Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/module.h>
14#include <linux/ktime.h>
15#include <linux/hrtimer.h>
16#include <linux/tick.h>
17#include <linux/slab.h>
18#include <linux/sched/cpufreq.h>
19#include <linux/list.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/sysfs.h>
23#include <linux/types.h>
24#include <linux/fs.h>
25#include <linux/acpi.h>
26#include <linux/vmalloc.h>
27#include <trace/events/power.h>
28
29#include <asm/div64.h>
30#include <asm/msr.h>
31#include <asm/cpu_device_id.h>
32#include <asm/cpufeature.h>
33#include <asm/intel-family.h>
34
35#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
36
37#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
38#define INTEL_CPUFREQ_TRANSITION_DELAY 500
39
40#ifdef CONFIG_ACPI
41#include <acpi/processor.h>
42#include <acpi/cppc_acpi.h>
43#endif
44
45#define FRAC_BITS 8
46#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
47#define fp_toint(X) ((X) >> FRAC_BITS)
48
49#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
50
51#define EXT_BITS 6
52#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55
56static inline int32_t mul_fp(int32_t x, int32_t y)
57{
58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59}
60
61static inline int32_t div_fp(s64 x, s64 y)
62{
63 return div64_s64((int64_t)x << FRAC_BITS, y);
64}
65
66static inline int ceiling_fp(int32_t x)
67{
68 int mask, ret;
69
70 ret = fp_toint(x);
71 mask = (1 << FRAC_BITS) - 1;
72 if (x & mask)
73 ret += 1;
74 return ret;
75}
76
77static inline int32_t percent_fp(int percent)
78{
79 return div_fp(percent, 100);
80}
81
82static inline u64 mul_ext_fp(u64 x, u64 y)
83{
84 return (x * y) >> EXT_FRAC_BITS;
85}
86
87static inline u64 div_ext_fp(u64 x, u64 y)
88{
89 return div64_u64(x << EXT_FRAC_BITS, y);
90}
91
92static inline int32_t percent_ext_fp(int percent)
93{
94 return div_ext_fp(percent, 100);
95}
96
97/**
98 * struct sample - Store performance sample
99 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
100 * performance during last sample period
101 * @busy_scaled: Scaled busy value which is used to calculate next
102 * P state. This can be different than core_avg_perf
103 * to account for cpu idle period
104 * @aperf: Difference of actual performance frequency clock count
105 * read from APERF MSR between last and current sample
106 * @mperf: Difference of maximum performance frequency clock count
107 * read from MPERF MSR between last and current sample
108 * @tsc: Difference of time stamp counter between last and
109 * current sample
110 * @time: Current time from scheduler
111 *
112 * This structure is used in the cpudata structure to store performance sample
113 * data for choosing next P State.
114 */
115struct sample {
116 int32_t core_avg_perf;
117 int32_t busy_scaled;
118 u64 aperf;
119 u64 mperf;
120 u64 tsc;
121 u64 time;
122};
123
124/**
125 * struct pstate_data - Store P state data
126 * @current_pstate: Current requested P state
127 * @min_pstate: Min P state possible for this platform
128 * @max_pstate: Max P state possible for this platform
129 * @max_pstate_physical:This is physical Max P state for a processor
130 * This can be higher than the max_pstate which can
131 * be limited by platform thermal design power limits
132 * @scaling: Scaling factor to convert frequency to cpufreq
133 * frequency units
134 * @turbo_pstate: Max Turbo P state possible for this platform
135 * @max_freq: @max_pstate frequency in cpufreq units
136 * @turbo_freq: @turbo_pstate frequency in cpufreq units
137 *
138 * Stores the per cpu model P state limits and current P state.
139 */
140struct pstate_data {
141 int current_pstate;
142 int min_pstate;
143 int max_pstate;
144 int max_pstate_physical;
145 int scaling;
146 int turbo_pstate;
147 unsigned int max_freq;
148 unsigned int turbo_freq;
149};
150
151/**
152 * struct vid_data - Stores voltage information data
153 * @min: VID data for this platform corresponding to
154 * the lowest P state
155 * @max: VID data corresponding to the highest P State.
156 * @turbo: VID data for turbo P state
157 * @ratio: Ratio of (vid max - vid min) /
158 * (max P state - Min P State)
159 *
160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161 * This data is used in Atom platforms, where in addition to target P state,
162 * the voltage data needs to be specified to select next P State.
163 */
164struct vid_data {
165 int min;
166 int max;
167 int turbo;
168 int32_t ratio;
169};
170
171/**
172 * struct global_params - Global parameters, mostly tunable via sysfs.
173 * @no_turbo: Whether or not to use turbo P-states.
174 * @turbo_disabled: Whethet or not turbo P-states are available at all,
175 * based on the MSR_IA32_MISC_ENABLE value and whether or
176 * not the maximum reported turbo P-state is different from
177 * the maximum reported non-turbo one.
178 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
179 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
180 * P-state capacity.
181 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
182 * P-state capacity.
183 */
184struct global_params {
185 bool no_turbo;
186 bool turbo_disabled;
187 bool turbo_disabled_mf;
188 int max_perf_pct;
189 int min_perf_pct;
190};
191
192/**
193 * struct cpudata - Per CPU instance data storage
194 * @cpu: CPU number for this instance data
195 * @policy: CPUFreq policy value
196 * @update_util: CPUFreq utility callback information
197 * @update_util_set: CPUFreq utility callback is set
198 * @iowait_boost: iowait-related boost fraction
199 * @last_update: Time of the last update.
200 * @pstate: Stores P state limits for this CPU
201 * @vid: Stores VID limits for this CPU
202 * @last_sample_time: Last Sample time
203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
204 * This shift is a multiplier to mperf delta to
205 * calculate CPU busy.
206 * @prev_aperf: Last APERF value read from APERF MSR
207 * @prev_mperf: Last MPERF value read from MPERF MSR
208 * @prev_tsc: Last timestamp counter (TSC) value
209 * @prev_cummulative_iowait: IO Wait time difference from last and
210 * current sample
211 * @sample: Storage for storing last Sample data
212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
214 * @acpi_perf_data: Stores ACPI perf information read from _PSS
215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
216 * @epp_powersave: Last saved HWP energy performance preference
217 * (EPP) or energy performance bias (EPB),
218 * when policy switched to performance
219 * @epp_policy: Last saved policy used to set EPP/EPB
220 * @epp_default: Power on default HWP energy performance
221 * preference/bias
222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
223 * operation
224 * @hwp_req_cached: Cached value of the last HWP Request MSR
225 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
226 * @last_io_update: Last time when IO wake flag was set
227 * @sched_flags: Store scheduler flags for possible cross CPU update
228 * @hwp_boost_min: Last HWP boosted min performance
229 *
230 * This structure stores per CPU instance data for all CPUs.
231 */
232struct cpudata {
233 int cpu;
234
235 unsigned int policy;
236 struct update_util_data update_util;
237 bool update_util_set;
238
239 struct pstate_data pstate;
240 struct vid_data vid;
241
242 u64 last_update;
243 u64 last_sample_time;
244 u64 aperf_mperf_shift;
245 u64 prev_aperf;
246 u64 prev_mperf;
247 u64 prev_tsc;
248 u64 prev_cummulative_iowait;
249 struct sample sample;
250 int32_t min_perf_ratio;
251 int32_t max_perf_ratio;
252#ifdef CONFIG_ACPI
253 struct acpi_processor_performance acpi_perf_data;
254 bool valid_pss_table;
255#endif
256 unsigned int iowait_boost;
257 s16 epp_powersave;
258 s16 epp_policy;
259 s16 epp_default;
260 s16 epp_saved;
261 u64 hwp_req_cached;
262 u64 hwp_cap_cached;
263 u64 last_io_update;
264 unsigned int sched_flags;
265 u32 hwp_boost_min;
266};
267
268static struct cpudata **all_cpu_data;
269
270/**
271 * struct pstate_funcs - Per CPU model specific callbacks
272 * @get_max: Callback to get maximum non turbo effective P state
273 * @get_max_physical: Callback to get maximum non turbo physical P state
274 * @get_min: Callback to get minimum P state
275 * @get_turbo: Callback to get turbo P state
276 * @get_scaling: Callback to get frequency scaling factor
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283struct pstate_funcs {
284 int (*get_max)(void);
285 int (*get_max_physical)(void);
286 int (*get_min)(void);
287 int (*get_turbo)(void);
288 int (*get_scaling)(void);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
292};
293
294static struct pstate_funcs pstate_funcs __read_mostly;
295
296static int hwp_active __read_mostly;
297static int hwp_mode_bdw __read_mostly;
298static bool per_cpu_limits __read_mostly;
299static bool hwp_boost __read_mostly;
300
301static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303#ifdef CONFIG_ACPI
304static bool acpi_ppc;
305#endif
306
307static struct global_params global;
308
309static DEFINE_MUTEX(intel_pstate_driver_lock);
310static DEFINE_MUTEX(intel_pstate_limits_lock);
311
312#ifdef CONFIG_ACPI
313
314static bool intel_pstate_acpi_pm_profile_server(void)
315{
316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 return true;
319
320 return false;
321}
322
323static bool intel_pstate_get_ppc_enable_status(void)
324{
325 if (intel_pstate_acpi_pm_profile_server())
326 return true;
327
328 return acpi_ppc;
329}
330
331#ifdef CONFIG_ACPI_CPPC_LIB
332
333/* The work item is needed to avoid CPU hotplug locking issues */
334static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335{
336 sched_set_itmt_support();
337}
338
339static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340
341static void intel_pstate_set_itmt_prio(int cpu)
342{
343 struct cppc_perf_caps cppc_perf;
344 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 int ret;
346
347 ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 if (ret)
349 return;
350
351 /*
352 * The priorities can be set regardless of whether or not
353 * sched_set_itmt_support(true) has been called and it is valid to
354 * update them at any time after it has been called.
