at v5.3-rc4 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct page; 27struct mm_struct; 28struct kmem_cache; 29 30/* Cgroup-specific page state, on top of universal node page state */ 31enum memcg_stat_item { 32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_RSS, 34 MEMCG_RSS_HUGE, 35 MEMCG_SWAP, 36 MEMCG_SOCK, 37 /* XXX: why are these zone and not node counters? */ 38 MEMCG_KERNEL_STACK_KB, 39 MEMCG_NR_STAT, 40}; 41 42enum memcg_memory_event { 43 MEMCG_LOW, 44 MEMCG_HIGH, 45 MEMCG_MAX, 46 MEMCG_OOM, 47 MEMCG_OOM_KILL, 48 MEMCG_SWAP_MAX, 49 MEMCG_SWAP_FAIL, 50 MEMCG_NR_MEMORY_EVENTS, 51}; 52 53enum mem_cgroup_protection { 54 MEMCG_PROT_NONE, 55 MEMCG_PROT_LOW, 56 MEMCG_PROT_MIN, 57}; 58 59struct mem_cgroup_reclaim_cookie { 60 pg_data_t *pgdat; 61 int priority; 62 unsigned int generation; 63}; 64 65#ifdef CONFIG_MEMCG 66 67#define MEM_CGROUP_ID_SHIFT 16 68#define MEM_CGROUP_ID_MAX USHRT_MAX 69 70struct mem_cgroup_id { 71 int id; 72 refcount_t ref; 73}; 74 75/* 76 * Per memcg event counter is incremented at every pagein/pageout. With THP, 77 * it will be incremated by the number of pages. This counter is used for 78 * for trigger some periodic events. This is straightforward and better 79 * than using jiffies etc. to handle periodic memcg event. 80 */ 81enum mem_cgroup_events_target { 82 MEM_CGROUP_TARGET_THRESH, 83 MEM_CGROUP_TARGET_SOFTLIMIT, 84 MEM_CGROUP_TARGET_NUMAINFO, 85 MEM_CGROUP_NTARGETS, 86}; 87 88struct memcg_vmstats_percpu { 89 long stat[MEMCG_NR_STAT]; 90 unsigned long events[NR_VM_EVENT_ITEMS]; 91 unsigned long nr_page_events; 92 unsigned long targets[MEM_CGROUP_NTARGETS]; 93}; 94 95struct mem_cgroup_reclaim_iter { 96 struct mem_cgroup *position; 97 /* scan generation, increased every round-trip */ 98 unsigned int generation; 99}; 100 101struct lruvec_stat { 102 long count[NR_VM_NODE_STAT_ITEMS]; 103}; 104 105/* 106 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 107 * which have elements charged to this memcg. 108 */ 109struct memcg_shrinker_map { 110 struct rcu_head rcu; 111 unsigned long map[0]; 112}; 113 114/* 115 * per-zone information in memory controller. 116 */ 117struct mem_cgroup_per_node { 118 struct lruvec lruvec; 119 120 /* Legacy local VM stats */ 121 struct lruvec_stat __percpu *lruvec_stat_local; 122 123 /* Subtree VM stats (batched updates) */ 124 struct lruvec_stat __percpu *lruvec_stat_cpu; 125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1]; 130 131#ifdef CONFIG_MEMCG_KMEM 132 struct memcg_shrinker_map __rcu *shrinker_map; 133#endif 134 struct rb_node tree_node; /* RB tree node */ 135 unsigned long usage_in_excess;/* Set to the value by which */ 136 /* the soft limit is exceeded*/ 137 bool on_tree; 138 bool congested; /* memcg has many dirty pages */ 139 /* backed by a congested BDI */ 140 141 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 142 /* use container_of */ 143}; 144 145struct mem_cgroup_threshold { 146 struct eventfd_ctx *eventfd; 147 unsigned long threshold; 148}; 149 150/* For threshold */ 151struct mem_cgroup_threshold_ary { 152 /* An array index points to threshold just below or equal to usage. */ 153 int current_threshold; 154 /* Size of entries[] */ 155 unsigned int size; 156 /* Array of thresholds */ 157 struct mem_cgroup_threshold entries[0]; 158}; 159 160struct mem_cgroup_thresholds { 161 /* Primary thresholds array */ 162 struct mem_cgroup_threshold_ary *primary; 163 /* 164 * Spare threshold array. 165 * This is needed to make mem_cgroup_unregister_event() "never fail". 166 * It must be able to store at least primary->size - 1 entries. 167 */ 168 struct mem_cgroup_threshold_ary *spare; 169}; 170 171enum memcg_kmem_state { 172 KMEM_NONE, 173 KMEM_ALLOCATED, 174 KMEM_ONLINE, 175}; 176 177#if defined(CONFIG_SMP) 178struct memcg_padding { 179 char x[0]; 180} ____cacheline_internodealigned_in_smp; 181#define MEMCG_PADDING(name) struct memcg_padding name; 182#else 183#define MEMCG_PADDING(name) 184#endif 185 186/* 187 * The memory controller data structure. The memory controller controls both 188 * page cache and RSS per cgroup. We would eventually like to provide 189 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 190 * to help the administrator determine what knobs to tune. 191 */ 192struct mem_cgroup { 193 struct cgroup_subsys_state css; 194 195 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 196 struct mem_cgroup_id id; 197 198 /* Accounted resources */ 199 struct page_counter memory; 200 struct page_counter swap; 201 202 /* Legacy consumer-oriented counters */ 203 struct page_counter memsw; 204 struct page_counter kmem; 205 struct page_counter tcpmem; 206 207 /* Upper bound of normal memory consumption range */ 208 unsigned long high; 209 210 /* Range enforcement for interrupt charges */ 211 struct work_struct high_work; 212 213 unsigned long soft_limit; 214 215 /* vmpressure notifications */ 216 struct vmpressure vmpressure; 217 218 /* 219 * Should the accounting and control be hierarchical, per subtree? 