Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/page_ext.h>
54#include <linux/debugobjects.h>
55#include <linux/kmemleak.h>
56#include <linux/compaction.h>
57#include <trace/events/kmem.h>
58#include <trace/events/oom.h>
59#include <linux/prefetch.h>
60#include <linux/mm_inline.h>
61#include <linux/migrate.h>
62#include <linux/hugetlb.h>
63#include <linux/sched/rt.h>
64#include <linux/sched/mm.h>
65#include <linux/page_owner.h>
66#include <linux/kthread.h>
67#include <linux/memcontrol.h>
68#include <linux/ftrace.h>
69#include <linux/lockdep.h>
70#include <linux/nmi.h>
71#include <linux/psi.h>
72
73#include <asm/sections.h>
74#include <asm/tlbflush.h>
75#include <asm/div64.h>
76#include "internal.h"
77#include "shuffle.h"
78
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
81#define MIN_PERCPU_PAGELIST_FRACTION (8)
82
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99int _node_numa_mem_[MAX_NUMNODES];
100#endif
101
102/* work_structs for global per-cpu drains */
103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
107DEFINE_MUTEX(pcpu_drain_mutex);
108DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109
110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111volatile unsigned long latent_entropy __latent_entropy;
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
115/*
116 * Array of node states.
117 */
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125#endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
134unsigned long totalreserve_pages __read_mostly;
135unsigned long totalcma_pages __read_mostly;
136
137int percpu_pagelist_fraction;
138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139
140/*
141 * A cached value of the page's pageblock's migratetype, used when the page is
142 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
143 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
144 * Also the migratetype set in the page does not necessarily match the pcplist
145 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
146 * other index - this ensures that it will be put on the correct CMA freelist.
147 */
148static inline int get_pcppage_migratetype(struct page *page)
149{
150 return page->index;
151}
152
153static inline void set_pcppage_migratetype(struct page *page, int migratetype)
154{
155 page->index = migratetype;
156}
157
158#ifdef CONFIG_PM_SLEEP
159/*
160 * The following functions are used by the suspend/hibernate code to temporarily
161 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
162 * while devices are suspended. To avoid races with the suspend/hibernate code,
163 * they should always be called with system_transition_mutex held
164 * (gfp_allowed_mask also should only be modified with system_transition_mutex
165 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
166 * with that modification).
167 */
168
169static gfp_t saved_gfp_mask;
170
171void pm_restore_gfp_mask(void)
172{
173 WARN_ON(!mutex_is_locked(&system_transition_mutex));
174 if (saved_gfp_mask) {
175 gfp_allowed_mask = saved_gfp_mask;
176 saved_gfp_mask = 0;
177 }
178}
179
180void pm_restrict_gfp_mask(void)
181{
182 WARN_ON(!mutex_is_locked(&system_transition_mutex));
183 WARN_ON(saved_gfp_mask);
184 saved_gfp_mask = gfp_allowed_mask;
185 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
186}
187
188bool pm_suspended_storage(void)
189{
190 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
191 return false;
192 return true;
193}
194#endif /* CONFIG_PM_SLEEP */
195
196#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
197unsigned int pageblock_order __read_mostly;
198#endif
199
200static void __free_pages_ok(struct page *page, unsigned int order);
201
202/*
203 * results with 256, 32 in the lowmem_reserve sysctl:
204 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
205 * 1G machine -> (16M dma, 784M normal, 224M high)
206 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
207 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
208 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
209 *
210 * TBD: should special case ZONE_DMA32 machines here - in those we normally
211 * don't need any ZONE_NORMAL reservation
212 */
213int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
214#ifdef CONFIG_ZONE_DMA
215 [ZONE_DMA] = 256,
216#endif
217#ifdef CONFIG_ZONE_DMA32
218 [ZONE_DMA32] = 256,
219#endif
220 [ZONE_NORMAL] = 32,
221#ifdef CONFIG_HIGHMEM
222 [ZONE_HIGHMEM] = 0,
223#endif
224 [ZONE_MOVABLE] = 0,
225};
226
227EXPORT_SYMBOL(totalram_pages);
228
229static char * const zone_names[MAX_NR_ZONES] = {
230#ifdef CONFIG_ZONE_DMA
231 "DMA",
232#endif
233#ifdef CONFIG_ZONE_DMA32
234 "DMA32",
235#endif
236 "Normal",
237#ifdef CONFIG_HIGHMEM
238 "HighMem",
239#endif
240 "Movable",
241#ifdef CONFIG_ZONE_DEVICE
242 "Device",
243#endif
244};
245
246const char * const migratetype_names[MIGRATE_TYPES] = {
247 "Unmovable",
248 "Movable",
249 "Reclaimable",
250 "HighAtomic",
251#ifdef CONFIG_CMA
252 "CMA",
253#endif
254#ifdef CONFIG_MEMORY_ISOLATION
255 "Isolate",
256#endif
257};
258
259compound_page_dtor * const compound_page_dtors[] = {
260 NULL,
261 free_compound_page,
262#ifdef CONFIG_HUGETLB_PAGE
263 free_huge_page,
264#endif
265#ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 free_transhuge_page,
267#endif
268};
269
270int min_free_kbytes = 1024;
271int user_min_free_kbytes = -1;
272#ifdef CONFIG_DISCONTIGMEM
273/*
274 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
275 * are not on separate NUMA nodes. Functionally this works but with
276 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
277 * quite small. By default, do not boost watermarks on discontigmem as in
278 * many cases very high-order allocations like THP are likely to be
279 * unsupported and the premature reclaim offsets the advantage of long-term
280 * fragmentation avoidance.
281 */
282int watermark_boost_factor __read_mostly;
283#else
284int watermark_boost_factor __read_mostly = 15000;
285#endif
286int watermark_scale_factor = 10;
287
288static unsigned long nr_kernel_pages __initdata;
289static unsigned long nr_all_pages __initdata;
290static unsigned long dma_reserve __initdata;
291
292#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
293static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
294static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
295static unsigned long required_kernelcore __initdata;
296static unsigned long required_kernelcore_percent __initdata;
297static unsigned long required_movablecore __initdata;
298static unsigned long required_movablecore_percent __initdata;
299static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
300static bool mirrored_kernelcore __meminitdata;
301
302/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
303int movable_zone;
304EXPORT_SYMBOL(movable_zone);
305#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
306
307#if MAX_NUMNODES > 1
308unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309unsigned int nr_online_nodes __read_mostly = 1;
310EXPORT_SYMBOL(nr_node_ids);
311EXPORT_SYMBOL(nr_online_nodes);
312#endif
313
314int page_group_by_mobility_disabled __read_mostly;
315
316#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
317/*
318 * During boot we initialize deferred pages on-demand, as needed, but once
319 * page_alloc_init_late() has finished, the deferred pages are all initialized,
320 * and we can permanently disable that path.
321 */
322static DEFINE_STATIC_KEY_TRUE(deferred_pages);
323
324/*
325 * Calling kasan_free_pages() only after deferred memory initialization
326 * has completed. Poisoning pages during deferred memory init will greatly
327 * lengthen the process and cause problem in large memory systems as the
328 * deferred pages initialization is done with interrupt disabled.
329 *
330 * Assuming that there will be no reference to those newly initialized
331 * pages before they are ever allocated, this should have no effect on
332 * KASAN memory tracking as the poison will be properly inserted at page
333 * allocation time. The only corner case is when pages are allocated by
334 * on-demand allocation and then freed again before the deferred pages
335 * initialization is done, but this is not likely to happen.
336 */
337static inline void kasan_free_nondeferred_pages(struct page *page, int order)
338{
339 if (!static_branch_unlikely(&deferred_pages))
340 kasan_free_pages(page, order);
341}
342
343/* Returns true if the struct page for the pfn is uninitialised */
344static inline bool __meminit early_page_uninitialised(unsigned long pfn)
345{
346 int nid = early_pfn_to_nid(pfn);
347
348 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
349 return true;
350
351 return false;
352}
353
354/*
355 * Returns true when the remaining initialisation should be deferred until
356 * later in the boot cycle when it can be parallelised.
357 */
358static bool __meminit
359defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
360{
361 static unsigned long prev_end_pfn, nr_initialised;
362
363 /*
364 * prev_end_pfn static that contains the end of previous zone
365 * No need to protect because called very early in boot before smp_init.
366 */
367 if (prev_end_pfn != end_pfn) {
368 prev_end_pfn = end_pfn;
369 nr_initialised = 0;
370 }
371
372 /* Always populate low zones for address-constrained allocations */
373 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
374 return false;
375
376 /*
377 * We start only with one section of pages, more pages are added as
378 * needed until the rest of deferred pages are initialized.
379 */
380 nr_initialised++;
381 if ((nr_initialised > PAGES_PER_SECTION) &&
382 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
383 NODE_DATA(nid)->first_deferred_pfn = pfn;
384 return true;
385 }
386 return false;
387}
388#else
389#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
390
391static inline bool early_page_uninitialised(unsigned long pfn)
392{
393 return false;
394}
395
396static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
397{
398 return false;
399}
400#endif
401
402/* Return a pointer to the bitmap storing bits affecting a block of pages */
403static inline unsigned long *get_pageblock_bitmap(struct page *page,
404 unsigned long pfn)
405{
406#ifdef CONFIG_SPARSEMEM
407 return __pfn_to_section(pfn)->pageblock_flags;
408#else
409 return page_zone(page)->pageblock_flags;
410#endif /* CONFIG_SPARSEMEM */
411}
412
413static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
414{
415#ifdef CONFIG_SPARSEMEM
416 pfn &= (PAGES_PER_SECTION-1);
417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418#else
419 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
420 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
421#endif /* CONFIG_SPARSEMEM */
422}
423
424/**
425 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
426 * @page: The page within the block of interest
427 * @pfn: The target page frame number
428 * @end_bitidx: The last bit of interest to retrieve
429 * @mask: mask of bits that the caller is interested in
430 *
431 * Return: pageblock_bits flags
432 */
433static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
434 unsigned long pfn,
435 unsigned long end_bitidx,
436 unsigned long mask)
437{
438 unsigned long *bitmap;
439 unsigned long bitidx, word_bitidx;
440 unsigned long word;
441
442 bitmap = get_pageblock_bitmap(page, pfn);
443 bitidx = pfn_to_bitidx(page, pfn);
444 word_bitidx = bitidx / BITS_PER_LONG;
445 bitidx &= (BITS_PER_LONG-1);
446
447 word = bitmap[word_bitidx];
448 bitidx += end_bitidx;
449 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
450}
451
452unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455{
456 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
457}
458
459static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
460{
461 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
462}
463
464/**
465 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
466 * @page: The page within the block of interest
467 * @flags: The flags to set
468 * @pfn: The target page frame number
469 * @end_bitidx: The last bit of interest
470 * @mask: mask of bits that the caller is interested in
471 */
472void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
473 unsigned long pfn,
474 unsigned long end_bitidx,
475 unsigned long mask)
476{
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long old_word, word;
480
481 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
482 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
483
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
488
489 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
490
491 bitidx += end_bitidx;
492 mask <<= (BITS_PER_LONG - bitidx - 1);
493 flags <<= (BITS_PER_LONG - bitidx - 1);
494
495 word = READ_ONCE(bitmap[word_bitidx]);
496 for (;;) {
497 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
498 if (word == old_word)
499 break;
500 word = old_word;
501 }
502}
503
504void set_pageblock_migratetype(struct page *page, int migratetype)
505{
506 if (unlikely(page_group_by_mobility_disabled &&
507 migratetype < MIGRATE_PCPTYPES))
508 migratetype = MIGRATE_UNMOVABLE;
509
510 set_pageblock_flags_group(page, (unsigned long)migratetype,
511 PB_migrate, PB_migrate_end);
512}
513
514#ifdef CONFIG_DEBUG_VM
515static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
516{
517 int ret = 0;
518 unsigned seq;
519 unsigned long pfn = page_to_pfn(page);
520 unsigned long sp, start_pfn;
521
522 do {
523 seq = zone_span_seqbegin(zone);
524 start_pfn = zone->zone_start_pfn;
525 sp = zone->spanned_pages;
526 if (!zone_spans_pfn(zone, pfn))
527 ret = 1;
528 } while (zone_span_seqretry(zone, seq));
529
530 if (ret)
531 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
532 pfn, zone_to_nid(zone), zone->name,
533 start_pfn, start_pfn + sp);
534
535 return ret;
536}
537
538static int page_is_consistent(struct zone *zone, struct page *page)
539{
540 if (!pfn_valid_within(page_to_pfn(page)))
541 return 0;
542 if (zone != page_zone(page))
543 return 0;
544
545 return 1;
546}
547/*
548 * Temporary debugging check for pages not lying within a given zone.