355 */
356 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357
358 if (max_highest_perf <= min_highest_perf) {
359 if (cppc_perf.highest_perf > max_highest_perf)
360 max_highest_perf = cppc_perf.highest_perf;
361
362 if (cppc_perf.highest_perf < min_highest_perf)
363 min_highest_perf = cppc_perf.highest_perf;
364
365 if (max_highest_perf > min_highest_perf) {
366 /*
367 * This code can be run during CPU online under the
368 * CPU hotplug locks, so sched_set_itmt_support()
369 * cannot be called from here. Queue up a work item
370 * to invoke it.
371 */
372 schedule_work(&sched_itmt_work);
373 }
374 }
375}
376
377static int intel_pstate_get_cppc_guranteed(int cpu)
378{
379 struct cppc_perf_caps cppc_perf;
380 int ret;
381
382 ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 if (ret)
384 return ret;
385
386 if (cppc_perf.guaranteed_perf)
387 return cppc_perf.guaranteed_perf;
388
389 return cppc_perf.nominal_perf;
390}
391
392#else /* CONFIG_ACPI_CPPC_LIB */
393static void intel_pstate_set_itmt_prio(int cpu)
394{
395}
396#endif /* CONFIG_ACPI_CPPC_LIB */
397
398static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
399{
400 struct cpudata *cpu;
401 int ret;
402 int i;
403
404 if (hwp_active) {
405 intel_pstate_set_itmt_prio(policy->cpu);
406 return;
407 }
408
409 if (!intel_pstate_get_ppc_enable_status())
410 return;
411
412 cpu = all_cpu_data[policy->cpu];
413
414 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
415 policy->cpu);
416 if (ret)
417 return;
418
419 /*
420 * Check if the control value in _PSS is for PERF_CTL MSR, which should
421 * guarantee that the states returned by it map to the states in our
422 * list directly.
423 */
424 if (cpu->acpi_perf_data.control_register.space_id !=
425 ACPI_ADR_SPACE_FIXED_HARDWARE)
426 goto err;
427
428 /*
429 * If there is only one entry _PSS, simply ignore _PSS and continue as
430 * usual without taking _PSS into account
431 */
432 if (cpu->acpi_perf_data.state_count < 2)
433 goto err;
434
435 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
436 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
437 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
438 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
439 (u32) cpu->acpi_perf_data.states[i].core_frequency,
440 (u32) cpu->acpi_perf_data.states[i].power,
441 (u32) cpu->acpi_perf_data.states[i].control);
442 }
443
444 /*
445 * The _PSS table doesn't contain whole turbo frequency range.
446 * This just contains +1 MHZ above the max non turbo frequency,
447 * with control value corresponding to max turbo ratio. But
448 * when cpufreq set policy is called, it will call with this
449 * max frequency, which will cause a reduced performance as
450 * this driver uses real max turbo frequency as the max
451 * frequency. So correct this frequency in _PSS table to
452 * correct max turbo frequency based on the turbo state.
453 * Also need to convert to MHz as _PSS freq is in MHz.
454 */
455 if (!global.turbo_disabled)
456 cpu->acpi_perf_data.states[0].core_frequency =
457 policy->cpuinfo.max_freq / 1000;
458 cpu->valid_pss_table = true;
459 pr_debug("_PPC limits will be enforced\n");
460
461 return;
462
463 err:
464 cpu->valid_pss_table = false;
465 acpi_processor_unregister_performance(policy->cpu);
466}
467
468static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
469{
470 struct cpudata *cpu;
471
472 cpu = all_cpu_data[policy->cpu];
473 if (!cpu->valid_pss_table)
474 return;
475
476 acpi_processor_unregister_performance(policy->cpu);
477}
478#else /* CONFIG_ACPI */
479static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480{
481}
482
483static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484{
485}
486
487static inline bool intel_pstate_acpi_pm_profile_server(void)
488{
489 return false;
490}
491#endif /* CONFIG_ACPI */
492
493#ifndef CONFIG_ACPI_CPPC_LIB
494static int intel_pstate_get_cppc_guranteed(int cpu)
495{
496 return -ENOTSUPP;
497}
498#endif /* CONFIG_ACPI_CPPC_LIB */
499
500static inline void update_turbo_state(void)
501{
502 u64 misc_en;
503 struct cpudata *cpu;
504
505 cpu = all_cpu_data[0];
506 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507 global.turbo_disabled =
508 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
509 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
510}
511
512static int min_perf_pct_min(void)
513{
514 struct cpudata *cpu = all_cpu_data[0];
515 int turbo_pstate = cpu->pstate.turbo_pstate;
516
517 return turbo_pstate ?
518 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519}
520
521static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
522{
523 u64 epb;
524 int ret;
525
526 if (!boot_cpu_has(X86_FEATURE_EPB))
527 return -ENXIO;
528
529 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
530 if (ret)
531 return (s16)ret;
532
533 return (s16)(epb & 0x0f);
534}
535
536static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
537{
538 s16 epp;
539
540 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 /*
542 * When hwp_req_data is 0, means that caller didn't read
543 * MSR_HWP_REQUEST, so need to read and get EPP.
544 */
545 if (!hwp_req_data) {
546 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
547 &hwp_req_data);
548 if (epp)
549 return epp;
550 }
551 epp = (hwp_req_data >> 24) & 0xff;
552 } else {
553 /* When there is no EPP present, HWP uses EPB settings */
554 epp = intel_pstate_get_epb(cpu_data);
555 }
556
557 return epp;
558}
559
560static int intel_pstate_set_epb(int cpu, s16 pref)
561{
562 u64 epb;
563 int ret;
564
565 if (!boot_cpu_has(X86_FEATURE_EPB))
566 return -ENXIO;
567
568 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569 if (ret)
570 return ret;
571
572 epb = (epb & ~0x0f) | pref;
573 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574
575 return 0;
576}
577
578/*
579 * EPP/EPB display strings corresponding to EPP index in the
580 * energy_perf_strings[]
581 * index String
582 *-------------------------------------
583 * 0 default
584 * 1 performance
585 * 2 balance_performance
586 * 3 balance_power
587 * 4 power
588 */
589static const char * const energy_perf_strings[] = {
590 "default",
591 "performance",
592 "balance_performance",
593 "balance_power",
594 "power",
595 NULL
596};
597static const unsigned int epp_values[] = {
598 HWP_EPP_PERFORMANCE,
599 HWP_EPP_BALANCE_PERFORMANCE,
600 HWP_EPP_BALANCE_POWERSAVE,
601 HWP_EPP_POWERSAVE
602};
603
604static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
605{
606 s16 epp;
607 int index = -EINVAL;
608
609 epp = intel_pstate_get_epp(cpu_data, 0);
610 if (epp < 0)
611 return epp;
612
613 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614 if (epp == HWP_EPP_PERFORMANCE)
615 return 1;
616 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
617 return 2;
618 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
619 return 3;
620 else
621 return 4;
622 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
623 /*
624 * Range:
625 * 0x00-0x03 : Performance
626 * 0x04-0x07 : Balance performance
627 * 0x08-0x0B : Balance power
628 * 0x0C-0x0F : Power
629 * The EPB is a 4 bit value, but our ranges restrict the
630 * value which can be set. Here only using top two bits
631 * effectively.
