Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "trace.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98}
99
100static void clear_node_page_dirty(struct page *page)
101{
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108}
109
110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111{
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113}
114
115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116{
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142}
143
144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145{
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157}
158
159static void __free_nat_entry(struct nat_entry *e)
160{
161 kmem_cache_free(nat_entry_slab, e);
162}
163
164/* must be locked by nat_tree_lock */
165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167{
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt++;
181 return ne;
182}
183
184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185{
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199}
200
201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203{
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205}
206
207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208{
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
212}
213
214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
216{
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
219
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 }
230 return head;
231}
232
233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235{
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
241
242 /*
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
246 */
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
250
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
255
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
265}
266
267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
269{
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
273
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
277}
278
279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281{
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
284}
285
286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287{
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
290}
291
292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293{
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
298}
299
300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
302{
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
306
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
312
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320 return seq_id;
321}
322
323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324{
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
337 }
338 }
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
341}
342
343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344{
345 unsigned long flags;
346
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350}
351
352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353{
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
357
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
364 }
365 up_read(&nm_i->nat_tree_lock);
366 return need;
367}
368
369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370{
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
374
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
381}
382
383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384{
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
388
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
397}
398
399/* must be locked by nat_tree_lock */
400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
402{
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
405
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
409
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
422}
423
424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
426{
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
438 /*
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
442 */
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 }
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
449
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
458
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
463 }
464
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
470
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 }
479 up_write(&nm_i->nat_tree_lock);
480}
481
482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483{
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
486
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
489
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
493
494 if (list_empty(&nm_i->nat_entries))
495 break;
496
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
501
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
504
505 spin_lock(&nm_i->nat_list_lock);
506 }
507 spin_unlock(&nm_i->nat_list_lock);
508
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
511}
512
513/*
514 * This function always returns success
515 */
516int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 struct node_info *ni)
518{
519 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 struct f2fs_journal *journal = curseg->journal;
522 nid_t start_nid = START_NID(nid);
523 struct f2fs_nat_block *nat_blk;
524 struct page *page = NULL;
525 struct f2fs_nat_entry ne;
526 struct nat_entry *e;
527 pgoff_t index;
528 block_t blkaddr;
529 int i;
530
531 ni->nid = nid;
532
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
542 }
543
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
552 }
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
557 }
558
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
562
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
566
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571cache:
572 blkaddr = le32_to_cpu(ne.block_addr);
573 if (__is_valid_data_blkaddr(blkaddr) &&
574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 return -EFAULT;
576
577 /* cache nat entry */
578 cache_nat_entry(sbi, nid, &ne);
579 return 0;
580}
581
582/*
583 * readahead MAX_RA_NODE number of node pages.
584 */
585static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586{
587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 struct blk_plug plug;
589 int i, end;
590 nid_t nid;
591
592 blk_start_plug(&plug);
593
594 /* Then, try readahead for siblings of the desired node */
595 end = start + n;
596 end = min(end, NIDS_PER_BLOCK);
597 for (i = start; i < end; i++) {
598 nid = get_nid(parent, i, false);
599 f2fs_ra_node_page(sbi, nid);
600 }
601
602 blk_finish_plug(&plug);
603}
604
605pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606{
607 const long direct_index = ADDRS_PER_INODE(dn->inode);
608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 int cur_level = dn->cur_level;
612 int max_level = dn->max_level;
613 pgoff_t base = 0;
614
615 if (!dn->max_level)
616 return pgofs + 1;
617
618 while (max_level-- > cur_level)
619 skipped_unit *= NIDS_PER_BLOCK;
620
621 switch (dn->max_level) {
622 case 3:
623 base += 2 * indirect_blks;
624 /* fall through */
625 case 2:
626 base += 2 * direct_blks;
627 /* fall through */
628 case 1:
629 base += direct_index;
630 break;
631 default:
632 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633 }
634
635 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636}
637
638/*
639 * The maximum depth is four.
640 * Offset[0] will have raw inode offset.
641 */
642static int get_node_path(struct inode *inode, long block,
643 int offset[4], unsigned int noffset[4])
644{
645 const long direct_index = ADDRS_PER_INODE(inode);
646 const long direct_blks = ADDRS_PER_BLOCK(inode);
647 const long dptrs_per_blk = NIDS_PER_BLOCK;
648 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650 int n = 0;
651 int level = 0;
652
653 noffset[0] = 0;
654
655 if (block < direct_index) {
656 offset[n] = block;
657 goto got;
658 }
659 block -= direct_index;
660 if (block < direct_blks) {
661 offset[n++] = NODE_DIR1_BLOCK;
662 noffset[n] = 1;
663 offset[n] = block;
664 level = 1;
665 goto got;
666 }
667 block -= direct_blks;
668 if (block < direct_blks) {
669 offset[n++] = NODE_DIR2_BLOCK;
670 noffset[n] = 2;
671 offset[n] = block;
672 level = 1;
673 goto got;
674 }
675 block -= direct_blks;
676 if (block < indirect_blks) {
677 offset[n++] = NODE_IND1_BLOCK;
678 noffset[n] = 3;
679 offset[n++] = block / direct_blks;
680 noffset[n] = 4 + offset[n - 1];
681 offset[n] = block % direct_blks;
682 level = 2;
683 goto got;
684 }
685 block -= indirect_blks;
686 if (block < indirect_blks) {
687 offset[n++] = NODE_IND2_BLOCK;
688 noffset[n] = 4 + dptrs_per_blk;
689 offset[n++] = block / direct_blks;
690 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691 offset[n] = block % direct_blks;
692 level = 2;
693 goto got;
694 }
695 block -= indirect_blks;
696 if (block < dindirect_blks) {
697 offset[n++] = NODE_DIND_BLOCK;
698 noffset[n] = 5 + (dptrs_per_blk * 2);
699 offset[n++] = block / indirect_blks;
700 noffset[n] = 6 + (dptrs_per_blk * 2) +
701 offset[n - 1] * (dptrs_per_blk + 1);
702 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703 noffset[n] = 7 + (dptrs_per_blk * 2) +
704 offset[n - 2] * (dptrs_per_blk + 1) +
705 offset[n - 1];
706 offset[n] = block % direct_blks;
707 level = 3;
708 goto got;
709 } else {
710 return -E2BIG;
711 }
712got:
713 return level;
714}
715
716/*
717 * Caller should call f2fs_put_dnode(dn).
718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720 * In the case of RDONLY_NODE, we don't need to care about mutex.