549 */
550static int __maybe_unused bad_range(struct zone *zone, struct page *page)
551{
552 if (page_outside_zone_boundaries(zone, page))
553 return 1;
554 if (!page_is_consistent(zone, page))
555 return 1;
556
557 return 0;
558}
559#else
560static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
561{
562 return 0;
563}
564#endif
565
566static void bad_page(struct page *page, const char *reason,
567 unsigned long bad_flags)
568{
569 static unsigned long resume;
570 static unsigned long nr_shown;
571 static unsigned long nr_unshown;
572
573 /*
574 * Allow a burst of 60 reports, then keep quiet for that minute;
575 * or allow a steady drip of one report per second.
576 */
577 if (nr_shown == 60) {
578 if (time_before(jiffies, resume)) {
579 nr_unshown++;
580 goto out;
581 }
582 if (nr_unshown) {
583 pr_alert(
584 "BUG: Bad page state: %lu messages suppressed\n",
585 nr_unshown);
586 nr_unshown = 0;
587 }
588 nr_shown = 0;
589 }
590 if (nr_shown++ == 0)
591 resume = jiffies + 60 * HZ;
592
593 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
594 current->comm, page_to_pfn(page));
595 __dump_page(page, reason);
596 bad_flags &= page->flags;
597 if (bad_flags)
598 pr_alert("bad because of flags: %#lx(%pGp)\n",
599 bad_flags, &bad_flags);
600 dump_page_owner(page);
601
602 print_modules();
603 dump_stack();
604out:
605 /* Leave bad fields for debug, except PageBuddy could make trouble */
606 page_mapcount_reset(page); /* remove PageBuddy */
607 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
608}
609
610/*
611 * Higher-order pages are called "compound pages". They are structured thusly:
612 *
613 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
614 *
615 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
616 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
617 *
618 * The first tail page's ->compound_dtor holds the offset in array of compound
619 * page destructors. See compound_page_dtors.
620 *
621 * The first tail page's ->compound_order holds the order of allocation.
622 * This usage means that zero-order pages may not be compound.
623 */
624
625void free_compound_page(struct page *page)
626{
627 __free_pages_ok(page, compound_order(page));
628}
629
630void prep_compound_page(struct page *page, unsigned int order)
631{
632 int i;
633 int nr_pages = 1 << order;
634
635 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
636 set_compound_order(page, order);
637 __SetPageHead(page);
638 for (i = 1; i < nr_pages; i++) {
639 struct page *p = page + i;
640 set_page_count(p, 0);
641 p->mapping = TAIL_MAPPING;
642 set_compound_head(p, page);
643 }
644 atomic_set(compound_mapcount_ptr(page), -1);
645}
646
647#ifdef CONFIG_DEBUG_PAGEALLOC
648unsigned int _debug_guardpage_minorder;
649bool _debug_pagealloc_enabled __read_mostly
650 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
651EXPORT_SYMBOL(_debug_pagealloc_enabled);
652bool _debug_guardpage_enabled __read_mostly;
653
654static int __init early_debug_pagealloc(char *buf)
655{
656 if (!buf)
657 return -EINVAL;
658 return kstrtobool(buf, &_debug_pagealloc_enabled);
659}
660early_param("debug_pagealloc", early_debug_pagealloc);
661
662static bool need_debug_guardpage(void)
663{
664 /* If we don't use debug_pagealloc, we don't need guard page */
665 if (!debug_pagealloc_enabled())
666 return false;
667
668 if (!debug_guardpage_minorder())
669 return false;
670
671 return true;
672}
673
674static void init_debug_guardpage(void)
675{
676 if (!debug_pagealloc_enabled())
677 return;
678
679 if (!debug_guardpage_minorder())
680 return;
681
682 _debug_guardpage_enabled = true;
683}
684
685struct page_ext_operations debug_guardpage_ops = {
686 .need = need_debug_guardpage,
687 .init = init_debug_guardpage,
688};
689
690static int __init debug_guardpage_minorder_setup(char *buf)
691{
692 unsigned long res;
693
694 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
695 pr_err("Bad debug_guardpage_minorder value\n");
696 return 0;
697 }
698 _debug_guardpage_minorder = res;
699 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
700 return 0;
701}
702early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
703
704static inline bool set_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype)
706{
707 struct page_ext *page_ext;
708
709 if (!debug_guardpage_enabled())
710 return false;
711
712 if (order >= debug_guardpage_minorder())
713 return false;
714
715 page_ext = lookup_page_ext(page);
716 if (unlikely(!page_ext))
717 return false;
718
719 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
721 INIT_LIST_HEAD(&page->lru);
722 set_page_private(page, order);
723 /* Guard pages are not available for any usage */
724 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
725
726 return true;
727}
728
729static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype)
731{
732 struct page_ext *page_ext;
733
734 if (!debug_guardpage_enabled())
735 return;
736
737 page_ext = lookup_page_ext(page);
738 if (unlikely(!page_ext))
739 return;
740
741 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
742
743 set_page_private(page, 0);
744 if (!is_migrate_isolate(migratetype))
745 __mod_zone_freepage_state(zone, (1 << order), migratetype);
746}
747#else
748struct page_ext_operations debug_guardpage_ops;
749static inline bool set_page_guard(struct zone *zone, struct page *page,
750 unsigned int order, int migratetype) { return false; }
751static inline void clear_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype) {}
753#endif
754
755static inline void set_page_order(struct page *page, unsigned int order)
756{
757 set_page_private(page, order);
758 __SetPageBuddy(page);
759}
760
761/*
762 * This function checks whether a page is free && is the buddy
763 * we can coalesce a page and its buddy if
764 * (a) the buddy is not in a hole (check before calling!) &&
765 * (b) the buddy is in the buddy system &&
766 * (c) a page and its buddy have the same order &&
767 * (d) a page and its buddy are in the same zone.
768 *
769 * For recording whether a page is in the buddy system, we set PageBuddy.
770 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
771 *
772 * For recording page's order, we use page_private(page).
773 */
774static inline int page_is_buddy(struct page *page, struct page *buddy,
775 unsigned int order)
776{
777 if (page_is_guard(buddy) && page_order(buddy) == order) {
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
783 return 1;
784 }
785
786 if (PageBuddy(buddy) && page_order(buddy) == order) {
787 /*
788 * zone check is done late to avoid uselessly
789 * calculating zone/node ids for pages that could
790 * never merge.
791 */
792 if (page_zone_id(page) != page_zone_id(buddy))
793 return 0;
794
795 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
796
797 return 1;
798 }
799 return 0;
800}
801
802#ifdef CONFIG_COMPACTION
803static inline struct capture_control *task_capc(struct zone *zone)
804{
805 struct capture_control *capc = current->capture_control;
806
807 return capc &&
808 !(current->flags & PF_KTHREAD) &&
809 !capc->page &&
810 capc->cc->zone == zone &&
811 capc->cc->direct_compaction ? capc : NULL;
812}
813
814static inline bool
815compaction_capture(struct capture_control *capc, struct page *page,
816 int order, int migratetype)
817{
818 if (!capc || order != capc->cc->order)
819 return false;
820
821 /* Do not accidentally pollute CMA or isolated regions*/
822 if (is_migrate_cma(migratetype) ||
823 is_migrate_isolate(migratetype))
824 return false;
825
826 /*
827 * Do not let lower order allocations polluate a movable pageblock.
828 * This might let an unmovable request use a reclaimable pageblock
829 * and vice-versa but no more than normal fallback logic which can
830 * have trouble finding a high-order free page.
831 */
832 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
833 return false;
834
835 capc->page = page;
836 return true;
837}
838
839#else
840static inline struct capture_control *task_capc(struct zone *zone)
841{
842 return NULL;
843}
844
845static inline bool
846compaction_capture(struct capture_control *capc, struct page *page,
847 int order, int migratetype)
848{
849 return false;
850}
851#endif /* CONFIG_COMPACTION */
852
853/*
854 * Freeing function for a buddy system allocator.
855 *
856 * The concept of a buddy system is to maintain direct-mapped table
857 * (containing bit values) for memory blocks of various "orders".
858 * The bottom level table contains the map for the smallest allocatable
859 * units of memory (here, pages), and each level above it describes
860 * pairs of units from the levels below, hence, "buddies".
861 * At a high level, all that happens here is marking the table entry
862 * at the bottom level available, and propagating the changes upward
863 * as necessary, plus some accounting needed to play nicely with other
864 * parts of the VM system.
865 * At each level, we keep a list of pages, which are heads of continuous
866 * free pages of length of (1 << order) and marked with PageBuddy.
867 * Page's order is recorded in page_private(page) field.
868 * So when we are allocating or freeing one, we can derive the state of the
869 * other. That is, if we allocate a small block, and both were
870 * free, the remainder of the region must be split into blocks.
871 * If a block is freed, and its buddy is also free, then this
872 * triggers coalescing into a block of larger size.
873 *
874 * -- nyc
875 */
876
877static inline void __free_one_page(struct page *page,
878 unsigned long pfn,
879 struct zone *zone, unsigned int order,
880 int migratetype)
881{
882 unsigned long combined_pfn;
883 unsigned long uninitialized_var(buddy_pfn);
884 struct page *buddy;
885 unsigned int max_order;
886 struct capture_control *capc = task_capc(zone);
887
888 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
889
890 VM_BUG_ON(!zone_is_initialized(zone));
891 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
892
893 VM_BUG_ON(migratetype == -1);
894 if (likely(!is_migrate_isolate(migratetype)))
895 __mod_zone_freepage_state(zone, 1 << order, migratetype);
896
897 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
898 VM_BUG_ON_PAGE(bad_range(zone, page), page);
899
900continue_merging:
901 while (order < max_order - 1) {
902 if (compaction_capture(capc, page, order, migratetype)) {
903 __mod_zone_freepage_state(zone, -(1 << order),
904 migratetype);
905 return;
906 }
907 buddy_pfn = __find_buddy_pfn(pfn, order);
908 buddy = page + (buddy_pfn - pfn);
909
910 if (!pfn_valid_within(buddy_pfn))
911 goto done_merging;
912 if (!page_is_buddy(page, buddy, order))
913 goto done_merging;
914 /*
915 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
916 * merge with it and move up one order.
917 */
918 if (page_is_guard(buddy))
919 clear_page_guard(zone, buddy, order, migratetype);
920 else
921 del_page_from_free_area(buddy, &zone->free_area[order]);
922 combined_pfn = buddy_pfn & pfn;
923 page = page + (combined_pfn - pfn);
924 pfn = combined_pfn;
925 order++;
926 }
927 if (max_order < MAX_ORDER) {
928 /* If we are here, it means order is >= pageblock_order.
929 * We want to prevent merge between freepages on isolate
930 * pageblock and normal pageblock. Without this, pageblock
931 * isolation could cause incorrect freepage or CMA accounting.
932 *
933 * We don't want to hit this code for the more frequent
934 * low-order merging.