220 */ 221 bool use_hierarchy; 222 223 /* 224 * Should the OOM killer kill all belonging tasks, had it kill one? 225 */ 226 bool oom_group; 227 228 /* protected by memcg_oom_lock */ 229 bool oom_lock; 230 int under_oom; 231 232 int swappiness; 233 /* OOM-Killer disable */ 234 int oom_kill_disable; 235 236 /* memory.events and memory.events.local */ 237 struct cgroup_file events_file; 238 struct cgroup_file events_local_file; 239 240 /* handle for "memory.swap.events" */ 241 struct cgroup_file swap_events_file; 242 243 /* protect arrays of thresholds */ 244 struct mutex thresholds_lock; 245 246 /* thresholds for memory usage. RCU-protected */ 247 struct mem_cgroup_thresholds thresholds; 248 249 /* thresholds for mem+swap usage. RCU-protected */ 250 struct mem_cgroup_thresholds memsw_thresholds; 251 252 /* For oom notifier event fd */ 253 struct list_head oom_notify; 254 255 /* 256 * Should we move charges of a task when a task is moved into this 257 * mem_cgroup ? And what type of charges should we move ? 258 */ 259 unsigned long move_charge_at_immigrate; 260 /* taken only while moving_account > 0 */ 261 spinlock_t move_lock; 262 unsigned long move_lock_flags; 263 264 MEMCG_PADDING(_pad1_); 265 266 /* 267 * set > 0 if pages under this cgroup are moving to other cgroup. 268 */ 269 atomic_t moving_account; 270 struct task_struct *move_lock_task; 271 272 /* Legacy local VM stats and events */ 273 struct memcg_vmstats_percpu __percpu *vmstats_local; 274 275 /* Subtree VM stats and events (batched updates) */ 276 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 277 278 MEMCG_PADDING(_pad2_); 279 280 atomic_long_t vmstats[MEMCG_NR_STAT]; 281 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 282 283 /* memory.events */ 284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 286 287 unsigned long socket_pressure; 288 289 /* Legacy tcp memory accounting */ 290 bool tcpmem_active; 291 int tcpmem_pressure; 292 293#ifdef CONFIG_MEMCG_KMEM 294 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 295 int kmemcg_id; 296 enum memcg_kmem_state kmem_state; 297 struct list_head kmem_caches; 298#endif 299 300 int last_scanned_node; 301#if MAX_NUMNODES > 1 302 nodemask_t scan_nodes; 303 atomic_t numainfo_events; 304 atomic_t numainfo_updating; 305#endif 306 307#ifdef CONFIG_CGROUP_WRITEBACK 308 struct list_head cgwb_list; 309 struct wb_domain cgwb_domain; 310#endif 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 316 struct mem_cgroup_per_node *nodeinfo[0]; 317 /* WARNING: nodeinfo must be the last member here */ 318}; 319 320/* 321 * size of first charge trial. "32" comes from vmscan.c's magic value. 322 * TODO: maybe necessary to use big numbers in big irons. 323 */ 324#define MEMCG_CHARGE_BATCH 32U 325 326extern struct mem_cgroup *root_mem_cgroup; 327 328static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 329{ 330 return (memcg == root_mem_cgroup); 331} 332 333static inline bool mem_cgroup_disabled(void) 334{ 335 return !cgroup_subsys_enabled(memory_cgrp_subsys); 336} 337 338enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 339 struct mem_cgroup *memcg); 340 341int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 342 gfp_t gfp_mask, struct mem_cgroup **memcgp, 343 bool compound); 344int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 345 gfp_t gfp_mask, struct mem_cgroup **memcgp, 346 bool compound); 347void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 348 bool lrucare, bool compound); 349void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 350 bool compound); 351void mem_cgroup_uncharge(struct page *page); 352void mem_cgroup_uncharge_list(struct list_head *page_list); 353 354void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 355 356static struct mem_cgroup_per_node * 357mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 358{ 359 return memcg->nodeinfo[nid]; 360} 361 362/** 363 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone 364 * @node: node of the wanted lruvec 365 * @memcg: memcg of the wanted lruvec 366 * 367 * Returns the lru list vector holding pages for a given @node or a given 368 * @memcg and @zone. This can be the node lruvec, if the memory controller 369 * is disabled. 