721 */
722int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723{
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = datablock_addr(dn->inode,
813 dn->node_page, dn->ofs_in_node);
814 return 0;
815
816release_pages:
817 f2fs_put_page(parent, 1);
818 if (i > 1)
819 f2fs_put_page(npage[0], 0);
820release_out:
821 dn->inode_page = NULL;
822 dn->node_page = NULL;
823 if (err == -ENOENT) {
824 dn->cur_level = i;
825 dn->max_level = level;
826 dn->ofs_in_node = offset[level];
827 }
828 return err;
829}
830
831static int truncate_node(struct dnode_of_data *dn)
832{
833 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834 struct node_info ni;
835 int err;
836 pgoff_t index;
837
838 err = f2fs_get_node_info(sbi, dn->nid, &ni);
839 if (err)
840 return err;
841
842 /* Deallocate node address */
843 f2fs_invalidate_blocks(sbi, ni.blk_addr);
844 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845 set_node_addr(sbi, &ni, NULL_ADDR, false);
846
847 if (dn->nid == dn->inode->i_ino) {
848 f2fs_remove_orphan_inode(sbi, dn->nid);
849 dec_valid_inode_count(sbi);
850 f2fs_inode_synced(dn->inode);
851 }
852
853 clear_node_page_dirty(dn->node_page);
854 set_sbi_flag(sbi, SBI_IS_DIRTY);
855
856 index = dn->node_page->index;
857 f2fs_put_page(dn->node_page, 1);
858
859 invalidate_mapping_pages(NODE_MAPPING(sbi),
860 index, index);
861
862 dn->node_page = NULL;
863 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
864
865 return 0;
866}
867
868static int truncate_dnode(struct dnode_of_data *dn)
869{
870 struct page *page;
871 int err;
872
873 if (dn->nid == 0)
874 return 1;
875
876 /* get direct node */
877 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
879 return 1;
880 else if (IS_ERR(page))
881 return PTR_ERR(page);
882
883 /* Make dnode_of_data for parameter */
884 dn->node_page = page;
885 dn->ofs_in_node = 0;
886 f2fs_truncate_data_blocks(dn);
887 err = truncate_node(dn);
888 if (err)
889 return err;
890
891 return 1;
892}
893
894static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895 int ofs, int depth)
896{
897 struct dnode_of_data rdn = *dn;
898 struct page *page;
899 struct f2fs_node *rn;
900 nid_t child_nid;
901 unsigned int child_nofs;
902 int freed = 0;
903 int i, ret;
904
905 if (dn->nid == 0)
906 return NIDS_PER_BLOCK + 1;
907
908 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
909
910 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911 if (IS_ERR(page)) {
912 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913 return PTR_ERR(page);
914 }
915
916 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
917
918 rn = F2FS_NODE(page);
919 if (depth < 3) {
920 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921 child_nid = le32_to_cpu(rn->in.nid[i]);
922 if (child_nid == 0)
923 continue;
924 rdn.nid = child_nid;
925 ret = truncate_dnode(&rdn);
926 if (ret < 0)
927 goto out_err;
928 if (set_nid(page, i, 0, false))
929 dn->node_changed = true;
930 }
931 } else {
932 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934 child_nid = le32_to_cpu(rn->in.nid[i]);
935 if (child_nid == 0) {
936 child_nofs += NIDS_PER_BLOCK + 1;
937 continue;
938 }
939 rdn.nid = child_nid;
940 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941 if (ret == (NIDS_PER_BLOCK + 1)) {
942 if (set_nid(page, i, 0, false))
943 dn->node_changed = true;
944 child_nofs += ret;
945 } else if (ret < 0 && ret != -ENOENT) {
946 goto out_err;
947 }
948 }
949 freed = child_nofs;
950 }
951
952 if (!ofs) {
953 /* remove current indirect node */
954 dn->node_page = page;
955 ret = truncate_node(dn);
956 if (ret)
957 goto out_err;
958 freed++;
959 } else {
960 f2fs_put_page(page, 1);
961 }
962 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963 return freed;
964
965out_err:
966 f2fs_put_page(page, 1);
967 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968 return ret;
969}
970
971static int truncate_partial_nodes(struct dnode_of_data *dn,
972 struct f2fs_inode *ri, int *offset, int depth)
973{
974 struct page *pages[2];
975 nid_t nid[3];
976 nid_t child_nid;
977 int err = 0;
978 int i;
979 int idx = depth - 2;
980
981 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982 if (!nid[0])
983 return 0;
984
985 /* get indirect nodes in the path */
986 for (i = 0; i < idx + 1; i++) {
987 /* reference count'll be increased */
988 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989 if (IS_ERR(pages[i])) {
990 err = PTR_ERR(pages[i]);
991 idx = i - 1;
992 goto fail;
993 }
994 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
995 }
996
997 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
998
999 /* free direct nodes linked to a partial indirect node */
1000 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001 child_nid = get_nid(pages[idx], i, false);
1002 if (!child_nid)
1003 continue;
1004 dn->nid = child_nid;
1005 err = truncate_dnode(dn);
1006 if (err < 0)
1007 goto fail;
1008 if (set_nid(pages[idx], i, 0, false))
1009 dn->node_changed = true;
1010 }
1011
1012 if (offset[idx + 1] == 0) {
1013 dn->node_page = pages[idx];
1014 dn->nid = nid[idx];
1015 err = truncate_node(dn);
1016 if (err)
1017 goto fail;
1018 } else {
1019 f2fs_put_page(pages[idx], 1);
1020 }
1021 offset[idx]++;
1022 offset[idx + 1] = 0;
1023 idx--;
1024fail:
1025 for (i = idx; i >= 0; i--)
1026 f2fs_put_page(pages[i], 1);
1027
1028 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030 return err;
1031}
1032
1033/*
1034 * All the block addresses of data and nodes should be nullified.
1035 */
1036int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037{
1038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 int err = 0, cont = 1;
1040 int level, offset[4], noffset[4];
1041 unsigned int nofs = 0;
1042 struct f2fs_inode *ri;
1043 struct dnode_of_data dn;
1044 struct page *page;
1045
1046 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048 level = get_node_path(inode, from, offset, noffset);
1049 if (level < 0)
1050 return level;
1051
1052 page = f2fs_get_node_page(sbi, inode->i_ino);
1053 if (IS_ERR(page)) {
1054 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055 return PTR_ERR(page);
1056 }
1057
1058 set_new_dnode(&dn, inode, page, NULL, 0);
1059 unlock_page(page);
1060
1061 ri = F2FS_INODE(page);
1062 switch (level) {
1063 case 0:
1064 case 1:
1065 nofs = noffset[1];
1066 break;
1067 case 2:
1068 nofs = noffset[1];
1069 if (!offset[level - 1])
1070 goto skip_partial;
1071 err = truncate_partial_nodes(&dn, ri, offset, level);
1072 if (err < 0 && err != -ENOENT)
1073 goto fail;
1074 nofs += 1 + NIDS_PER_BLOCK;
1075 break;
1076 case 3:
1077 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078 if (!offset[level - 1])
1079 goto skip_partial;
1080 err = truncate_partial_nodes(&dn, ri, offset, level);
1081 if (err < 0 && err != -ENOENT)
1082 goto fail;
1083 break;
1084 default:
1085 BUG();
1086 }
1087
1088skip_partial:
1089 while (cont) {
1090 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091 switch (offset[0]) {
1092 case NODE_DIR1_BLOCK:
1093 case NODE_DIR2_BLOCK:
1094 err = truncate_dnode(&dn);
1095 break;
1096
1097 case NODE_IND1_BLOCK:
1098 case NODE_IND2_BLOCK:
1099 err = truncate_nodes(&dn, nofs, offset[1], 2);
1100 break;
1101
1102 case NODE_DIND_BLOCK:
1103 err = truncate_nodes(&dn, nofs, offset[1], 3);
1104 cont = 0;
1105 break;
1106
1107 default:
1108 BUG();
1109 }
1110 if (err < 0 && err != -ENOENT)
1111 goto fail;
1112 if (offset[1] == 0 &&
1113 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114 lock_page(page);
1115 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116 f2fs_wait_on_page_writeback(page, NODE, true, true);
1117 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118 set_page_dirty(page);
1119 unlock_page(page);
1120 }
1121 offset[1] = 0;
1122 offset[0]++;
1123 nofs += err;
1124 }
1125fail:
1126 f2fs_put_page(page, 0);
1127 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128 return err > 0 ? 0 : err;
1129}
1130
1131/* caller must lock inode page */
1132int f2fs_truncate_xattr_node(struct inode *inode)
1133{
1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136 struct dnode_of_data dn;
1137 struct page *npage;
1138 int err;
1139
1140 if (!nid)
1141 return 0;
1142
1143 npage = f2fs_get_node_page(sbi, nid);
1144 if (IS_ERR(npage))
1145 return PTR_ERR(npage);
1146
1147 set_new_dnode(&dn, inode, NULL, npage, nid);
1148 err = truncate_node(&dn);
1149 if (err) {
1150 f2fs_put_page(npage, 1);
1151 return err;
1152 }
1153
1154 f2fs_i_xnid_write(inode, 0);
1155
1156 return 0;
1157}
1158
1159/*
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1162 */
1163int f2fs_remove_inode_page(struct inode *inode)
1164{
1165 struct dnode_of_data dn;
1166 int err;
1167
1168 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 if (err)
1171 return err;
1172
1173 err = f2fs_truncate_xattr_node(inode);
1174 if (err) {
1175 f2fs_put_dnode(&dn);
1176 return err;
1177 }
1178
1179 /* remove potential inline_data blocks */
1180 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 S_ISLNK(inode->i_mode))
1182 f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184 /* 0 is possible, after f2fs_new_inode() has failed */
1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186 f2fs_put_dnode(&dn);
1187 return -EIO;
1188 }
1189
1190 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192 inode->i_ino, (unsigned long long)inode->i_blocks);
1193 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194 }
1195
1196 /* will put inode & node pages */
1197 err = truncate_node(&dn);
1198 if (err) {
1199 f2fs_put_dnode(&dn);
1200 return err;
1201 }
1202 return 0;
1203}