935 */
936 if (unlikely(has_isolate_pageblock(zone))) {
937 int buddy_mt;
938
939 buddy_pfn = __find_buddy_pfn(pfn, order);
940 buddy = page + (buddy_pfn - pfn);
941 buddy_mt = get_pageblock_migratetype(buddy);
942
943 if (migratetype != buddy_mt
944 && (is_migrate_isolate(migratetype) ||
945 is_migrate_isolate(buddy_mt)))
946 goto done_merging;
947 }
948 max_order++;
949 goto continue_merging;
950 }
951
952done_merging:
953 set_page_order(page, order);
954
955 /*
956 * If this is not the largest possible page, check if the buddy
957 * of the next-highest order is free. If it is, it's possible
958 * that pages are being freed that will coalesce soon. In case,
959 * that is happening, add the free page to the tail of the list
960 * so it's less likely to be used soon and more likely to be merged
961 * as a higher order page
962 */
963 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
964 && !is_shuffle_order(order)) {
965 struct page *higher_page, *higher_buddy;
966 combined_pfn = buddy_pfn & pfn;
967 higher_page = page + (combined_pfn - pfn);
968 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
969 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
970 if (pfn_valid_within(buddy_pfn) &&
971 page_is_buddy(higher_page, higher_buddy, order + 1)) {
972 add_to_free_area_tail(page, &zone->free_area[order],
973 migratetype);
974 return;
975 }
976 }
977
978 if (is_shuffle_order(order))
979 add_to_free_area_random(page, &zone->free_area[order],
980 migratetype);
981 else
982 add_to_free_area(page, &zone->free_area[order], migratetype);
983
984}
985
986/*
987 * A bad page could be due to a number of fields. Instead of multiple branches,
988 * try and check multiple fields with one check. The caller must do a detailed
989 * check if necessary.
990 */
991static inline bool page_expected_state(struct page *page,
992 unsigned long check_flags)
993{
994 if (unlikely(atomic_read(&page->_mapcount) != -1))
995 return false;
996
997 if (unlikely((unsigned long)page->mapping |
998 page_ref_count(page) |
999#ifdef CONFIG_MEMCG
1000 (unsigned long)page->mem_cgroup |
1001#endif
1002 (page->flags & check_flags)))
1003 return false;
1004
1005 return true;
1006}
1007
1008static void free_pages_check_bad(struct page *page)
1009{
1010 const char *bad_reason;
1011 unsigned long bad_flags;
1012
1013 bad_reason = NULL;
1014 bad_flags = 0;
1015
1016 if (unlikely(atomic_read(&page->_mapcount) != -1))
1017 bad_reason = "nonzero mapcount";
1018 if (unlikely(page->mapping != NULL))
1019 bad_reason = "non-NULL mapping";
1020 if (unlikely(page_ref_count(page) != 0))
1021 bad_reason = "nonzero _refcount";
1022 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1023 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1024 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1025 }
1026#ifdef CONFIG_MEMCG
1027 if (unlikely(page->mem_cgroup))
1028 bad_reason = "page still charged to cgroup";
1029#endif
1030 bad_page(page, bad_reason, bad_flags);
1031}
1032
1033static inline int free_pages_check(struct page *page)
1034{
1035 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1036 return 0;
1037
1038 /* Something has gone sideways, find it */
1039 free_pages_check_bad(page);
1040 return 1;
1041}
1042
1043static int free_tail_pages_check(struct page *head_page, struct page *page)
1044{
1045 int ret = 1;
1046
1047 /*
1048 * We rely page->lru.next never has bit 0 set, unless the page
1049 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1050 */
1051 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1052
1053 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1054 ret = 0;
1055 goto out;
1056 }
1057 switch (page - head_page) {
1058 case 1:
1059 /* the first tail page: ->mapping may be compound_mapcount() */
1060 if (unlikely(compound_mapcount(page))) {
1061 bad_page(page, "nonzero compound_mapcount", 0);
1062 goto out;
1063 }
1064 break;
1065 case 2:
1066 /*
1067 * the second tail page: ->mapping is
1068 * deferred_list.next -- ignore value.
1069 */
1070 break;
1071 default:
1072 if (page->mapping != TAIL_MAPPING) {
1073 bad_page(page, "corrupted mapping in tail page", 0);
1074 goto out;
1075 }
1076 break;
1077 }
1078 if (unlikely(!PageTail(page))) {
1079 bad_page(page, "PageTail not set", 0);
1080 goto out;
1081 }
1082 if (unlikely(compound_head(page) != head_page)) {
1083 bad_page(page, "compound_head not consistent", 0);
1084 goto out;
1085 }
1086 ret = 0;
1087out:
1088 page->mapping = NULL;
1089 clear_compound_head(page);
1090 return ret;
1091}
1092
1093static __always_inline bool free_pages_prepare(struct page *page,
1094 unsigned int order, bool check_free)
1095{
1096 int bad = 0;
1097
1098 VM_BUG_ON_PAGE(PageTail(page), page);
1099
1100 trace_mm_page_free(page, order);
1101
1102 /*
1103 * Check tail pages before head page information is cleared to
1104 * avoid checking PageCompound for order-0 pages.
1105 */
1106 if (unlikely(order)) {
1107 bool compound = PageCompound(page);
1108 int i;
1109
1110 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111
1112 if (compound)
1113 ClearPageDoubleMap(page);
1114 for (i = 1; i < (1 << order); i++) {
1115 if (compound)
1116 bad += free_tail_pages_check(page, page + i);
1117 if (unlikely(free_pages_check(page + i))) {
1118 bad++;
1119 continue;
1120 }
1121 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122 }
1123 }
1124 if (PageMappingFlags(page))
1125 page->mapping = NULL;
1126 if (memcg_kmem_enabled() && PageKmemcg(page))
1127 __memcg_kmem_uncharge(page, order);
1128 if (check_free)
1129 bad += free_pages_check(page);
1130 if (bad)
1131 return false;
1132
1133 page_cpupid_reset_last(page);
1134 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135 reset_page_owner(page, order);
1136
1137 if (!PageHighMem(page)) {
1138 debug_check_no_locks_freed(page_address(page),
1139 PAGE_SIZE << order);
1140 debug_check_no_obj_freed(page_address(page),
1141 PAGE_SIZE << order);
1142 }
1143 arch_free_page(page, order);
1144 kernel_poison_pages(page, 1 << order, 0);
1145 if (debug_pagealloc_enabled())
1146 kernel_map_pages(page, 1 << order, 0);
1147
1148 kasan_free_nondeferred_pages(page, order);
1149
1150 return true;
1151}
1152
1153#ifdef CONFIG_DEBUG_VM
1154static inline bool free_pcp_prepare(struct page *page)
1155{
1156 return free_pages_prepare(page, 0, true);
1157}
1158
1159static inline bool bulkfree_pcp_prepare(struct page *page)
1160{
1161 return false;
1162}
1163#else
1164static bool free_pcp_prepare(struct page *page)
1165{
1166 return free_pages_prepare(page, 0, false);
1167}
1168
1169static bool bulkfree_pcp_prepare(struct page *page)
1170{
1171 return free_pages_check(page);
1172}
1173#endif /* CONFIG_DEBUG_VM */
1174
1175static inline void prefetch_buddy(struct page *page)
1176{
1177 unsigned long pfn = page_to_pfn(page);
1178 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1179 struct page *buddy = page + (buddy_pfn - pfn);
1180
1181 prefetch(buddy);
1182}
1183
1184/*
1185 * Frees a number of pages from the PCP lists
1186 * Assumes all pages on list are in same zone, and of same order.
1187 * count is the number of pages to free.
1188 *
1189 * If the zone was previously in an "all pages pinned" state then look to
1190 * see if this freeing clears that state.
1191 *
1192 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1193 * pinned" detection logic.
1194 */
1195static void free_pcppages_bulk(struct zone *zone, int count,
1196 struct per_cpu_pages *pcp)
1197{
1198 int migratetype = 0;
1199 int batch_free = 0;
1200 int prefetch_nr = 0;
1201 bool isolated_pageblocks;
1202 struct page *page, *tmp;
1203 LIST_HEAD(head);
1204
1205 while (count) {
1206 struct list_head *list;
1207
1208 /*
1209 * Remove pages from lists in a round-robin fashion. A
1210 * batch_free count is maintained that is incremented when an
1211 * empty list is encountered. This is so more pages are freed
1212 * off fuller lists instead of spinning excessively around empty
1213 * lists
1214 */
1215 do {
1216 batch_free++;
1217 if (++migratetype == MIGRATE_PCPTYPES)
1218 migratetype = 0;
1219 list = &pcp->lists[migratetype];
1220 } while (list_empty(list));
1221
1222 /* This is the only non-empty list. Free them all. */
1223 if (batch_free == MIGRATE_PCPTYPES)
1224 batch_free = count;
1225
1226 do {
1227 page = list_last_entry(list, struct page, lru);
1228 /* must delete to avoid corrupting pcp list */
1229 list_del(&page->lru);
1230 pcp->count--;
1231
1232 if (bulkfree_pcp_prepare(page))
1233 continue;
1234
1235 list_add_tail(&page->lru, &head);
1236
1237 /*
1238 * We are going to put the page back to the global
1239 * pool, prefetch its buddy to speed up later access
1240 * under zone->lock. It is believed the overhead of
1241 * an additional test and calculating buddy_pfn here
1242 * can be offset by reduced memory latency later. To
1243 * avoid excessive prefetching due to large count, only
1244 * prefetch buddy for the first pcp->batch nr of pages.
1245 */
1246 if (prefetch_nr++ < pcp->batch)
1247 prefetch_buddy(page);
1248 } while (--count && --batch_free && !list_empty(list));
1249 }
1250
1251 spin_lock(&zone->lock);
1252 isolated_pageblocks = has_isolate_pageblock(zone);
1253
1254 /*
1255 * Use safe version since after __free_one_page(),
1256 * page->lru.next will not point to original list.
1257 */
1258 list_for_each_entry_safe(page, tmp, &head, lru) {
1259 int mt = get_pcppage_migratetype(page);
1260 /* MIGRATE_ISOLATE page should not go to pcplists */
1261 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262 /* Pageblock could have been isolated meanwhile */
1263 if (unlikely(isolated_pageblocks))
1264 mt = get_pageblock_migratetype(page);
1265
1266 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1267 trace_mm_page_pcpu_drain(page, 0, mt);
1268 }
1269 spin_unlock(&zone->lock);
1270}
1271
1272static void free_one_page(struct zone *zone,
1273 struct page *page, unsigned long pfn,
1274 unsigned int order,
1275 int migratetype)
1276{
1277 spin_lock(&zone->lock);
1278 if (unlikely(has_isolate_pageblock(zone) ||
1279 is_migrate_isolate(migratetype))) {
1280 migratetype = get_pfnblock_migratetype(page, pfn);
1281 }
1282 __free_one_page(page, pfn, zone, order, migratetype);
1283 spin_unlock(&zone->lock);
1284}
1285
1286static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287 unsigned long zone, int nid)
1288{
1289 mm_zero_struct_page(page);
1290 set_page_links(page, zone, nid, pfn);
1291 init_page_count(page);
1292 page_mapcount_reset(page);
1293 page_cpupid_reset_last(page);
1294 page_kasan_tag_reset(page);
1295
1296 INIT_LIST_HEAD(&page->lru);
1297#ifdef WANT_PAGE_VIRTUAL
1298 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1299 if (!is_highmem_idx(zone))
1300 set_page_address(page, __va(pfn << PAGE_SHIFT));
1301#endif
1302}
1303
1304#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305static void __meminit init_reserved_page(unsigned long pfn)
1306{
1307 pg_data_t *pgdat;
1308 int nid, zid;
1309
1310 if (!early_page_uninitialised(pfn))
1311 return;
1312
1313 nid = early_pfn_to_nid(pfn);
1314 pgdat = NODE_DATA(nid);
1315
1316 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1317 struct zone *zone = &pgdat->node_zones[zid];
1318
1319 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1320 break;
1321 }
1322 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1323}
1324#else
1325static inline void init_reserved_page(unsigned long pfn)
1326{
1327}
1328#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1329
1330/*
1331 * Initialised pages do not have PageReserved set. This function is
1332 * called for each range allocated by the bootmem allocator and
1333 * marks the pages PageReserved. The remaining valid pages are later
1334 * sent to the buddy page allocator.
1335 */
1336void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1337{
1338 unsigned long start_pfn = PFN_DOWN(start);
1339 unsigned long end_pfn = PFN_UP(end);
1340
1341 for (; start_pfn < end_pfn; start_pfn++) {
1342 if (pfn_valid(start_pfn)) {
1343 struct page *page = pfn_to_page(start_pfn);
1344
1345 init_reserved_page(start_pfn);
1346
1347 /* Avoid false-positive PageTail() */
1348 INIT_LIST_HEAD(&page->lru);
1349
1350 /*
1351 * no need for atomic set_bit because the struct
1352 * page is not visible yet so nobody should
1353 * access it yet.