370 */ 371static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 372 struct mem_cgroup *memcg) 373{ 374 struct mem_cgroup_per_node *mz; 375 struct lruvec *lruvec; 376 377 if (mem_cgroup_disabled()) { 378 lruvec = node_lruvec(pgdat); 379 goto out; 380 } 381 382 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 383 lruvec = &mz->lruvec; 384out: 385 /* 386 * Since a node can be onlined after the mem_cgroup was created, 387 * we have to be prepared to initialize lruvec->pgdat here; 388 * and if offlined then reonlined, we need to reinitialize it. 389 */ 390 if (unlikely(lruvec->pgdat != pgdat)) 391 lruvec->pgdat = pgdat; 392 return lruvec; 393} 394 395struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 396 397struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 398 399struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 400 401struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 402 403static inline 404struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 405 return css ? container_of(css, struct mem_cgroup, css) : NULL; 406} 407 408static inline void mem_cgroup_put(struct mem_cgroup *memcg) 409{ 410 if (memcg) 411 css_put(&memcg->css); 412} 413 414#define mem_cgroup_from_counter(counter, member) \ 415 container_of(counter, struct mem_cgroup, member) 416 417struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 418 struct mem_cgroup *, 419 struct mem_cgroup_reclaim_cookie *); 420void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 421int mem_cgroup_scan_tasks(struct mem_cgroup *, 422 int (*)(struct task_struct *, void *), void *); 423 424static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 425{ 426 if (mem_cgroup_disabled()) 427 return 0; 428 429 return memcg->id.id; 430} 431struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 432 433static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 434{ 435 return mem_cgroup_from_css(seq_css(m)); 436} 437 438static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 439{ 440 struct mem_cgroup_per_node *mz; 441 442 if (mem_cgroup_disabled()) 443 return NULL; 444 445 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 446 return mz->memcg; 447} 448 449/** 450 * parent_mem_cgroup - find the accounting parent of a memcg 451 * @memcg: memcg whose parent to find 452 * 453 * Returns the parent memcg, or NULL if this is the root or the memory 454 * controller is in legacy no-hierarchy mode. 455 */ 456static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 457{ 458 if (!memcg->memory.parent) 459 return NULL; 460 return mem_cgroup_from_counter(memcg->memory.parent, memory); 461} 462 463static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 464 struct mem_cgroup *root) 465{ 466 if (root == memcg) 467 return true; 468 if (!root->use_hierarchy) 469 return false; 470 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 471} 472 473static inline bool mm_match_cgroup(struct mm_struct *mm, 474 struct mem_cgroup *memcg) 475{ 476 struct mem_cgroup *task_memcg; 477 bool match = false; 478 479 rcu_read_lock(); 480 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 481 if (task_memcg) 482 match = mem_cgroup_is_descendant(task_memcg, memcg); 483 rcu_read_unlock(); 484 return match; 485} 486 487struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 488ino_t page_cgroup_ino(struct page *page); 489 490static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 491{ 492 if (mem_cgroup_disabled()) 493 return true; 494 return !!(memcg->css.flags & CSS_ONLINE); 495} 496 497/* 498 * For memory reclaim. 