632 */
633 index = (epp >> 2) + 1;
634 }
635
636 return index;
637}
638
639static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
640 int pref_index)
641{
642 int epp = -EINVAL;
643 int ret;
644
645 if (!pref_index)
646 epp = cpu_data->epp_default;
647
648 mutex_lock(&intel_pstate_limits_lock);
649
650 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651 u64 value;
652
653 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
654 if (ret)
655 goto return_pref;
656
657 value &= ~GENMASK_ULL(31, 24);
658
659 if (epp == -EINVAL)
660 epp = epp_values[pref_index - 1];
661
662 value |= (u64)epp << 24;
663 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
664 } else {
665 if (epp == -EINVAL)
666 epp = (pref_index - 1) << 2;
667 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
668 }
669return_pref:
670 mutex_unlock(&intel_pstate_limits_lock);
671
672 return ret;
673}
674
675static ssize_t show_energy_performance_available_preferences(
676 struct cpufreq_policy *policy, char *buf)
677{
678 int i = 0;
679 int ret = 0;
680
681 while (energy_perf_strings[i] != NULL)
682 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
683
684 ret += sprintf(&buf[ret], "\n");
685
686 return ret;
687}
688
689cpufreq_freq_attr_ro(energy_performance_available_preferences);
690
691static ssize_t store_energy_performance_preference(
692 struct cpufreq_policy *policy, const char *buf, size_t count)
693{
694 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
695 char str_preference[21];
696 int ret;
697
698 ret = sscanf(buf, "%20s", str_preference);
699 if (ret != 1)
700 return -EINVAL;
701
702 ret = match_string(energy_perf_strings, -1, str_preference);
703 if (ret < 0)
704 return ret;
705
706 intel_pstate_set_energy_pref_index(cpu_data, ret);
707 return count;
708}
709
710static ssize_t show_energy_performance_preference(
711 struct cpufreq_policy *policy, char *buf)
712{
713 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
714 int preference;
715
716 preference = intel_pstate_get_energy_pref_index(cpu_data);
717 if (preference < 0)
718 return preference;
719
720 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
721}
722
723cpufreq_freq_attr_rw(energy_performance_preference);
724
725static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
726{
727 struct cpudata *cpu;
728 u64 cap;
729 int ratio;
730
731 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
732 if (ratio <= 0) {
733 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
734 ratio = HWP_GUARANTEED_PERF(cap);
735 }
736
737 cpu = all_cpu_data[policy->cpu];
738
739 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
740}
741
742cpufreq_freq_attr_ro(base_frequency);
743
744static struct freq_attr *hwp_cpufreq_attrs[] = {
745 &energy_performance_preference,
746 &energy_performance_available_preferences,
747 &base_frequency,
748 NULL,
749};
750
751static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
752 int *current_max)
753{
754 u64 cap;
755
756 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758 if (global.no_turbo)
759 *current_max = HWP_GUARANTEED_PERF(cap);
760 else
761 *current_max = HWP_HIGHEST_PERF(cap);
762
763 *phy_max = HWP_HIGHEST_PERF(cap);
764}
765
766static void intel_pstate_hwp_set(unsigned int cpu)
767{
768 struct cpudata *cpu_data = all_cpu_data[cpu];
769 int max, min;
770 u64 value;
771 s16 epp;
772
773 max = cpu_data->max_perf_ratio;
774 min = cpu_data->min_perf_ratio;
775
776 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
777 min = max;
778
779 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
780
781 value &= ~HWP_MIN_PERF(~0L);
782 value |= HWP_MIN_PERF(min);
783
784 value &= ~HWP_MAX_PERF(~0L);
785 value |= HWP_MAX_PERF(max);
786
787 if (cpu_data->epp_policy == cpu_data->policy)
788 goto skip_epp;
789
790 cpu_data->epp_policy = cpu_data->policy;
791
792 if (cpu_data->epp_saved >= 0) {
793 epp = cpu_data->epp_saved;
794 cpu_data->epp_saved = -EINVAL;
795 goto update_epp;
796 }
797
798 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
799 epp = intel_pstate_get_epp(cpu_data, value);
800 cpu_data->epp_powersave = epp;
801 /* If EPP read was failed, then don't try to write */
802 if (epp < 0)
803 goto skip_epp;
804
805 epp = 0;
806 } else {
807 /* skip setting EPP, when saved value is invalid */
808 if (cpu_data->epp_powersave < 0)
809 goto skip_epp;
810
811 /*
812 * No need to restore EPP when it is not zero. This
813 * means:
814 * - Policy is not changed
815 * - user has manually changed
816 * - Error reading EPB
817 */
818 epp = intel_pstate_get_epp(cpu_data, value);
819 if (epp)
820 goto skip_epp;
821
822 epp = cpu_data->epp_powersave;
823 }
824update_epp:
825 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826 value &= ~GENMASK_ULL(31, 24);
827 value |= (u64)epp << 24;
828 } else {
829 intel_pstate_set_epb(cpu, epp);
830 }
831skip_epp:
832 WRITE_ONCE(cpu_data->hwp_req_cached, value);
833 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834}
835
836static void intel_pstate_hwp_force_min_perf(int cpu)
837{
838 u64 value;
839 int min_perf;
840
841 value = all_cpu_data[cpu]->hwp_req_cached;
842 value &= ~GENMASK_ULL(31, 0);
843 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
844
845 /* Set hwp_max = hwp_min */
846 value |= HWP_MAX_PERF(min_perf);
847 value |= HWP_MIN_PERF(min_perf);
848
849 /* Set EPP/EPB to min */
850 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
852 else
853 intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
854
855 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
856}
857
858static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
859{
860 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
861
862 if (!hwp_active)
863 return 0;
864
865 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
866
867 return 0;
868}
869
870static void intel_pstate_hwp_enable(struct cpudata *cpudata);
871
872static int intel_pstate_resume(struct cpufreq_policy *policy)
873{
874 if (!hwp_active)
875 return 0;
876
877 mutex_lock(&intel_pstate_limits_lock);
878
879 if (policy->cpu == 0)
880 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
881
882 all_cpu_data[policy->cpu]->epp_policy = 0;
883 intel_pstate_hwp_set(policy->cpu);
884
885 mutex_unlock(&intel_pstate_limits_lock);
886
887 return 0;
888}
889
890static void intel_pstate_update_policies(void)
891{
892 int cpu;
893
894 for_each_possible_cpu(cpu)
895 cpufreq_update_policy(cpu);
896}
897
898static void intel_pstate_update_max_freq(unsigned int cpu)
899{
900 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
901 struct cpudata *cpudata;
902
903 if (!policy)
904 return;
905
906 cpudata = all_cpu_data[cpu];
907 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
908 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
909
910 refresh_frequency_limits(policy);
911
912 cpufreq_cpu_release(policy);
913}
914
915static void intel_pstate_update_limits(unsigned int cpu)
916{
917 mutex_lock(&intel_pstate_driver_lock);
918
919 update_turbo_state();
920 /*
921 * If turbo has been turned on or off globally, policy limits for
922 * all CPUs need to be updated to reflect that.
923 */
924 if (global.turbo_disabled_mf != global.turbo_disabled) {
925 global.turbo_disabled_mf = global.turbo_disabled;
926 for_each_possible_cpu(cpu)
927 intel_pstate_update_max_freq(cpu);
928 } else {
929 cpufreq_update_policy(cpu);
930 }
931
932 mutex_unlock(&intel_pstate_driver_lock);
933}
934
935/************************** sysfs begin ************************/
936#define show_one(file_name, object) \
937 static ssize_t show_##file_name \
938 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
939 { \
940 return sprintf(buf, "%u\n", global.object); \
941 }
942
943static ssize_t intel_pstate_show_status(char *buf);
944static int intel_pstate_update_status(const char *buf, size_t size);
945
946static ssize_t show_status(struct kobject *kobj,
947 struct kobj_attribute *attr, char *buf)
948{
949 ssize_t ret;
950
951 mutex_lock(&intel_pstate_driver_lock);
952 ret = intel_pstate_show_status(buf);
953 mutex_unlock(&intel_pstate_driver_lock);
954
955 return ret;
956}
957
958static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
959 const char *buf, size_t count)
960{
961 char *p = memchr(buf, '\n', count);
962 int ret;
963
964 mutex_lock(&intel_pstate_driver_lock);
965 ret = intel_pstate_update_status(buf, p ? p - buf : count);
966 mutex_unlock(&intel_pstate_driver_lock);
967
968 return ret < 0 ? ret : count;
969}
970
971static ssize_t show_turbo_pct(struct kobject *kobj,
972 struct kobj_attribute *attr, char *buf)
973{
974 struct cpudata *cpu;
975 int total, no_turbo, turbo_pct;
976 uint32_t turbo_fp;
977
978 mutex_lock(&intel_pstate_driver_lock);
979
980 if (!intel_pstate_driver) {
981 mutex_unlock(&intel_pstate_driver_lock);
982 return -EAGAIN;
983 }
984
985 cpu = all_cpu_data[0];
986
987 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
988 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
989 turbo_fp = div_fp(no_turbo, total);
990 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
991
992 mutex_unlock(&intel_pstate_driver_lock);
993
994 return sprintf(buf, "%u\n", turbo_pct);
995}
996
997static ssize_t show_num_pstates(struct kobject *kobj,
998 struct kobj_attribute *attr, char *buf)
999{
1000 struct cpudata *cpu;
1001 int total;
1002
1003 mutex_lock(&intel_pstate_driver_lock);
1004
1005 if (!intel_pstate_driver) {
1006 mutex_unlock(&intel_pstate_driver_lock);
1007 return -EAGAIN;
1008 }
1009
1010 cpu = all_cpu_data[0];
1011 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012
1013 mutex_unlock(&intel_pstate_driver_lock);
1014
1015 return sprintf(buf, "%u\n", total);
1016}
1017
1018static ssize_t show_no_turbo(struct kobject *kobj,
1019 struct kobj_attribute *attr, char *buf)
1020{
1021 ssize_t ret;
1022
1023 mutex_lock(&intel_pstate_driver_lock);
1024
1025 if (!intel_pstate_driver) {
1026 mutex_unlock(&intel_pstate_driver_lock);
1027 return -EAGAIN;
1028 }
1029
1030 update_turbo_state();
1031 if (global.turbo_disabled)
1032 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033 else
1034 ret = sprintf(buf, "%u\n", global.no_turbo);
1035
1036 mutex_unlock(&intel_pstate_driver_lock);
1037
1038 return ret;
1039}
1040
1041static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042 const char *buf, size_t count)
1043{
1044 unsigned int input;
1045 int ret;
1046
1047 ret = sscanf(buf, "%u", &input);
1048 if (ret != 1)
1049 return -EINVAL;
1050
1051 mutex_lock(&intel_pstate_driver_lock);
1052
1053 if (!intel_pstate_driver) {
1054 mutex_unlock(&intel_pstate_driver_lock);
1055 return -EAGAIN;
1056 }
1057
1058 mutex_lock(&intel_pstate_limits_lock);
1059
1060 update_turbo_state();
1061 if (global.turbo_disabled) {
1062 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1063 mutex_unlock(&intel_pstate_limits_lock);