1354 */
1355 __SetPageReserved(page);
1356 }
1357 }
1358}
1359
1360static void __free_pages_ok(struct page *page, unsigned int order)
1361{
1362 unsigned long flags;
1363 int migratetype;
1364 unsigned long pfn = page_to_pfn(page);
1365
1366 if (!free_pages_prepare(page, order, true))
1367 return;
1368
1369 migratetype = get_pfnblock_migratetype(page, pfn);
1370 local_irq_save(flags);
1371 __count_vm_events(PGFREE, 1 << order);
1372 free_one_page(page_zone(page), page, pfn, order, migratetype);
1373 local_irq_restore(flags);
1374}
1375
1376void __free_pages_core(struct page *page, unsigned int order)
1377{
1378 unsigned int nr_pages = 1 << order;
1379 struct page *p = page;
1380 unsigned int loop;
1381
1382 prefetchw(p);
1383 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1384 prefetchw(p + 1);
1385 __ClearPageReserved(p);
1386 set_page_count(p, 0);
1387 }
1388 __ClearPageReserved(p);
1389 set_page_count(p, 0);
1390
1391 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392 set_page_refcounted(page);
1393 __free_pages(page, order);
1394}
1395
1396#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1397 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1398
1399static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1400
1401int __meminit early_pfn_to_nid(unsigned long pfn)
1402{
1403 static DEFINE_SPINLOCK(early_pfn_lock);
1404 int nid;
1405
1406 spin_lock(&early_pfn_lock);
1407 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408 if (nid < 0)
1409 nid = first_online_node;
1410 spin_unlock(&early_pfn_lock);
1411
1412 return nid;
1413}
1414#endif
1415
1416#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417/* Only safe to use early in boot when initialisation is single-threaded */
1418static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1419{
1420 int nid;
1421
1422 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1423 if (nid >= 0 && nid != node)
1424 return false;
1425 return true;
1426}
1427
1428#else
1429static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1430{
1431 return true;
1432}
1433#endif
1434
1435
1436void __init memblock_free_pages(struct page *page, unsigned long pfn,
1437 unsigned int order)
1438{
1439 if (early_page_uninitialised(pfn))
1440 return;
1441 __free_pages_core(page, order);
1442}
1443
1444/*
1445 * Check that the whole (or subset of) a pageblock given by the interval of
1446 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1447 * with the migration of free compaction scanner. The scanners then need to
1448 * use only pfn_valid_within() check for arches that allow holes within
1449 * pageblocks.
1450 *
1451 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1452 *
1453 * It's possible on some configurations to have a setup like node0 node1 node0
1454 * i.e. it's possible that all pages within a zones range of pages do not
1455 * belong to a single zone. We assume that a border between node0 and node1
1456 * can occur within a single pageblock, but not a node0 node1 node0
1457 * interleaving within a single pageblock. It is therefore sufficient to check
1458 * the first and last page of a pageblock and avoid checking each individual
1459 * page in a pageblock.
1460 */
1461struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1462 unsigned long end_pfn, struct zone *zone)
1463{
1464 struct page *start_page;
1465 struct page *end_page;
1466
1467 /* end_pfn is one past the range we are checking */
1468 end_pfn--;
1469
1470 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1471 return NULL;
1472
1473 start_page = pfn_to_online_page(start_pfn);
1474 if (!start_page)
1475 return NULL;
1476
1477 if (page_zone(start_page) != zone)
1478 return NULL;
1479
1480 end_page = pfn_to_page(end_pfn);
1481
1482 /* This gives a shorter code than deriving page_zone(end_page) */
1483 if (page_zone_id(start_page) != page_zone_id(end_page))
1484 return NULL;
1485
1486 return start_page;
1487}
1488
1489void set_zone_contiguous(struct zone *zone)
1490{
1491 unsigned long block_start_pfn = zone->zone_start_pfn;
1492 unsigned long block_end_pfn;
1493
1494 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1495 for (; block_start_pfn < zone_end_pfn(zone);
1496 block_start_pfn = block_end_pfn,
1497 block_end_pfn += pageblock_nr_pages) {
1498
1499 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1500
1501 if (!__pageblock_pfn_to_page(block_start_pfn,
1502 block_end_pfn, zone))
1503 return;
1504 }
1505
1506 /* We confirm that there is no hole */
1507 zone->contiguous = true;
1508}
1509
1510void clear_zone_contiguous(struct zone *zone)
1511{
1512 zone->contiguous = false;
1513}
1514
1515#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1516static void __init deferred_free_range(unsigned long pfn,
1517 unsigned long nr_pages)
1518{
1519 struct page *page;
1520 unsigned long i;
1521
1522 if (!nr_pages)
1523 return;
1524
1525 page = pfn_to_page(pfn);
1526
1527 /* Free a large naturally-aligned chunk if possible */
1528 if (nr_pages == pageblock_nr_pages &&
1529 (pfn & (pageblock_nr_pages - 1)) == 0) {
1530 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1531 __free_pages_core(page, pageblock_order);
1532 return;
1533 }
1534
1535 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1536 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1537 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1538 __free_pages_core(page, 0);
1539 }
1540}
1541
1542/* Completion tracking for deferred_init_memmap() threads */
1543static atomic_t pgdat_init_n_undone __initdata;
1544static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1545
1546static inline void __init pgdat_init_report_one_done(void)
1547{
1548 if (atomic_dec_and_test(&pgdat_init_n_undone))
1549 complete(&pgdat_init_all_done_comp);
1550}
1551
1552/*
1553 * Returns true if page needs to be initialized or freed to buddy allocator.
1554 *
1555 * First we check if pfn is valid on architectures where it is possible to have
1556 * holes within pageblock_nr_pages. On systems where it is not possible, this
1557 * function is optimized out.
1558 *
1559 * Then, we check if a current large page is valid by only checking the validity
1560 * of the head pfn.
1561 */
1562static inline bool __init deferred_pfn_valid(unsigned long pfn)
1563{
1564 if (!pfn_valid_within(pfn))
1565 return false;
1566 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1567 return false;
1568 return true;
1569}
1570
1571/*
1572 * Free pages to buddy allocator. Try to free aligned pages in
1573 * pageblock_nr_pages sizes.
1574 */
1575static void __init deferred_free_pages(unsigned long pfn,
1576 unsigned long end_pfn)
1577{
1578 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1579 unsigned long nr_free = 0;
1580
1581 for (; pfn < end_pfn; pfn++) {
1582 if (!deferred_pfn_valid(pfn)) {
1583 deferred_free_range(pfn - nr_free, nr_free);
1584 nr_free = 0;
1585 } else if (!(pfn & nr_pgmask)) {
1586 deferred_free_range(pfn - nr_free, nr_free);
1587 nr_free = 1;
1588 touch_nmi_watchdog();
1589 } else {
1590 nr_free++;
1591 }
1592 }
1593 /* Free the last block of pages to allocator */
1594 deferred_free_range(pfn - nr_free, nr_free);
1595}
1596
1597/*
1598 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1599 * by performing it only once every pageblock_nr_pages.
1600 * Return number of pages initialized.
1601 */
1602static unsigned long __init deferred_init_pages(struct zone *zone,
1603 unsigned long pfn,
1604 unsigned long end_pfn)
1605{
1606 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1607 int nid = zone_to_nid(zone);
1608 unsigned long nr_pages = 0;
1609 int zid = zone_idx(zone);
1610 struct page *page = NULL;
1611
1612 for (; pfn < end_pfn; pfn++) {
1613 if (!deferred_pfn_valid(pfn)) {
1614 page = NULL;
1615 continue;
1616 } else if (!page || !(pfn & nr_pgmask)) {
1617 page = pfn_to_page(pfn);
1618 touch_nmi_watchdog();
1619 } else {
1620 page++;
1621 }
1622 __init_single_page(page, pfn, zid, nid);
1623 nr_pages++;
1624 }
1625 return (nr_pages);
1626}
1627
1628/*
1629 * This function is meant to pre-load the iterator for the zone init.
1630 * Specifically it walks through the ranges until we are caught up to the
1631 * first_init_pfn value and exits there. If we never encounter the value we
1632 * return false indicating there are no valid ranges left.
1633 */
1634static bool __init
1635deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1636 unsigned long *spfn, unsigned long *epfn,
1637 unsigned long first_init_pfn)
1638{
1639 u64 j;
1640
1641 /*
1642 * Start out by walking through the ranges in this zone that have
1643 * already been initialized. We don't need to do anything with them
1644 * so we just need to flush them out of the system.
1645 */
1646 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1647 if (*epfn <= first_init_pfn)
1648 continue;
1649 if (*spfn < first_init_pfn)
1650 *spfn = first_init_pfn;
1651 *i = j;
1652 return true;
1653 }
1654
1655 return false;
1656}
1657
1658/*
1659 * Initialize and free pages. We do it in two loops: first we initialize
1660 * struct page, then free to buddy allocator, because while we are
1661 * freeing pages we can access pages that are ahead (computing buddy
1662 * page in __free_one_page()).
1663 *
1664 * In order to try and keep some memory in the cache we have the loop
1665 * broken along max page order boundaries. This way we will not cause
1666 * any issues with the buddy page computation.
1667 */
1668static unsigned long __init
1669deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1670 unsigned long *end_pfn)
1671{
1672 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1673 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1674 unsigned long nr_pages = 0;
1675 u64 j = *i;
1676
1677 /* First we loop through and initialize the page values */
1678 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1679 unsigned long t;
1680
1681 if (mo_pfn <= *start_pfn)
1682 break;
1683
1684 t = min(mo_pfn, *end_pfn);
1685 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1686
1687 if (mo_pfn < *end_pfn) {
1688 *start_pfn = mo_pfn;
1689 break;
1690 }
1691 }
1692
1693 /* Reset values and now loop through freeing pages as needed */
1694 swap(j, *i);
1695
1696 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1697 unsigned long t;
1698
1699 if (mo_pfn <= spfn)
1700 break;
1701
1702 t = min(mo_pfn, epfn);
1703 deferred_free_pages(spfn, t);
1704
1705 if (mo_pfn <= epfn)
1706 break;
1707 }
1708
1709 return nr_pages;
1710}
1711
1712/* Initialise remaining memory on a node */
1713static int __init deferred_init_memmap(void *data)
1714{
1715 pg_data_t *pgdat = data;
1716 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1717 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1718 unsigned long first_init_pfn, flags;
1719 unsigned long start = jiffies;
1720 struct zone *zone;
1721 int zid;
1722 u64 i;
1723
1724 /* Bind memory initialisation thread to a local node if possible */
1725 if (!cpumask_empty(cpumask))
1726 set_cpus_allowed_ptr(current, cpumask);
1727
1728 pgdat_resize_lock(pgdat, &flags);
1729 first_init_pfn = pgdat->first_deferred_pfn;
1730 if (first_init_pfn == ULONG_MAX) {
1731 pgdat_resize_unlock(pgdat, &flags);
1732 pgdat_init_report_one_done();
1733 return 0;
1734 }
1735
1736 /* Sanity check boundaries */
1737 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1738 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1739 pgdat->first_deferred_pfn = ULONG_MAX;
1740
1741 /* Only the highest zone is deferred so find it */
1742 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1743 zone = pgdat->node_zones + zid;
1744 if (first_init_pfn < zone_end_pfn(zone))
1745 break;
1746 }
1747
1748 /* If the zone is empty somebody else may have cleared out the zone */
1749 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1750 first_init_pfn))
1751 goto zone_empty;
1752
1753 /*
1754 * Initialize and free pages in MAX_ORDER sized increments so
1755 * that we can avoid introducing any issues with the buddy
1756 * allocator.
