
2757 * Expect req->dst to have room for assoc data followed by
2758 * output data and ICV, if encrypt. So initialize dst_sg
2759 * to point beyond assoc len offset.
2760 */
2761 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2762 &rctx->dst_skip) < 0) {
2763 pr_err("%s() Error: Unable to find start of dst data\n",
2764 __func__);
2765 return -EINVAL;
2766 }
2767 }
2768
2769 if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2770 ctx->cipher.mode == CIPHER_MODE_CTR ||
2771 ctx->cipher.mode == CIPHER_MODE_OFB ||
2772 ctx->cipher.mode == CIPHER_MODE_XTS ||
2773 ctx->cipher.mode == CIPHER_MODE_GCM) {
2774 rctx->iv_ctr_len =
2775 ctx->salt_len +
2776 crypto_aead_ivsize(crypto_aead_reqtfm(req));
2777 } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2778 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2779 } else {
2780 rctx->iv_ctr_len = 0;
2781 }
2782
2783 rctx->hash_carry_len = 0;
2784
2785 flow_log(" src sg: %p\n", req->src);
2786 flow_log(" rctx->src_sg: %p, src_skip %u\n",
2787 rctx->src_sg, rctx->src_skip);
2788 flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen);
2789 flow_log(" dst sg: %p\n", req->dst);
2790 flow_log(" rctx->dst_sg: %p, dst_skip %u\n",
2791 rctx->dst_sg, rctx->dst_skip);
2792 flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len);
2793 flow_dump(" iv: ", req->iv, rctx->iv_ctr_len);
2794 flow_log(" authkeylen:%u\n", ctx->authkeylen);
2795 flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2796
2797 if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2798 flow_log(" max_payload infinite");
2799 else
2800 flow_log(" max_payload: %u\n", ctx->max_payload);
2801
2802 if (unlikely(aead_need_fallback(req)))
2803 return aead_do_fallback(req, is_encrypt);
2804
2805 /*
2806 * Do memory allocations for request after fallback check, because if we
2807 * do fallback, we won't call finish_req() to dealloc.
2808 */
2809 if (rctx->iv_ctr_len) {
2810 if (ctx->salt_len)
2811 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2812 ctx->salt, ctx->salt_len);
2813 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2814 req->iv,
2815 rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2816 }
2817
2818 rctx->chan_idx = select_channel();
2819 err = handle_aead_req(rctx);
2820 if (err != -EINPROGRESS)
2821 /* synchronous result */
2822 spu_chunk_cleanup(rctx);
2823
2824 return err;
2825}
2826
2827static int aead_authenc_setkey(struct crypto_aead *cipher,
2828 const u8 *key, unsigned int keylen)
2829{
2830 struct spu_hw *spu = &iproc_priv.spu;
2831 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2832 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2833 struct crypto_authenc_keys keys;
2834 int ret;
2835
2836 flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2837 keylen);
2838 flow_dump(" key: ", key, keylen);
2839
2840 ret = crypto_authenc_extractkeys(&keys, key, keylen);
2841 if (ret)
2842 goto badkey;
2843
2844 if (keys.enckeylen > MAX_KEY_SIZE ||
2845 keys.authkeylen > MAX_KEY_SIZE)
2846 goto badkey;
2847
2848 ctx->enckeylen = keys.enckeylen;
2849 ctx->authkeylen = keys.authkeylen;
2850
2851 memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2852 /* May end up padding auth key. So make sure it's zeroed. */
2853 memset(ctx->authkey, 0, sizeof(ctx->authkey));
2854 memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2855
2856 switch (ctx->alg->cipher_info.alg) {
2857 case CIPHER_ALG_DES:
2858 if (ctx->enckeylen == DES_KEY_SIZE) {
2859 u32 tmp[DES_EXPKEY_WORDS];
2860 u32 flags = CRYPTO_TFM_RES_WEAK_KEY;
2861
2862 if (des_ekey(tmp, keys.enckey) == 0) {
2863 if (crypto_aead_get_flags(cipher) &
2864 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
2865 crypto_aead_set_flags(cipher, flags);
2866 return -EINVAL;
2867 }
2868 }
2869
2870 ctx->cipher_type = CIPHER_TYPE_DES;
2871 } else {
2872 goto badkey;
2873 }
2874 break;
2875 case CIPHER_ALG_3DES:
2876 if (ctx->enckeylen == (DES_KEY_SIZE * 3)) {
2877 u32 flags;
2878
2879 flags = crypto_aead_get_flags(cipher);
2880 ret = __des3_verify_key(&flags, keys.enckey);
2881 if (unlikely(ret)) {
2882 crypto_aead_set_flags(cipher, flags);
2883 return ret;
2884 }
2885
2886 ctx->cipher_type = CIPHER_TYPE_3DES;
2887 } else {
2888 crypto_aead_set_flags(cipher,
2889 CRYPTO_TFM_RES_BAD_KEY_LEN);
2890 return -EINVAL;
2891 }
2892 break;
2893 case CIPHER_ALG_AES:
2894 switch (ctx->enckeylen) {
2895 case AES_KEYSIZE_128:
2896 ctx->cipher_type = CIPHER_TYPE_AES128;
2897 break;
2898 case AES_KEYSIZE_192:
2899 ctx->cipher_type = CIPHER_TYPE_AES192;
2900 break;
2901 case AES_KEYSIZE_256:
2902 ctx->cipher_type = CIPHER_TYPE_AES256;
2903 break;
2904 default:
2905 goto badkey;
2906 }
2907 break;
2908 case CIPHER_ALG_RC4:
2909 ctx->cipher_type = CIPHER_TYPE_INIT;
2910 break;
2911 default:
2912 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2913 return -EINVAL;
2914 }
2915
2916 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2917 ctx->authkeylen);
2918 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2919 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2920
2921 /* setkey the fallback just in case we needto use it */
2922 if (ctx->fallback_cipher) {
2923 flow_log(" running fallback setkey()\n");
2924
2925 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2926 ctx->fallback_cipher->base.crt_flags |=
2927 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2928 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2929 if (ret) {
2930 flow_log(" fallback setkey() returned:%d\n", ret);
2931 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
2932 tfm->crt_flags |=
2933 (ctx->fallback_cipher->base.crt_flags &
2934 CRYPTO_TFM_RES_MASK);
2935 }
2936 }
2937
2938 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2939 ctx->enckeylen,
2940 false);
2941
2942 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2943
2944 return ret;
2945
2946badkey:
2947 ctx->enckeylen = 0;
2948 ctx->authkeylen = 0;
2949 ctx->digestsize = 0;
2950
2951 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2952 return -EINVAL;
2953}
2954
2955static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2956 const u8 *key, unsigned int keylen)
2957{
2958 struct spu_hw *spu = &iproc_priv.spu;
2959 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2960 struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2961
2962 int ret = 0;
2963
2964 flow_log("%s() keylen:%u\n", __func__, keylen);
2965 flow_dump(" key: ", key, keylen);
2966
2967 if (!ctx->is_esp)
2968 ctx->digestsize = keylen;
2969
2970 ctx->enckeylen = keylen;
2971 ctx->authkeylen = 0;
2972 memcpy(ctx->enckey, key, ctx->enckeylen);
2973
2974 switch (ctx->enckeylen) {
2975 case AES_KEYSIZE_128:
2976 ctx->cipher_type = CIPHER_TYPE_AES128;
2977 break;
2978 case AES_KEYSIZE_192:
2979 ctx->cipher_type = CIPHER_TYPE_AES192;
2980 break;
2981 case AES_KEYSIZE_256:
2982 ctx->cipher_type = CIPHER_TYPE_AES256;
2983 break;
2984 default:
2985 goto badkey;
2986 }
2987
2988 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2989 ctx->authkeylen);
2990 flow_dump(" enc: ", ctx->enckey, ctx->enckeylen);
2991 flow_dump(" auth: ", ctx->authkey, ctx->authkeylen);
2992
2993 /* setkey the fallback just in case we need to use it */
2994 if (ctx->fallback_cipher) {
2995 flow_log(" running fallback setkey()\n");
2996
2997 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2998 ctx->fallback_cipher->base.crt_flags |=
2999 tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
3000 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
3001 keylen + ctx->salt_len);
3002 if (ret) {
3003 flow_log(" fallback setkey() returned:%d\n", ret);
3004 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
3005 tfm->crt_flags |=
3006 (ctx->fallback_cipher->base.crt_flags &
3007 CRYPTO_TFM_RES_MASK);
3008 }
3009 }
3010
3011 ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
3012 ctx->enckeylen,
3013 false);
3014
3015 atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
3016
3017 flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
3018 ctx->authkeylen);
3019
3020 return ret;
3021
3022badkey:
3023 ctx->enckeylen = 0;
3024 ctx->authkeylen = 0;
3025 ctx->digestsize = 0;
3026
3027 crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
3028 return -EINVAL;
3029}
3030
3031/**
3032 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
3033 * @cipher: AEAD structure
3034 * @key: Key followed by 4 bytes of salt
3035 * @keylen: Length of key plus salt, in bytes
3036 *
3037 * Extracts salt from key and stores it to be prepended to IV on each request.
3038 * Digest is always 16 bytes
3039 *
3040 * Return: Value from generic gcm setkey.