1064 mutex_unlock(&intel_pstate_driver_lock);
1065 return -EPERM;
1066 }
1067
1068 global.no_turbo = clamp_t(int, input, 0, 1);
1069
1070 if (global.no_turbo) {
1071 struct cpudata *cpu = all_cpu_data[0];
1072 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1073
1074 /* Squash the global minimum into the permitted range. */
1075 if (global.min_perf_pct > pct)
1076 global.min_perf_pct = pct;
1077 }
1078
1079 mutex_unlock(&intel_pstate_limits_lock);
1080
1081 intel_pstate_update_policies();
1082
1083 mutex_unlock(&intel_pstate_driver_lock);
1084
1085 return count;
1086}
1087
1088static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1089 const char *buf, size_t count)
1090{
1091 unsigned int input;
1092 int ret;
1093
1094 ret = sscanf(buf, "%u", &input);
1095 if (ret != 1)
1096 return -EINVAL;
1097
1098 mutex_lock(&intel_pstate_driver_lock);
1099
1100 if (!intel_pstate_driver) {
1101 mutex_unlock(&intel_pstate_driver_lock);
1102 return -EAGAIN;
1103 }
1104
1105 mutex_lock(&intel_pstate_limits_lock);
1106
1107 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1108
1109 mutex_unlock(&intel_pstate_limits_lock);
1110
1111 intel_pstate_update_policies();
1112
1113 mutex_unlock(&intel_pstate_driver_lock);
1114
1115 return count;
1116}
1117
1118static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1119 const char *buf, size_t count)
1120{
1121 unsigned int input;
1122 int ret;
1123
1124 ret = sscanf(buf, "%u", &input);
1125 if (ret != 1)
1126 return -EINVAL;
1127
1128 mutex_lock(&intel_pstate_driver_lock);
1129
1130 if (!intel_pstate_driver) {
1131 mutex_unlock(&intel_pstate_driver_lock);
1132 return -EAGAIN;
1133 }
1134
1135 mutex_lock(&intel_pstate_limits_lock);
1136
1137 global.min_perf_pct = clamp_t(int, input,
1138 min_perf_pct_min(), global.max_perf_pct);
1139
1140 mutex_unlock(&intel_pstate_limits_lock);
1141
1142 intel_pstate_update_policies();
1143
1144 mutex_unlock(&intel_pstate_driver_lock);
1145
1146 return count;
1147}
1148
1149static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1150 struct kobj_attribute *attr, char *buf)
1151{
1152 return sprintf(buf, "%u\n", hwp_boost);
1153}
1154
1155static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1156 struct kobj_attribute *b,
1157 const char *buf, size_t count)
1158{
1159 unsigned int input;
1160 int ret;
1161
1162 ret = kstrtouint(buf, 10, &input);
1163 if (ret)
1164 return ret;
1165
1166 mutex_lock(&intel_pstate_driver_lock);
1167 hwp_boost = !!input;
1168 intel_pstate_update_policies();
1169 mutex_unlock(&intel_pstate_driver_lock);
1170
1171 return count;
1172}
1173
1174show_one(max_perf_pct, max_perf_pct);
1175show_one(min_perf_pct, min_perf_pct);
1176
1177define_one_global_rw(status);
1178define_one_global_rw(no_turbo);
1179define_one_global_rw(max_perf_pct);
1180define_one_global_rw(min_perf_pct);
1181define_one_global_ro(turbo_pct);
1182define_one_global_ro(num_pstates);
1183define_one_global_rw(hwp_dynamic_boost);
1184
1185static struct attribute *intel_pstate_attributes[] = {
1186 &status.attr,
1187 &no_turbo.attr,
1188 &turbo_pct.attr,
1189 &num_pstates.attr,
1190 NULL
1191};
1192
1193static const struct attribute_group intel_pstate_attr_group = {
1194 .attrs = intel_pstate_attributes,
1195};
1196
1197static void __init intel_pstate_sysfs_expose_params(void)
1198{
1199 struct kobject *intel_pstate_kobject;
1200 int rc;
1201
1202 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1203 &cpu_subsys.dev_root->kobj);
1204 if (WARN_ON(!intel_pstate_kobject))
1205 return;
1206
1207 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1208 if (WARN_ON(rc))
1209 return;
1210
1211 /*
1212 * If per cpu limits are enforced there are no global limits, so
1213 * return without creating max/min_perf_pct attributes
1214 */
1215 if (per_cpu_limits)
1216 return;
1217
1218 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1219 WARN_ON(rc);
1220
1221 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1222 WARN_ON(rc);
1223
1224 if (hwp_active) {
1225 rc = sysfs_create_file(intel_pstate_kobject,
1226 &hwp_dynamic_boost.attr);
1227 WARN_ON(rc);
1228 }
1229}
1230/************************** sysfs end ************************/
1231
1232static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1233{
1234 /* First disable HWP notification interrupt as we don't process them */
1235 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1236 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1237
1238 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1239 cpudata->epp_policy = 0;
1240 if (cpudata->epp_default == -EINVAL)
1241 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1242}
1243
1244#define MSR_IA32_POWER_CTL_BIT_EE 19
1245
1246/* Disable energy efficiency optimization */
1247static void intel_pstate_disable_ee(int cpu)
1248{
1249 u64 power_ctl;
1250 int ret;
1251
1252 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1253 if (ret)
1254 return;
1255
1256 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1257 pr_info("Disabling energy efficiency optimization\n");
1258 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1259 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1260 }
1261}
1262
1263static int atom_get_min_pstate(void)
1264{
1265 u64 value;
1266
1267 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1268 return (value >> 8) & 0x7F;
1269}
1270
1271static int atom_get_max_pstate(void)
1272{
1273 u64 value;
1274
1275 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1276 return (value >> 16) & 0x7F;
1277}
1278
1279static int atom_get_turbo_pstate(void)
1280{
1281 u64 value;
1282
1283 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1284 return value & 0x7F;
1285}
1286
1287static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1288{
1289 u64 val;
1290 int32_t vid_fp;
1291 u32 vid;
1292
1293 val = (u64)pstate << 8;
1294 if (global.no_turbo && !global.turbo_disabled)
1295 val |= (u64)1 << 32;
1296
1297 vid_fp = cpudata->vid.min + mul_fp(
1298 int_tofp(pstate - cpudata->pstate.min_pstate),
1299 cpudata->vid.ratio);
1300
1301 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1302 vid = ceiling_fp(vid_fp);
1303
1304 if (pstate > cpudata->pstate.max_pstate)
1305 vid = cpudata->vid.turbo;
1306
1307 return val | vid;
1308}
1309
1310static int silvermont_get_scaling(void)
1311{
1312 u64 value;
1313 int i;
1314 /* Defined in Table 35-6 from SDM (Sept 2015) */
1315 static int silvermont_freq_table[] = {
1316 83300, 100000, 133300, 116700, 80000};
1317
1318 rdmsrl(MSR_FSB_FREQ, value);
1319 i = value & 0x7;
1320 WARN_ON(i > 4);
1321
1322 return silvermont_freq_table[i];
1323}
1324
1325static int airmont_get_scaling(void)
1326{
1327 u64 value;
1328 int i;
1329 /* Defined in Table 35-10 from SDM (Sept 2015) */
1330 static int airmont_freq_table[] = {
1331 83300, 100000, 133300, 116700, 80000,
1332 93300, 90000, 88900, 87500};
1333
1334 rdmsrl(MSR_FSB_FREQ, value);
1335 i = value & 0xF;
1336 WARN_ON(i > 8);
1337
1338 return airmont_freq_table[i];
1339}
1340
1341static void atom_get_vid(struct cpudata *cpudata)
1342{
1343 u64 value;
1344
1345 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1346 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1347 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1348 cpudata->vid.ratio = div_fp(
1349 cpudata->vid.max - cpudata->vid.min,
1350 int_tofp(cpudata->pstate.max_pstate -
1351 cpudata->pstate.min_pstate));
1352
1353 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1354 cpudata->vid.turbo = value & 0x7f;
1355}
1356
1357static int core_get_min_pstate(void)
1358{
1359 u64 value;
1360
1361 rdmsrl(MSR_PLATFORM_INFO, value);
1362 return (value >> 40) & 0xFF;
1363}
1364
1365static int core_get_max_pstate_physical(void)
1366{
1367 u64 value;
1368
1369 rdmsrl(MSR_PLATFORM_INFO, value);
1370 return (value >> 8) & 0xFF;
1371}
1372
1373static int core_get_tdp_ratio(u64 plat_info)
1374{
1375 /* Check how many TDP levels present */
1376 if (plat_info & 0x600000000) {
1377 u64 tdp_ctrl;
1378 u64 tdp_ratio;
1379 int tdp_msr;
1380 int err;
1381
1382 /* Get the TDP level (0, 1, 2) to get ratios */
1383 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1384 if (err)
1385 return err;
1386
1387 /* TDP MSR are continuous starting at 0x648 */
1388 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1389 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1390 if (err)
1391 return err;
1392
1393 /* For level 1 and 2, bits[23:16] contain the ratio */
1394 if (tdp_ctrl & 0x03)
1395 tdp_ratio >>= 16;
1396
1397 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1398 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1399
1400 return (int)tdp_ratio;
1401 }
1402
1403 return -ENXIO;
1404}
1405
1406static int core_get_max_pstate(void)
1407{
1408 u64 tar;
1409 u64 plat_info;
1410 int max_pstate;
1411 int tdp_ratio;
1412 int err;
1413
1414 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1415 max_pstate = (plat_info >> 8) & 0xFF;
1416
1417 tdp_ratio = core_get_tdp_ratio(plat_info);
1418 if (tdp_ratio <= 0)
1419 return max_pstate;
1420
1421 if (hwp_active) {
1422 /* Turbo activation ratio is not used on HWP platforms */
1423 return tdp_ratio;
1424 }
1425
1426 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1427 if (!err) {
1428 int tar_levels;
1429
1430 /* Do some sanity checking for safety */
1431 tar_levels = tar & 0xff;
1432 if (tdp_ratio - 1 == tar_levels) {
1433 max_pstate = tar_levels;
1434 pr_debug("max_pstate=TAC %x\n", max_pstate);
1435 }
1436 }
1437
1438 return max_pstate;
1439}
1440
1441static int core_get_turbo_pstate(void)
1442{
1443 u64 value;
1444 int nont, ret;
1445
1446 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1447 nont = core_get_max_pstate();
1448 ret = (value) & 255;
1449 if (ret <= nont)
1450 ret = nont;
1451 return ret;
1452}
1453
1454static inline int core_get_scaling(void)
1455{
1456 return 100000;
1457}
1458
1459static u64 core_get_val(struct cpudata *cpudata, int pstate)
1460{
1461 u64 val;
1462
1463 val = (u64)pstate << 8;
1464 if (global.no_turbo && !global.turbo_disabled)
1465 val |= (u64)1 << 32;
1466
1467 return val;
1468}
1469
1470static int knl_get_aperf_mperf_shift(void)
1471{
1472 return 10;
1473}
1474
1475static int knl_get_turbo_pstate(void)
1476{
1477 u64 value;
1478 int nont, ret;
1479
1480 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1481 nont = core_get_max_pstate();
1482 ret = (((value) >> 8) & 0xFF);
1483 if (ret <= nont)
1484 ret = nont;
1485 return ret;
1486}
1487
1488static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1489{
1490 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1491 cpu->pstate.current_pstate = pstate;
1492 /*
1493 * Generally, there is no guarantee that this code will always run on
1494 * the CPU being updated, so force the register update to run on the
1495 * right CPU.