1757 */
1758 while (spfn < epfn)
1759 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1760zone_empty:
1761 pgdat_resize_unlock(pgdat, &flags);
1762
1763 /* Sanity check that the next zone really is unpopulated */
1764 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1765
1766 pr_info("node %d initialised, %lu pages in %ums\n",
1767 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1768
1769 pgdat_init_report_one_done();
1770 return 0;
1771}
1772
1773/*
1774 * If this zone has deferred pages, try to grow it by initializing enough
1775 * deferred pages to satisfy the allocation specified by order, rounded up to
1776 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1777 * of SECTION_SIZE bytes by initializing struct pages in increments of
1778 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1779 *
1780 * Return true when zone was grown, otherwise return false. We return true even
1781 * when we grow less than requested, to let the caller decide if there are
1782 * enough pages to satisfy the allocation.
1783 *
1784 * Note: We use noinline because this function is needed only during boot, and
1785 * it is called from a __ref function _deferred_grow_zone. This way we are
1786 * making sure that it is not inlined into permanent text section.
1787 */
1788static noinline bool __init
1789deferred_grow_zone(struct zone *zone, unsigned int order)
1790{
1791 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1792 pg_data_t *pgdat = zone->zone_pgdat;
1793 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1794 unsigned long spfn, epfn, flags;
1795 unsigned long nr_pages = 0;
1796 u64 i;
1797
1798 /* Only the last zone may have deferred pages */
1799 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1800 return false;
1801
1802 pgdat_resize_lock(pgdat, &flags);
1803
1804 /*
1805 * If deferred pages have been initialized while we were waiting for
1806 * the lock, return true, as the zone was grown. The caller will retry
1807 * this zone. We won't return to this function since the caller also
1808 * has this static branch.
1809 */
1810 if (!static_branch_unlikely(&deferred_pages)) {
1811 pgdat_resize_unlock(pgdat, &flags);
1812 return true;
1813 }
1814
1815 /*
1816 * If someone grew this zone while we were waiting for spinlock, return
1817 * true, as there might be enough pages already.
1818 */
1819 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1820 pgdat_resize_unlock(pgdat, &flags);
1821 return true;
1822 }
1823
1824 /* If the zone is empty somebody else may have cleared out the zone */
1825 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1826 first_deferred_pfn)) {
1827 pgdat->first_deferred_pfn = ULONG_MAX;
1828 pgdat_resize_unlock(pgdat, &flags);
1829 /* Retry only once. */
1830 return first_deferred_pfn != ULONG_MAX;
1831 }
1832
1833 /*
1834 * Initialize and free pages in MAX_ORDER sized increments so
1835 * that we can avoid introducing any issues with the buddy
1836 * allocator.
1837 */
1838 while (spfn < epfn) {
1839 /* update our first deferred PFN for this section */
1840 first_deferred_pfn = spfn;
1841
1842 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1843
1844 /* We should only stop along section boundaries */
1845 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1846 continue;
1847
1848 /* If our quota has been met we can stop here */
1849 if (nr_pages >= nr_pages_needed)
1850 break;
1851 }
1852
1853 pgdat->first_deferred_pfn = spfn;
1854 pgdat_resize_unlock(pgdat, &flags);
1855
1856 return nr_pages > 0;
1857}
1858
1859/*
1860 * deferred_grow_zone() is __init, but it is called from
1861 * get_page_from_freelist() during early boot until deferred_pages permanently
1862 * disables this call. This is why we have refdata wrapper to avoid warning,
1863 * and to ensure that the function body gets unloaded.
1864 */
1865static bool __ref
1866_deferred_grow_zone(struct zone *zone, unsigned int order)
1867{
1868 return deferred_grow_zone(zone, order);
1869}
1870
1871#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1872
1873void __init page_alloc_init_late(void)
1874{
1875 struct zone *zone;
1876 int nid;
1877
1878#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1879
1880 /* There will be num_node_state(N_MEMORY) threads */
1881 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1882 for_each_node_state(nid, N_MEMORY) {
1883 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1884 }
1885
1886 /* Block until all are initialised */
1887 wait_for_completion(&pgdat_init_all_done_comp);
1888
1889 /*
1890 * We initialized the rest of the deferred pages. Permanently disable
1891 * on-demand struct page initialization.
1892 */
1893 static_branch_disable(&deferred_pages);
1894
1895 /* Reinit limits that are based on free pages after the kernel is up */
1896 files_maxfiles_init();
1897#endif
1898
1899 /* Discard memblock private memory */
1900 memblock_discard();
1901
1902 for_each_node_state(nid, N_MEMORY)
1903 shuffle_free_memory(NODE_DATA(nid));
1904
1905 for_each_populated_zone(zone)
1906 set_zone_contiguous(zone);
1907}
1908
1909#ifdef CONFIG_CMA
1910/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1911void __init init_cma_reserved_pageblock(struct page *page)
1912{
1913 unsigned i = pageblock_nr_pages;
1914 struct page *p = page;
1915
1916 do {
1917 __ClearPageReserved(p);
1918 set_page_count(p, 0);
1919 } while (++p, --i);
1920
1921 set_pageblock_migratetype(page, MIGRATE_CMA);
1922
1923 if (pageblock_order >= MAX_ORDER) {
1924 i = pageblock_nr_pages;
1925 p = page;
1926 do {
1927 set_page_refcounted(p);
1928 __free_pages(p, MAX_ORDER - 1);
1929 p += MAX_ORDER_NR_PAGES;
1930 } while (i -= MAX_ORDER_NR_PAGES);
1931 } else {
1932 set_page_refcounted(page);
1933 __free_pages(page, pageblock_order);
1934 }
1935
1936 adjust_managed_page_count(page, pageblock_nr_pages);
1937}
1938#endif
1939
1940/*
1941 * The order of subdivision here is critical for the IO subsystem.
1942 * Please do not alter this order without good reasons and regression
1943 * testing. Specifically, as large blocks of memory are subdivided,
1944 * the order in which smaller blocks are delivered depends on the order
1945 * they're subdivided in this function. This is the primary factor
1946 * influencing the order in which pages are delivered to the IO
1947 * subsystem according to empirical testing, and this is also justified
1948 * by considering the behavior of a buddy system containing a single
1949 * large block of memory acted on by a series of small allocations.
1950 * This behavior is a critical factor in sglist merging's success.
1951 *
1952 * -- nyc
1953 */
1954static inline void expand(struct zone *zone, struct page *page,
1955 int low, int high, struct free_area *area,
1956 int migratetype)
1957{
1958 unsigned long size = 1 << high;
1959
1960 while (high > low) {
1961 area--;
1962 high--;
1963 size >>= 1;
1964 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1965
1966 /*
1967 * Mark as guard pages (or page), that will allow to
1968 * merge back to allocator when buddy will be freed.
1969 * Corresponding page table entries will not be touched,
1970 * pages will stay not present in virtual address space
1971 */
1972 if (set_page_guard(zone, &page[size], high, migratetype))
1973 continue;
1974
1975 add_to_free_area(&page[size], area, migratetype);
1976 set_page_order(&page[size], high);
1977 }
1978}
1979
1980static void check_new_page_bad(struct page *page)
1981{
1982 const char *bad_reason = NULL;
1983 unsigned long bad_flags = 0;
1984
1985 if (unlikely(atomic_read(&page->_mapcount) != -1))
1986 bad_reason = "nonzero mapcount";
1987 if (unlikely(page->mapping != NULL))
1988 bad_reason = "non-NULL mapping";
1989 if (unlikely(page_ref_count(page) != 0))
1990 bad_reason = "nonzero _refcount";
1991 if (unlikely(page->flags & __PG_HWPOISON)) {
1992 bad_reason = "HWPoisoned (hardware-corrupted)";
1993 bad_flags = __PG_HWPOISON;
1994 /* Don't complain about hwpoisoned pages */
1995 page_mapcount_reset(page); /* remove PageBuddy */
1996 return;
1997 }
1998 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1999 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2000 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2001 }
2002#ifdef CONFIG_MEMCG
2003 if (unlikely(page->mem_cgroup))
2004 bad_reason = "page still charged to cgroup";
2005#endif
2006 bad_page(page, bad_reason, bad_flags);
2007}
2008
2009/*
2010 * This page is about to be returned from the page allocator
2011 */
2012static inline int check_new_page(struct page *page)
2013{
2014 if (likely(page_expected_state(page,
2015 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2016 return 0;
2017
2018 check_new_page_bad(page);
2019 return 1;
2020}
2021
2022static inline bool free_pages_prezeroed(void)
2023{
2024 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2025 page_poisoning_enabled();
2026}
2027
2028#ifdef CONFIG_DEBUG_VM
2029static bool check_pcp_refill(struct page *page)
2030{
2031 return false;
2032}
2033
2034static bool check_new_pcp(struct page *page)
2035{
2036 return check_new_page(page);
2037}
2038#else
2039static bool check_pcp_refill(struct page *page)
2040{
2041 return check_new_page(page);
2042}
2043static bool check_new_pcp(struct page *page)
2044{
2045 return false;
2046}
2047#endif /* CONFIG_DEBUG_VM */
2048
2049static bool check_new_pages(struct page *page, unsigned int order)
2050{
2051 int i;
2052 for (i = 0; i < (1 << order); i++) {
2053 struct page *p = page + i;
2054
2055 if (unlikely(check_new_page(p)))
2056 return true;
2057 }
2058
2059 return false;
2060}
2061
2062inline void post_alloc_hook(struct page *page, unsigned int order,
2063 gfp_t gfp_flags)
2064{
2065 set_page_private(page, 0);
2066 set_page_refcounted(page);
2067
2068 arch_alloc_page(page, order);
2069 if (debug_pagealloc_enabled())
2070 kernel_map_pages(page, 1 << order, 1);
2071 kasan_alloc_pages(page, order);
2072 kernel_poison_pages(page, 1 << order, 1);
2073 set_page_owner(page, order, gfp_flags);
2074}
2075
2076static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2077 unsigned int alloc_flags)
2078{
2079 int i;
2080
2081 post_alloc_hook(page, order, gfp_flags);
2082
2083 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2084 for (i = 0; i < (1 << order); i++)
2085 clear_highpage(page + i);
2086
2087 if (order && (gfp_flags & __GFP_COMP))
2088 prep_compound_page(page, order);
2089
2090 /*
2091 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2092 * allocate the page. The expectation is that the caller is taking
2093 * steps that will free more memory. The caller should avoid the page
2094 * being used for !PFMEMALLOC purposes.
2095 */
2096 if (alloc_flags & ALLOC_NO_WATERMARKS)
2097 set_page_pfmemalloc(page);
2098 else
2099 clear_page_pfmemalloc(page);
2100}
2101
2102/*
2103 * Go through the free lists for the given migratetype and remove
2104 * the smallest available page from the freelists
2105 */
2106static __always_inline
2107struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2108 int migratetype)
2109{
2110 unsigned int current_order;
2111 struct free_area *area;
2112 struct page *page;
2113
2114 /* Find a page of the appropriate size in the preferred list */
2115 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2116 area = &(zone->free_area[current_order]);
2117 page = get_page_from_free_area(area, migratetype);
2118 if (!page)
2119 continue;
2120 del_page_from_free_area(page, area);
2121 expand(zone, page, order, current_order, area, migratetype);
2122 set_pcppage_migratetype(page, migratetype);
2123 return page;
2124 }
2125
2126 return NULL;
2127}
2128
2129
2130/*
2131 * This array describes the order lists are fallen back to when
2132 * the free lists for the desirable migrate type are depleted
2133 */
2134static int fallbacks[MIGRATE_TYPES][4] = {
2135 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2136 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2137 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2138#ifdef CONFIG_CMA
2139 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2140#endif
2141#ifdef CONFIG_MEMORY_ISOLATION
2142 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2143#endif
2144};
2145
2146#ifdef CONFIG_CMA
2147static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2148 unsigned int order)
2149{
2150 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2151}
2152#else
2153static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2154 unsigned int order) { return NULL; }
2155#endif
2156
2157/*
2158 * Move the free pages in a range to the free lists of the requested type.
2159 * Note that start_page and end_pages are not aligned on a pageblock
2160 * boundary. If alignment is required, use move_freepages_block()
2161 */
2162static int move_freepages(struct zone *zone,
2163 struct page *start_page, struct page *end_page,
2164 int migratetype, int *num_movable)
2165{
2166 struct page *page;
2167 unsigned int order;
2168 int pages_moved = 0;
2169
2170#ifndef CONFIG_HOLES_IN_ZONE
2171 /*
2172 * page_zone is not safe to call in this context when
2173 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2174 * anyway as we check zone boundaries in move_freepages_block().