3041 */
3042static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
3043 const u8 *key, unsigned int keylen)
3044{
3045 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3046
3047 flow_log("%s\n", __func__);
3048 ctx->salt_len = GCM_ESP_SALT_SIZE;
3049 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3050 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3051 keylen -= GCM_ESP_SALT_SIZE;
3052 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3053 ctx->is_esp = true;
3054 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3055
3056 return aead_gcm_ccm_setkey(cipher, key, keylen);
3057}
3058
3059/**
3060 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
3061 * cipher: AEAD structure
3062 * key: Key followed by 4 bytes of salt
3063 * keylen: Length of key plus salt, in bytes
3064 *
3065 * Extracts salt from key and stores it to be prepended to IV on each request.
3066 * Digest is always 16 bytes
3067 *
3068 * Return: Value from generic gcm setkey.
3069 */
3070static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
3071 const u8 *key, unsigned int keylen)
3072{
3073 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3074
3075 flow_log("%s\n", __func__);
3076 ctx->salt_len = GCM_ESP_SALT_SIZE;
3077 ctx->salt_offset = GCM_ESP_SALT_OFFSET;
3078 memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
3079 keylen -= GCM_ESP_SALT_SIZE;
3080 ctx->digestsize = GCM_ESP_DIGESTSIZE;
3081 ctx->is_esp = true;
3082 ctx->is_rfc4543 = true;
3083 flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
3084
3085 return aead_gcm_ccm_setkey(cipher, key, keylen);
3086}
3087
3088/**
3089 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
3090 * @cipher: AEAD structure
3091 * @key: Key followed by 4 bytes of salt
3092 * @keylen: Length of key plus salt, in bytes
3093 *
3094 * Extracts salt from key and stores it to be prepended to IV on each request.
3095 * Digest is always 16 bytes
3096 *
3097 * Return: Value from generic ccm setkey.
3098 */
3099static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3100 const u8 *key, unsigned int keylen)
3101{
3102 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3103
3104 flow_log("%s\n", __func__);
3105 ctx->salt_len = CCM_ESP_SALT_SIZE;
3106 ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3107 memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3108 keylen -= CCM_ESP_SALT_SIZE;
3109 ctx->is_esp = true;
3110 flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3111
3112 return aead_gcm_ccm_setkey(cipher, key, keylen);
3113}
3114
3115static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3116{
3117 struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3118 int ret = 0;
3119
3120 flow_log("%s() authkeylen:%u authsize:%u\n",
3121 __func__, ctx->authkeylen, authsize);
3122
3123 ctx->digestsize = authsize;
3124
3125 /* setkey the fallback just in case we needto use it */
3126 if (ctx->fallback_cipher) {
3127 flow_log(" running fallback setauth()\n");
3128
3129 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3130 if (ret)
3131 flow_log(" fallback setauth() returned:%d\n", ret);
3132 }
3133
3134 return ret;
3135}
3136
3137static int aead_encrypt(struct aead_request *req)
3138{
3139 flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3140 req->cryptlen);
3141 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3142 flow_log(" assoc_len:%u\n", req->assoclen);
3143
3144 return aead_enqueue(req, true);
3145}
3146
3147static int aead_decrypt(struct aead_request *req)
3148{
3149 flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3150 dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3151 flow_log(" assoc_len:%u\n", req->assoclen);
3152
3153 return aead_enqueue(req, false);
3154}
3155
3156/* ==================== Supported Cipher Algorithms ==================== */
3157
3158static struct iproc_alg_s driver_algs[] = {
3159 {
3160 .type = CRYPTO_ALG_TYPE_AEAD,
3161 .alg.aead = {
3162 .base = {
3163 .cra_name = "gcm(aes)",
3164 .cra_driver_name = "gcm-aes-iproc",
3165 .cra_blocksize = AES_BLOCK_SIZE,
3166 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3167 },
3168 .setkey = aead_gcm_ccm_setkey,
3169 .ivsize = GCM_AES_IV_SIZE,
3170 .maxauthsize = AES_BLOCK_SIZE,
3171 },
3172 .cipher_info = {
3173 .alg = CIPHER_ALG_AES,
3174 .mode = CIPHER_MODE_GCM,
3175 },
3176 .auth_info = {
3177 .alg = HASH_ALG_AES,
3178 .mode = HASH_MODE_GCM,
3179 },
3180 .auth_first = 0,
3181 },
3182 {
3183 .type = CRYPTO_ALG_TYPE_AEAD,
3184 .alg.aead = {
3185 .base = {
3186 .cra_name = "ccm(aes)",
3187 .cra_driver_name = "ccm-aes-iproc",
3188 .cra_blocksize = AES_BLOCK_SIZE,
3189 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3190 },
3191 .setkey = aead_gcm_ccm_setkey,
3192 .ivsize = CCM_AES_IV_SIZE,
3193 .maxauthsize = AES_BLOCK_SIZE,
3194 },
3195 .cipher_info = {
3196 .alg = CIPHER_ALG_AES,
3197 .mode = CIPHER_MODE_CCM,
3198 },
3199 .auth_info = {
3200 .alg = HASH_ALG_AES,
3201 .mode = HASH_MODE_CCM,
3202 },
3203 .auth_first = 0,
3204 },
3205 {
3206 .type = CRYPTO_ALG_TYPE_AEAD,
3207 .alg.aead = {
3208 .base = {
3209 .cra_name = "rfc4106(gcm(aes))",
3210 .cra_driver_name = "gcm-aes-esp-iproc",
3211 .cra_blocksize = AES_BLOCK_SIZE,
3212 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3213 },
3214 .setkey = aead_gcm_esp_setkey,
3215 .ivsize = GCM_RFC4106_IV_SIZE,
3216 .maxauthsize = AES_BLOCK_SIZE,
3217 },
3218 .cipher_info = {
3219 .alg = CIPHER_ALG_AES,
3220 .mode = CIPHER_MODE_GCM,
3221 },
3222 .auth_info = {
3223 .alg = HASH_ALG_AES,
3224 .mode = HASH_MODE_GCM,
3225 },
3226 .auth_first = 0,
3227 },
3228 {
3229 .type = CRYPTO_ALG_TYPE_AEAD,
3230 .alg.aead = {
3231 .base = {
3232 .cra_name = "rfc4309(ccm(aes))",
3233 .cra_driver_name = "ccm-aes-esp-iproc",
3234 .cra_blocksize = AES_BLOCK_SIZE,
3235 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3236 },
3237 .setkey = aead_ccm_esp_setkey,
3238 .ivsize = CCM_AES_IV_SIZE,
3239 .maxauthsize = AES_BLOCK_SIZE,
3240 },
3241 .cipher_info = {
3242 .alg = CIPHER_ALG_AES,
3243 .mode = CIPHER_MODE_CCM,
3244 },
3245 .auth_info = {
3246 .alg = HASH_ALG_AES,
3247 .mode = HASH_MODE_CCM,
3248 },
3249 .auth_first = 0,
3250 },
3251 {
3252 .type = CRYPTO_ALG_TYPE_AEAD,
3253 .alg.aead = {
3254 .base = {
3255 .cra_name = "rfc4543(gcm(aes))",
3256 .cra_driver_name = "gmac-aes-esp-iproc",
3257 .cra_blocksize = AES_BLOCK_SIZE,
3258 .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3259 },
3260 .setkey = rfc4543_gcm_esp_setkey,
3261 .ivsize = GCM_RFC4106_IV_SIZE,
3262 .maxauthsize = AES_BLOCK_SIZE,
3263 },
3264 .cipher_info = {
3265 .alg = CIPHER_ALG_AES,
3266 .mode = CIPHER_MODE_GCM,
3267 },
3268 .auth_info = {
3269 .alg = HASH_ALG_AES,
3270 .mode = HASH_MODE_GCM,
3271 },
3272 .auth_first = 0,
3273 },
3274 {
3275 .type = CRYPTO_ALG_TYPE_AEAD,