499 */ 500int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 501 502void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 503 int zid, int nr_pages); 504 505static inline 506unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 507 enum lru_list lru, int zone_idx) 508{ 509 struct mem_cgroup_per_node *mz; 510 511 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 512 return mz->lru_zone_size[zone_idx][lru]; 513} 514 515void mem_cgroup_handle_over_high(void); 516 517unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 518 519void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 520 struct task_struct *p); 521 522void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 523 524static inline void mem_cgroup_enter_user_fault(void) 525{ 526 WARN_ON(current->in_user_fault); 527 current->in_user_fault = 1; 528} 529 530static inline void mem_cgroup_exit_user_fault(void) 531{ 532 WARN_ON(!current->in_user_fault); 533 current->in_user_fault = 0; 534} 535 536static inline bool task_in_memcg_oom(struct task_struct *p) 537{ 538 return p->memcg_in_oom; 539} 540 541bool mem_cgroup_oom_synchronize(bool wait); 542struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 543 struct mem_cgroup *oom_domain); 544void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 545 546#ifdef CONFIG_MEMCG_SWAP 547extern int do_swap_account; 548#endif 549 550struct mem_cgroup *lock_page_memcg(struct page *page); 551void __unlock_page_memcg(struct mem_cgroup *memcg); 552void unlock_page_memcg(struct page *page); 553 554/* 555 * idx can be of type enum memcg_stat_item or node_stat_item. 556 * Keep in sync with memcg_exact_page_state(). 557 */ 558static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 559{ 560 long x = atomic_long_read(&memcg->vmstats[idx]); 561#ifdef CONFIG_SMP 562 if (x < 0) 563 x = 0; 564#endif 565 return x; 566} 567 568/* 569 * idx can be of type enum memcg_stat_item or node_stat_item. 570 * Keep in sync with memcg_exact_page_state(). 571 */ 572static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 573 int idx) 574{ 575 long x = 0; 576 int cpu; 577 578 for_each_possible_cpu(cpu) 579 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 580#ifdef CONFIG_SMP 581 if (x < 0) 582 x = 0; 583#endif 584 return x; 585} 586 587void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 588 589/* idx can be of type enum memcg_stat_item or node_stat_item */ 590static inline void mod_memcg_state(struct mem_cgroup *memcg, 591 int idx, int val) 592{ 593 unsigned long flags; 594 595 local_irq_save(flags); 596 __mod_memcg_state(memcg, idx, val); 597 local_irq_restore(flags); 598} 599 600/** 601 * mod_memcg_page_state - update page state statistics 602 * @page: the page 603 * @idx: page state item to account 604 * @val: number of pages (positive or negative) 605 * 606 * The @page must be locked or the caller must use lock_page_memcg() 607 * to prevent double accounting when the page is concurrently being 608 * moved to another memcg: 609 * 610 * lock_page(page) or lock_page_memcg(page) 611 * if (TestClearPageState(page)) 612 * mod_memcg_page_state(page, state, -1); 613 * unlock_page(page) or unlock_page_memcg(page) 614 * 615 * Kernel pages are an exception to this, since they'll never move. 616 */ 617static inline void __mod_memcg_page_state(struct page *page, 618 int idx, int val) 619{ 620 if (page->mem_cgroup) 621 __mod_memcg_state(page->mem_cgroup, idx, val); 622} 623 624static inline void mod_memcg_page_state(struct page *page, 625 int idx, int val) 626{ 627 if (page->mem_cgroup) 628 mod_memcg_state(page->mem_cgroup, idx, val); 629} 630 631static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 632 enum node_stat_item idx) 633{ 634 struct mem_cgroup_per_node *pn; 635 long x; 636 637 if (mem_cgroup_disabled()) 638 return node_page_state(lruvec_pgdat(lruvec), idx); 639 640 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 641 x = atomic_long_read(&pn->lruvec_stat[idx]); 642#ifdef CONFIG_SMP 643 if (x < 0) 644 x = 0; 645#endif 646 return x; 647} 648 649static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 650 enum node_stat_item idx) 651{ 652 struct mem_cgroup_per_node *pn; 653 long x = 0; 654 int cpu; 655 656 if (mem_cgroup_disabled()) 657 return node_page_state(lruvec_pgdat(lruvec), idx); 658 659 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 660 for_each_possible_cpu(cpu) 661 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 662#ifdef CONFIG_SMP 663 if (x < 0) 664 x = 0; 665#endif 666 return x; 667} 668 669void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 670 int val); 671 672static inline void mod_lruvec_state(struct lruvec *lruvec, 673 enum node_stat_item idx, int val) 674{ 675 unsigned long flags; 676 677 local_irq_save(flags); 678 __mod_lruvec_state(lruvec, idx, val); 679 local_irq_restore(flags); 