1496 */
1497 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1498 pstate_funcs.get_val(cpu, pstate));
1499}
1500
1501static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1502{
1503 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1504}
1505
1506static void intel_pstate_max_within_limits(struct cpudata *cpu)
1507{
1508 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1509
1510 update_turbo_state();
1511 intel_pstate_set_pstate(cpu, pstate);
1512}
1513
1514static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1515{
1516 cpu->pstate.min_pstate = pstate_funcs.get_min();
1517 cpu->pstate.max_pstate = pstate_funcs.get_max();
1518 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1519 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1520 cpu->pstate.scaling = pstate_funcs.get_scaling();
1521 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1522
1523 if (hwp_active && !hwp_mode_bdw) {
1524 unsigned int phy_max, current_max;
1525
1526 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max);
1527 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1528 } else {
1529 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1530 }
1531
1532 if (pstate_funcs.get_aperf_mperf_shift)
1533 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1534
1535 if (pstate_funcs.get_vid)
1536 pstate_funcs.get_vid(cpu);
1537
1538 intel_pstate_set_min_pstate(cpu);
1539}
1540
1541/*
1542 * Long hold time will keep high perf limits for long time,
1543 * which negatively impacts perf/watt for some workloads,
1544 * like specpower. 3ms is based on experiements on some
1545 * workoads.
1546 */
1547static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1548
1549static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1550{
1551 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1552 u32 max_limit = (hwp_req & 0xff00) >> 8;
1553 u32 min_limit = (hwp_req & 0xff);
1554 u32 boost_level1;
1555
1556 /*
1557 * Cases to consider (User changes via sysfs or boot time):
1558 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1559 * No boost, return.
1560 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1561 * Should result in one level boost only for P0.
1562 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1563 * Should result in two level boost:
1564 * (min + p1)/2 and P1.
1565 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1566 * Should result in three level boost:
1567 * (min + p1)/2, P1 and P0.
1568 */
1569
1570 /* If max and min are equal or already at max, nothing to boost */
1571 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1572 return;
1573
1574 if (!cpu->hwp_boost_min)
1575 cpu->hwp_boost_min = min_limit;
1576
1577 /* level at half way mark between min and guranteed */
1578 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1579
1580 if (cpu->hwp_boost_min < boost_level1)
1581 cpu->hwp_boost_min = boost_level1;
1582 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1583 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1584 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1585 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1586 cpu->hwp_boost_min = max_limit;
1587 else
1588 return;
1589
1590 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1591 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1592 cpu->last_update = cpu->sample.time;
1593}
1594
1595static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1596{
1597 if (cpu->hwp_boost_min) {
1598 bool expired;
1599
1600 /* Check if we are idle for hold time to boost down */
1601 expired = time_after64(cpu->sample.time, cpu->last_update +
1602 hwp_boost_hold_time_ns);
1603 if (expired) {
1604 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1605 cpu->hwp_boost_min = 0;
1606 }
1607 }
1608 cpu->last_update = cpu->sample.time;
1609}
1610
1611static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1612 u64 time)
1613{
1614 cpu->sample.time = time;
1615
1616 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1617 bool do_io = false;
1618
1619 cpu->sched_flags = 0;
1620 /*
1621 * Set iowait_boost flag and update time. Since IO WAIT flag
1622 * is set all the time, we can't just conclude that there is
1623 * some IO bound activity is scheduled on this CPU with just
1624 * one occurrence. If we receive at least two in two
1625 * consecutive ticks, then we treat as boost candidate.
1626 */
1627 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1628 do_io = true;
1629
1630 cpu->last_io_update = time;
1631
1632 if (do_io)
1633 intel_pstate_hwp_boost_up(cpu);
1634
1635 } else {
1636 intel_pstate_hwp_boost_down(cpu);
1637 }
1638}
1639
1640static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1641 u64 time, unsigned int flags)
1642{
1643 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1644
1645 cpu->sched_flags |= flags;
1646
1647 if (smp_processor_id() == cpu->cpu)
1648 intel_pstate_update_util_hwp_local(cpu, time);
1649}
1650
1651static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1652{
1653 struct sample *sample = &cpu->sample;
1654
1655 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1656}
1657
1658static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1659{
1660 u64 aperf, mperf;
1661 unsigned long flags;
1662 u64 tsc;
1663
1664 local_irq_save(flags);
1665 rdmsrl(MSR_IA32_APERF, aperf);
1666 rdmsrl(MSR_IA32_MPERF, mperf);
1667 tsc = rdtsc();
1668 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1669 local_irq_restore(flags);
1670 return false;
1671 }
1672 local_irq_restore(flags);
1673
1674 cpu->last_sample_time = cpu->sample.time;
1675 cpu->sample.time = time;
1676 cpu->sample.aperf = aperf;
1677 cpu->sample.mperf = mperf;
1678 cpu->sample.tsc = tsc;
1679 cpu->sample.aperf -= cpu->prev_aperf;
1680 cpu->sample.mperf -= cpu->prev_mperf;
1681 cpu->sample.tsc -= cpu->prev_tsc;
1682
1683 cpu->prev_aperf = aperf;
1684 cpu->prev_mperf = mperf;
1685 cpu->prev_tsc = tsc;
1686 /*
1687 * First time this function is invoked in a given cycle, all of the
1688 * previous sample data fields are equal to zero or stale and they must
1689 * be populated with meaningful numbers for things to work, so assume
1690 * that sample.time will always be reset before setting the utilization
1691 * update hook and make the caller skip the sample then.
1692 */
1693 if (cpu->last_sample_time) {
1694 intel_pstate_calc_avg_perf(cpu);
1695 return true;
1696 }
1697 return false;
1698}
1699
1700static inline int32_t get_avg_frequency(struct cpudata *cpu)
1701{
1702 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1703}
1704
1705static inline int32_t get_avg_pstate(struct cpudata *cpu)
1706{
1707 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1708 cpu->sample.core_avg_perf);
1709}
1710
1711static inline int32_t get_target_pstate(struct cpudata *cpu)
1712{
1713 struct sample *sample = &cpu->sample;
1714 int32_t busy_frac;
1715 int target, avg_pstate;
1716
1717 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1718 sample->tsc);
1719
1720 if (busy_frac < cpu->iowait_boost)
1721 busy_frac = cpu->iowait_boost;
1722
1723 sample->busy_scaled = busy_frac * 100;
1724
1725 target = global.no_turbo || global.turbo_disabled ?
1726 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1727 target += target >> 2;
1728 target = mul_fp(target, busy_frac);
1729 if (target < cpu->pstate.min_pstate)
1730 target = cpu->pstate.min_pstate;
1731
1732 /*
1733 * If the average P-state during the previous cycle was higher than the
1734 * current target, add 50% of the difference to the target to reduce
1735 * possible performance oscillations and offset possible performance
1736 * loss related to moving the workload from one CPU to another within
1737 * a package/module.