3276 .alg.aead = {
3277 .base = {
3278 .cra_name = "authenc(hmac(md5),cbc(aes))",
3279 .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3280 .cra_blocksize = AES_BLOCK_SIZE,
3281 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3282 },
3283 .setkey = aead_authenc_setkey,
3284 .ivsize = AES_BLOCK_SIZE,
3285 .maxauthsize = MD5_DIGEST_SIZE,
3286 },
3287 .cipher_info = {
3288 .alg = CIPHER_ALG_AES,
3289 .mode = CIPHER_MODE_CBC,
3290 },
3291 .auth_info = {
3292 .alg = HASH_ALG_MD5,
3293 .mode = HASH_MODE_HMAC,
3294 },
3295 .auth_first = 0,
3296 },
3297 {
3298 .type = CRYPTO_ALG_TYPE_AEAD,
3299 .alg.aead = {
3300 .base = {
3301 .cra_name = "authenc(hmac(sha1),cbc(aes))",
3302 .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3303 .cra_blocksize = AES_BLOCK_SIZE,
3304 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3305 },
3306 .setkey = aead_authenc_setkey,
3307 .ivsize = AES_BLOCK_SIZE,
3308 .maxauthsize = SHA1_DIGEST_SIZE,
3309 },
3310 .cipher_info = {
3311 .alg = CIPHER_ALG_AES,
3312 .mode = CIPHER_MODE_CBC,
3313 },
3314 .auth_info = {
3315 .alg = HASH_ALG_SHA1,
3316 .mode = HASH_MODE_HMAC,
3317 },
3318 .auth_first = 0,
3319 },
3320 {
3321 .type = CRYPTO_ALG_TYPE_AEAD,
3322 .alg.aead = {
3323 .base = {
3324 .cra_name = "authenc(hmac(sha256),cbc(aes))",
3325 .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3326 .cra_blocksize = AES_BLOCK_SIZE,
3327 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3328 },
3329 .setkey = aead_authenc_setkey,
3330 .ivsize = AES_BLOCK_SIZE,
3331 .maxauthsize = SHA256_DIGEST_SIZE,
3332 },
3333 .cipher_info = {
3334 .alg = CIPHER_ALG_AES,
3335 .mode = CIPHER_MODE_CBC,
3336 },
3337 .auth_info = {
3338 .alg = HASH_ALG_SHA256,
3339 .mode = HASH_MODE_HMAC,
3340 },
3341 .auth_first = 0,
3342 },
3343 {
3344 .type = CRYPTO_ALG_TYPE_AEAD,
3345 .alg.aead = {
3346 .base = {
3347 .cra_name = "authenc(hmac(md5),cbc(des))",
3348 .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3349 .cra_blocksize = DES_BLOCK_SIZE,
3350 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3351 },
3352 .setkey = aead_authenc_setkey,
3353 .ivsize = DES_BLOCK_SIZE,
3354 .maxauthsize = MD5_DIGEST_SIZE,
3355 },
3356 .cipher_info = {
3357 .alg = CIPHER_ALG_DES,
3358 .mode = CIPHER_MODE_CBC,
3359 },
3360 .auth_info = {
3361 .alg = HASH_ALG_MD5,
3362 .mode = HASH_MODE_HMAC,
3363 },
3364 .auth_first = 0,
3365 },
3366 {
3367 .type = CRYPTO_ALG_TYPE_AEAD,
3368 .alg.aead = {
3369 .base = {
3370 .cra_name = "authenc(hmac(sha1),cbc(des))",
3371 .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3372 .cra_blocksize = DES_BLOCK_SIZE,
3373 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3374 },
3375 .setkey = aead_authenc_setkey,
3376 .ivsize = DES_BLOCK_SIZE,
3377 .maxauthsize = SHA1_DIGEST_SIZE,
3378 },
3379 .cipher_info = {
3380 .alg = CIPHER_ALG_DES,
3381 .mode = CIPHER_MODE_CBC,
3382 },
3383 .auth_info = {
3384 .alg = HASH_ALG_SHA1,
3385 .mode = HASH_MODE_HMAC,
3386 },
3387 .auth_first = 0,
3388 },
3389 {
3390 .type = CRYPTO_ALG_TYPE_AEAD,
3391 .alg.aead = {
3392 .base = {
3393 .cra_name = "authenc(hmac(sha224),cbc(des))",
3394 .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3395 .cra_blocksize = DES_BLOCK_SIZE,
3396 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3397 },
3398 .setkey = aead_authenc_setkey,
3399 .ivsize = DES_BLOCK_SIZE,
3400 .maxauthsize = SHA224_DIGEST_SIZE,
3401 },
3402 .cipher_info = {
3403 .alg = CIPHER_ALG_DES,
3404 .mode = CIPHER_MODE_CBC,
3405 },
3406 .auth_info = {
3407 .alg = HASH_ALG_SHA224,
3408 .mode = HASH_MODE_HMAC,
3409 },
3410 .auth_first = 0,
3411 },
3412 {
3413 .type = CRYPTO_ALG_TYPE_AEAD,
3414 .alg.aead = {
3415 .base = {
3416 .cra_name = "authenc(hmac(sha256),cbc(des))",
3417 .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3418 .cra_blocksize = DES_BLOCK_SIZE,
3419 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3420 },
3421 .setkey = aead_authenc_setkey,
3422 .ivsize = DES_BLOCK_SIZE,
3423 .maxauthsize = SHA256_DIGEST_SIZE,
3424 },
3425 .cipher_info = {
3426 .alg = CIPHER_ALG_DES,
3427 .mode = CIPHER_MODE_CBC,
3428 },
3429 .auth_info = {
3430 .alg = HASH_ALG_SHA256,
3431 .mode = HASH_MODE_HMAC,
3432 },
3433 .auth_first = 0,
3434 },
3435 {
3436 .type = CRYPTO_ALG_TYPE_AEAD,
3437 .alg.aead = {
3438 .base = {
3439 .cra_name = "authenc(hmac(sha384),cbc(des))",
3440 .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3441 .cra_blocksize = DES_BLOCK_SIZE,
3442 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3443 },
3444 .setkey = aead_authenc_setkey,
3445 .ivsize = DES_BLOCK_SIZE,
3446 .maxauthsize = SHA384_DIGEST_SIZE,
3447 },
3448 .cipher_info = {
3449 .alg = CIPHER_ALG_DES,
3450 .mode = CIPHER_MODE_CBC,
3451 },
3452 .auth_info = {
3453 .alg = HASH_ALG_SHA384,
3454 .mode = HASH_MODE_HMAC,
3455 },
3456 .auth_first = 0,
3457 },
3458 {
3459 .type = CRYPTO_ALG_TYPE_AEAD,
3460 .alg.aead = {
3461 .base = {
3462 .cra_name = "authenc(hmac(sha512),cbc(des))",
3463 .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3464 .cra_blocksize = DES_BLOCK_SIZE,
3465 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3466 },
3467 .setkey = aead_authenc_setkey,
3468 .ivsize = DES_BLOCK_SIZE,
3469 .maxauthsize = SHA512_DIGEST_SIZE,
3470 },
3471 .cipher_info = {
3472 .alg = CIPHER_ALG_DES,
3473 .mode = CIPHER_MODE_CBC,
3474 },
3475 .auth_info = {
3476 .alg = HASH_ALG_SHA512,
3477 .mode = HASH_MODE_HMAC,
3478 },
3479 .auth_first = 0,
3480 },
3481 {
3482 .type = CRYPTO_ALG_TYPE_AEAD,
3483 .alg.aead = {
3484 .base = {
3485 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3486 .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3487 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3488 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3489 },
3490 .setkey = aead_authenc_setkey,
3491 .ivsize = DES3_EDE_BLOCK_SIZE,
3492 .maxauthsize = MD5_DIGEST_SIZE,
3493 },
3494 .cipher_info = {
3495 .alg = CIPHER_ALG_3DES,
3496 .mode = CIPHER_MODE_CBC,
3497 },
3498 .auth_info = {
3499 .alg = HASH_ALG_MD5,
3500 .mode = HASH_MODE_HMAC,
3501 },
3502 .auth_first = 0,
3503 },
3504 {
3505 .type = CRYPTO_ALG_TYPE_AEAD,
3506 .alg.aead = {
3507 .base = {
3508 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3509 .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3510 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3511 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3512 },
3513 .setkey = aead_authenc_setkey,
3514 .ivsize = DES3_EDE_BLOCK_SIZE,
3515 .maxauthsize = SHA1_DIGEST_SIZE,
3516 },
3517 .cipher_info = {
3518 .alg = CIPHER_ALG_3DES,
3519 .mode = CIPHER_MODE_CBC,
3520 },
3521 .auth_info = {
3522 .alg = HASH_ALG_SHA1,
3523 .mode = HASH_MODE_HMAC,
3524 },
3525 .auth_first = 0,
3526 },
3527 {
3528 .type = CRYPTO_ALG_TYPE_AEAD,
3529 .alg.aead = {