2175 * Remove at a later date when no bug reports exist related to
2176 * grouping pages by mobility
2177 */
2178 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2179 pfn_valid(page_to_pfn(end_page)) &&
2180 page_zone(start_page) != page_zone(end_page));
2181#endif
2182 for (page = start_page; page <= end_page;) {
2183 if (!pfn_valid_within(page_to_pfn(page))) {
2184 page++;
2185 continue;
2186 }
2187
2188 /* Make sure we are not inadvertently changing nodes */
2189 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2190
2191 if (!PageBuddy(page)) {
2192 /*
2193 * We assume that pages that could be isolated for
2194 * migration are movable. But we don't actually try
2195 * isolating, as that would be expensive.
2196 */
2197 if (num_movable &&
2198 (PageLRU(page) || __PageMovable(page)))
2199 (*num_movable)++;
2200
2201 page++;
2202 continue;
2203 }
2204
2205 order = page_order(page);
2206 move_to_free_area(page, &zone->free_area[order], migratetype);
2207 page += 1 << order;
2208 pages_moved += 1 << order;
2209 }
2210
2211 return pages_moved;
2212}
2213
2214int move_freepages_block(struct zone *zone, struct page *page,
2215 int migratetype, int *num_movable)
2216{
2217 unsigned long start_pfn, end_pfn;
2218 struct page *start_page, *end_page;
2219
2220 if (num_movable)
2221 *num_movable = 0;
2222
2223 start_pfn = page_to_pfn(page);
2224 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2225 start_page = pfn_to_page(start_pfn);
2226 end_page = start_page + pageblock_nr_pages - 1;
2227 end_pfn = start_pfn + pageblock_nr_pages - 1;
2228
2229 /* Do not cross zone boundaries */
2230 if (!zone_spans_pfn(zone, start_pfn))
2231 start_page = page;
2232 if (!zone_spans_pfn(zone, end_pfn))
2233 return 0;
2234
2235 return move_freepages(zone, start_page, end_page, migratetype,
2236 num_movable);
2237}
2238
2239static void change_pageblock_range(struct page *pageblock_page,
2240 int start_order, int migratetype)
2241{
2242 int nr_pageblocks = 1 << (start_order - pageblock_order);
2243
2244 while (nr_pageblocks--) {
2245 set_pageblock_migratetype(pageblock_page, migratetype);
2246 pageblock_page += pageblock_nr_pages;
2247 }
2248}
2249
2250/*
2251 * When we are falling back to another migratetype during allocation, try to
2252 * steal extra free pages from the same pageblocks to satisfy further
2253 * allocations, instead of polluting multiple pageblocks.
2254 *
2255 * If we are stealing a relatively large buddy page, it is likely there will
2256 * be more free pages in the pageblock, so try to steal them all. For
2257 * reclaimable and unmovable allocations, we steal regardless of page size,
2258 * as fragmentation caused by those allocations polluting movable pageblocks
2259 * is worse than movable allocations stealing from unmovable and reclaimable
2260 * pageblocks.
2261 */
2262static bool can_steal_fallback(unsigned int order, int start_mt)
2263{
2264 /*
2265 * Leaving this order check is intended, although there is
2266 * relaxed order check in next check. The reason is that
2267 * we can actually steal whole pageblock if this condition met,
2268 * but, below check doesn't guarantee it and that is just heuristic
2269 * so could be changed anytime.
2270 */
2271 if (order >= pageblock_order)
2272 return true;
2273
2274 if (order >= pageblock_order / 2 ||
2275 start_mt == MIGRATE_RECLAIMABLE ||
2276 start_mt == MIGRATE_UNMOVABLE ||
2277 page_group_by_mobility_disabled)
2278 return true;
2279
2280 return false;
2281}
2282
2283static inline void boost_watermark(struct zone *zone)
2284{
2285 unsigned long max_boost;
2286
2287 if (!watermark_boost_factor)
2288 return;
2289
2290 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2291 watermark_boost_factor, 10000);
2292
2293 /*
2294 * high watermark may be uninitialised if fragmentation occurs
2295 * very early in boot so do not boost. We do not fall
2296 * through and boost by pageblock_nr_pages as failing
2297 * allocations that early means that reclaim is not going
2298 * to help and it may even be impossible to reclaim the
2299 * boosted watermark resulting in a hang.
2300 */
2301 if (!max_boost)
2302 return;
2303
2304 max_boost = max(pageblock_nr_pages, max_boost);
2305
2306 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2307 max_boost);
2308}
2309
2310/*
2311 * This function implements actual steal behaviour. If order is large enough,
2312 * we can steal whole pageblock. If not, we first move freepages in this
2313 * pageblock to our migratetype and determine how many already-allocated pages
2314 * are there in the pageblock with a compatible migratetype. If at least half
2315 * of pages are free or compatible, we can change migratetype of the pageblock
2316 * itself, so pages freed in the future will be put on the correct free list.
2317 */
2318static void steal_suitable_fallback(struct zone *zone, struct page *page,
2319 unsigned int alloc_flags, int start_type, bool whole_block)
2320{
2321 unsigned int current_order = page_order(page);
2322 struct free_area *area;
2323 int free_pages, movable_pages, alike_pages;
2324 int old_block_type;
2325
2326 old_block_type = get_pageblock_migratetype(page);
2327
2328 /*
2329 * This can happen due to races and we want to prevent broken
2330 * highatomic accounting.
2331 */
2332 if (is_migrate_highatomic(old_block_type))
2333 goto single_page;
2334
2335 /* Take ownership for orders >= pageblock_order */
2336 if (current_order >= pageblock_order) {
2337 change_pageblock_range(page, current_order, start_type);
2338 goto single_page;
2339 }
2340
2341 /*
2342 * Boost watermarks to increase reclaim pressure to reduce the
2343 * likelihood of future fallbacks. Wake kswapd now as the node
2344 * may be balanced overall and kswapd will not wake naturally.
2345 */
2346 boost_watermark(zone);
2347 if (alloc_flags & ALLOC_KSWAPD)
2348 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2349
2350 /* We are not allowed to try stealing from the whole block */
2351 if (!whole_block)
2352 goto single_page;
2353
2354 free_pages = move_freepages_block(zone, page, start_type,
2355 &movable_pages);
2356 /*
2357 * Determine how many pages are compatible with our allocation.
2358 * For movable allocation, it's the number of movable pages which
2359 * we just obtained. For other types it's a bit more tricky.
2360 */
2361 if (start_type == MIGRATE_MOVABLE) {
2362 alike_pages = movable_pages;
2363 } else {
2364 /*
2365 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2366 * to MOVABLE pageblock, consider all non-movable pages as
2367 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2368 * vice versa, be conservative since we can't distinguish the
2369 * exact migratetype of non-movable pages.
2370 */
2371 if (old_block_type == MIGRATE_MOVABLE)
2372 alike_pages = pageblock_nr_pages
2373 - (free_pages + movable_pages);
2374 else
2375 alike_pages = 0;
2376 }
2377
2378 /* moving whole block can fail due to zone boundary conditions */
2379 if (!free_pages)
2380 goto single_page;
2381
2382 /*
2383 * If a sufficient number of pages in the block are either free or of
2384 * comparable migratability as our allocation, claim the whole block.
2385 */
2386 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2387 page_group_by_mobility_disabled)
2388 set_pageblock_migratetype(page, start_type);
2389
2390 return;
2391
2392single_page:
2393 area = &zone->free_area[current_order];
2394 move_to_free_area(page, area, start_type);
2395}
2396
2397/*
2398 * Check whether there is a suitable fallback freepage with requested order.
2399 * If only_stealable is true, this function returns fallback_mt only if
2400 * we can steal other freepages all together. This would help to reduce
2401 * fragmentation due to mixed migratetype pages in one pageblock.
2402 */
2403int find_suitable_fallback(struct free_area *area, unsigned int order,
2404 int migratetype, bool only_stealable, bool *can_steal)
2405{
2406 int i;
2407 int fallback_mt;
2408
2409 if (area->nr_free == 0)
2410 return -1;
2411
2412 *can_steal = false;
2413 for (i = 0;; i++) {
2414 fallback_mt = fallbacks[migratetype][i];
2415 if (fallback_mt == MIGRATE_TYPES)
2416 break;
2417
2418 if (free_area_empty(area, fallback_mt))
2419 continue;
2420
2421 if (can_steal_fallback(order, migratetype))
2422 *can_steal = true;
2423
2424 if (!only_stealable)
2425 return fallback_mt;
2426
2427 if (*can_steal)
2428 return fallback_mt;
2429 }
2430
2431 return -1;
2432}
2433
2434/*
2435 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2436 * there are no empty page blocks that contain a page with a suitable order
2437 */
2438static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2439 unsigned int alloc_order)
2440{
2441 int mt;
2442 unsigned long max_managed, flags;
2443
2444 /*
2445 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2446 * Check is race-prone but harmless.
2447 */
2448 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2449 if (zone->nr_reserved_highatomic >= max_managed)
2450 return;
2451
2452 spin_lock_irqsave(&zone->lock, flags);
2453
2454 /* Recheck the nr_reserved_highatomic limit under the lock */
2455 if (zone->nr_reserved_highatomic >= max_managed)
2456 goto out_unlock;
2457
2458 /* Yoink! */
2459 mt = get_pageblock_migratetype(page);
2460 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2461 && !is_migrate_cma(mt)) {
2462 zone->nr_reserved_highatomic += pageblock_nr_pages;
2463 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2464 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2465 }
2466
2467out_unlock:
2468 spin_unlock_irqrestore(&zone->lock, flags);
2469}
2470
2471/*
2472 * Used when an allocation is about to fail under memory pressure. This
2473 * potentially hurts the reliability of high-order allocations when under
2474 * intense memory pressure but failed atomic allocations should be easier
2475 * to recover from than an OOM.
2476 *
2477 * If @force is true, try to unreserve a pageblock even though highatomic
2478 * pageblock is exhausted.
2479 */
2480static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2481 bool force)
2482{
2483 struct zonelist *zonelist = ac->zonelist;
2484 unsigned long flags;
2485 struct zoneref *z;
2486 struct zone *zone;
2487 struct page *page;
2488 int order;
2489 bool ret;
2490
2491 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2492 ac->nodemask) {
2493 /*
2494 * Preserve at least one pageblock unless memory pressure
2495 * is really high.
2496 */
2497 if (!force && zone->nr_reserved_highatomic <=
2498 pageblock_nr_pages)
2499 continue;
2500
2501 spin_lock_irqsave(&zone->lock, flags);
2502 for (order = 0; order < MAX_ORDER; order++) {
2503 struct free_area *area = &(zone->free_area[order]);
2504
2505 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2506 if (!page)
2507 continue;
2508
2509 /*
2510 * In page freeing path, migratetype change is racy so
2511 * we can counter several free pages in a pageblock
2512 * in this loop althoug we changed the pageblock type
2513 * from highatomic to ac->migratetype. So we should
2514 * adjust the count once.
2515 */
2516 if (is_migrate_highatomic_page(page)) {
2517 /*
2518 * It should never happen but changes to
2519 * locking could inadvertently allow a per-cpu
2520 * drain to add pages to MIGRATE_HIGHATOMIC
2521 * while unreserving so be safe and watch for
2522 * underflows.
2523 */
2524 zone->nr_reserved_highatomic -= min(
2525 pageblock_nr_pages,
2526 zone->nr_reserved_highatomic);
2527 }
2528
2529 /*
2530 * Convert to ac->migratetype and avoid the normal
2531 * pageblock stealing heuristics. Minimally, the caller
2532 * is doing the work and needs the pages. More
2533 * importantly, if the block was always converted to
2534 * MIGRATE_UNMOVABLE or another type then the number
2535 * of pageblocks that cannot be completely freed
2536 * may increase.