1738 */
1739 avg_pstate = get_avg_pstate(cpu);
1740 if (avg_pstate > target)
1741 target += (avg_pstate - target) >> 1;
1742
1743 return target;
1744}
1745
1746static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1747{
1748 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1749 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1750
1751 return clamp_t(int, pstate, min_pstate, max_pstate);
1752}
1753
1754static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1755{
1756 if (pstate == cpu->pstate.current_pstate)
1757 return;
1758
1759 cpu->pstate.current_pstate = pstate;
1760 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1761}
1762
1763static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1764{
1765 int from = cpu->pstate.current_pstate;
1766 struct sample *sample;
1767 int target_pstate;
1768
1769 update_turbo_state();
1770
1771 target_pstate = get_target_pstate(cpu);
1772 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1773 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1774 intel_pstate_update_pstate(cpu, target_pstate);
1775
1776 sample = &cpu->sample;
1777 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1778 fp_toint(sample->busy_scaled),
1779 from,
1780 cpu->pstate.current_pstate,
1781 sample->mperf,
1782 sample->aperf,
1783 sample->tsc,
1784 get_avg_frequency(cpu),
1785 fp_toint(cpu->iowait_boost * 100));
1786}
1787
1788static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1789 unsigned int flags)
1790{
1791 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1792 u64 delta_ns;
1793
1794 /* Don't allow remote callbacks */
1795 if (smp_processor_id() != cpu->cpu)
1796 return;
1797
1798 delta_ns = time - cpu->last_update;
1799 if (flags & SCHED_CPUFREQ_IOWAIT) {
1800 /* Start over if the CPU may have been idle. */
1801 if (delta_ns > TICK_NSEC) {
1802 cpu->iowait_boost = ONE_EIGHTH_FP;
1803 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1804 cpu->iowait_boost <<= 1;
1805 if (cpu->iowait_boost > int_tofp(1))
1806 cpu->iowait_boost = int_tofp(1);
1807 } else {
1808 cpu->iowait_boost = ONE_EIGHTH_FP;
1809 }
1810 } else if (cpu->iowait_boost) {
1811 /* Clear iowait_boost if the CPU may have been idle. */
1812 if (delta_ns > TICK_NSEC)
1813 cpu->iowait_boost = 0;
1814 else
1815 cpu->iowait_boost >>= 1;
1816 }
1817 cpu->last_update = time;
1818 delta_ns = time - cpu->sample.time;
1819 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1820 return;
1821
1822 if (intel_pstate_sample(cpu, time))
1823 intel_pstate_adjust_pstate(cpu);
1824}
1825
1826static struct pstate_funcs core_funcs = {
1827 .get_max = core_get_max_pstate,
1828 .get_max_physical = core_get_max_pstate_physical,
1829 .get_min = core_get_min_pstate,
1830 .get_turbo = core_get_turbo_pstate,
1831 .get_scaling = core_get_scaling,
1832 .get_val = core_get_val,
1833};
1834
1835static const struct pstate_funcs silvermont_funcs = {
1836 .get_max = atom_get_max_pstate,
1837 .get_max_physical = atom_get_max_pstate,
1838 .get_min = atom_get_min_pstate,
1839 .get_turbo = atom_get_turbo_pstate,
1840 .get_val = atom_get_val,
1841 .get_scaling = silvermont_get_scaling,
1842 .get_vid = atom_get_vid,
1843};
1844
1845static const struct pstate_funcs airmont_funcs = {
1846 .get_max = atom_get_max_pstate,
1847 .get_max_physical = atom_get_max_pstate,
1848 .get_min = atom_get_min_pstate,
1849 .get_turbo = atom_get_turbo_pstate,
1850 .get_val = atom_get_val,
1851 .get_scaling = airmont_get_scaling,
1852 .get_vid = atom_get_vid,
1853};
1854
1855static const struct pstate_funcs knl_funcs = {
1856 .get_max = core_get_max_pstate,
1857 .get_max_physical = core_get_max_pstate_physical,
1858 .get_min = core_get_min_pstate,
1859 .get_turbo = knl_get_turbo_pstate,
1860 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1861 .get_scaling = core_get_scaling,
1862 .get_val = core_get_val,
1863};
1864
1865#define ICPU(model, policy) \
1866 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1867 (unsigned long)&policy }
1868
1869static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1870 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1871 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1872 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1873 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1874 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs),
1875 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs),
1876 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1877 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1878 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs),
1879 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs),
1880 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs),
1881 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1882 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs),
1883 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1884 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1885 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1886 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1887 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1888 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1889 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1890 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1891 {}
1892};
1893MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1894
1895static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1896 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1897 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1898 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1899 {}
1900};
1901
1902static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1903 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1904 {}
1905};
1906
1907static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1908 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1909 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1910 {}
1911};
1912
1913static int intel_pstate_init_cpu(unsigned int cpunum)
1914{
1915 struct cpudata *cpu;
1916
1917 cpu = all_cpu_data[cpunum];
1918
1919 if (!cpu) {
1920 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1921 if (!cpu)
1922 return -ENOMEM;
1923
1924 all_cpu_data[cpunum] = cpu;
1925
1926 cpu->epp_default = -EINVAL;
1927 cpu->epp_powersave = -EINVAL;
1928 cpu->epp_saved = -EINVAL;
1929 }
1930
1931 cpu = all_cpu_data[cpunum];
1932
1933 cpu->cpu = cpunum;
1934
1935 if (hwp_active) {
1936 const struct x86_cpu_id *id;
1937
1938 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1939 if (id)
1940 intel_pstate_disable_ee(cpunum);
1941
1942 intel_pstate_hwp_enable(cpu);
1943
1944 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1945 if (id && intel_pstate_acpi_pm_profile_server())
1946 hwp_boost = true;
1947 }
1948
1949 intel_pstate_get_cpu_pstates(cpu);
1950
1951 pr_debug("controlling: cpu %d\n", cpunum);
1952
1953 return 0;
1954}
1955
1956static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1957{
1958 struct cpudata *cpu = all_cpu_data[cpu_num];
1959
1960 if (hwp_active && !hwp_boost)
1961 return;
1962
1963 if (cpu->update_util_set)
1964 return;
1965
1966 /* Prevent intel_pstate_update_util() from using stale data. */
1967 cpu->sample.time = 0;
1968 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1969 (hwp_active ?
1970 intel_pstate_update_util_hwp :
1971 intel_pstate_update_util));
1972 cpu->update_util_set = true;
1973}
1974
1975static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1976{
1977 struct cpudata *cpu_data = all_cpu_data[cpu];
1978
1979 if (!cpu_data->update_util_set)
1980 return;
1981
1982 cpufreq_remove_update_util_hook(cpu);
1983 cpu_data->update_util_set = false;
1984 synchronize_rcu();
1985}
1986
1987static int intel_pstate_get_max_freq(struct cpudata *cpu)
1988{
1989 return global.turbo_disabled || global.no_turbo ?
1990 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1991}
1992
1993static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1994 struct cpudata *cpu)
1995{
1996 int max_freq = intel_pstate_get_max_freq(cpu);
1997 int32_t max_policy_perf, min_policy_perf;
1998 int max_state, turbo_max;
1999
2000 /*
2001 * HWP needs some special consideration, because on BDX the
2002 * HWP_REQUEST uses abstract value to represent performance
2003 * rather than pure ratios.
2004 */
2005 if (hwp_active) {
2006 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2007 } else {
2008 max_state = global.no_turbo || global.turbo_disabled ?
2009 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2010 turbo_max = cpu->pstate.turbo_pstate;
2011 }
2012
2013 max_policy_perf = max_state * policy->max / max_freq;
2014 if (policy->max == policy->min) {
2015 min_policy_perf = max_policy_perf;
2016 } else {
2017 min_policy_perf = max_state * policy->min / max_freq;
2018 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2019 0, max_policy_perf);
2020 }
2021
2022 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2023 policy->cpu, max_state,
2024 min_policy_perf, max_policy_perf);
2025
2026 /* Normalize user input to [min_perf, max_perf] */
2027 if (per_cpu_limits) {
2028 cpu->min_perf_ratio = min_policy_perf;
2029 cpu->max_perf_ratio = max_policy_perf;
2030 } else {
2031 int32_t global_min, global_max;
2032
2033 /* Global limits are in percent of the maximum turbo P-state. */
2034 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2035 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2036 global_min = clamp_t(int32_t, global_min, 0, global_max);
2037
2038 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2039 global_min, global_max);
2040
2041 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2042 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2043 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2044 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2045
2046 /* Make sure min_perf <= max_perf */
2047 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2048 cpu->max_perf_ratio);
2049
2050 }
2051 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2052 cpu->max_perf_ratio,
2053 cpu->min_perf_ratio);
2054}
2055
2056static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2057{
2058 struct cpudata *cpu;
2059
2060 if (!policy->cpuinfo.max_freq)
2061 return -ENODEV;
2062
2063 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2064 policy->cpuinfo.max_freq, policy->max);
2065
2066 cpu = all_cpu_data[policy->cpu];
2067 cpu->policy = policy->policy;
2068
2069 mutex_lock(&intel_pstate_limits_lock);
2070
2071 intel_pstate_update_perf_limits(policy, cpu);
2072
2073 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2074 /*
2075 * NOHZ_FULL CPUs need this as the governor callback may not
2076 * be invoked on them.