3530 .base = {
3531 .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3532 .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3533 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3534 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3535 },
3536 .setkey = aead_authenc_setkey,
3537 .ivsize = DES3_EDE_BLOCK_SIZE,
3538 .maxauthsize = SHA224_DIGEST_SIZE,
3539 },
3540 .cipher_info = {
3541 .alg = CIPHER_ALG_3DES,
3542 .mode = CIPHER_MODE_CBC,
3543 },
3544 .auth_info = {
3545 .alg = HASH_ALG_SHA224,
3546 .mode = HASH_MODE_HMAC,
3547 },
3548 .auth_first = 0,
3549 },
3550 {
3551 .type = CRYPTO_ALG_TYPE_AEAD,
3552 .alg.aead = {
3553 .base = {
3554 .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3555 .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3556 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3557 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3558 },
3559 .setkey = aead_authenc_setkey,
3560 .ivsize = DES3_EDE_BLOCK_SIZE,
3561 .maxauthsize = SHA256_DIGEST_SIZE,
3562 },
3563 .cipher_info = {
3564 .alg = CIPHER_ALG_3DES,
3565 .mode = CIPHER_MODE_CBC,
3566 },
3567 .auth_info = {
3568 .alg = HASH_ALG_SHA256,
3569 .mode = HASH_MODE_HMAC,
3570 },
3571 .auth_first = 0,
3572 },
3573 {
3574 .type = CRYPTO_ALG_TYPE_AEAD,
3575 .alg.aead = {
3576 .base = {
3577 .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3578 .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3579 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3580 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3581 },
3582 .setkey = aead_authenc_setkey,
3583 .ivsize = DES3_EDE_BLOCK_SIZE,
3584 .maxauthsize = SHA384_DIGEST_SIZE,
3585 },
3586 .cipher_info = {
3587 .alg = CIPHER_ALG_3DES,
3588 .mode = CIPHER_MODE_CBC,
3589 },
3590 .auth_info = {
3591 .alg = HASH_ALG_SHA384,
3592 .mode = HASH_MODE_HMAC,
3593 },
3594 .auth_first = 0,
3595 },
3596 {
3597 .type = CRYPTO_ALG_TYPE_AEAD,
3598 .alg.aead = {
3599 .base = {
3600 .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3601 .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3602 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3603 .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC
3604 },
3605 .setkey = aead_authenc_setkey,
3606 .ivsize = DES3_EDE_BLOCK_SIZE,
3607 .maxauthsize = SHA512_DIGEST_SIZE,
3608 },
3609 .cipher_info = {
3610 .alg = CIPHER_ALG_3DES,
3611 .mode = CIPHER_MODE_CBC,
3612 },
3613 .auth_info = {
3614 .alg = HASH_ALG_SHA512,
3615 .mode = HASH_MODE_HMAC,
3616 },
3617 .auth_first = 0,
3618 },
3619
3620/* ABLKCIPHER algorithms. */
3621 {
3622 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3623 .alg.crypto = {
3624 .cra_name = "ecb(arc4)",
3625 .cra_driver_name = "ecb-arc4-iproc",
3626 .cra_blocksize = ARC4_BLOCK_SIZE,
3627 .cra_ablkcipher = {
3628 .min_keysize = ARC4_MIN_KEY_SIZE,
3629 .max_keysize = ARC4_MAX_KEY_SIZE,
3630 .ivsize = 0,
3631 }
3632 },
3633 .cipher_info = {
3634 .alg = CIPHER_ALG_RC4,
3635 .mode = CIPHER_MODE_NONE,
3636 },
3637 .auth_info = {
3638 .alg = HASH_ALG_NONE,
3639 .mode = HASH_MODE_NONE,
3640 },
3641 },
3642 {
3643 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3644 .alg.crypto = {
3645 .cra_name = "ofb(des)",
3646 .cra_driver_name = "ofb-des-iproc",
3647 .cra_blocksize = DES_BLOCK_SIZE,
3648 .cra_ablkcipher = {
3649 .min_keysize = DES_KEY_SIZE,
3650 .max_keysize = DES_KEY_SIZE,
3651 .ivsize = DES_BLOCK_SIZE,
3652 }
3653 },
3654 .cipher_info = {
3655 .alg = CIPHER_ALG_DES,
3656 .mode = CIPHER_MODE_OFB,
3657 },
3658 .auth_info = {
3659 .alg = HASH_ALG_NONE,
3660 .mode = HASH_MODE_NONE,
3661 },
3662 },
3663 {
3664 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3665 .alg.crypto = {
3666 .cra_name = "cbc(des)",
3667 .cra_driver_name = "cbc-des-iproc",
3668 .cra_blocksize = DES_BLOCK_SIZE,
3669 .cra_ablkcipher = {
3670 .min_keysize = DES_KEY_SIZE,
3671 .max_keysize = DES_KEY_SIZE,
3672 .ivsize = DES_BLOCK_SIZE,
3673 }
3674 },
3675 .cipher_info = {
3676 .alg = CIPHER_ALG_DES,
3677 .mode = CIPHER_MODE_CBC,
3678 },
3679 .auth_info = {
3680 .alg = HASH_ALG_NONE,
3681 .mode = HASH_MODE_NONE,
3682 },
3683 },
3684 {
3685 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3686 .alg.crypto = {
3687 .cra_name = "ecb(des)",
3688 .cra_driver_name = "ecb-des-iproc",
3689 .cra_blocksize = DES_BLOCK_SIZE,
3690 .cra_ablkcipher = {
3691 .min_keysize = DES_KEY_SIZE,
3692 .max_keysize = DES_KEY_SIZE,
3693 .ivsize = 0,
3694 }
3695 },
3696 .cipher_info = {
3697 .alg = CIPHER_ALG_DES,
3698 .mode = CIPHER_MODE_ECB,
3699 },
3700 .auth_info = {
3701 .alg = HASH_ALG_NONE,
3702 .mode = HASH_MODE_NONE,
3703 },
3704 },
3705 {
3706 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3707 .alg.crypto = {
3708 .cra_name = "ofb(des3_ede)",
3709 .cra_driver_name = "ofb-des3-iproc",
3710 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3711 .cra_ablkcipher = {
3712 .min_keysize = DES3_EDE_KEY_SIZE,
3713 .max_keysize = DES3_EDE_KEY_SIZE,
3714 .ivsize = DES3_EDE_BLOCK_SIZE,
3715 }
3716 },
3717 .cipher_info = {
3718 .alg = CIPHER_ALG_3DES,
3719 .mode = CIPHER_MODE_OFB,
3720 },
3721 .auth_info = {
3722 .alg = HASH_ALG_NONE,
3723 .mode = HASH_MODE_NONE,
3724 },
3725 },
3726 {
3727 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3728 .alg.crypto = {
3729 .cra_name = "cbc(des3_ede)",
3730 .cra_driver_name = "cbc-des3-iproc",
3731 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3732 .cra_ablkcipher = {
3733 .min_keysize = DES3_EDE_KEY_SIZE,
3734 .max_keysize = DES3_EDE_KEY_SIZE,
3735 .ivsize = DES3_EDE_BLOCK_SIZE,
3736 }
3737 },
3738 .cipher_info = {
3739 .alg = CIPHER_ALG_3DES,
3740 .mode = CIPHER_MODE_CBC,
3741 },
3742 .auth_info = {
3743 .alg = HASH_ALG_NONE,
3744 .mode = HASH_MODE_NONE,
3745 },
3746 },
3747 {
3748 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3749 .alg.crypto = {
3750 .cra_name = "ecb(des3_ede)",
3751 .cra_driver_name = "ecb-des3-iproc",
3752 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3753 .cra_ablkcipher = {
3754 .min_keysize = DES3_EDE_KEY_SIZE,
3755 .max_keysize = DES3_EDE_KEY_SIZE,
3756 .ivsize = 0,
3757 }
3758 },
3759 .cipher_info = {
3760 .alg = CIPHER_ALG_3DES,
3761 .mode = CIPHER_MODE_ECB,
3762 },
3763 .auth_info = {
3764 .alg = HASH_ALG_NONE,
3765 .mode = HASH_MODE_NONE,
3766 },
3767 },
3768 {
3769 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3770 .alg.crypto = {
3771 .cra_name = "ofb(aes)",
3772 .cra_driver_name = "ofb-aes-iproc",
3773 .cra_blocksize = AES_BLOCK_SIZE,
3774 .cra_ablkcipher = {
3775 .min_keysize = AES_MIN_KEY_SIZE,
3776 .max_keysize = AES_MAX_KEY_SIZE,
3777 .ivsize = AES_BLOCK_SIZE,
3778 }
3779 },
3780 .cipher_info = {
3781 .alg = CIPHER_ALG_AES,
3782 .mode = CIPHER_MODE_OFB,
3783 },
3784 .auth_info = {
3785 .alg = HASH_ALG_NONE,
3786 .mode = HASH_MODE_NONE,