2537 */
2538 set_pageblock_migratetype(page, ac->migratetype);
2539 ret = move_freepages_block(zone, page, ac->migratetype,
2540 NULL);
2541 if (ret) {
2542 spin_unlock_irqrestore(&zone->lock, flags);
2543 return ret;
2544 }
2545 }
2546 spin_unlock_irqrestore(&zone->lock, flags);
2547 }
2548
2549 return false;
2550}
2551
2552/*
2553 * Try finding a free buddy page on the fallback list and put it on the free
2554 * list of requested migratetype, possibly along with other pages from the same
2555 * block, depending on fragmentation avoidance heuristics. Returns true if
2556 * fallback was found so that __rmqueue_smallest() can grab it.
2557 *
2558 * The use of signed ints for order and current_order is a deliberate
2559 * deviation from the rest of this file, to make the for loop
2560 * condition simpler.
2561 */
2562static __always_inline bool
2563__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2564 unsigned int alloc_flags)
2565{
2566 struct free_area *area;
2567 int current_order;
2568 int min_order = order;
2569 struct page *page;
2570 int fallback_mt;
2571 bool can_steal;
2572
2573 /*
2574 * Do not steal pages from freelists belonging to other pageblocks
2575 * i.e. orders < pageblock_order. If there are no local zones free,
2576 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2577 */
2578 if (alloc_flags & ALLOC_NOFRAGMENT)
2579 min_order = pageblock_order;
2580
2581 /*
2582 * Find the largest available free page in the other list. This roughly
2583 * approximates finding the pageblock with the most free pages, which
2584 * would be too costly to do exactly.
2585 */
2586 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2587 --current_order) {
2588 area = &(zone->free_area[current_order]);
2589 fallback_mt = find_suitable_fallback(area, current_order,
2590 start_migratetype, false, &can_steal);
2591 if (fallback_mt == -1)
2592 continue;
2593
2594 /*
2595 * We cannot steal all free pages from the pageblock and the
2596 * requested migratetype is movable. In that case it's better to
2597 * steal and split the smallest available page instead of the
2598 * largest available page, because even if the next movable
2599 * allocation falls back into a different pageblock than this
2600 * one, it won't cause permanent fragmentation.
2601 */
2602 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2603 && current_order > order)
2604 goto find_smallest;
2605
2606 goto do_steal;
2607 }
2608
2609 return false;
2610
2611find_smallest:
2612 for (current_order = order; current_order < MAX_ORDER;
2613 current_order++) {
2614 area = &(zone->free_area[current_order]);
2615 fallback_mt = find_suitable_fallback(area, current_order,
2616 start_migratetype, false, &can_steal);
2617 if (fallback_mt != -1)
2618 break;
2619 }
2620
2621 /*
2622 * This should not happen - we already found a suitable fallback
2623 * when looking for the largest page.
2624 */
2625 VM_BUG_ON(current_order == MAX_ORDER);
2626
2627do_steal:
2628 page = get_page_from_free_area(area, fallback_mt);
2629
2630 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2631 can_steal);
2632
2633 trace_mm_page_alloc_extfrag(page, order, current_order,
2634 start_migratetype, fallback_mt);
2635
2636 return true;
2637
2638}
2639
2640/*
2641 * Do the hard work of removing an element from the buddy allocator.
2642 * Call me with the zone->lock already held.
2643 */
2644static __always_inline struct page *
2645__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2646 unsigned int alloc_flags)
2647{
2648 struct page *page;
2649
2650retry:
2651 page = __rmqueue_smallest(zone, order, migratetype);
2652 if (unlikely(!page)) {
2653 if (migratetype == MIGRATE_MOVABLE)
2654 page = __rmqueue_cma_fallback(zone, order);
2655
2656 if (!page && __rmqueue_fallback(zone, order, migratetype,
2657 alloc_flags))
2658 goto retry;
2659 }
2660
2661 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2662 return page;
2663}
2664
2665/*
2666 * Obtain a specified number of elements from the buddy allocator, all under
2667 * a single hold of the lock, for efficiency. Add them to the supplied list.
2668 * Returns the number of new pages which were placed at *list.
2669 */
2670static int rmqueue_bulk(struct zone *zone, unsigned int order,
2671 unsigned long count, struct list_head *list,
2672 int migratetype, unsigned int alloc_flags)
2673{
2674 int i, alloced = 0;
2675
2676 spin_lock(&zone->lock);
2677 for (i = 0; i < count; ++i) {
2678 struct page *page = __rmqueue(zone, order, migratetype,
2679 alloc_flags);
2680 if (unlikely(page == NULL))
2681 break;
2682
2683 if (unlikely(check_pcp_refill(page)))
2684 continue;
2685
2686 /*
2687 * Split buddy pages returned by expand() are received here in
2688 * physical page order. The page is added to the tail of
2689 * caller's list. From the callers perspective, the linked list
2690 * is ordered by page number under some conditions. This is
2691 * useful for IO devices that can forward direction from the
2692 * head, thus also in the physical page order. This is useful
2693 * for IO devices that can merge IO requests if the physical
2694 * pages are ordered properly.
2695 */
2696 list_add_tail(&page->lru, list);
2697 alloced++;
2698 if (is_migrate_cma(get_pcppage_migratetype(page)))
2699 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2700 -(1 << order));
2701 }
2702
2703 /*
2704 * i pages were removed from the buddy list even if some leak due
2705 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2706 * on i. Do not confuse with 'alloced' which is the number of
2707 * pages added to the pcp list.
2708 */
2709 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2710 spin_unlock(&zone->lock);
2711 return alloced;
2712}
2713
2714#ifdef CONFIG_NUMA
2715/*
2716 * Called from the vmstat counter updater to drain pagesets of this
2717 * currently executing processor on remote nodes after they have
2718 * expired.
2719 *
2720 * Note that this function must be called with the thread pinned to
2721 * a single processor.
2722 */
2723void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2724{
2725 unsigned long flags;
2726 int to_drain, batch;
2727
2728 local_irq_save(flags);
2729 batch = READ_ONCE(pcp->batch);
2730 to_drain = min(pcp->count, batch);
2731 if (to_drain > 0)
2732 free_pcppages_bulk(zone, to_drain, pcp);
2733 local_irq_restore(flags);
2734}
2735#endif
2736
2737/*
2738 * Drain pcplists of the indicated processor and zone.
2739 *
2740 * The processor must either be the current processor and the
2741 * thread pinned to the current processor or a processor that
2742 * is not online.
2743 */
2744static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2745{
2746 unsigned long flags;
2747 struct per_cpu_pageset *pset;
2748 struct per_cpu_pages *pcp;
2749
2750 local_irq_save(flags);
2751 pset = per_cpu_ptr(zone->pageset, cpu);
2752
2753 pcp = &pset->pcp;
2754 if (pcp->count)
2755 free_pcppages_bulk(zone, pcp->count, pcp);
2756 local_irq_restore(flags);
2757}
2758
2759/*
2760 * Drain pcplists of all zones on the indicated processor.
2761 *
2762 * The processor must either be the current processor and the
2763 * thread pinned to the current processor or a processor that
2764 * is not online.
2765 */
2766static void drain_pages(unsigned int cpu)
2767{
2768 struct zone *zone;
2769
2770 for_each_populated_zone(zone) {
2771 drain_pages_zone(cpu, zone);
2772 }
2773}
2774
2775/*
2776 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2777 *
2778 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2779 * the single zone's pages.
2780 */
2781void drain_local_pages(struct zone *zone)
2782{
2783 int cpu = smp_processor_id();
2784
2785 if (zone)
2786 drain_pages_zone(cpu, zone);
2787 else
2788 drain_pages(cpu);
2789}
2790
2791static void drain_local_pages_wq(struct work_struct *work)
2792{
2793 struct pcpu_drain *drain;
2794
2795 drain = container_of(work, struct pcpu_drain, work);
2796
2797 /*
2798 * drain_all_pages doesn't use proper cpu hotplug protection so
2799 * we can race with cpu offline when the WQ can move this from
2800 * a cpu pinned worker to an unbound one. We can operate on a different
2801 * cpu which is allright but we also have to make sure to not move to
2802 * a different one.
2803 */
2804 preempt_disable();
2805 drain_local_pages(drain->zone);
2806 preempt_enable();
2807}
2808
2809/*
2810 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2811 *
2812 * When zone parameter is non-NULL, spill just the single zone's pages.
2813 *
2814 * Note that this can be extremely slow as the draining happens in a workqueue.
2815 */
2816void drain_all_pages(struct zone *zone)
2817{
2818 int cpu;
2819
2820 /*
2821 * Allocate in the BSS so we wont require allocation in
2822 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2823 */
2824 static cpumask_t cpus_with_pcps;
2825
2826 /*
2827 * Make sure nobody triggers this path before mm_percpu_wq is fully
2828 * initialized.
2829 */
2830 if (WARN_ON_ONCE(!mm_percpu_wq))
2831 return;
2832
2833 /*
2834 * Do not drain if one is already in progress unless it's specific to
2835 * a zone. Such callers are primarily CMA and memory hotplug and need
2836 * the drain to be complete when the call returns.
2837 */
2838 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2839 if (!zone)
2840 return;
2841 mutex_lock(&pcpu_drain_mutex);
2842 }
2843
2844 /*
2845 * We don't care about racing with CPU hotplug event
2846 * as offline notification will cause the notified
2847 * cpu to drain that CPU pcps and on_each_cpu_mask
2848 * disables preemption as part of its processing
2849 */
2850 for_each_online_cpu(cpu) {
2851 struct per_cpu_pageset *pcp;
2852 struct zone *z;
2853 bool has_pcps = false;
2854
2855 if (zone) {
2856 pcp = per_cpu_ptr(zone->pageset, cpu);
2857 if (pcp->pcp.count)
2858 has_pcps = true;
2859 } else {
2860 for_each_populated_zone(z) {
2861 pcp = per_cpu_ptr(z->pageset, cpu);
2862 if (pcp->pcp.count) {
2863 has_pcps = true;
2864 break;
2865 }
2866 }
2867 }
2868
2869 if (has_pcps)
2870 cpumask_set_cpu(cpu, &cpus_with_pcps);
2871 else
2872 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2873 }
2874
2875 for_each_cpu(cpu, &cpus_with_pcps) {
2876 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2877
2878 drain->zone = zone;
2879 INIT_WORK(&drain->work, drain_local_pages_wq);
2880 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2881 }
2882 for_each_cpu(cpu, &cpus_with_pcps)
2883 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2884
2885 mutex_unlock(&pcpu_drain_mutex);
2886}
2887
2888#ifdef CONFIG_HIBERNATION
2889
2890/*
2891 * Touch the watchdog for every WD_PAGE_COUNT pages.
2892 */
2893#define WD_PAGE_COUNT (128*1024)
2894
2895void mark_free_pages(struct zone *zone)
2896{
2897 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2898 unsigned long flags;
2899 unsigned int order, t;
2900 struct page *page;
2901
2902 if (zone_is_empty(zone))
2903 return;
2904
2905 spin_lock_irqsave(&zone->lock, flags);
2906
2907 max_zone_pfn = zone_end_pfn(zone);
2908 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2909 if (pfn_valid(pfn)) {
2910 page = pfn_to_page(pfn);
2911
2912 if (!--page_count) {
2913 touch_nmi_watchdog();
2914 page_count = WD_PAGE_COUNT;
2915 }
2916
2917 if (page_zone(page) != zone)
2918 continue;
2919
2920 if (!swsusp_page_is_forbidden(page))
2921 swsusp_unset_page_free(page);
2922 }
2923
2924 for_each_migratetype_order(order, t) {
2925 list_for_each_entry(page,
2926 &zone->free_area[order].free_list[t], lru) {
2927 unsigned long i;
2928
2929 pfn = page_to_pfn(page);
2930 for (i = 0; i < (1UL << order); i++) {
2931 if (!--page_count) {
2932 touch_nmi_watchdog();
2933 page_count = WD_PAGE_COUNT;
2934 }
2935 swsusp_set_page_free(pfn_to_page(pfn + i));
2936 }
2937 }
2938 }
2939 spin_unlock_irqrestore(&zone->lock, flags);
2940}
2941#endif /* CONFIG_PM */
2942
2943static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2944{
2945 int migratetype;
2946
2947 if (!free_pcp_prepare(page))
2948 return false;
2949
2950 migratetype = get_pfnblock_migratetype(page, pfn);
2951 set_pcppage_migratetype(page, migratetype);
2952 return true;
2953}
2954
2955static void free_unref_page_commit(struct page *page, unsigned long pfn)
2956{
2957 struct zone *zone = page_zone(page);
2958 struct per_cpu_pages *pcp;
2959 int migratetype;
2960
2961 migratetype = get_pcppage_migratetype(page);
2962 __count_vm_event(PGFREE);
2963
2964 /*
2965 * We only track unmovable, reclaimable and movable on pcp lists.