1204
1205struct page *f2fs_new_inode_page(struct inode *inode)
1206{
1207 struct dnode_of_data dn;
1208
1209 /* allocate inode page for new inode */
1210 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212 /* caller should f2fs_put_page(page, 1); */
1213 return f2fs_new_node_page(&dn, 0);
1214}
1215
1216struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217{
1218 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219 struct node_info new_ni;
1220 struct page *page;
1221 int err;
1222
1223 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224 return ERR_PTR(-EPERM);
1225
1226 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227 if (!page)
1228 return ERR_PTR(-ENOMEM);
1229
1230 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231 goto fail;
1232
1233#ifdef CONFIG_F2FS_CHECK_FS
1234 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235 if (err) {
1236 dec_valid_node_count(sbi, dn->inode, !ofs);
1237 goto fail;
1238 }
1239 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240#endif
1241 new_ni.nid = dn->nid;
1242 new_ni.ino = dn->inode->i_ino;
1243 new_ni.blk_addr = NULL_ADDR;
1244 new_ni.flag = 0;
1245 new_ni.version = 0;
1246 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248 f2fs_wait_on_page_writeback(page, NODE, true, true);
1249 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251 if (!PageUptodate(page))
1252 SetPageUptodate(page);
1253 if (set_page_dirty(page))
1254 dn->node_changed = true;
1255
1256 if (f2fs_has_xattr_block(ofs))
1257 f2fs_i_xnid_write(dn->inode, dn->nid);
1258
1259 if (ofs == 0)
1260 inc_valid_inode_count(sbi);
1261 return page;
1262
1263fail:
1264 clear_node_page_dirty(page);
1265 f2fs_put_page(page, 1);
1266 return ERR_PTR(err);
1267}
1268
1269/*
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273 */
1274static int read_node_page(struct page *page, int op_flags)
1275{
1276 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277 struct node_info ni;
1278 struct f2fs_io_info fio = {
1279 .sbi = sbi,
1280 .type = NODE,
1281 .op = REQ_OP_READ,
1282 .op_flags = op_flags,
1283 .page = page,
1284 .encrypted_page = NULL,
1285 };
1286 int err;
1287
1288 if (PageUptodate(page)) {
1289 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290 ClearPageUptodate(page);
1291 return -EFSBADCRC;
1292 }
1293 return LOCKED_PAGE;
1294 }
1295
1296 err = f2fs_get_node_info(sbi, page->index, &ni);
1297 if (err)
1298 return err;
1299
1300 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302 ClearPageUptodate(page);
1303 return -ENOENT;
1304 }
1305
1306 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307 return f2fs_submit_page_bio(&fio);
1308}
1309
1310/*
1311 * Readahead a node page
1312 */
1313void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314{
1315 struct page *apage;
1316 int err;
1317
1318 if (!nid)
1319 return;
1320 if (f2fs_check_nid_range(sbi, nid))
1321 return;
1322
1323 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324 if (apage)
1325 return;
1326
1327 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328 if (!apage)
1329 return;
1330
1331 err = read_node_page(apage, REQ_RAHEAD);
1332 f2fs_put_page(apage, err ? 1 : 0);
1333}
1334
1335static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336 struct page *parent, int start)
1337{
1338 struct page *page;
1339 int err;
1340
1341 if (!nid)
1342 return ERR_PTR(-ENOENT);
1343 if (f2fs_check_nid_range(sbi, nid))
1344 return ERR_PTR(-EINVAL);
1345repeat:
1346 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347 if (!page)
1348 return ERR_PTR(-ENOMEM);
1349
1350 err = read_node_page(page, 0);
1351 if (err < 0) {
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354 } else if (err == LOCKED_PAGE) {
1355 err = 0;
1356 goto page_hit;
1357 }
1358
1359 if (parent)
1360 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362 lock_page(page);
1363
1364 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 f2fs_put_page(page, 1);
1366 goto repeat;
1367 }
1368
1369 if (unlikely(!PageUptodate(page))) {
1370 err = -EIO;
1371 goto out_err;
1372 }
1373
1374 if (!f2fs_inode_chksum_verify(sbi, page)) {
1375 err = -EFSBADCRC;
1376 goto out_err;
1377 }
1378page_hit:
1379 if(unlikely(nid != nid_of_node(page))) {
1380 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 nid, nid_of_node(page), ino_of_node(page),
1382 ofs_of_node(page), cpver_of_node(page),
1383 next_blkaddr_of_node(page));
1384 err = -EINVAL;
1385out_err:
1386 ClearPageUptodate(page);
1387 f2fs_put_page(page, 1);
1388 return ERR_PTR(err);
1389 }
1390 return page;
1391}
1392
1393struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394{
1395 return __get_node_page(sbi, nid, NULL, 0);
1396}
1397
1398struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399{
1400 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401 nid_t nid = get_nid(parent, start, false);
1402
1403 return __get_node_page(sbi, nid, parent, start);
1404}
1405
1406static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407{
1408 struct inode *inode;
1409 struct page *page;
1410 int ret;
1411
1412 /* should flush inline_data before evict_inode */
1413 inode = ilookup(sbi->sb, ino);
1414 if (!inode)
1415 return;
1416
1417 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418 FGP_LOCK|FGP_NOWAIT, 0);
1419 if (!page)
1420 goto iput_out;
1421
1422 if (!PageUptodate(page))
1423 goto page_out;
1424
1425 if (!PageDirty(page))
1426 goto page_out;
1427
1428 if (!clear_page_dirty_for_io(page))
1429 goto page_out;
1430
1431 ret = f2fs_write_inline_data(inode, page);
1432 inode_dec_dirty_pages(inode);
1433 f2fs_remove_dirty_inode(inode);
1434 if (ret)
1435 set_page_dirty(page);
1436page_out:
1437 f2fs_put_page(page, 1);
1438iput_out:
1439 iput(inode);
1440}
1441
1442static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443{
1444 pgoff_t index;
1445 struct pagevec pvec;
1446 struct page *last_page = NULL;
1447 int nr_pages;
1448
1449 pagevec_init(&pvec);
1450 index = 0;
1451
1452 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453 PAGECACHE_TAG_DIRTY))) {
1454 int i;
1455
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
1458
1459 if (unlikely(f2fs_cp_error(sbi))) {
1460 f2fs_put_page(last_page, 0);
1461 pagevec_release(&pvec);
1462 return ERR_PTR(-EIO);
1463 }
1464
1465 if (!IS_DNODE(page) || !is_cold_node(page))
1466 continue;
1467 if (ino_of_node(page) != ino)
1468 continue;
1469
1470 lock_page(page);
1471
1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473continue_unlock:
1474 unlock_page(page);
1475 continue;
1476 }
1477 if (ino_of_node(page) != ino)
1478 goto continue_unlock;
1479
1480 if (!PageDirty(page)) {
1481 /* someone wrote it for us */
1482 goto continue_unlock;
1483 }
1484
1485 if (last_page)
1486 f2fs_put_page(last_page, 0);
1487
1488 get_page(page);
1489 last_page = page;
1490 unlock_page(page);
1491 }
1492 pagevec_release(&pvec);
1493 cond_resched();
1494 }
1495 return last_page;
1496}
1497
1498static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499 struct writeback_control *wbc, bool do_balance,
1500 enum iostat_type io_type, unsigned int *seq_id)
1501{
1502 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503 nid_t nid;
1504 struct node_info ni;
1505 struct f2fs_io_info fio = {
1506 .sbi = sbi,
1507 .ino = ino_of_node(page),
1508 .type = NODE,
1509 .op = REQ_OP_WRITE,
1510 .op_flags = wbc_to_write_flags(wbc),
1511 .page = page,
1512 .encrypted_page = NULL,
1513 .submitted = false,
1514 .io_type = io_type,
1515 .io_wbc = wbc,
1516 };
1517 unsigned int seq;
1518
1519 trace_f2fs_writepage(page, NODE);
1520
1521 if (unlikely(f2fs_cp_error(sbi)))
1522 goto redirty_out;
1523
1524 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525 goto redirty_out;
1526
1527 if (wbc->sync_mode == WB_SYNC_NONE &&
1528 IS_DNODE(page) && is_cold_node(page))
1529 goto redirty_out;
1530
1531 /* get old block addr of this node page */
1532 nid = nid_of_node(page);
1533 f2fs_bug_on(sbi, page->index != nid);
1534
1535 if (f2fs_get_node_info(sbi, nid, &ni))
1536 goto redirty_out;
1537
1538 if (wbc->for_reclaim) {
1539 if (!down_read_trylock(&sbi->node_write))
1540 goto redirty_out;
1541 } else {
1542 down_read(&sbi->node_write);
1543 }
1544
1545 /* This page is already truncated */
1546 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1547 ClearPageUptodate(page);
1548 dec_page_count(sbi, F2FS_DIRTY_NODES);
1549 up_read(&sbi->node_write);
1550 unlock_page(page);
1551 return 0;
1552 }
1553
1554 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1555 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1556 DATA_GENERIC_ENHANCE)) {
1557 up_read(&sbi->node_write);
1558 goto redirty_out;
1559 }
1560
1561 if (atomic && !test_opt(sbi, NOBARRIER))
1562 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1563
1564 set_page_writeback(page);
1565 ClearPageError(page);
1566
1567 if (f2fs_in_warm_node_list(sbi, page)) {
1568 seq = f2fs_add_fsync_node_entry(sbi, page);
1569 if (seq_id)
1570 *seq_id = seq;
1571 }
1572
1573 fio.old_blkaddr = ni.blk_addr;
1574 f2fs_do_write_node_page(nid, &fio);
1575 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1576 dec_page_count(sbi, F2FS_DIRTY_NODES);
1577 up_read(&sbi->node_write);
1578
1579 if (wbc->for_reclaim) {
1580 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1581 submitted = NULL;
1582 }
1583
1584 unlock_page(page);
1585
1586 if (unlikely(f2fs_cp_error(sbi))) {
1587 f2fs_submit_merged_write(sbi, NODE);
1588 submitted = NULL;
1589 }
1590 if (submitted)
1591 *submitted = fio.submitted;
1592
1593 if (do_balance)
1594 f2fs_balance_fs(sbi, false);
1595 return 0;
1596
1597redirty_out:
1598 redirty_page_for_writepage(wbc, page);
1599 return AOP_WRITEPAGE_ACTIVATE;
1600}
1601
1602int f2fs_move_node_page(struct page *node_page, int gc_type)
1603{
1604 int err = 0;
1605
1606 if (gc_type == FG_GC) {
1607 struct writeback_control wbc = {
1608 .sync_mode = WB_SYNC_ALL,
1609 .nr_to_write = 1,
1610 .for_reclaim = 0,
1611 };
1612
1613 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1614
1615 set_page_dirty(node_page);
1616
1617 if (!clear_page_dirty_for_io(node_page)) {
1618 err = -EAGAIN;
1619 goto out_page;
1620 }
1621
1622 if (__write_node_page(node_page, false, NULL,
1623 &wbc, false, FS_GC_NODE_IO, NULL)) {
1624 err = -EAGAIN;
1625 unlock_page(node_page);
1626 }
1627 goto release_page;
1628 } else {
1629 /* set page dirty and write it */
1630 if (!PageWriteback(node_page))
1631 set_page_dirty(node_page);
1632 }
1633out_page:
1634 unlock_page(node_page);
1635release_page:
1636 f2fs_put_page(node_page, 0);
1637 return err;
1638}
1639
1640static int f2fs_write_node_page(struct page *page,
1641 struct writeback_control *wbc)
1642{
1643 return __write_node_page(page, false, NULL, wbc, false,
1644 FS_NODE_IO, NULL);
1645}
1646
1647int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1648 struct writeback_control *wbc, bool atomic,
1649 unsigned int *seq_id)
1650{
1651 pgoff_t index;
1652 struct pagevec pvec;
1653 int ret = 0;
1654 struct page *last_page = NULL;
1655 bool marked = false;
1656 nid_t ino = inode->i_ino;
1657 int nr_pages;
1658 int nwritten = 0;
1659
1660 if (atomic) {
1661 last_page = last_fsync_dnode(sbi, ino);
1662 if (IS_ERR_OR_NULL(last_page))
1663 return PTR_ERR_OR_ZERO(last_page);
1664 }
1665retry:
1666 pagevec_init(&pvec);
1667 index = 0;
1668
1669 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1670 PAGECACHE_TAG_DIRTY))) {
1671 int i;
1672
1673 for (i = 0; i < nr_pages; i++) {
1674 struct page *page = pvec.pages[i];
1675 bool submitted = false;
1676
1677 if (unlikely(f2fs_cp_error(sbi))) {
1678 f2fs_put_page(last_page, 0);
1679 pagevec_release(&pvec);
1680 ret = -EIO;
1681 goto out;
1682 }
1683
1684 if (!IS_DNODE(page) || !is_cold_node(page))
1685 continue;
1686 if (ino_of_node(page) != ino)
1687 continue;
1688
1689 lock_page(page);
1690
1691 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1692continue_unlock:
1693 unlock_page(page);
1694 continue;
1695 }
1696 if (ino_of_node(page) != ino)
1697 goto continue_unlock;
1698
1699 if (!PageDirty(page) && page != last_page) {
1700 /* someone wrote it for us */
1701 goto continue_unlock;
1702 }
1703
1704 f2fs_wait_on_page_writeback(page, NODE, true, true);
1705
1706 set_fsync_mark(page, 0);
1707 set_dentry_mark(page, 0);
1708
1709 if (!atomic || page == last_page) {
1710 set_fsync_mark(page, 1);
1711 if (IS_INODE(page)) {
1712 if (is_inode_flag_set(inode,
1713 FI_DIRTY_INODE))
1714 f2fs_update_inode(inode, page);
1715 set_dentry_mark(page,
1716 f2fs_need_dentry_mark(sbi, ino));
1717 }
1718 /* may be written by other thread */
1719 if (!PageDirty(page))
1720 set_page_dirty(page);
1721 }
1722
1723 if (!clear_page_dirty_for_io(page))
1724 goto continue_unlock;
1725
1726 ret = __write_node_page(page, atomic &&
1727 page == last_page,
1728 &submitted, wbc, true,
1729 FS_NODE_IO, seq_id);
1730 if (ret) {
1731 unlock_page(page);
1732 f2fs_put_page(last_page, 0);
1733 break;
1734 } else if (submitted) {
1735 nwritten++;
1736 }
1737
1738 if (page == last_page) {
1739 f2fs_put_page(page, 0);
1740 marked = true;
1741 break;
1742 }
1743 }
1744 pagevec_release(&pvec);
1745 cond_resched();
1746
1747 if (ret || marked)
1748 break;
1749 }
1750 if (!ret && atomic && !marked) {
1751 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1752 ino, last_page->index);
1753 lock_page(last_page);
1754 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1755 set_page_dirty(last_page);
1756 unlock_page(last_page);
1757 goto retry;
1758 }
1759out:
1760 if (nwritten)
1761 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1762 return ret ? -EIO: 0;
1763}
1764
1765int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1766 struct writeback_control *wbc,
1767 bool do_balance, enum iostat_type io_type)
1768{
1769 pgoff_t index;
1770 struct pagevec pvec;
1771 int step = 0;
1772 int nwritten = 0;
1773 int ret = 0;
1774 int nr_pages, done = 0;
1775
1776 pagevec_init(&pvec);
1777
1778next_step:
1779 index = 0;
1780
1781 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1782 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1783 int i;
1784
1785 for (i = 0; i < nr_pages; i++) {
1786 struct page *page = pvec.pages[i];
1787 bool submitted = false;
1788
1789 /* give a priority to WB_SYNC threads */
1790 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1791 wbc->sync_mode == WB_SYNC_NONE) {
1792 done = 1;
1793 break;
1794 }
1795
1796 /*
1797 * flushing sequence with step:
1798 * 0. indirect nodes
1799 * 1. dentry dnodes
1800 * 2. file dnodes
1801 */
1802 if (step == 0 && IS_DNODE(page))
1803 continue;
1804 if (step == 1 && (!IS_DNODE(page) ||
1805 is_cold_node(page)))
1806 continue;
1807 if (step == 2 && (!IS_DNODE(page) ||
1808 !is_cold_node(page)))
1809 continue;
1810lock_node:
1811 if (wbc->sync_mode == WB_SYNC_ALL)
1812 lock_page(page);
1813 else if (!trylock_page(page))
1814 continue;
1815
1816 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1817continue_unlock:
1818 unlock_page(page);
1819 continue;
1820 }
1821
1822 if (!PageDirty(page)) {
1823 /* someone wrote it for us */
1824 goto continue_unlock;
1825 }
1826
1827 /* flush inline_data */
1828 if (is_inline_node(page)) {
1829 clear_inline_node(page);
1830 unlock_page(page);
1831 flush_inline_data(sbi, ino_of_node(page));
1832 goto lock_node;
1833 }
1834
1835 f2fs_wait_on_page_writeback(page, NODE, true, true);
1836
1837 if (!clear_page_dirty_for_io(page))
1838 goto continue_unlock;
1839
1840 set_fsync_mark(page, 0);
1841 set_dentry_mark(page, 0);
1842
1843 ret = __write_node_page(page, false, &submitted,
1844 wbc, do_balance, io_type, NULL);
1845 if (ret)
1846 unlock_page(page);
1847 else if (submitted)
1848 nwritten++;
1849
1850 if (--wbc->nr_to_write == 0)
1851 break;
1852 }
1853 pagevec_release(&pvec);
1854 cond_resched();
1855
1856 if (wbc->nr_to_write == 0) {
1857 step = 2;
1858 break;
1859 }
1860 }
1861
1862 if (step < 2) {
1863 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1864 goto out;
1865 step++;
1866 goto next_step;
1867 }
1868out:
1869 if (nwritten)
1870 f2fs_submit_merged_write(sbi, NODE);
1871
1872 if (unlikely(f2fs_cp_error(sbi)))
1873 return -EIO;
1874 return ret;
1875}
1876
1877int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1878 unsigned int seq_id)
1879{
1880 struct fsync_node_entry *fn;
1881 struct page *page;
1882 struct list_head *head = &sbi->fsync_node_list;
1883 unsigned long flags;
1884 unsigned int cur_seq_id = 0;
1885 int ret2, ret = 0;
1886
1887 while (seq_id && cur_seq_id < seq_id) {
1888 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1889 if (list_empty(head)) {
1890 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1891 break;
1892 }
1893 fn = list_first_entry(head, struct fsync_node_entry, list);
1894 if (fn->seq_id > seq_id) {
1895 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1896 break;
1897 }
1898 cur_seq_id = fn->seq_id;
1899 page = fn->page;
1900 get_page(page);
1901 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1902
1903 f2fs_wait_on_page_writeback(page, NODE, true, false);
1904 if (TestClearPageError(page))
1905 ret = -EIO;
1906
1907 put_page(page);
1908
1909 if (ret)
1910 break;
1911 }
1912
1913 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1914 if (!ret)
1915 ret = ret2;
1916
1917 return ret;
1918}
1919
1920static int f2fs_write_node_pages(struct address_space *mapping,
1921 struct writeback_control *wbc)
1922{
1923 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1924 struct blk_plug plug;
1925 long diff;
1926
1927 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1928 goto skip_write;
1929
1930 /* balancing f2fs's metadata in background */
1931 f2fs_balance_fs_bg(sbi);
1932
1933 /* collect a number of dirty node pages and write together */
1934 if (wbc->sync_mode != WB_SYNC_ALL &&
1935 get_pages(sbi, F2FS_DIRTY_NODES) <
1936 nr_pages_to_skip(sbi, NODE))
1937 goto skip_write;
1938
1939 if (wbc->sync_mode == WB_SYNC_ALL)
1940 atomic_inc(&sbi->wb_sync_req[NODE]);
1941 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1942 goto skip_write;
1943
1944 trace_f2fs_writepages(mapping->host, wbc, NODE);
1945
1946 diff = nr_pages_to_write(sbi, NODE, wbc);
1947 blk_start_plug(&plug);
1948 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1949 blk_finish_plug(&plug);
1950 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1951
1952 if (wbc->sync_mode == WB_SYNC_ALL)
1953 atomic_dec(&sbi->wb_sync_req[NODE]);
1954 return 0;
1955
1956skip_write:
1957 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1958 trace_f2fs_writepages(mapping->host, wbc, NODE);
1959 return 0;
1960}
1961
1962static int f2fs_set_node_page_dirty(struct page *page)
1963{
1964 trace_f2fs_set_page_dirty(page, NODE);
1965
1966 if (!PageUptodate(page))
1967 SetPageUptodate(page);
1968#ifdef CONFIG_F2FS_CHECK_FS
1969 if (IS_INODE(page))
1970 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1971#endif
1972 if (!PageDirty(page)) {
1973 __set_page_dirty_nobuffers(page);
1974 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1975 f2fs_set_page_private(page, 0);
1976 f2fs_trace_pid(page);
1977 return 1;
1978 }
1979 return 0;
1980}
1981
1982/*
1983 * Structure of the f2fs node operations
1984 */