3787 },
3788 },
3789 {
3790 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3791 .alg.crypto = {
3792 .cra_name = "cbc(aes)",
3793 .cra_driver_name = "cbc-aes-iproc",
3794 .cra_blocksize = AES_BLOCK_SIZE,
3795 .cra_ablkcipher = {
3796 .min_keysize = AES_MIN_KEY_SIZE,
3797 .max_keysize = AES_MAX_KEY_SIZE,
3798 .ivsize = AES_BLOCK_SIZE,
3799 }
3800 },
3801 .cipher_info = {
3802 .alg = CIPHER_ALG_AES,
3803 .mode = CIPHER_MODE_CBC,
3804 },
3805 .auth_info = {
3806 .alg = HASH_ALG_NONE,
3807 .mode = HASH_MODE_NONE,
3808 },
3809 },
3810 {
3811 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3812 .alg.crypto = {
3813 .cra_name = "ecb(aes)",
3814 .cra_driver_name = "ecb-aes-iproc",
3815 .cra_blocksize = AES_BLOCK_SIZE,
3816 .cra_ablkcipher = {
3817 .min_keysize = AES_MIN_KEY_SIZE,
3818 .max_keysize = AES_MAX_KEY_SIZE,
3819 .ivsize = 0,
3820 }
3821 },
3822 .cipher_info = {
3823 .alg = CIPHER_ALG_AES,
3824 .mode = CIPHER_MODE_ECB,
3825 },
3826 .auth_info = {
3827 .alg = HASH_ALG_NONE,
3828 .mode = HASH_MODE_NONE,
3829 },
3830 },
3831 {
3832 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3833 .alg.crypto = {
3834 .cra_name = "ctr(aes)",
3835 .cra_driver_name = "ctr-aes-iproc",
3836 .cra_blocksize = AES_BLOCK_SIZE,
3837 .cra_ablkcipher = {
3838 .min_keysize = AES_MIN_KEY_SIZE,
3839 .max_keysize = AES_MAX_KEY_SIZE,
3840 .ivsize = AES_BLOCK_SIZE,
3841 }
3842 },
3843 .cipher_info = {
3844 .alg = CIPHER_ALG_AES,
3845 .mode = CIPHER_MODE_CTR,
3846 },
3847 .auth_info = {
3848 .alg = HASH_ALG_NONE,
3849 .mode = HASH_MODE_NONE,
3850 },
3851 },
3852{
3853 .type = CRYPTO_ALG_TYPE_ABLKCIPHER,
3854 .alg.crypto = {
3855 .cra_name = "xts(aes)",
3856 .cra_driver_name = "xts-aes-iproc",
3857 .cra_blocksize = AES_BLOCK_SIZE,
3858 .cra_ablkcipher = {
3859 .min_keysize = 2 * AES_MIN_KEY_SIZE,
3860 .max_keysize = 2 * AES_MAX_KEY_SIZE,
3861 .ivsize = AES_BLOCK_SIZE,
3862 }
3863 },
3864 .cipher_info = {
3865 .alg = CIPHER_ALG_AES,
3866 .mode = CIPHER_MODE_XTS,
3867 },
3868 .auth_info = {
3869 .alg = HASH_ALG_NONE,
3870 .mode = HASH_MODE_NONE,
3871 },
3872 },
3873
3874/* AHASH algorithms. */
3875 {
3876 .type = CRYPTO_ALG_TYPE_AHASH,
3877 .alg.hash = {
3878 .halg.digestsize = MD5_DIGEST_SIZE,
3879 .halg.base = {
3880 .cra_name = "md5",
3881 .cra_driver_name = "md5-iproc",
3882 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3883 .cra_flags = CRYPTO_ALG_ASYNC,
3884 }
3885 },
3886 .cipher_info = {
3887 .alg = CIPHER_ALG_NONE,
3888 .mode = CIPHER_MODE_NONE,
3889 },
3890 .auth_info = {
3891 .alg = HASH_ALG_MD5,
3892 .mode = HASH_MODE_HASH,
3893 },
3894 },
3895 {
3896 .type = CRYPTO_ALG_TYPE_AHASH,
3897 .alg.hash = {
3898 .halg.digestsize = MD5_DIGEST_SIZE,
3899 .halg.base = {
3900 .cra_name = "hmac(md5)",
3901 .cra_driver_name = "hmac-md5-iproc",
3902 .cra_blocksize = MD5_BLOCK_WORDS * 4,
3903 }
3904 },
3905 .cipher_info = {
3906 .alg = CIPHER_ALG_NONE,
3907 .mode = CIPHER_MODE_NONE,
3908 },
3909 .auth_info = {
3910 .alg = HASH_ALG_MD5,
3911 .mode = HASH_MODE_HMAC,
3912 },
3913 },
3914 {.type = CRYPTO_ALG_TYPE_AHASH,
3915 .alg.hash = {
3916 .halg.digestsize = SHA1_DIGEST_SIZE,
3917 .halg.base = {
3918 .cra_name = "sha1",
3919 .cra_driver_name = "sha1-iproc",
3920 .cra_blocksize = SHA1_BLOCK_SIZE,
3921 }
3922 },
3923 .cipher_info = {
3924 .alg = CIPHER_ALG_NONE,
3925 .mode = CIPHER_MODE_NONE,
3926 },
3927 .auth_info = {
3928 .alg = HASH_ALG_SHA1,
3929 .mode = HASH_MODE_HASH,
3930 },
3931 },
3932 {.type = CRYPTO_ALG_TYPE_AHASH,
3933 .alg.hash = {
3934 .halg.digestsize = SHA1_DIGEST_SIZE,
3935 .halg.base = {
3936 .cra_name = "hmac(sha1)",
3937 .cra_driver_name = "hmac-sha1-iproc",
3938 .cra_blocksize = SHA1_BLOCK_SIZE,
3939 }
3940 },
3941 .cipher_info = {
3942 .alg = CIPHER_ALG_NONE,
3943 .mode = CIPHER_MODE_NONE,
3944 },
3945 .auth_info = {
3946 .alg = HASH_ALG_SHA1,
3947 .mode = HASH_MODE_HMAC,
3948 },
3949 },
3950 {.type = CRYPTO_ALG_TYPE_AHASH,
3951 .alg.hash = {
3952 .halg.digestsize = SHA224_DIGEST_SIZE,
3953 .halg.base = {
3954 .cra_name = "sha224",
3955 .cra_driver_name = "sha224-iproc",
3956 .cra_blocksize = SHA224_BLOCK_SIZE,
3957 }
3958 },
3959 .cipher_info = {
3960 .alg = CIPHER_ALG_NONE,
3961 .mode = CIPHER_MODE_NONE,
3962 },
3963 .auth_info = {
3964 .alg = HASH_ALG_SHA224,
3965 .mode = HASH_MODE_HASH,
3966 },
3967 },
3968 {.type = CRYPTO_ALG_TYPE_AHASH,
3969 .alg.hash = {
3970 .halg.digestsize = SHA224_DIGEST_SIZE,
3971 .halg.base = {
3972 .cra_name = "hmac(sha224)",
3973 .cra_driver_name = "hmac-sha224-iproc",
3974 .cra_blocksize = SHA224_BLOCK_SIZE,
3975 }
3976 },
3977 .cipher_info = {
3978 .alg = CIPHER_ALG_NONE,
3979 .mode = CIPHER_MODE_NONE,
3980 },
3981 .auth_info = {
3982 .alg = HASH_ALG_SHA224,
3983 .mode = HASH_MODE_HMAC,
3984 },
3985 },
3986 {.type = CRYPTO_ALG_TYPE_AHASH,
3987 .alg.hash = {
3988 .halg.digestsize = SHA256_DIGEST_SIZE,
3989 .halg.base = {
3990 .cra_name = "sha256",
3991 .cra_driver_name = "sha256-iproc",
3992 .cra_blocksize = SHA256_BLOCK_SIZE,
3993 }
3994 },
3995 .cipher_info = {
3996 .alg = CIPHER_ALG_NONE,
3997 .mode = CIPHER_MODE_NONE,
3998 },
3999 .auth_info = {
4000 .alg = HASH_ALG_SHA256,
4001 .mode = HASH_MODE_HASH,
4002 },
4003 },
4004 {.type = CRYPTO_ALG_TYPE_AHASH,
4005 .alg.hash = {
4006 .halg.digestsize = SHA256_DIGEST_SIZE,
4007 .halg.base = {
4008 .cra_name = "hmac(sha256)",
4009 .cra_driver_name = "hmac-sha256-iproc",
4010 .cra_blocksize = SHA256_BLOCK_SIZE,
4011 }
4012 },
4013 .cipher_info = {
4014 .alg = CIPHER_ALG_NONE,
4015 .mode = CIPHER_MODE_NONE,
4016 },
4017 .auth_info = {
4018 .alg = HASH_ALG_SHA256,
4019 .mode = HASH_MODE_HMAC,
4020 },
4021 },
4022 {
4023 .type = CRYPTO_ALG_TYPE_AHASH,
4024 .alg.hash = {
4025 .halg.digestsize = SHA384_DIGEST_SIZE,
4026 .halg.base = {
4027 .cra_name = "sha384",
4028 .cra_driver_name = "sha384-iproc",
4029 .cra_blocksize = SHA384_BLOCK_SIZE,
4030 }
4031 },
4032 .cipher_info = {
4033 .alg = CIPHER_ALG_NONE,
4034 .mode = CIPHER_MODE_NONE,
4035 },
4036 .auth_info = {
4037 .alg = HASH_ALG_SHA384,
4038 .mode = HASH_MODE_HASH,
4039 },
4040 },
4041 {
4042 .type = CRYPTO_ALG_TYPE_AHASH,
4043 .alg.hash = {
4044 .halg.digestsize = SHA384_DIGEST_SIZE,
4045 .halg.base = {
4046 .cra_name = "hmac(sha384)",
4047 .cra_driver_name = "hmac-sha384-iproc",
4048 .cra_blocksize = SHA384_BLOCK_SIZE,
4049 }
4050 },
4051 .cipher_info = {
4052 .alg = CIPHER_ALG_NONE,
4053 .mode = CIPHER_MODE_NONE,
4054 },
4055 .auth_info = {
4056 .alg = HASH_ALG_SHA384,
4057 .mode = HASH_MODE_HMAC,
4058 },
4059 },
4060 {
4061 .type = CRYPTO_ALG_TYPE_AHASH,
4062 .alg.hash = {
4063 .halg.digestsize = SHA512_DIGEST_SIZE,
4064 .halg.base = {
4065 .cra_name = "sha512",
4066 .cra_driver_name = "sha512-iproc",
4067 .cra_blocksize = SHA512_BLOCK_SIZE,
4068 }
4069 },
4070 .cipher_info = {