2077 */
2078 intel_pstate_clear_update_util_hook(policy->cpu);
2079 intel_pstate_max_within_limits(cpu);
2080 } else {
2081 intel_pstate_set_update_util_hook(policy->cpu);
2082 }
2083
2084 if (hwp_active) {
2085 /*
2086 * When hwp_boost was active before and dynamically it
2087 * was turned off, in that case we need to clear the
2088 * update util hook.
2089 */
2090 if (!hwp_boost)
2091 intel_pstate_clear_update_util_hook(policy->cpu);
2092 intel_pstate_hwp_set(policy->cpu);
2093 }
2094
2095 mutex_unlock(&intel_pstate_limits_lock);
2096
2097 return 0;
2098}
2099
2100static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2101 struct cpudata *cpu)
2102{
2103 if (!hwp_active &&
2104 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2105 policy->max < policy->cpuinfo.max_freq &&
2106 policy->max > cpu->pstate.max_freq) {
2107 pr_debug("policy->max > max non turbo frequency\n");
2108 policy->max = policy->cpuinfo.max_freq;
2109 }
2110}
2111
2112static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2113{
2114 struct cpudata *cpu = all_cpu_data[policy->cpu];
2115
2116 update_turbo_state();
2117 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2118 intel_pstate_get_max_freq(cpu));
2119
2120 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2121 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2122 return -EINVAL;
2123
2124 intel_pstate_adjust_policy_max(policy, cpu);
2125
2126 return 0;
2127}
2128
2129static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2130{
2131 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2132}
2133
2134static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2135{
2136 pr_debug("CPU %d exiting\n", policy->cpu);
2137
2138 intel_pstate_clear_update_util_hook(policy->cpu);
2139 if (hwp_active) {
2140 intel_pstate_hwp_save_state(policy);
2141 intel_pstate_hwp_force_min_perf(policy->cpu);
2142 } else {
2143 intel_cpufreq_stop_cpu(policy);
2144 }
2145}
2146
2147static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2148{
2149 intel_pstate_exit_perf_limits(policy);
2150
2151 policy->fast_switch_possible = false;
2152
2153 return 0;
2154}
2155
2156static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2157{
2158 struct cpudata *cpu;
2159 int rc;
2160
2161 rc = intel_pstate_init_cpu(policy->cpu);
2162 if (rc)
2163 return rc;
2164
2165 cpu = all_cpu_data[policy->cpu];
2166
2167 cpu->max_perf_ratio = 0xFF;
2168 cpu->min_perf_ratio = 0;
2169
2170 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2171 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2172
2173 /* cpuinfo and default policy values */
2174 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2175 update_turbo_state();
2176 global.turbo_disabled_mf = global.turbo_disabled;
2177 policy->cpuinfo.max_freq = global.turbo_disabled ?
2178 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2179 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2180
2181 if (hwp_active) {
2182 unsigned int max_freq;
2183
2184 max_freq = global.turbo_disabled ?
2185 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186 if (max_freq < policy->cpuinfo.max_freq)
2187 policy->cpuinfo.max_freq = max_freq;
2188 }
2189
2190 intel_pstate_init_acpi_perf_limits(policy);
2191
2192 policy->fast_switch_possible = true;
2193
2194 return 0;
2195}
2196
2197static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2198{
2199 int ret = __intel_pstate_cpu_init(policy);
2200
2201 if (ret)
2202 return ret;
2203
2204 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2205 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2206 else
2207 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2208
2209 return 0;
2210}
2211
2212static struct cpufreq_driver intel_pstate = {
2213 .flags = CPUFREQ_CONST_LOOPS,
2214 .verify = intel_pstate_verify_policy,
2215 .setpolicy = intel_pstate_set_policy,
2216 .suspend = intel_pstate_hwp_save_state,
2217 .resume = intel_pstate_resume,
2218 .init = intel_pstate_cpu_init,
2219 .exit = intel_pstate_cpu_exit,
2220 .stop_cpu = intel_pstate_stop_cpu,
2221 .update_limits = intel_pstate_update_limits,
2222 .name = "intel_pstate",
2223};
2224
2225static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2226{
2227 struct cpudata *cpu = all_cpu_data[policy->cpu];
2228
2229 update_turbo_state();
2230 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2231 intel_pstate_get_max_freq(cpu));
2232
2233 intel_pstate_adjust_policy_max(policy, cpu);
2234
2235 intel_pstate_update_perf_limits(policy, cpu);
2236
2237 return 0;
2238}
2239
2240/* Use of trace in passive mode:
2241 *
2242 * In passive mode the trace core_busy field (also known as the
2243 * performance field, and lablelled as such on the graphs; also known as
2244 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2245 * driver call was via the normal or fast switch path. Various graphs
2246 * output from the intel_pstate_tracer.py utility that include core_busy
2247 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2248 * so we use 10 to indicate the the normal path through the driver, and
2249 * 90 to indicate the fast switch path through the driver.
2250 * The scaled_busy field is not used, and is set to 0.
2251 */
2252
2253#define INTEL_PSTATE_TRACE_TARGET 10
2254#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2255
2256static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2257{
2258 struct sample *sample;
2259
2260 if (!trace_pstate_sample_enabled())
2261 return;
2262
2263 if (!intel_pstate_sample(cpu, ktime_get()))
2264 return;
2265
2266 sample = &cpu->sample;
2267 trace_pstate_sample(trace_type,
2268 0,
2269 old_pstate,
2270 cpu->pstate.current_pstate,
2271 sample->mperf,
2272 sample->aperf,
2273 sample->tsc,
2274 get_avg_frequency(cpu),
2275 fp_toint(cpu->iowait_boost * 100));
2276}
2277
2278static int intel_cpufreq_target(struct cpufreq_policy *policy,
2279 unsigned int target_freq,
2280 unsigned int relation)
2281{
2282 struct cpudata *cpu = all_cpu_data[policy->cpu];
2283 struct cpufreq_freqs freqs;
2284 int target_pstate, old_pstate;
2285
2286 update_turbo_state();
2287
2288 freqs.old = policy->cur;
2289 freqs.new = target_freq;
2290
2291 cpufreq_freq_transition_begin(policy, &freqs);
2292 switch (relation) {
2293 case CPUFREQ_RELATION_L:
2294 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2295 break;
2296 case CPUFREQ_RELATION_H:
2297 target_pstate = freqs.new / cpu->pstate.scaling;
2298 break;
2299 default:
2300 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2301 break;
2302 }
2303 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2304 old_pstate = cpu->pstate.current_pstate;
2305 if (target_pstate != cpu->pstate.current_pstate) {
2306 cpu->pstate.current_pstate = target_pstate;
2307 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2308 pstate_funcs.get_val(cpu, target_pstate));
2309 }
2310 freqs.new = target_pstate * cpu->pstate.scaling;
2311 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2312 cpufreq_freq_transition_end(policy, &freqs, false);
2313
2314 return 0;
2315}
2316
2317static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2318 unsigned int target_freq)
2319{
2320 struct cpudata *cpu = all_cpu_data[policy->cpu];
2321 int target_pstate, old_pstate;
2322
2323 update_turbo_state();
2324
2325 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2326 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2327 old_pstate = cpu->pstate.current_pstate;
2328 intel_pstate_update_pstate(cpu, target_pstate);
2329 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2330 return target_pstate * cpu->pstate.scaling;
2331}
2332
2333static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2334{
2335 int ret = __intel_pstate_cpu_init(policy);
2336
2337 if (ret)
2338 return ret;
2339
2340 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2341 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2342 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2343 policy->cur = policy->cpuinfo.min_freq;
2344
2345 return 0;
2346}
2347
2348static struct cpufreq_driver intel_cpufreq = {
2349 .flags = CPUFREQ_CONST_LOOPS,
2350 .verify = intel_cpufreq_verify_policy,
2351 .target = intel_cpufreq_target,
2352 .fast_switch = intel_cpufreq_fast_switch,
2353 .init = intel_cpufreq_cpu_init,
2354 .exit = intel_pstate_cpu_exit,
2355 .stop_cpu = intel_cpufreq_stop_cpu,
2356 .update_limits = intel_pstate_update_limits,
2357 .name = "intel_cpufreq",
2358};
2359
2360static struct cpufreq_driver *default_driver = &intel_pstate;
2361
2362static void intel_pstate_driver_cleanup(void)
2363{
2364 unsigned int cpu;
2365
2366 get_online_cpus();
2367 for_each_online_cpu(cpu) {
2368 if (all_cpu_data[cpu]) {
2369 if (intel_pstate_driver == &intel_pstate)
2370 intel_pstate_clear_update_util_hook(cpu);
2371
2372 kfree(all_cpu_data[cpu]);
2373 all_cpu_data[cpu] = NULL;
2374 }
2375 }
2376 put_online_cpus();
2377 intel_pstate_driver = NULL;
2378}
2379
2380static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2381{
2382 int ret;
2383
2384 memset(&global, 0, sizeof(global));
2385 global.max_perf_pct = 100;
2386
2387 intel_pstate_driver = driver;
2388 ret = cpufreq_register_driver(intel_pstate_driver);
2389 if (ret) {
2390 intel_pstate_driver_cleanup();
2391 return ret;
2392 }
2393
2394 global.min_perf_pct = min_perf_pct_min();
2395
2396 return 0;
2397}
2398
2399static int intel_pstate_unregister_driver(void)
2400{
2401 if (hwp_active)
2402 return -EBUSY;
2403
2404 cpufreq_unregister_driver(intel_pstate_driver);
2405 intel_pstate_driver_cleanup();
2406
2407 return 0;
2408}
2409
2410static ssize_t intel_pstate_show_status(char *buf)
2411{
2412 if (!intel_pstate_driver)
2413 return sprintf(buf, "off\n");
2414
2415 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2416 "active" : "passive");
2417}
2418
2419static int intel_pstate_update_status(const char *buf, size_t size)
2420{
2421 int ret;
2422
2423 if (size == 3 && !strncmp(buf, "off", size))
2424 return intel_pstate_driver ?