680} 681 682static inline void __mod_lruvec_page_state(struct page *page, 683 enum node_stat_item idx, int val) 684{ 685 pg_data_t *pgdat = page_pgdat(page); 686 struct lruvec *lruvec; 687 688 /* Untracked pages have no memcg, no lruvec. Update only the node */ 689 if (!page->mem_cgroup) { 690 __mod_node_page_state(pgdat, idx, val); 691 return; 692 } 693 694 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup); 695 __mod_lruvec_state(lruvec, idx, val); 696} 697 698static inline void mod_lruvec_page_state(struct page *page, 699 enum node_stat_item idx, int val) 700{ 701 unsigned long flags; 702 703 local_irq_save(flags); 704 __mod_lruvec_page_state(page, idx, val); 705 local_irq_restore(flags); 706} 707 708unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 709 gfp_t gfp_mask, 710 unsigned long *total_scanned); 711 712void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 713 unsigned long count); 714 715static inline void count_memcg_events(struct mem_cgroup *memcg, 716 enum vm_event_item idx, 717 unsigned long count) 718{ 719 unsigned long flags; 720 721 local_irq_save(flags); 722 __count_memcg_events(memcg, idx, count); 723 local_irq_restore(flags); 724} 725 726static inline void count_memcg_page_event(struct page *page, 727 enum vm_event_item idx) 728{ 729 if (page->mem_cgroup) 730 count_memcg_events(page->mem_cgroup, idx, 1); 731} 732 733static inline void count_memcg_event_mm(struct mm_struct *mm, 734 enum vm_event_item idx) 735{ 736 struct mem_cgroup *memcg; 737 738 if (mem_cgroup_disabled()) 739 return; 740 741 rcu_read_lock(); 742 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 743 if (likely(memcg)) 744 count_memcg_events(memcg, idx, 1); 745 rcu_read_unlock(); 746} 747 748static inline void memcg_memory_event(struct mem_cgroup *memcg, 749 enum memcg_memory_event event) 750{ 751 atomic_long_inc(&memcg->memory_events_local[event]); 752 cgroup_file_notify(&memcg->events_local_file); 753 754 do { 755 atomic_long_inc(&memcg->memory_events[event]); 756 cgroup_file_notify(&memcg->events_file); 757 758 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 759 break; 760 } while ((memcg = parent_mem_cgroup(memcg)) && 761 !mem_cgroup_is_root(memcg)); 762} 763 764static inline void memcg_memory_event_mm(struct mm_struct *mm, 765 enum memcg_memory_event event) 766{ 767 struct mem_cgroup *memcg; 768 769 if (mem_cgroup_disabled()) 770 return; 771 772 rcu_read_lock(); 773 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 774 if (likely(memcg)) 775 memcg_memory_event(memcg, event); 776 rcu_read_unlock(); 777} 778 779#ifdef CONFIG_TRANSPARENT_HUGEPAGE 780void mem_cgroup_split_huge_fixup(struct page *head); 781#endif 782 783#else /* CONFIG_MEMCG */ 784 785#define MEM_CGROUP_ID_SHIFT 0 786#define MEM_CGROUP_ID_MAX 0 787 788struct mem_cgroup; 789 790static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 791{ 792 return true; 793} 794 795static inline bool mem_cgroup_disabled(void) 796{ 797 return true; 798} 799 800static inline void memcg_memory_event(struct mem_cgroup *memcg, 801 enum memcg_memory_event event) 802{ 803} 804 805static inline void memcg_memory_event_mm(struct mm_struct *mm, 806 enum memcg_memory_event event) 807{ 808} 809 810static inline enum mem_cgroup_protection mem_cgroup_protected( 811 struct mem_cgroup *root, struct mem_cgroup *memcg) 812{ 813 return MEMCG_PROT_NONE; 814} 815 816static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 817 gfp_t gfp_mask, 818 struct mem_cgroup **memcgp, 819 bool compound) 820{ 821 *memcgp = NULL; 822 return 0; 823} 824 825static inline int mem_cgroup_try_charge_delay(struct page *page, 826 struct mm_struct *mm, 827 gfp_t gfp_mask, 828 struct mem_cgroup **memcgp, 829 bool compound) 830{ 831 *memcgp = NULL; 832 return 0; 833} 834 835static inline void mem_cgroup_commit_charge(struct page *page, 836 struct mem_cgroup *memcg, 837 bool lrucare, bool compound) 838{ 839} 840 841static inline void mem_cgroup_cancel_charge(struct page *page, 842 struct mem_cgroup *memcg, 843 bool compound) 844{ 845} 846 847static inline void mem_cgroup_uncharge(struct page *page) 848{ 849} 850 851static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 852{ 853} 854 855static inline void mem_cgroup_migrate(struct page *old, struct page *new) 856{ 857} 858 859static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat, 860 struct mem_cgroup *memcg) 