4071 .alg = CIPHER_ALG_NONE,
4072 .mode = CIPHER_MODE_NONE,
4073 },
4074 .auth_info = {
4075 .alg = HASH_ALG_SHA512,
4076 .mode = HASH_MODE_HASH,
4077 },
4078 },
4079 {
4080 .type = CRYPTO_ALG_TYPE_AHASH,
4081 .alg.hash = {
4082 .halg.digestsize = SHA512_DIGEST_SIZE,
4083 .halg.base = {
4084 .cra_name = "hmac(sha512)",
4085 .cra_driver_name = "hmac-sha512-iproc",
4086 .cra_blocksize = SHA512_BLOCK_SIZE,
4087 }
4088 },
4089 .cipher_info = {
4090 .alg = CIPHER_ALG_NONE,
4091 .mode = CIPHER_MODE_NONE,
4092 },
4093 .auth_info = {
4094 .alg = HASH_ALG_SHA512,
4095 .mode = HASH_MODE_HMAC,
4096 },
4097 },
4098 {
4099 .type = CRYPTO_ALG_TYPE_AHASH,
4100 .alg.hash = {
4101 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4102 .halg.base = {
4103 .cra_name = "sha3-224",
4104 .cra_driver_name = "sha3-224-iproc",
4105 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4106 }
4107 },
4108 .cipher_info = {
4109 .alg = CIPHER_ALG_NONE,
4110 .mode = CIPHER_MODE_NONE,
4111 },
4112 .auth_info = {
4113 .alg = HASH_ALG_SHA3_224,
4114 .mode = HASH_MODE_HASH,
4115 },
4116 },
4117 {
4118 .type = CRYPTO_ALG_TYPE_AHASH,
4119 .alg.hash = {
4120 .halg.digestsize = SHA3_224_DIGEST_SIZE,
4121 .halg.base = {
4122 .cra_name = "hmac(sha3-224)",
4123 .cra_driver_name = "hmac-sha3-224-iproc",
4124 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4125 }
4126 },
4127 .cipher_info = {
4128 .alg = CIPHER_ALG_NONE,
4129 .mode = CIPHER_MODE_NONE,
4130 },
4131 .auth_info = {
4132 .alg = HASH_ALG_SHA3_224,
4133 .mode = HASH_MODE_HMAC
4134 },
4135 },
4136 {
4137 .type = CRYPTO_ALG_TYPE_AHASH,
4138 .alg.hash = {
4139 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4140 .halg.base = {
4141 .cra_name = "sha3-256",
4142 .cra_driver_name = "sha3-256-iproc",
4143 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4144 }
4145 },
4146 .cipher_info = {
4147 .alg = CIPHER_ALG_NONE,
4148 .mode = CIPHER_MODE_NONE,
4149 },
4150 .auth_info = {
4151 .alg = HASH_ALG_SHA3_256,
4152 .mode = HASH_MODE_HASH,
4153 },
4154 },
4155 {
4156 .type = CRYPTO_ALG_TYPE_AHASH,
4157 .alg.hash = {
4158 .halg.digestsize = SHA3_256_DIGEST_SIZE,
4159 .halg.base = {
4160 .cra_name = "hmac(sha3-256)",
4161 .cra_driver_name = "hmac-sha3-256-iproc",
4162 .cra_blocksize = SHA3_256_BLOCK_SIZE,
4163 }
4164 },
4165 .cipher_info = {
4166 .alg = CIPHER_ALG_NONE,
4167 .mode = CIPHER_MODE_NONE,
4168 },
4169 .auth_info = {
4170 .alg = HASH_ALG_SHA3_256,
4171 .mode = HASH_MODE_HMAC,
4172 },
4173 },
4174 {
4175 .type = CRYPTO_ALG_TYPE_AHASH,
4176 .alg.hash = {
4177 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4178 .halg.base = {
4179 .cra_name = "sha3-384",
4180 .cra_driver_name = "sha3-384-iproc",
4181 .cra_blocksize = SHA3_224_BLOCK_SIZE,
4182 }
4183 },
4184 .cipher_info = {
4185 .alg = CIPHER_ALG_NONE,
4186 .mode = CIPHER_MODE_NONE,
4187 },
4188 .auth_info = {
4189 .alg = HASH_ALG_SHA3_384,
4190 .mode = HASH_MODE_HASH,
4191 },
4192 },
4193 {
4194 .type = CRYPTO_ALG_TYPE_AHASH,
4195 .alg.hash = {
4196 .halg.digestsize = SHA3_384_DIGEST_SIZE,
4197 .halg.base = {
4198 .cra_name = "hmac(sha3-384)",
4199 .cra_driver_name = "hmac-sha3-384-iproc",
4200 .cra_blocksize = SHA3_384_BLOCK_SIZE,
4201 }
4202 },
4203 .cipher_info = {
4204 .alg = CIPHER_ALG_NONE,
4205 .mode = CIPHER_MODE_NONE,
4206 },
4207 .auth_info = {
4208 .alg = HASH_ALG_SHA3_384,
4209 .mode = HASH_MODE_HMAC,
4210 },
4211 },
4212 {
4213 .type = CRYPTO_ALG_TYPE_AHASH,
4214 .alg.hash = {
4215 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4216 .halg.base = {
4217 .cra_name = "sha3-512",
4218 .cra_driver_name = "sha3-512-iproc",
4219 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4220 }
4221 },
4222 .cipher_info = {
4223 .alg = CIPHER_ALG_NONE,
4224 .mode = CIPHER_MODE_NONE,
4225 },
4226 .auth_info = {
4227 .alg = HASH_ALG_SHA3_512,
4228 .mode = HASH_MODE_HASH,
4229 },
4230 },
4231 {
4232 .type = CRYPTO_ALG_TYPE_AHASH,
4233 .alg.hash = {
4234 .halg.digestsize = SHA3_512_DIGEST_SIZE,
4235 .halg.base = {
4236 .cra_name = "hmac(sha3-512)",
4237 .cra_driver_name = "hmac-sha3-512-iproc",
4238 .cra_blocksize = SHA3_512_BLOCK_SIZE,
4239 }
4240 },
4241 .cipher_info = {
4242 .alg = CIPHER_ALG_NONE,
4243 .mode = CIPHER_MODE_NONE,
4244 },
4245 .auth_info = {
4246 .alg = HASH_ALG_SHA3_512,
4247 .mode = HASH_MODE_HMAC,
4248 },
4249 },
4250 {
4251 .type = CRYPTO_ALG_TYPE_AHASH,
4252 .alg.hash = {
4253 .halg.digestsize = AES_BLOCK_SIZE,
4254 .halg.base = {
4255 .cra_name = "xcbc(aes)",
4256 .cra_driver_name = "xcbc-aes-iproc",
4257 .cra_blocksize = AES_BLOCK_SIZE,
4258 }
4259 },
4260 .cipher_info = {
4261 .alg = CIPHER_ALG_NONE,
4262 .mode = CIPHER_MODE_NONE,
4263 },
4264 .auth_info = {
4265 .alg = HASH_ALG_AES,
4266 .mode = HASH_MODE_XCBC,
4267 },
4268 },
4269 {
4270 .type = CRYPTO_ALG_TYPE_AHASH,
4271 .alg.hash = {
4272 .halg.digestsize = AES_BLOCK_SIZE,
4273 .halg.base = {
4274 .cra_name = "cmac(aes)",
4275 .cra_driver_name = "cmac-aes-iproc",
4276 .cra_blocksize = AES_BLOCK_SIZE,
4277 }
4278 },
4279 .cipher_info = {
4280 .alg = CIPHER_ALG_NONE,
4281 .mode = CIPHER_MODE_NONE,
4282 },
4283 .auth_info = {
4284 .alg = HASH_ALG_AES,
4285 .mode = HASH_MODE_CMAC,
4286 },
4287 },
4288};
4289
4290static int generic_cra_init(struct crypto_tfm *tfm,
4291 struct iproc_alg_s *cipher_alg)
4292{
4293 struct spu_hw *spu = &iproc_priv.spu;
4294 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4295 unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4296
4297 flow_log("%s()\n", __func__);
4298
4299 ctx->alg = cipher_alg;
4300 ctx->cipher = cipher_alg->cipher_info;
4301 ctx->auth = cipher_alg->auth_info;
4302 ctx->auth_first = cipher_alg->auth_first;
4303 ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4304 ctx->cipher.mode,
4305 blocksize);
4306 ctx->fallback_cipher = NULL;
4307
4308 ctx->enckeylen = 0;
4309 ctx->authkeylen = 0;
4310
4311 atomic_inc(&iproc_priv.stream_count);
4312 atomic_inc(&iproc_priv.session_count);
4313
4314 return 0;
4315}
4316
4317static int ablkcipher_cra_init(struct crypto_tfm *tfm)
4318{
4319 struct crypto_alg *alg = tfm->__crt_alg;
4320 struct iproc_alg_s *cipher_alg;
4321
4322 flow_log("%s()\n", __func__);
4323
4324 tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s);
4325
4326 cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto);
4327 return generic_cra_init(tfm, cipher_alg);
4328}
4329
4330static int ahash_cra_init(struct crypto_tfm *tfm)
4331{
4332 int err;
4333 struct crypto_alg *alg = tfm->__crt_alg;
4334 struct iproc_alg_s *cipher_alg;
4335
4336 cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4337 alg.hash);
4338
4339 err = generic_cra_init(tfm, cipher_alg);
4340 flow_log("%s()\n", __func__);
4341
4342 /*
4343 * export state size has to be < 512 bytes. So don't include msg bufs
4344 * in state size.