1985const struct address_space_operations f2fs_node_aops = {
1986 .writepage = f2fs_write_node_page,
1987 .writepages = f2fs_write_node_pages,
1988 .set_page_dirty = f2fs_set_node_page_dirty,
1989 .invalidatepage = f2fs_invalidate_page,
1990 .releasepage = f2fs_release_page,
1991#ifdef CONFIG_MIGRATION
1992 .migratepage = f2fs_migrate_page,
1993#endif
1994};
1995
1996static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1997 nid_t n)
1998{
1999 return radix_tree_lookup(&nm_i->free_nid_root, n);
2000}
2001
2002static int __insert_free_nid(struct f2fs_sb_info *sbi,
2003 struct free_nid *i, enum nid_state state)
2004{
2005 struct f2fs_nm_info *nm_i = NM_I(sbi);
2006
2007 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2008 if (err)
2009 return err;
2010
2011 f2fs_bug_on(sbi, state != i->state);
2012 nm_i->nid_cnt[state]++;
2013 if (state == FREE_NID)
2014 list_add_tail(&i->list, &nm_i->free_nid_list);
2015 return 0;
2016}
2017
2018static void __remove_free_nid(struct f2fs_sb_info *sbi,
2019 struct free_nid *i, enum nid_state state)
2020{
2021 struct f2fs_nm_info *nm_i = NM_I(sbi);
2022
2023 f2fs_bug_on(sbi, state != i->state);
2024 nm_i->nid_cnt[state]--;
2025 if (state == FREE_NID)
2026 list_del(&i->list);
2027 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2028}
2029
2030static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2031 enum nid_state org_state, enum nid_state dst_state)
2032{
2033 struct f2fs_nm_info *nm_i = NM_I(sbi);
2034
2035 f2fs_bug_on(sbi, org_state != i->state);
2036 i->state = dst_state;
2037 nm_i->nid_cnt[org_state]--;
2038 nm_i->nid_cnt[dst_state]++;
2039
2040 switch (dst_state) {
2041 case PREALLOC_NID:
2042 list_del(&i->list);
2043 break;
2044 case FREE_NID:
2045 list_add_tail(&i->list, &nm_i->free_nid_list);
2046 break;
2047 default:
2048 BUG_ON(1);
2049 }
2050}
2051
2052static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2053 bool set, bool build)
2054{
2055 struct f2fs_nm_info *nm_i = NM_I(sbi);
2056 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2057 unsigned int nid_ofs = nid - START_NID(nid);
2058
2059 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2060 return;
2061
2062 if (set) {
2063 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2064 return;
2065 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2066 nm_i->free_nid_count[nat_ofs]++;
2067 } else {
2068 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2069 return;
2070 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2071 if (!build)
2072 nm_i->free_nid_count[nat_ofs]--;
2073 }
2074}
2075
2076/* return if the nid is recognized as free */
2077static bool add_free_nid(struct f2fs_sb_info *sbi,
2078 nid_t nid, bool build, bool update)
2079{
2080 struct f2fs_nm_info *nm_i = NM_I(sbi);
2081 struct free_nid *i, *e;
2082 struct nat_entry *ne;
2083 int err = -EINVAL;
2084 bool ret = false;
2085
2086 /* 0 nid should not be used */
2087 if (unlikely(nid == 0))
2088 return false;
2089
2090 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2091 return false;
2092
2093 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2094 i->nid = nid;
2095 i->state = FREE_NID;
2096
2097 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2098
2099 spin_lock(&nm_i->nid_list_lock);
2100
2101 if (build) {
2102 /*
2103 * Thread A Thread B
2104 * - f2fs_create
2105 * - f2fs_new_inode
2106 * - f2fs_alloc_nid
2107 * - __insert_nid_to_list(PREALLOC_NID)
2108 * - f2fs_balance_fs_bg
2109 * - f2fs_build_free_nids
2110 * - __f2fs_build_free_nids
2111 * - scan_nat_page
2112 * - add_free_nid
2113 * - __lookup_nat_cache
2114 * - f2fs_add_link
2115 * - f2fs_init_inode_metadata
2116 * - f2fs_new_inode_page
2117 * - f2fs_new_node_page
2118 * - set_node_addr
2119 * - f2fs_alloc_nid_done
2120 * - __remove_nid_from_list(PREALLOC_NID)
2121 * - __insert_nid_to_list(FREE_NID)
2122 */
2123 ne = __lookup_nat_cache(nm_i, nid);
2124 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2125 nat_get_blkaddr(ne) != NULL_ADDR))
2126 goto err_out;
2127
2128 e = __lookup_free_nid_list(nm_i, nid);
2129 if (e) {
2130 if (e->state == FREE_NID)
2131 ret = true;
2132 goto err_out;
2133 }
2134 }
2135 ret = true;
2136 err = __insert_free_nid(sbi, i, FREE_NID);
2137err_out:
2138 if (update) {
2139 update_free_nid_bitmap(sbi, nid, ret, build);
2140 if (!build)
2141 nm_i->available_nids++;
2142 }
2143 spin_unlock(&nm_i->nid_list_lock);
2144 radix_tree_preload_end();
2145
2146 if (err)
2147 kmem_cache_free(free_nid_slab, i);
2148 return ret;
2149}
2150
2151static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2152{
2153 struct f2fs_nm_info *nm_i = NM_I(sbi);
2154 struct free_nid *i;
2155 bool need_free = false;
2156
2157 spin_lock(&nm_i->nid_list_lock);
2158 i = __lookup_free_nid_list(nm_i, nid);
2159 if (i && i->state == FREE_NID) {
2160 __remove_free_nid(sbi, i, FREE_NID);
2161 need_free = true;
2162 }
2163 spin_unlock(&nm_i->nid_list_lock);
2164
2165 if (need_free)
2166 kmem_cache_free(free_nid_slab, i);
2167}
2168
2169static int scan_nat_page(struct f2fs_sb_info *sbi,
2170 struct page *nat_page, nid_t start_nid)
2171{
2172 struct f2fs_nm_info *nm_i = NM_I(sbi);
2173 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2174 block_t blk_addr;
2175 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2176 int i;
2177
2178 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2179
2180 i = start_nid % NAT_ENTRY_PER_BLOCK;
2181
2182 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2183 if (unlikely(start_nid >= nm_i->max_nid))
2184 break;
2185
2186 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2187
2188 if (blk_addr == NEW_ADDR)
2189 return -EINVAL;
2190
2191 if (blk_addr == NULL_ADDR) {
2192 add_free_nid(sbi, start_nid, true, true);
2193 } else {
2194 spin_lock(&NM_I(sbi)->nid_list_lock);
2195 update_free_nid_bitmap(sbi, start_nid, false, true);
2196 spin_unlock(&NM_I(sbi)->nid_list_lock);
2197 }
2198 }
2199
2200 return 0;
2201}
2202
2203static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2204{
2205 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2206 struct f2fs_journal *journal = curseg->journal;
2207 int i;
2208
2209 down_read(&curseg->journal_rwsem);
2210 for (i = 0; i < nats_in_cursum(journal); i++) {
2211 block_t addr;
2212 nid_t nid;
2213
2214 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2215 nid = le32_to_cpu(nid_in_journal(journal, i));
2216 if (addr == NULL_ADDR)
2217 add_free_nid(sbi, nid, true, false);
2218 else
2219 remove_free_nid(sbi, nid);
2220 }
2221 up_read(&curseg->journal_rwsem);
2222}
2223
2224static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2225{
2226 struct f2fs_nm_info *nm_i = NM_I(sbi);
2227 unsigned int i, idx;
2228 nid_t nid;
2229
2230 down_read(&nm_i->nat_tree_lock);
2231
2232 for (i = 0; i < nm_i->nat_blocks; i++) {
2233 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2234 continue;
2235 if (!nm_i->free_nid_count[i])
2236 continue;
2237 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2238 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2239 NAT_ENTRY_PER_BLOCK, idx);
2240 if (idx >= NAT_ENTRY_PER_BLOCK)
2241 break;
2242
2243 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2244 add_free_nid(sbi, nid, true, false);
2245
2246 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2247 goto out;
2248 }
2249 }
2250out:
2251 scan_curseg_cache(sbi);
2252
2253 up_read(&nm_i->nat_tree_lock);
2254}
2255
2256static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2257 bool sync, bool mount)
2258{
2259 struct f2fs_nm_info *nm_i = NM_I(sbi);
2260 int i = 0, ret;
2261 nid_t nid = nm_i->next_scan_nid;
2262
2263 if (unlikely(nid >= nm_i->max_nid))
2264 nid = 0;
2265
2266 /* Enough entries */
2267 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2268 return 0;
2269
2270 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2271 return 0;
2272
2273 if (!mount) {
2274 /* try to find free nids in free_nid_bitmap */
2275 scan_free_nid_bits(sbi);
2276
2277 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2278 return 0;
2279 }
2280
2281 /* readahead nat pages to be scanned */
2282 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2283 META_NAT, true);
2284
2285 down_read(&nm_i->nat_tree_lock);
2286
2287 while (1) {
2288 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2289 nm_i->nat_block_bitmap)) {
2290 struct page *page = get_current_nat_page(sbi, nid);
2291
2292 if (IS_ERR(page)) {
2293 ret = PTR_ERR(page);
2294 } else {
2295 ret = scan_nat_page(sbi, page, nid);
2296 f2fs_put_page(page, 1);
2297 }
2298
2299 if (ret) {
2300 up_read(&nm_i->nat_tree_lock);
2301 f2fs_bug_on(sbi, !mount);
2302 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2303 return ret;
2304 }
2305 }
2306
2307 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2308 if (unlikely(nid >= nm_i->max_nid))
2309 nid = 0;
2310
2311 if (++i >= FREE_NID_PAGES)
2312 break;
2313 }
2314
2315 /* go to the next free nat pages to find free nids abundantly */
2316 nm_i->next_scan_nid = nid;
2317
2318 /* find free nids from current sum_pages */
2319 scan_curseg_cache(sbi);
2320
2321 up_read(&nm_i->nat_tree_lock);
2322
2323 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2324 nm_i->ra_nid_pages, META_NAT, false);
2325
2326 return 0;
2327}
2328
2329int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2330{
2331 int ret;
2332
2333 mutex_lock(&NM_I(sbi)->build_lock);
2334 ret = __f2fs_build_free_nids(sbi, sync, mount);
2335 mutex_unlock(&NM_I(sbi)->build_lock);
2336
2337 return ret;
2338}
2339
2340/*
2341 * If this function returns success, caller can obtain a new nid
2342 * from second parameter of this function.