861{ 862 return node_lruvec(pgdat); 863} 864 865static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 866 struct pglist_data *pgdat) 867{ 868 return &pgdat->lruvec; 869} 870 871static inline bool mm_match_cgroup(struct mm_struct *mm, 872 struct mem_cgroup *memcg) 873{ 874 return true; 875} 876 877static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 878{ 879 return NULL; 880} 881 882static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 883{ 884 return NULL; 885} 886 887static inline void mem_cgroup_put(struct mem_cgroup *memcg) 888{ 889} 890 891static inline struct mem_cgroup * 892mem_cgroup_iter(struct mem_cgroup *root, 893 struct mem_cgroup *prev, 894 struct mem_cgroup_reclaim_cookie *reclaim) 895{ 896 return NULL; 897} 898 899static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 900 struct mem_cgroup *prev) 901{ 902} 903 904static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 905 int (*fn)(struct task_struct *, void *), void *arg) 906{ 907 return 0; 908} 909 910static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 911{ 912 return 0; 913} 914 915static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 916{ 917 WARN_ON_ONCE(id); 918 /* XXX: This should always return root_mem_cgroup */ 919 return NULL; 920} 921 922static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 923{ 924 return NULL; 925} 926 927static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 928{ 929 return NULL; 930} 931 932static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 933{ 934 return true; 935} 936 937static inline 938unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 939 enum lru_list lru, int zone_idx) 940{ 941 return 0; 942} 943 944static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 945{ 946 return 0; 947} 948 949static inline void 950mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 951{ 952} 953 954static inline void 955mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 956{ 957} 958 959static inline struct mem_cgroup *lock_page_memcg(struct page *page) 960{ 961 return NULL; 962} 963 964static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 965{ 966} 967 968static inline void unlock_page_memcg(struct page *page) 969{ 970} 971 972static inline void mem_cgroup_handle_over_high(void) 973{ 974} 975 976static inline void mem_cgroup_enter_user_fault(void) 977{ 978} 979 980static inline void mem_cgroup_exit_user_fault(void) 981{ 982} 983 984static inline bool task_in_memcg_oom(struct task_struct *p) 985{ 986 return false; 987} 988 989static inline bool mem_cgroup_oom_synchronize(bool wait) 990{ 991 return false; 992} 993 994static inline struct mem_cgroup *mem_cgroup_get_oom_group( 995 struct task_struct *victim, struct mem_cgroup *oom_domain) 996{ 997 return NULL; 998} 999 1000static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1001{ 1002} 1003 1004static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1005{ 1006 return 0; 1007} 1008 1009static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1010 int idx) 1011{ 1012 return 0; 1013} 1014 1015static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1016 int idx, 1017 int nr) 1018{ 1019} 1020 1021static inline void mod_memcg_state(struct mem_cgroup *memcg, 1022 int idx, 1023 int nr) 1024{ 1025} 1026 1027static inline void __mod_memcg_page_state(struct page *page, 1028 int idx, 1029 int nr) 1030{ 1031} 1032 1033static inline void mod_memcg_page_state(struct page *page, 1034 int idx, 1035 int nr) 1036{ 1037} 1038 1039static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1040 enum node_stat_item idx) 1041{ 1042 return node_page_state(lruvec_pgdat(lruvec), idx); 1043} 1044 1045static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1046 enum node_stat_item idx) 1047{ 1048 return node_page_state(lruvec_pgdat(lruvec), idx); 1049} 1050 1051static inline void __mod_lruvec_state(struct lruvec *lruvec, 1052 enum node_stat_item idx, int val) 1053{ 1054 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1055} 1056 1057static inline void mod_lruvec_state(struct lruvec *lruvec, 1058 enum node_stat_item idx, int val) 1059{ 1060 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1061} 1062 1063static inline void __mod_lruvec_page_state(struct page *page, 1064 enum node_stat_item idx, int val) 1065{ 1066 __mod_node_page_state(page_pgdat(page), idx, val); 1067} 1068 1069static inline void