4345 */
4346 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4347 sizeof(struct iproc_reqctx_s));
4348
4349 return err;
4350}
4351
4352static int aead_cra_init(struct crypto_aead *aead)
4353{
4354 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4355 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4356 struct crypto_alg *alg = tfm->__crt_alg;
4357 struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4358 struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4359 alg.aead);
4360
4361 int err = generic_cra_init(tfm, cipher_alg);
4362
4363 flow_log("%s()\n", __func__);
4364
4365 crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4366 ctx->is_esp = false;
4367 ctx->salt_len = 0;
4368 ctx->salt_offset = 0;
4369
4370 /* random first IV */
4371 get_random_bytes(ctx->iv, MAX_IV_SIZE);
4372 flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE);
4373
4374 if (!err) {
4375 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4376 flow_log("%s() creating fallback cipher\n", __func__);
4377
4378 ctx->fallback_cipher =
4379 crypto_alloc_aead(alg->cra_name, 0,
4380 CRYPTO_ALG_ASYNC |
4381 CRYPTO_ALG_NEED_FALLBACK);
4382 if (IS_ERR(ctx->fallback_cipher)) {
4383 pr_err("%s() Error: failed to allocate fallback for %s\n",
4384 __func__, alg->cra_name);
4385 return PTR_ERR(ctx->fallback_cipher);
4386 }
4387 }
4388 }
4389
4390 return err;
4391}
4392
4393static void generic_cra_exit(struct crypto_tfm *tfm)
4394{
4395 atomic_dec(&iproc_priv.session_count);
4396}
4397
4398static void aead_cra_exit(struct crypto_aead *aead)
4399{
4400 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4401 struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4402
4403 generic_cra_exit(tfm);
4404
4405 if (ctx->fallback_cipher) {
4406 crypto_free_aead(ctx->fallback_cipher);
4407 ctx->fallback_cipher = NULL;
4408 }
4409}
4410
4411/**
4412 * spu_functions_register() - Specify hardware-specific SPU functions based on
4413 * SPU type read from device tree.
4414 * @dev: device structure
4415 * @spu_type: SPU hardware generation
4416 * @spu_subtype: SPU hardware version
4417 */
4418static void spu_functions_register(struct device *dev,
4419 enum spu_spu_type spu_type,
4420 enum spu_spu_subtype spu_subtype)
4421{
4422 struct spu_hw *spu = &iproc_priv.spu;
4423
4424 if (spu_type == SPU_TYPE_SPUM) {
4425 dev_dbg(dev, "Registering SPUM functions");
4426 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4427 spu->spu_payload_length = spum_payload_length;
4428 spu->spu_response_hdr_len = spum_response_hdr_len;
4429 spu->spu_hash_pad_len = spum_hash_pad_len;
4430 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4431 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4432 spu->spu_aead_ivlen = spum_aead_ivlen;
4433 spu->spu_hash_type = spum_hash_type;
4434 spu->spu_digest_size = spum_digest_size;
4435 spu->spu_create_request = spum_create_request;
4436 spu->spu_cipher_req_init = spum_cipher_req_init;
4437 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4438 spu->spu_request_pad = spum_request_pad;
4439 spu->spu_tx_status_len = spum_tx_status_len;
4440 spu->spu_rx_status_len = spum_rx_status_len;
4441 spu->spu_status_process = spum_status_process;
4442 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4443 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4444 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4445 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4446 spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4447 else
4448 spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4449 } else {
4450 dev_dbg(dev, "Registering SPU2 functions");
4451 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4452 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4453 spu->spu_payload_length = spu2_payload_length;
4454 spu->spu_response_hdr_len = spu2_response_hdr_len;
4455 spu->spu_hash_pad_len = spu2_hash_pad_len;
4456 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4457 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4458 spu->spu_aead_ivlen = spu2_aead_ivlen;
4459 spu->spu_hash_type = spu2_hash_type;
4460 spu->spu_digest_size = spu2_digest_size;
4461 spu->spu_create_request = spu2_create_request;
4462 spu->spu_cipher_req_init = spu2_cipher_req_init;
4463 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4464 spu->spu_request_pad = spu2_request_pad;
4465 spu->spu_tx_status_len = spu2_tx_status_len;
4466 spu->spu_rx_status_len = spu2_rx_status_len;
4467 spu->spu_status_process = spu2_status_process;
4468 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4469 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4470 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4471 }
4472}
4473
4474/**
4475 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4476 * channel for the SPU being probed.
4477 * @dev: SPU driver device structure
4478 *
4479 * Return: 0 if successful
4480 * < 0 otherwise
4481 */
4482static int spu_mb_init(struct device *dev)
4483{
4484 struct mbox_client *mcl = &iproc_priv.mcl;
4485 int err, i;
4486
4487 iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4488 sizeof(struct mbox_chan *), GFP_KERNEL);
4489 if (!iproc_priv.mbox)
4490 return -ENOMEM;
4491
4492 mcl->dev = dev;
4493 mcl->tx_block = false;
4494 mcl->tx_tout = 0;
4495 mcl->knows_txdone = true;
4496 mcl->rx_callback = spu_rx_callback;
4497 mcl->tx_done = NULL;
4498
4499 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4500 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4501 if (IS_ERR(iproc_priv.mbox[i])) {
4502 err = (int)PTR_ERR(iproc_priv.mbox[i]);
4503 dev_err(dev,
4504 "Mbox channel %d request failed with err %d",
4505 i, err);
4506 iproc_priv.mbox[i] = NULL;
4507 goto free_channels;
4508 }
4509 }
4510
4511 return 0;
4512free_channels:
4513 for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4514 if (iproc_priv.mbox[i])
4515 mbox_free_channel(iproc_priv.mbox[i]);
4516 }
4517
4518 return err;
4519}
4520
4521static void spu_mb_release(struct platform_device *pdev)
4522{
4523 int i;
4524
4525 for (i = 0; i < iproc_priv.spu.num_chan; i++)
4526 mbox_free_channel(iproc_priv.mbox[i]);
4527}
4528
4529static void spu_counters_init(void)
4530{
4531 int i;
4532 int j;
4533
4534 atomic_set(&iproc_priv.session_count, 0);
4535 atomic_set(&iproc_priv.stream_count, 0);
4536 atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4537 atomic64_set(&iproc_priv.bytes_in, 0);
4538 atomic64_set(&iproc_priv.bytes_out, 0);
4539 for (i = 0; i < SPU_OP_NUM; i++) {
4540 atomic_set(&iproc_priv.op_counts[i], 0);
4541 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4542 }
4543 for (i = 0; i < CIPHER_ALG_LAST; i++)
4544 for (j = 0; j < CIPHER_MODE_LAST; j++)
4545 atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4546
4547 for (i = 0; i < HASH_ALG_LAST; i++) {
4548 atomic_set(&iproc_priv.hash_cnt[i], 0);
4549 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4550 }
4551 for (i = 0; i < AEAD_TYPE_LAST; i++)
4552 atomic_set(&iproc_priv.aead_cnt[i], 0);
4553
4554 atomic_set(&iproc_priv.mb_no_spc, 0);
4555 atomic_set(&iproc_priv.mb_send_fail, 0);
4556 atomic_set(&iproc_priv.bad_icv, 0);
4557}
4558
4559static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg)
4560{
4561 struct spu_hw *spu = &iproc_priv.spu;
4562 struct crypto_alg *crypto = &driver_alg->alg.crypto;
4563 int err;
4564
4565 /* SPU2 does not support RC4 */
4566 if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) &&
4567 (spu->spu_type == SPU_TYPE_SPU2))
4568 return 0;
4569
4570 crypto->cra_module = THIS_MODULE;
4571 crypto->cra_priority = cipher_pri;
4572 crypto->cra_alignmask = 0;
4573 crypto->cra_ctxsize = sizeof(struct iproc_ctx_s);
4574
4575 crypto->cra_init = ablkcipher_cra_init;
4576 crypto->cra_exit = generic_cra_exit;
4577 crypto->cra_type = &crypto_ablkcipher_type;
4578 crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC |
4579 CRYPTO_ALG_KERN_DRIVER_ONLY;
4580
4581 crypto->cra_ablkcipher.setkey = ablkcipher_setkey;
4582 crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt;
4583 crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt;
4584
4585 err = crypto_register_alg(crypto);
4586 /* Mark alg as having been registered, if successful */
4587 if (err == 0)
4588 driver_alg->registered = true;
4589 pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name);
4590 return err;
4591}
4592
4593static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4594{
4595 struct spu_hw *spu = &iproc_priv.spu;
4596 struct ahash_alg *hash = &driver_alg->alg.hash;
4597 int err;
4598
4599 /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4600 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4601 (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4602 (spu->spu_type == SPU_TYPE_SPUM))
4603 return 0;
4604
4605 /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4606 if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4607 (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4608 return 0;