2343 * The returned nid could be used ino as well as nid when inode is created.
2344 */
2345bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2346{
2347 struct f2fs_nm_info *nm_i = NM_I(sbi);
2348 struct free_nid *i = NULL;
2349retry:
2350 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2351 f2fs_show_injection_info(FAULT_ALLOC_NID);
2352 return false;
2353 }
2354
2355 spin_lock(&nm_i->nid_list_lock);
2356
2357 if (unlikely(nm_i->available_nids == 0)) {
2358 spin_unlock(&nm_i->nid_list_lock);
2359 return false;
2360 }
2361
2362 /* We should not use stale free nids created by f2fs_build_free_nids */
2363 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2364 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2365 i = list_first_entry(&nm_i->free_nid_list,
2366 struct free_nid, list);
2367 *nid = i->nid;
2368
2369 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2370 nm_i->available_nids--;
2371
2372 update_free_nid_bitmap(sbi, *nid, false, false);
2373
2374 spin_unlock(&nm_i->nid_list_lock);
2375 return true;
2376 }
2377 spin_unlock(&nm_i->nid_list_lock);
2378
2379 /* Let's scan nat pages and its caches to get free nids */
2380 if (!f2fs_build_free_nids(sbi, true, false))
2381 goto retry;
2382 return false;
2383}
2384
2385/*
2386 * f2fs_alloc_nid() should be called prior to this function.
2387 */
2388void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2389{
2390 struct f2fs_nm_info *nm_i = NM_I(sbi);
2391 struct free_nid *i;
2392
2393 spin_lock(&nm_i->nid_list_lock);
2394 i = __lookup_free_nid_list(nm_i, nid);
2395 f2fs_bug_on(sbi, !i);
2396 __remove_free_nid(sbi, i, PREALLOC_NID);
2397 spin_unlock(&nm_i->nid_list_lock);
2398
2399 kmem_cache_free(free_nid_slab, i);
2400}
2401
2402/*
2403 * f2fs_alloc_nid() should be called prior to this function.
2404 */
2405void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2406{
2407 struct f2fs_nm_info *nm_i = NM_I(sbi);
2408 struct free_nid *i;
2409 bool need_free = false;
2410
2411 if (!nid)
2412 return;
2413
2414 spin_lock(&nm_i->nid_list_lock);
2415 i = __lookup_free_nid_list(nm_i, nid);
2416 f2fs_bug_on(sbi, !i);
2417
2418 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2419 __remove_free_nid(sbi, i, PREALLOC_NID);
2420 need_free = true;
2421 } else {
2422 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2423 }
2424
2425 nm_i->available_nids++;
2426
2427 update_free_nid_bitmap(sbi, nid, true, false);
2428
2429 spin_unlock(&nm_i->nid_list_lock);
2430
2431 if (need_free)
2432 kmem_cache_free(free_nid_slab, i);
2433}
2434
2435int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2436{
2437 struct f2fs_nm_info *nm_i = NM_I(sbi);
2438 struct free_nid *i, *next;
2439 int nr = nr_shrink;
2440
2441 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2442 return 0;
2443
2444 if (!mutex_trylock(&nm_i->build_lock))
2445 return 0;
2446
2447 spin_lock(&nm_i->nid_list_lock);
2448 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2449 if (nr_shrink <= 0 ||
2450 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2451 break;
2452
2453 __remove_free_nid(sbi, i, FREE_NID);
2454 kmem_cache_free(free_nid_slab, i);
2455 nr_shrink--;
2456 }
2457 spin_unlock(&nm_i->nid_list_lock);
2458 mutex_unlock(&nm_i->build_lock);
2459
2460 return nr - nr_shrink;
2461}
2462
2463void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2464{
2465 void *src_addr, *dst_addr;
2466 size_t inline_size;
2467 struct page *ipage;
2468 struct f2fs_inode *ri;
2469
2470 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2471 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2472
2473 ri = F2FS_INODE(page);
2474 if (ri->i_inline & F2FS_INLINE_XATTR) {
2475 set_inode_flag(inode, FI_INLINE_XATTR);
2476 } else {
2477 clear_inode_flag(inode, FI_INLINE_XATTR);
2478 goto update_inode;
2479 }
2480
2481 dst_addr = inline_xattr_addr(inode, ipage);
2482 src_addr = inline_xattr_addr(inode, page);
2483 inline_size = inline_xattr_size(inode);
2484
2485 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2486 memcpy(dst_addr, src_addr, inline_size);
2487update_inode:
2488 f2fs_update_inode(inode, ipage);
2489 f2fs_put_page(ipage, 1);
2490}
2491
2492int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2493{
2494 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2496 nid_t new_xnid;
2497 struct dnode_of_data dn;
2498 struct node_info ni;
2499 struct page *xpage;
2500 int err;
2501
2502 if (!prev_xnid)
2503 goto recover_xnid;
2504
2505 /* 1: invalidate the previous xattr nid */
2506 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2507 if (err)
2508 return err;
2509
2510 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2511 dec_valid_node_count(sbi, inode, false);
2512 set_node_addr(sbi, &ni, NULL_ADDR, false);
2513
2514recover_xnid:
2515 /* 2: update xattr nid in inode */
2516 if (!f2fs_alloc_nid(sbi, &new_xnid))
2517 return -ENOSPC;
2518
2519 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2520 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2521 if (IS_ERR(xpage)) {
2522 f2fs_alloc_nid_failed(sbi, new_xnid);
2523 return PTR_ERR(xpage);
2524 }
2525
2526 f2fs_alloc_nid_done(sbi, new_xnid);
2527 f2fs_update_inode_page(inode);
2528
2529 /* 3: update and set xattr node page dirty */
2530 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2531
2532 set_page_dirty(xpage);
2533 f2fs_put_page(xpage, 1);
2534
2535 return 0;
2536}
2537
2538int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2539{
2540 struct f2fs_inode *src, *dst;
2541 nid_t ino = ino_of_node(page);
2542 struct node_info old_ni, new_ni;
2543 struct page *ipage;
2544 int err;
2545
2546 err = f2fs_get_node_info(sbi, ino, &old_ni);
2547 if (err)
2548 return err;
2549
2550 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2551 return -EINVAL;
2552retry:
2553 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2554 if (!ipage) {
2555 congestion_wait(BLK_RW_ASYNC, HZ/50);
2556 goto retry;
2557 }
2558
2559 /* Should not use this inode from free nid list */
2560 remove_free_nid(sbi, ino);
2561
2562 if (!PageUptodate(ipage))
2563 SetPageUptodate(ipage);
2564 fill_node_footer(ipage, ino, ino, 0, true);
2565 set_cold_node(ipage, false);
2566
2567 src = F2FS_INODE(page);
2568 dst = F2FS_INODE(ipage);
2569
2570 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2571 dst->i_size = 0;
2572 dst->i_blocks = cpu_to_le64(1);
2573 dst->i_links = cpu_to_le32(1);
2574 dst->i_xattr_nid = 0;
2575 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2576 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2577 dst->i_extra_isize = src->i_extra_isize;
2578
2579 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2580 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2581 i_inline_xattr_size))
2582 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2583
2584 if (f2fs_sb_has_project_quota(sbi) &&
2585 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2586 i_projid))
2587 dst->i_projid = src->i_projid;
2588
2589 if (f2fs_sb_has_inode_crtime(sbi) &&
2590 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2591 i_crtime_nsec)) {
2592 dst->i_crtime = src->i_crtime;
2593 dst->i_crtime_nsec = src->i_crtime_nsec;
2594 }
2595 }
2596
2597 new_ni = old_ni;
2598 new_ni.ino = ino;
2599
2600 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2601 WARN_ON(1);
2602 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2603 inc_valid_inode_count(sbi);
2604 set_page_dirty(ipage);
2605 f2fs_put_page(ipage, 1);
2606 return 0;
2607}
2608
2609int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2610 unsigned int segno, struct f2fs_summary_block *sum)
2611{
2612 struct f2fs_node *rn;
2613 struct f2fs_summary *sum_entry;
2614 block_t addr;
2615 int i, idx, last_offset, nrpages;
2616
2617 /* scan the node segment */
2618 last_offset = sbi->blocks_per_seg;
2619 addr = START_BLOCK(sbi, segno);
2620 sum_entry = &sum->entries[0];
2621
2622 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2623 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2624
2625 /* readahead node pages */
2626 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2627
2628 for (idx = addr; idx < addr + nrpages; idx++) {
2629 struct page *page = f2fs_get_tmp_page(sbi, idx);
2630
2631 if (IS_ERR(page))
2632 return PTR_ERR(page);
2633
2634 rn = F2FS_NODE(page);
2635 sum_entry->nid = rn->footer.nid;
2636 sum_entry->version = 0;
2637 sum_entry->ofs_in_node = 0;
2638 sum_entry++;
2639 f2fs_put_page(page, 1);
2640 }
2641
2642 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2643 addr + nrpages);
2644 }
2645 return 0;
2646}
2647
2648static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2649{
2650 struct f2fs_nm_info *nm_i = NM_I(sbi);
2651 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2652 struct f2fs_journal *journal = curseg->journal;
2653 int i;
2654
2655 down_write(&curseg->journal_rwsem);
2656 for (i = 0; i < nats_in_cursum(journal); i++) {
2657 struct nat_entry *ne;
2658 struct f2fs_nat_entry raw_ne;
2659 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2660
2661 raw_ne = nat_in_journal(journal, i);
2662
2663 ne = __lookup_nat_cache(nm_i, nid);
2664 if (!ne) {
2665 ne = __alloc_nat_entry(nid, true);
2666 __init_nat_entry(nm_i, ne, &raw_ne, true);
2667 }
2668
2669 /*
2670 * if a free nat in journal has not been used after last
2671 * checkpoint, we should remove it from available nids,
2672 * since later we will add it again.