mod_lruvec_page_state(struct page *page, 1070 enum node_stat_item idx, int val) 1071{ 1072 mod_node_page_state(page_pgdat(page), idx, val); 1073} 1074 1075static inline 1076unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1077 gfp_t gfp_mask, 1078 unsigned long *total_scanned) 1079{ 1080 return 0; 1081} 1082 1083static inline void mem_cgroup_split_huge_fixup(struct page *head) 1084{ 1085} 1086 1087static inline void count_memcg_events(struct mem_cgroup *memcg, 1088 enum vm_event_item idx, 1089 unsigned long count) 1090{ 1091} 1092 1093static inline void __count_memcg_events(struct mem_cgroup *memcg, 1094 enum vm_event_item idx, 1095 unsigned long count) 1096{ 1097} 1098 1099static inline void count_memcg_page_event(struct page *page, 1100 int idx) 1101{ 1102} 1103 1104static inline 1105void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1106{ 1107} 1108#endif /* CONFIG_MEMCG */ 1109 1110/* idx can be of type enum memcg_stat_item or node_stat_item */ 1111static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1112 int idx) 1113{ 1114 __mod_memcg_state(memcg, idx, 1); 1115} 1116 1117/* idx can be of type enum memcg_stat_item or node_stat_item */ 1118static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1119 int idx) 1120{ 1121 __mod_memcg_state(memcg, idx, -1); 1122} 1123 1124/* idx can be of type enum memcg_stat_item or node_stat_item */ 1125static inline void __inc_memcg_page_state(struct page *page, 1126 int idx) 1127{ 1128 __mod_memcg_page_state(page, idx, 1); 1129} 1130 1131/* idx can be of type enum memcg_stat_item or node_stat_item */ 1132static inline void __dec_memcg_page_state(struct page *page, 1133 int idx) 1134{ 1135 __mod_memcg_page_state(page, idx, -1); 1136} 1137 1138static inline void __inc_lruvec_state(struct lruvec *lruvec, 1139 enum node_stat_item idx) 1140{ 1141 __mod_lruvec_state(lruvec, idx, 1); 1142} 1143 1144static inline void __dec_lruvec_state(struct lruvec *lruvec, 1145 enum node_stat_item idx) 1146{ 1147 __mod_lruvec_state(lruvec, idx, -1); 1148} 1149 1150static inline void __inc_lruvec_page_state(struct page *page, 1151 enum node_stat_item idx) 1152{ 1153 __mod_lruvec_page_state(page, idx, 1); 1154} 1155 1156static inline void __dec_lruvec_page_state(struct page *page, 1157 enum node_stat_item idx) 1158{ 1159 __mod_lruvec_page_state(page, idx, -1); 1160} 1161 1162/* idx can be of type enum memcg_stat_item or node_stat_item */ 1163static inline void inc_memcg_state(struct mem_cgroup *memcg, 1164 int idx) 1165{ 1166 mod_memcg_state(memcg, idx, 1); 1167} 1168 1169/* idx can be of type enum memcg_stat_item or node_stat_item */ 1170static inline void dec_memcg_state(struct mem_cgroup *memcg, 1171 int idx) 1172{ 1173 mod_memcg_state(memcg, idx, -1); 1174} 1175 1176/* idx can be of type enum memcg_stat_item or node_stat_item */ 1177static inline void inc_memcg_page_state(struct page *page, 1178 int idx) 1179{ 1180 mod_memcg_page_state(page, idx, 1); 1181} 1182 1183/* idx can be of type enum memcg_stat_item or node_stat_item */ 1184static inline void dec_memcg_page_state(struct page *page, 1185 int idx) 1186{ 1187 mod_memcg_page_state(page, idx, -1); 1188} 1189 1190static inline void inc_lruvec_state(struct lruvec *lruvec, 1191 enum node_stat_item idx) 1192{ 1193 mod_lruvec_state(lruvec, idx, 1); 1194} 1195 1196static inline void dec_lruvec_state(struct lruvec *lruvec, 1197 enum node_stat_item idx) 1198{ 1199 mod_lruvec_state(lruvec, idx, -1); 1200} 1201 1202static inline void inc_lruvec_page_state(struct page *page, 1203 enum node_stat_item idx) 1204{ 1205 mod_lruvec_page_state(page, idx, 1); 1206} 1207 1208static inline void dec_lruvec_page_state(struct page *page, 1209 enum node_stat_item idx) 1210{ 1211 mod_lruvec_page_state(page, idx, -1); 1212} 1213 1214#ifdef CONFIG_CGROUP_WRITEBACK 1215 1216struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1217void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1218 unsigned long *pheadroom, unsigned long *pdirty, 1219 unsigned long *pwriteback); 1220 1221#else /* CONFIG_CGROUP_WRITEBACK */ 1222 1223static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1224{ 1225 return NULL; 1226} 1227 1228static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1229 unsigned long *pfilepages, 1230 unsigned long *pheadroom, 1231 unsigned long *pdirty, 1232 unsigned long *pwriteback) 1233{ 1234} 1235 1236#endif /* CONFIG_CGROUP_WRITEBACK */ 1237 1238struct sock; 1239bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1240void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1241#ifdef CONFIG_MEMCG 1242extern struct static_key_false memcg_sockets_enabled_key; 1243#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1244void mem_cgroup_sk_alloc(struct sock *sk); 1245void mem_cgroup_sk_free(struct sock *sk); 1246static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1247{ 1248 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1249 return true; 1250 do { 1251 if (time_before(jiffies, memcg->socket_pressure)) 1252 return true; 1253 } while ((memcg = parent_mem_cgroup(memcg))); 1254 return false; 1255} 1256#else 1257#define mem_cgroup_sockets_enabled 0 1258static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1259static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1260static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1261{ 1262 return false; 1263} 1264#endif 1265 1266struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1267void memcg_kmem_put_cache(struct kmem_cache *cachep); 1268 1269#ifdef CONFIG_MEMCG_KMEM 1270int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order); 1271void __memcg_kmem_uncharge(struct page *page, int order); 1272int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 1273 struct mem_cgroup *memcg); 1274void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 1275 unsigned int nr_pages); 1276 1277extern struct static_key_false memcg_kmem_enabled_key; 1278extern struct workqueue_struct *memcg_kmem_cache_wq; 1279 1280extern int memcg_nr_cache_ids; 1281void memcg_get_cache_ids(void); 1282void memcg_put_cache_ids(void); 1283 1284/* 1285 * Helper macro to loop through all memcg-specific caches. Callers must still 1286 * check if the cache is valid (it is either valid or NULL). 1287 * the slab_mutex must be held when looping through those caches 1288 */ 1289#define for_each_memcg_cache_index(_idx) \ 1290 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1291 1292static inline bool memcg_kmem_enabled(void) 1293{ 1294 return static_branch_unlikely(&memcg_kmem_enabled_key); 1295} 1296 1297static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1298{ 1299 if (memcg_kmem_enabled()) 1300 return __memcg_kmem_charge(page, gfp, order); 1301 return 0; 1302} 1303 1304static inline void memcg_kmem_uncharge(struct page *page, int order) 1305{ 1306 if (memcg_kmem_enabled()) 1307 __memcg_kmem_uncharge(page, order); 1308} 1309 1310static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, 1311 int order, struct mem_cgroup *memcg) 1312{ 1313 if (memcg_kmem_enabled()) 1314 return __memcg_kmem_charge_memcg(page, gfp, order, memcg); 1315 return 0; 1316} 1317 1318static inline void memcg_kmem_uncharge_memcg(struct page *page, int order, 1319 struct mem_cgroup *memcg) 1320{ 1321 if (memcg_kmem_enabled()) 1322 __memcg_kmem_uncharge_memcg(memcg, 1 << order); 1323} 1324 1325/* 1326 * helper for accessing a memcg's index. It will be used as an index in the 1327 * child cache array in kmem_cache, and also to derive its name. This function 1328 * will return -1 when this is not a kmem-limited memcg. 1329 */ 1330static inline int memcg_cache_id(struct mem_cgroup *memcg) 1331{ 1332 return memcg ? memcg->kmemcg_id : -1; 1333} 1334 1335extern int memcg_expand_shrinker_maps(int new_id); 1336 1337extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1338 int nid, int shrinker_id); 1339#else 1340 1341static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1342{ 1343 return 0; 1344} 1345 1346static inline void memcg_kmem_uncharge(struct page *page, int order) 1347{ 1348} 1349 1350static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 1351{ 1352 return 0; 1353} 1354 1355static inline void __memcg_kmem_uncharge(struct page *page, int order) 1356{ 1357} 1358 1359#define for_each_memcg_cache_index(_idx) \ 1360 for (; NULL; ) 1361 1362static inline bool memcg_kmem_enabled(void) 1363{ 1364 return false; 1365} 1366 1367static inline int memcg_cache_id(struct mem_cgroup *memcg) 1368{ 1369 return -1; 1370} 1371 1372static inline void memcg_get_cache_ids(void) 1373{ 1374} 1375 1376static inline void memcg_put_cache_ids(void) 1377{ 1378} 1379 1380static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1381 int nid, int shrinker_id) { } 1382#endif /* CONFIG_MEMCG_KMEM */ 1383 1384#endif /* _LINUX_MEMCONTROL_H */