4609
4610 hash->halg.base.cra_module = THIS_MODULE;
4611 hash->halg.base.cra_priority = hash_pri;
4612 hash->halg.base.cra_alignmask = 0;
4613 hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4614 hash->halg.base.cra_init = ahash_cra_init;
4615 hash->halg.base.cra_exit = generic_cra_exit;
4616 hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
4617 hash->halg.statesize = sizeof(struct spu_hash_export_s);
4618
4619 if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4620 hash->init = ahash_init;
4621 hash->update = ahash_update;
4622 hash->final = ahash_final;
4623 hash->finup = ahash_finup;
4624 hash->digest = ahash_digest;
4625 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4626 ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4627 (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4628 hash->setkey = ahash_setkey;
4629 }
4630 } else {
4631 hash->setkey = ahash_hmac_setkey;
4632 hash->init = ahash_hmac_init;
4633 hash->update = ahash_hmac_update;
4634 hash->final = ahash_hmac_final;
4635 hash->finup = ahash_hmac_finup;
4636 hash->digest = ahash_hmac_digest;
4637 }
4638 hash->export = ahash_export;
4639 hash->import = ahash_import;
4640
4641 err = crypto_register_ahash(hash);
4642 /* Mark alg as having been registered, if successful */
4643 if (err == 0)
4644 driver_alg->registered = true;
4645 pr_debug(" registered ahash %s\n",
4646 hash->halg.base.cra_driver_name);
4647 return err;
4648}
4649
4650static int spu_register_aead(struct iproc_alg_s *driver_alg)
4651{
4652 struct aead_alg *aead = &driver_alg->alg.aead;
4653 int err;
4654
4655 aead->base.cra_module = THIS_MODULE;
4656 aead->base.cra_priority = aead_pri;
4657 aead->base.cra_alignmask = 0;
4658 aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4659
4660 aead->base.cra_flags |= CRYPTO_ALG_ASYNC;
4661 /* setkey set in alg initialization */
4662 aead->setauthsize = aead_setauthsize;
4663 aead->encrypt = aead_encrypt;
4664 aead->decrypt = aead_decrypt;
4665 aead->init = aead_cra_init;
4666 aead->exit = aead_cra_exit;
4667
4668 err = crypto_register_aead(aead);
4669 /* Mark alg as having been registered, if successful */
4670 if (err == 0)
4671 driver_alg->registered = true;
4672 pr_debug(" registered aead %s\n", aead->base.cra_driver_name);
4673 return err;
4674}
4675
4676/* register crypto algorithms the device supports */
4677static int spu_algs_register(struct device *dev)
4678{
4679 int i, j;
4680 int err;
4681
4682 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4683 switch (driver_algs[i].type) {
4684 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4685 err = spu_register_ablkcipher(&driver_algs[i]);
4686 break;
4687 case CRYPTO_ALG_TYPE_AHASH:
4688 err = spu_register_ahash(&driver_algs[i]);
4689 break;
4690 case CRYPTO_ALG_TYPE_AEAD:
4691 err = spu_register_aead(&driver_algs[i]);
4692 break;
4693 default:
4694 dev_err(dev,
4695 "iproc-crypto: unknown alg type: %d",
4696 driver_algs[i].type);
4697 err = -EINVAL;
4698 }
4699
4700 if (err) {
4701 dev_err(dev, "alg registration failed with error %d\n",
4702 err);
4703 goto err_algs;
4704 }
4705 }
4706
4707 return 0;
4708
4709err_algs:
4710 for (j = 0; j < i; j++) {
4711 /* Skip any algorithm not registered */
4712 if (!driver_algs[j].registered)
4713 continue;
4714 switch (driver_algs[j].type) {
4715 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4716 crypto_unregister_alg(&driver_algs[j].alg.crypto);
4717 driver_algs[j].registered = false;
4718 break;
4719 case CRYPTO_ALG_TYPE_AHASH:
4720 crypto_unregister_ahash(&driver_algs[j].alg.hash);
4721 driver_algs[j].registered = false;
4722 break;
4723 case CRYPTO_ALG_TYPE_AEAD:
4724 crypto_unregister_aead(&driver_algs[j].alg.aead);
4725 driver_algs[j].registered = false;
4726 break;
4727 }
4728 }
4729 return err;
4730}
4731
4732/* ==================== Kernel Platform API ==================== */
4733
4734static struct spu_type_subtype spum_ns2_types = {
4735 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4736};
4737
4738static struct spu_type_subtype spum_nsp_types = {
4739 SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4740};
4741
4742static struct spu_type_subtype spu2_types = {
4743 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4744};
4745
4746static struct spu_type_subtype spu2_v2_types = {
4747 SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4748};
4749
4750static const struct of_device_id bcm_spu_dt_ids[] = {
4751 {
4752 .compatible = "brcm,spum-crypto",
4753 .data = &spum_ns2_types,
4754 },
4755 {
4756 .compatible = "brcm,spum-nsp-crypto",
4757 .data = &spum_nsp_types,
4758 },
4759 {
4760 .compatible = "brcm,spu2-crypto",
4761 .data = &spu2_types,
4762 },
4763 {
4764 .compatible = "brcm,spu2-v2-crypto",
4765 .data = &spu2_v2_types,
4766 },
4767 { /* sentinel */ }
4768};
4769
4770MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4771
4772static int spu_dt_read(struct platform_device *pdev)
4773{
4774 struct device *dev = &pdev->dev;
4775 struct spu_hw *spu = &iproc_priv.spu;
4776 struct resource *spu_ctrl_regs;
4777 const struct spu_type_subtype *matched_spu_type;
4778 struct device_node *dn = pdev->dev.of_node;
4779 int err, i;
4780
4781 /* Count number of mailbox channels */
4782 spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4783
4784 matched_spu_type = of_device_get_match_data(dev);
4785 if (!matched_spu_type) {
4786 dev_err(&pdev->dev, "Failed to match device\n");
4787 return -ENODEV;
4788 }
4789
4790 spu->spu_type = matched_spu_type->type;
4791 spu->spu_subtype = matched_spu_type->subtype;
4792
4793 i = 0;
4794 for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4795 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4796
4797 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4798 if (IS_ERR(spu->reg_vbase[i])) {
4799 err = PTR_ERR(spu->reg_vbase[i]);
4800 dev_err(&pdev->dev, "Failed to map registers: %d\n",
4801 err);
4802 spu->reg_vbase[i] = NULL;
4803 return err;
4804 }
4805 }
4806 spu->num_spu = i;
4807 dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4808
4809 return 0;
4810}
4811
4812static int bcm_spu_probe(struct platform_device *pdev)
4813{
4814 struct device *dev = &pdev->dev;
4815 struct spu_hw *spu = &iproc_priv.spu;
4816 int err = 0;
4817
4818 iproc_priv.pdev = pdev;
4819 platform_set_drvdata(iproc_priv.pdev,
4820 &iproc_priv);
4821
4822 err = spu_dt_read(pdev);
4823 if (err < 0)
4824 goto failure;
4825
4826 err = spu_mb_init(&pdev->dev);
4827 if (err < 0)
4828 goto failure;
4829
4830 if (spu->spu_type == SPU_TYPE_SPUM)
4831 iproc_priv.bcm_hdr_len = 8;
4832 else if (spu->spu_type == SPU_TYPE_SPU2)
4833 iproc_priv.bcm_hdr_len = 0;
4834
4835 spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype);
4836
4837 spu_counters_init();
4838
4839 spu_setup_debugfs();
4840
4841 err = spu_algs_register(dev);
4842 if (err < 0)
4843 goto fail_reg;
4844
4845 return 0;
4846
4847fail_reg:
4848 spu_free_debugfs();
4849failure:
4850 spu_mb_release(pdev);
4851 dev_err(dev, "%s failed with error %d.\n", __func__, err);
4852
4853 return err;
4854}
4855
4856static int bcm_spu_remove(struct platform_device *pdev)
4857{
4858 int i;
4859 struct device *dev = &pdev->dev;
4860 char *cdn;
4861
4862 for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4863 /*
4864 * Not all algorithms were registered, depending on whether
4865 * hardware is SPU or SPU2. So here we make sure to skip
4866 * those algorithms that were not previously registered.
4867 */
4868 if (!driver_algs[i].registered)
4869 continue;
4870
4871 switch (driver_algs[i].type) {
4872 case CRYPTO_ALG_TYPE_ABLKCIPHER:
4873 crypto_unregister_alg(&driver_algs[i].alg.crypto);
4874 dev_dbg(dev, " unregistered cipher %s\n",
4875 driver_algs[i].alg.crypto.cra_driver_name);
4876 driver_algs[i].registered = false;
4877 break;
4878 case CRYPTO_ALG_TYPE_AHASH:
4879 crypto_unregister_ahash(&driver_algs[i].alg.hash);
4880 cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4881 dev_dbg(dev, " unregistered hash %s\n", cdn);
4882 driver_algs[i].registered = false;
4883 break;
4884 case CRYPTO_ALG_TYPE_AEAD:
4885 crypto_unregister_aead(&driver_algs[i].alg.aead);
4886 dev_dbg(dev, " unregistered aead %s\n",
4887 driver_algs[i].alg.aead.base.cra_driver_name);
4888 driver_algs[i].registered = false;
4889 break;
4890 }
4891 }
4892 spu_free_debugfs();
4893 spu_mb_release(pdev);
4894 return 0;
4895}
4896
4897/* ===== Kernel Module API ===== */
4898
4899static struct platform_driver bcm_spu_pdriver = {
4900 .driver = {
4901 .name = "brcm-spu-crypto",
4902 .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4903 },
4904 .probe = bcm_spu_probe,
4905 .remove = bcm_spu_remove,
4906};
4907module_platform_driver(bcm_spu_pdriver);
4908
4909MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4910MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4911MODULE_LICENSE("GPL v2");