2425 intel_pstate_unregister_driver() : -EINVAL;
2426
2427 if (size == 6 && !strncmp(buf, "active", size)) {
2428 if (intel_pstate_driver) {
2429 if (intel_pstate_driver == &intel_pstate)
2430 return 0;
2431
2432 ret = intel_pstate_unregister_driver();
2433 if (ret)
2434 return ret;
2435 }
2436
2437 return intel_pstate_register_driver(&intel_pstate);
2438 }
2439
2440 if (size == 7 && !strncmp(buf, "passive", size)) {
2441 if (intel_pstate_driver) {
2442 if (intel_pstate_driver == &intel_cpufreq)
2443 return 0;
2444
2445 ret = intel_pstate_unregister_driver();
2446 if (ret)
2447 return ret;
2448 }
2449
2450 return intel_pstate_register_driver(&intel_cpufreq);
2451 }
2452
2453 return -EINVAL;
2454}
2455
2456static int no_load __initdata;
2457static int no_hwp __initdata;
2458static int hwp_only __initdata;
2459static unsigned int force_load __initdata;
2460
2461static int __init intel_pstate_msrs_not_valid(void)
2462{
2463 if (!pstate_funcs.get_max() ||
2464 !pstate_funcs.get_min() ||
2465 !pstate_funcs.get_turbo())
2466 return -ENODEV;
2467
2468 return 0;
2469}
2470
2471static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2472{
2473 pstate_funcs.get_max = funcs->get_max;
2474 pstate_funcs.get_max_physical = funcs->get_max_physical;
2475 pstate_funcs.get_min = funcs->get_min;
2476 pstate_funcs.get_turbo = funcs->get_turbo;
2477 pstate_funcs.get_scaling = funcs->get_scaling;
2478 pstate_funcs.get_val = funcs->get_val;
2479 pstate_funcs.get_vid = funcs->get_vid;
2480 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2481}
2482
2483#ifdef CONFIG_ACPI
2484
2485static bool __init intel_pstate_no_acpi_pss(void)
2486{
2487 int i;
2488
2489 for_each_possible_cpu(i) {
2490 acpi_status status;
2491 union acpi_object *pss;
2492 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2493 struct acpi_processor *pr = per_cpu(processors, i);
2494
2495 if (!pr)
2496 continue;
2497
2498 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2499 if (ACPI_FAILURE(status))
2500 continue;
2501
2502 pss = buffer.pointer;
2503 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2504 kfree(pss);
2505 return false;
2506 }
2507
2508 kfree(pss);
2509 }
2510
2511 pr_debug("ACPI _PSS not found\n");
2512 return true;
2513}
2514
2515static bool __init intel_pstate_no_acpi_pcch(void)
2516{
2517 acpi_status status;
2518 acpi_handle handle;
2519
2520 status = acpi_get_handle(NULL, "\\_SB", &handle);
2521 if (ACPI_FAILURE(status))
2522 goto not_found;
2523
2524 if (acpi_has_method(handle, "PCCH"))
2525 return false;
2526
2527not_found:
2528 pr_debug("ACPI PCCH not found\n");
2529 return true;
2530}
2531
2532static bool __init intel_pstate_has_acpi_ppc(void)
2533{
2534 int i;
2535
2536 for_each_possible_cpu(i) {
2537 struct acpi_processor *pr = per_cpu(processors, i);
2538
2539 if (!pr)
2540 continue;
2541 if (acpi_has_method(pr->handle, "_PPC"))
2542 return true;
2543 }
2544 pr_debug("ACPI _PPC not found\n");
2545 return false;
2546}
2547
2548enum {
2549 PSS,
2550 PPC,
2551};
2552
2553/* Hardware vendor-specific info that has its own power management modes */
2554static struct acpi_platform_list plat_info[] __initdata = {
2555 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2556 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2557 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2558 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2559 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2560 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2561 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2562 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2563 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2564 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2565 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570 { } /* End */
2571};
2572
2573static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2574{
2575 const struct x86_cpu_id *id;
2576 u64 misc_pwr;
2577 int idx;
2578
2579 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2580 if (id) {
2581 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2582 if (misc_pwr & (1 << 8)) {
2583 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2584 return true;
2585 }
2586 }
2587
2588 idx = acpi_match_platform_list(plat_info);
2589 if (idx < 0)
2590 return false;
2591
2592 switch (plat_info[idx].data) {
2593 case PSS:
2594 if (!intel_pstate_no_acpi_pss())
2595 return false;
2596
2597 return intel_pstate_no_acpi_pcch();
2598 case PPC:
2599 return intel_pstate_has_acpi_ppc() && !force_load;
2600 }
2601
2602 return false;
2603}
2604
2605static void intel_pstate_request_control_from_smm(void)
2606{
2607 /*
2608 * It may be unsafe to request P-states control from SMM if _PPC support
2609 * has not been enabled.
2610 */
2611 if (acpi_ppc)
2612 acpi_processor_pstate_control();
2613}
2614#else /* CONFIG_ACPI not enabled */
2615static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2616static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2617static inline void intel_pstate_request_control_from_smm(void) {}
2618#endif /* CONFIG_ACPI */
2619
2620#define INTEL_PSTATE_HWP_BROADWELL 0x01
2621
2622#define ICPU_HWP(model, hwp_mode) \
2623 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2624
2625static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2626 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2627 ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2628 ICPU_HWP(X86_MODEL_ANY, 0),
2629 {}
2630};
2631
2632static int __init intel_pstate_init(void)
2633{
2634 const struct x86_cpu_id *id;
2635 int rc;
2636
2637 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2638 return -ENODEV;
2639
2640 if (no_load)
2641 return -ENODEV;
2642
2643 id = x86_match_cpu(hwp_support_ids);
2644 if (id) {
2645 copy_cpu_funcs(&core_funcs);
2646 if (!no_hwp) {
2647 hwp_active++;
2648 hwp_mode_bdw = id->driver_data;
2649 intel_pstate.attr = hwp_cpufreq_attrs;
2650 goto hwp_cpu_matched;
2651 }
2652 } else {
2653 id = x86_match_cpu(intel_pstate_cpu_ids);
2654 if (!id) {
2655 pr_info("CPU model not supported\n");
2656 return -ENODEV;
2657 }
2658
2659 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2660 }
2661
2662 if (intel_pstate_msrs_not_valid()) {
2663 pr_info("Invalid MSRs\n");
2664 return -ENODEV;
2665 }
2666
2667hwp_cpu_matched:
2668 /*
2669 * The Intel pstate driver will be ignored if the platform
2670 * firmware has its own power management modes.
2671 */
2672 if (intel_pstate_platform_pwr_mgmt_exists()) {
2673 pr_info("P-states controlled by the platform\n");
2674 return -ENODEV;
2675 }
2676
2677 if (!hwp_active && hwp_only)
2678 return -ENOTSUPP;
2679
2680 pr_info("Intel P-state driver initializing\n");
2681
2682 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2683 if (!all_cpu_data)
2684 return -ENOMEM;
2685
2686 intel_pstate_request_control_from_smm();
2687
2688 intel_pstate_sysfs_expose_params();
2689
2690 mutex_lock(&intel_pstate_driver_lock);
2691 rc = intel_pstate_register_driver(default_driver);
2692 mutex_unlock(&intel_pstate_driver_lock);
2693 if (rc)
2694 return rc;
2695
2696 if (hwp_active)
2697 pr_info("HWP enabled\n");
2698
2699 return 0;
2700}
2701device_initcall(intel_pstate_init);
2702
2703static int __init intel_pstate_setup(char *str)
2704{
2705 if (!str)
2706 return -EINVAL;
2707
2708 if (!strcmp(str, "disable")) {
2709 no_load = 1;
2710 } else if (!strcmp(str, "passive")) {
2711 pr_info("Passive mode enabled\n");
2712 default_driver = &intel_cpufreq;
2713 no_hwp = 1;
2714 }
2715 if (!strcmp(str, "no_hwp")) {
2716 pr_info("HWP disabled\n");
2717 no_hwp = 1;
2718 }
2719 if (!strcmp(str, "force"))
2720 force_load = 1;
2721 if (!strcmp(str, "hwp_only"))
2722 hwp_only = 1;
2723 if (!strcmp(str, "per_cpu_perf_limits"))
2724 per_cpu_limits = true;
2725
2726#ifdef CONFIG_ACPI
2727 if (!strcmp(str, "support_acpi_ppc"))
2728 acpi_ppc = true;
2729#endif
2730
2731 return 0;
2732}
2733early_param("intel_pstate", intel_pstate_setup);
2734
2735MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2736MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2737MODULE_LICENSE("GPL");