2673 */
2674 if (!get_nat_flag(ne, IS_DIRTY) &&
2675 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2676 spin_lock(&nm_i->nid_list_lock);
2677 nm_i->available_nids--;
2678 spin_unlock(&nm_i->nid_list_lock);
2679 }
2680
2681 __set_nat_cache_dirty(nm_i, ne);
2682 }
2683 update_nats_in_cursum(journal, -i);
2684 up_write(&curseg->journal_rwsem);
2685}
2686
2687static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2688 struct list_head *head, int max)
2689{
2690 struct nat_entry_set *cur;
2691
2692 if (nes->entry_cnt >= max)
2693 goto add_out;
2694
2695 list_for_each_entry(cur, head, set_list) {
2696 if (cur->entry_cnt >= nes->entry_cnt) {
2697 list_add(&nes->set_list, cur->set_list.prev);
2698 return;
2699 }
2700 }
2701add_out:
2702 list_add_tail(&nes->set_list, head);
2703}
2704
2705static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2706 struct page *page)
2707{
2708 struct f2fs_nm_info *nm_i = NM_I(sbi);
2709 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2710 struct f2fs_nat_block *nat_blk = page_address(page);
2711 int valid = 0;
2712 int i = 0;
2713
2714 if (!enabled_nat_bits(sbi, NULL))
2715 return;
2716
2717 if (nat_index == 0) {
2718 valid = 1;
2719 i = 1;
2720 }
2721 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2722 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2723 valid++;
2724 }
2725 if (valid == 0) {
2726 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2727 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2728 return;
2729 }
2730
2731 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2732 if (valid == NAT_ENTRY_PER_BLOCK)
2733 __set_bit_le(nat_index, nm_i->full_nat_bits);
2734 else
2735 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2736}
2737
2738static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2739 struct nat_entry_set *set, struct cp_control *cpc)
2740{
2741 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2742 struct f2fs_journal *journal = curseg->journal;
2743 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2744 bool to_journal = true;
2745 struct f2fs_nat_block *nat_blk;
2746 struct nat_entry *ne, *cur;
2747 struct page *page = NULL;
2748
2749 /*
2750 * there are two steps to flush nat entries:
2751 * #1, flush nat entries to journal in current hot data summary block.
2752 * #2, flush nat entries to nat page.
2753 */
2754 if (enabled_nat_bits(sbi, cpc) ||
2755 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2756 to_journal = false;
2757
2758 if (to_journal) {
2759 down_write(&curseg->journal_rwsem);
2760 } else {
2761 page = get_next_nat_page(sbi, start_nid);
2762 if (IS_ERR(page))
2763 return PTR_ERR(page);
2764
2765 nat_blk = page_address(page);
2766 f2fs_bug_on(sbi, !nat_blk);
2767 }
2768
2769 /* flush dirty nats in nat entry set */
2770 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2771 struct f2fs_nat_entry *raw_ne;
2772 nid_t nid = nat_get_nid(ne);
2773 int offset;
2774
2775 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2776
2777 if (to_journal) {
2778 offset = f2fs_lookup_journal_in_cursum(journal,
2779 NAT_JOURNAL, nid, 1);
2780 f2fs_bug_on(sbi, offset < 0);
2781 raw_ne = &nat_in_journal(journal, offset);
2782 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2783 } else {
2784 raw_ne = &nat_blk->entries[nid - start_nid];
2785 }
2786 raw_nat_from_node_info(raw_ne, &ne->ni);
2787 nat_reset_flag(ne);
2788 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2789 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2790 add_free_nid(sbi, nid, false, true);
2791 } else {
2792 spin_lock(&NM_I(sbi)->nid_list_lock);
2793 update_free_nid_bitmap(sbi, nid, false, false);
2794 spin_unlock(&NM_I(sbi)->nid_list_lock);
2795 }
2796 }
2797
2798 if (to_journal) {
2799 up_write(&curseg->journal_rwsem);
2800 } else {
2801 __update_nat_bits(sbi, start_nid, page);
2802 f2fs_put_page(page, 1);
2803 }
2804
2805 /* Allow dirty nats by node block allocation in write_begin */
2806 if (!set->entry_cnt) {
2807 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2808 kmem_cache_free(nat_entry_set_slab, set);
2809 }
2810 return 0;
2811}
2812
2813/*
2814 * This function is called during the checkpointing process.
2815 */
2816int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2817{
2818 struct f2fs_nm_info *nm_i = NM_I(sbi);
2819 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2820 struct f2fs_journal *journal = curseg->journal;
2821 struct nat_entry_set *setvec[SETVEC_SIZE];
2822 struct nat_entry_set *set, *tmp;
2823 unsigned int found;
2824 nid_t set_idx = 0;
2825 LIST_HEAD(sets);
2826 int err = 0;
2827
2828 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2829 if (enabled_nat_bits(sbi, cpc)) {
2830 down_write(&nm_i->nat_tree_lock);
2831 remove_nats_in_journal(sbi);
2832 up_write(&nm_i->nat_tree_lock);
2833 }
2834
2835 if (!nm_i->dirty_nat_cnt)
2836 return 0;
2837
2838 down_write(&nm_i->nat_tree_lock);
2839
2840 /*
2841 * if there are no enough space in journal to store dirty nat
2842 * entries, remove all entries from journal and merge them
2843 * into nat entry set.
2844 */
2845 if (enabled_nat_bits(sbi, cpc) ||
2846 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2847 remove_nats_in_journal(sbi);
2848
2849 while ((found = __gang_lookup_nat_set(nm_i,
2850 set_idx, SETVEC_SIZE, setvec))) {
2851 unsigned idx;
2852 set_idx = setvec[found - 1]->set + 1;
2853 for (idx = 0; idx < found; idx++)
2854 __adjust_nat_entry_set(setvec[idx], &sets,
2855 MAX_NAT_JENTRIES(journal));
2856 }
2857
2858 /* flush dirty nats in nat entry set */
2859 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2860 err = __flush_nat_entry_set(sbi, set, cpc);
2861 if (err)
2862 break;
2863 }
2864
2865 up_write(&nm_i->nat_tree_lock);
2866 /* Allow dirty nats by node block allocation in write_begin */
2867
2868 return err;
2869}
2870
2871static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2872{
2873 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2874 struct f2fs_nm_info *nm_i = NM_I(sbi);
2875 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2876 unsigned int i;
2877 __u64 cp_ver = cur_cp_version(ckpt);
2878 block_t nat_bits_addr;
2879
2880 if (!enabled_nat_bits(sbi, NULL))
2881 return 0;
2882
2883 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2884 nm_i->nat_bits = f2fs_kzalloc(sbi,
2885 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2886 if (!nm_i->nat_bits)
2887 return -ENOMEM;
2888
2889 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2890 nm_i->nat_bits_blocks;
2891 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2892 struct page *page;
2893
2894 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2895 if (IS_ERR(page))
2896 return PTR_ERR(page);
2897
2898 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2899 page_address(page), F2FS_BLKSIZE);
2900 f2fs_put_page(page, 1);
2901 }
2902
2903 cp_ver |= (cur_cp_crc(ckpt) << 32);
2904 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2905 disable_nat_bits(sbi, true);
2906 return 0;
2907 }
2908
2909 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2910 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2911
2912 f2fs_notice(sbi, "Found nat_bits in checkpoint");
2913 return 0;
2914}
2915
2916static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2917{
2918 struct f2fs_nm_info *nm_i = NM_I(sbi);
2919 unsigned int i = 0;
2920 nid_t nid, last_nid;
2921
2922 if (!enabled_nat_bits(sbi, NULL))
2923 return;
2924
2925 for (i = 0; i < nm_i->nat_blocks; i++) {
2926 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2927 if (i >= nm_i->nat_blocks)
2928 break;
2929
2930 __set_bit_le(i, nm_i->nat_block_bitmap);
2931
2932 nid = i * NAT_ENTRY_PER_BLOCK;
2933 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2934
2935 spin_lock(&NM_I(sbi)->nid_list_lock);
2936 for (; nid < last_nid; nid++)
2937 update_free_nid_bitmap(sbi, nid, true, true);
2938 spin_unlock(&NM_I(sbi)->nid_list_lock);
2939 }
2940
2941 for (i = 0; i < nm_i->nat_blocks; i++) {
2942 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2943 if (i >= nm_i->nat_blocks)
2944 break;
2945
2946 __set_bit_le(i, nm_i->nat_block_bitmap);
2947 }
2948}
2949
2950static int init_node_manager(struct f2fs_sb_info *sbi)
2951{
2952 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2953 struct f2fs_nm_info *nm_i = NM_I(sbi);
2954 unsigned char *version_bitmap;
2955 unsigned int nat_segs;
2956 int err;
2957
2958 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2959
2960 /* segment_count_nat includes pair segment so divide to 2. */
2961 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2962 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2963 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2964
2965 /* not used nids: 0, node, meta, (and root counted as valid node) */
2966 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2967 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2968 nm_i->nid_cnt[FREE_NID] = 0;
2969 nm_i->nid_cnt[PREALLOC_NID] = 0;
2970 nm_i->nat_cnt = 0;
2971 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2972 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2973 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2974
2975 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2976 INIT_LIST_HEAD(&nm_i->free_nid_list);
2977 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2978 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2979 INIT_LIST_HEAD(&nm_i->nat_entries);
2980 spin_lock_init(&nm_i->nat_list_lock);
2981
2982 mutex_init(&nm_i->build_lock);
2983 spin_lock_init(&nm_i->nid_list_lock);
2984 init_rwsem(&nm_i->nat_tree_lock);
2985
2986 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2987 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2988 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2989 if (!version_bitmap)
2990 return -EFAULT;
2991
2992 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2993 GFP_KERNEL);
2994 if (!nm_i->nat_bitmap)
2995 return -ENOMEM;
2996
2997 err = __get_nat_bitmaps(sbi);
2998 if (err)
2999 return err;
3000
3001#ifdef CONFIG_F2FS_CHECK_FS
3002 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3003 GFP_KERNEL);
3004 if (!nm_i->nat_bitmap_mir)
3005 return -ENOMEM;
3006#endif
3007
3008 return 0;
3009}
3010
3011static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3012{
3013 struct f2fs_nm_info *nm_i = NM_I(sbi);
3014 int i;
3015
3016 nm_i->free_nid_bitmap =
3017 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3018 nm_i->nat_blocks),
3019 GFP_KERNEL);
3020 if (!nm_i->free_nid_bitmap)
3021 return -ENOMEM;
3022
3023 for (i = 0; i < nm_i->nat_blocks; i++) {
3024 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3025 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3026 if (!nm_i->free_nid_bitmap[i])
3027 return -ENOMEM;
3028 }
3029
3030 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3031 GFP_KERNEL);
3032 if (!nm_i->nat_block_bitmap)
3033 return -ENOMEM;
3034
3035 nm_i->free_nid_count =
3036 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3037 nm_i->nat_blocks),
3038 GFP_KERNEL);
3039 if (!nm_i->free_nid_count)
3040 return -ENOMEM;
3041 return 0;
3042}
3043
3044int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3045{
3046 int err;
3047
3048 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3049 GFP_KERNEL);
3050 if (!sbi->nm_info)
3051 return -ENOMEM;
3052
3053 err = init_node_manager(sbi);
3054 if (err)
3055 return err;
3056
3057 err = init_free_nid_cache(sbi);
3058 if (err)
3059 return err;
3060
3061 /* load free nid status from nat_bits table */
3062 load_free_nid_bitmap(sbi);
3063
3064 return f2fs_build_free_nids(sbi, true, true);
3065}
3066
3067void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3068{
3069 struct f2fs_nm_info *nm_i = NM_I(sbi);
3070 struct free_nid *i, *next_i;
3071 struct nat_entry *natvec[NATVEC_SIZE];
3072 struct nat_entry_set *setvec[SETVEC_SIZE];
3073 nid_t nid = 0;
3074 unsigned int found;
3075
3076 if (!nm_i)
3077 return;
3078
3079 /* destroy free nid list */
3080 spin_lock(&nm_i->nid_list_lock);
3081 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3082 __remove_free_nid(sbi, i, FREE_NID);
3083 spin_unlock(&nm_i->nid_list_lock);
3084 kmem_cache_free(free_nid_slab, i);
3085 spin_lock(&nm_i->nid_list_lock);
3086 }
3087 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3088 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3089 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3090 spin_unlock(&nm_i->nid_list_lock);
3091
3092 /* destroy nat cache */
3093 down_write(&nm_i->nat_tree_lock);
3094 while ((found = __gang_lookup_nat_cache(nm_i,
3095 nid, NATVEC_SIZE, natvec))) {
3096 unsigned idx;
3097
3098 nid = nat_get_nid(natvec[found - 1]) + 1;
3099 for (idx = 0; idx < found; idx++) {
3100 spin_lock(&nm_i->nat_list_lock);
3101 list_del(&natvec[idx]->list);
3102 spin_unlock(&nm_i->nat_list_lock);
3103
3104 __del_from_nat_cache(nm_i, natvec[idx]);
3105 }
3106 }
3107 f2fs_bug_on(sbi, nm_i->nat_cnt);
3108
3109 /* destroy nat set cache */
3110 nid = 0;
3111 while ((found = __gang_lookup_nat_set(nm_i,
3112 nid, SETVEC_SIZE, setvec))) {
3113 unsigned idx;
3114
3115 nid = setvec[found - 1]->set + 1;
3116 for (idx = 0; idx < found; idx++) {
3117 /* entry_cnt is not zero, when cp_error was occurred */
3118 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3119 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3120 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3121 }
3122 }
3123 up_write(&nm_i->nat_tree_lock);
3124
3125 kvfree(nm_i->nat_block_bitmap);
3126 if (nm_i->free_nid_bitmap) {
3127 int i;
3128
3129 for (i = 0; i < nm_i->nat_blocks; i++)
3130 kvfree(nm_i->free_nid_bitmap[i]);
3131 kvfree(nm_i->free_nid_bitmap);
3132 }
3133 kvfree(nm_i->free_nid_count);
3134
3135 kvfree(nm_i->nat_bitmap);
3136 kvfree(nm_i->nat_bits);
3137#ifdef CONFIG_F2FS_CHECK_FS
3138 kvfree(nm_i->nat_bitmap_mir);
3139#endif
3140 sbi->nm_info = NULL;
3141 kvfree(nm_i);
3142}
3143
3144int __init f2fs_create_node_manager_caches(void)
3145{
3146 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3147 sizeof(struct nat_entry));
3148 if (!nat_entry_slab)
3149 goto fail;
3150
3151 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3152 sizeof(struct free_nid));
3153 if (!free_nid_slab)
3154 goto destroy_nat_entry;
3155
3156 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3157 sizeof(struct nat_entry_set));
3158 if (!nat_entry_set_slab)
3159 goto destroy_free_nid;
3160
3161 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3162 sizeof(struct fsync_node_entry));
3163 if (!fsync_node_entry_slab)
3164 goto destroy_nat_entry_set;
3165 return 0;
3166
3167destroy_nat_entry_set:
3168 kmem_cache_destroy(nat_entry_set_slab);
3169destroy_free_nid:
3170 kmem_cache_destroy(free_nid_slab);
3171destroy_nat_entry:
3172 kmem_cache_destroy(nat_entry_slab);
3173fail:
3174 return -ENOMEM;
3175}
3176
3177void f2fs_destroy_node_manager_caches(void)
3178{
3179 kmem_cache_destroy(fsync_node_entry_slab);
3180 kmem_cache_destroy(nat_entry_set_slab);
3181 kmem_cache_destroy(free_nid_slab);
3182 kmem_cache_destroy(nat_entry_slab);
3183}