2966 * Free ISOLATE pages back to the allocator because they are being
2967 * offlined but treat HIGHATOMIC as movable pages so we can get those
2968 * areas back if necessary. Otherwise, we may have to free
2969 * excessively into the page allocator
2970 */
2971 if (migratetype >= MIGRATE_PCPTYPES) {
2972 if (unlikely(is_migrate_isolate(migratetype))) {
2973 free_one_page(zone, page, pfn, 0, migratetype);
2974 return;
2975 }
2976 migratetype = MIGRATE_MOVABLE;
2977 }
2978
2979 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2980 list_add(&page->lru, &pcp->lists[migratetype]);
2981 pcp->count++;
2982 if (pcp->count >= pcp->high) {
2983 unsigned long batch = READ_ONCE(pcp->batch);
2984 free_pcppages_bulk(zone, batch, pcp);
2985 }
2986}
2987
2988/*
2989 * Free a 0-order page
2990 */
2991void free_unref_page(struct page *page)
2992{
2993 unsigned long flags;
2994 unsigned long pfn = page_to_pfn(page);
2995
2996 if (!free_unref_page_prepare(page, pfn))
2997 return;
2998
2999 local_irq_save(flags);
3000 free_unref_page_commit(page, pfn);
3001 local_irq_restore(flags);
3002}
3003
3004/*
3005 * Free a list of 0-order pages
3006 */
3007void free_unref_page_list(struct list_head *list)
3008{
3009 struct page *page, *next;
3010 unsigned long flags, pfn;
3011 int batch_count = 0;
3012
3013 /* Prepare pages for freeing */
3014 list_for_each_entry_safe(page, next, list, lru) {
3015 pfn = page_to_pfn(page);
3016 if (!free_unref_page_prepare(page, pfn))
3017 list_del(&page->lru);
3018 set_page_private(page, pfn);
3019 }
3020
3021 local_irq_save(flags);
3022 list_for_each_entry_safe(page, next, list, lru) {
3023 unsigned long pfn = page_private(page);
3024
3025 set_page_private(page, 0);
3026 trace_mm_page_free_batched(page);
3027 free_unref_page_commit(page, pfn);
3028
3029 /*
3030 * Guard against excessive IRQ disabled times when we get
3031 * a large list of pages to free.
3032 */
3033 if (++batch_count == SWAP_CLUSTER_MAX) {
3034 local_irq_restore(flags);
3035 batch_count = 0;
3036 local_irq_save(flags);
3037 }
3038 }
3039 local_irq_restore(flags);
3040}
3041
3042/*
3043 * split_page takes a non-compound higher-order page, and splits it into
3044 * n (1<<order) sub-pages: page[0..n]
3045 * Each sub-page must be freed individually.
3046 *
3047 * Note: this is probably too low level an operation for use in drivers.
3048 * Please consult with lkml before using this in your driver.
3049 */
3050void split_page(struct page *page, unsigned int order)
3051{
3052 int i;
3053
3054 VM_BUG_ON_PAGE(PageCompound(page), page);
3055 VM_BUG_ON_PAGE(!page_count(page), page);
3056
3057 for (i = 1; i < (1 << order); i++)
3058 set_page_refcounted(page + i);
3059 split_page_owner(page, order);
3060}
3061EXPORT_SYMBOL_GPL(split_page);
3062
3063int __isolate_free_page(struct page *page, unsigned int order)
3064{
3065 struct free_area *area = &page_zone(page)->free_area[order];
3066 unsigned long watermark;
3067 struct zone *zone;
3068 int mt;
3069
3070 BUG_ON(!PageBuddy(page));
3071
3072 zone = page_zone(page);
3073 mt = get_pageblock_migratetype(page);
3074
3075 if (!is_migrate_isolate(mt)) {
3076 /*
3077 * Obey watermarks as if the page was being allocated. We can
3078 * emulate a high-order watermark check with a raised order-0
3079 * watermark, because we already know our high-order page
3080 * exists.
3081 */
3082 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3083 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3084 return 0;
3085
3086 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3087 }
3088
3089 /* Remove page from free list */
3090
3091 del_page_from_free_area(page, area);
3092
3093 /*
3094 * Set the pageblock if the isolated page is at least half of a
3095 * pageblock
3096 */
3097 if (order >= pageblock_order - 1) {
3098 struct page *endpage = page + (1 << order) - 1;
3099 for (; page < endpage; page += pageblock_nr_pages) {
3100 int mt = get_pageblock_migratetype(page);
3101 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3102 && !is_migrate_highatomic(mt))
3103 set_pageblock_migratetype(page,
3104 MIGRATE_MOVABLE);
3105 }
3106 }
3107
3108
3109 return 1UL << order;
3110}
3111
3112/*
3113 * Update NUMA hit/miss statistics
3114 *
3115 * Must be called with interrupts disabled.
3116 */
3117static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3118{
3119#ifdef CONFIG_NUMA
3120 enum numa_stat_item local_stat = NUMA_LOCAL;
3121
3122 /* skip numa counters update if numa stats is disabled */
3123 if (!static_branch_likely(&vm_numa_stat_key))
3124 return;
3125
3126 if (zone_to_nid(z) != numa_node_id())
3127 local_stat = NUMA_OTHER;
3128
3129 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3130 __inc_numa_state(z, NUMA_HIT);
3131 else {
3132 __inc_numa_state(z, NUMA_MISS);
3133 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3134 }
3135 __inc_numa_state(z, local_stat);
3136#endif
3137}
3138
3139/* Remove page from the per-cpu list, caller must protect the list */
3140static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3141 unsigned int alloc_flags,
3142 struct per_cpu_pages *pcp,
3143 struct list_head *list)
3144{
3145 struct page *page;
3146
3147 do {
3148 if (list_empty(list)) {
3149 pcp->count += rmqueue_bulk(zone, 0,
3150 pcp->batch, list,
3151 migratetype, alloc_flags);
3152 if (unlikely(list_empty(list)))
3153 return NULL;
3154 }
3155
3156 page = list_first_entry(list, struct page, lru);
3157 list_del(&page->lru);
3158 pcp->count--;
3159 } while (check_new_pcp(page));
3160
3161 return page;
3162}
3163
3164/* Lock and remove page from the per-cpu list */
3165static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3166 struct zone *zone, gfp_t gfp_flags,
3167 int migratetype, unsigned int alloc_flags)
3168{
3169 struct per_cpu_pages *pcp;
3170 struct list_head *list;
3171 struct page *page;
3172 unsigned long flags;
3173
3174 local_irq_save(flags);
3175 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3176 list = &pcp->lists[migratetype];
3177 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3178 if (page) {
3179 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3180 zone_statistics(preferred_zone, zone);
3181 }
3182 local_irq_restore(flags);
3183 return page;
3184}
3185
3186/*
3187 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3188 */
3189static inline
3190struct page *rmqueue(struct zone *preferred_zone,
3191 struct zone *zone, unsigned int order,
3192 gfp_t gfp_flags, unsigned int alloc_flags,
3193 int migratetype)
3194{
3195 unsigned long flags;
3196 struct page *page;
3197
3198 if (likely(order == 0)) {
3199 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3200 migratetype, alloc_flags);
3201 goto out;
3202 }
3203
3204 /*
3205 * We most definitely don't want callers attempting to
3206 * allocate greater than order-1 page units with __GFP_NOFAIL.
3207 */
3208 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3209 spin_lock_irqsave(&zone->lock, flags);
3210
3211 do {
3212 page = NULL;
3213 if (alloc_flags & ALLOC_HARDER) {
3214 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3215 if (page)
3216 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3217 }
3218 if (!page)
3219 page = __rmqueue(zone, order, migratetype, alloc_flags);
3220 } while (page && check_new_pages(page, order));
3221 spin_unlock(&zone->lock);
3222 if (!page)
3223 goto failed;
3224 __mod_zone_freepage_state(zone, -(1 << order),
3225 get_pcppage_migratetype(page));
3226
3227 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3228 zone_statistics(preferred_zone, zone);
3229 local_irq_restore(flags);
3230
3231out:
3232 /* Separate test+clear to avoid unnecessary atomics */
3233 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3234 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3235 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3236 }
3237
3238 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3239 return page;
3240
3241failed:
3242 local_irq_restore(flags);
3243 return NULL;
3244}
3245
3246#ifdef CONFIG_FAIL_PAGE_ALLOC
3247
3248static struct {
3249 struct fault_attr attr;
3250
3251 bool ignore_gfp_highmem;
3252 bool ignore_gfp_reclaim;
3253 u32 min_order;
3254} fail_page_alloc = {
3255 .attr = FAULT_ATTR_INITIALIZER,
3256 .ignore_gfp_reclaim = true,
3257 .ignore_gfp_highmem = true,
3258 .min_order = 1,
3259};
3260
3261static int __init setup_fail_page_alloc(char *str)
3262{
3263 return setup_fault_attr(&fail_page_alloc.attr, str);
3264}
3265__setup("fail_page_alloc=", setup_fail_page_alloc);
3266
3267static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3268{
3269 if (order < fail_page_alloc.min_order)
3270 return false;
3271 if (gfp_mask & __GFP_NOFAIL)
3272 return false;
3273 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3274 return false;
3275 if (fail_page_alloc.ignore_gfp_reclaim &&
3276 (gfp_mask & __GFP_DIRECT_RECLAIM))
3277 return false;
3278
3279 return should_fail(&fail_page_alloc.attr, 1 << order);
3280}
3281
3282#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3283
3284static int __init fail_page_alloc_debugfs(void)
3285{
3286 umode_t mode = S_IFREG | 0600;
3287 struct dentry *dir;
3288
3289 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3290 &fail_page_alloc.attr);
3291
3292 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3293 &fail_page_alloc.ignore_gfp_reclaim);
3294 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3295 &fail_page_alloc.ignore_gfp_highmem);
3296 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3297
3298 return 0;
3299}
3300
3301late_initcall(fail_page_alloc_debugfs);
3302
3303#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3304
3305#else /* CONFIG_FAIL_PAGE_ALLOC */
3306
3307static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3308{
3309 return false;
3310}
3311
3312#endif /* CONFIG_FAIL_PAGE_ALLOC */
3313
3314static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3315{
3316 return __should_fail_alloc_page(gfp_mask, order);
3317}
3318ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3319
3320/*
3321 * Return true if free base pages are above 'mark'. For high-order checks it
3322 * will return true of the order-0 watermark is reached and there is at least
3323 * one free page of a suitable size. Checking now avoids taking the zone lock
3324 * to check in the allocation paths if no pages are free.
3325 */
3326bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3327 int classzone_idx, unsigned int alloc_flags,
3328 long free_pages)
3329{
3330 long min = mark;
3331 int o;
3332 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3333
3334 /* free_pages may go negative - that's OK */
3335 free_pages -= (1 << order) - 1;
3336
3337 if (alloc_flags & ALLOC_HIGH)
3338 min -= min / 2;
3339
3340 /*
3341 * If the caller does not have rights to ALLOC_HARDER then subtract
3342 * the high-atomic reserves. This will over-estimate the size of the
3343 * atomic reserve but it avoids a search.
3344 */
3345 if (likely(!alloc_harder)) {
3346 free_pages -= z->nr_reserved_highatomic;
3347 } else {
3348 /*
3349 * OOM victims can try even harder than normal ALLOC_HARDER
3350 * users on the grounds that it's definitely going to be in
3351 * the exit path shortly and free memory. Any allocation it
3352 * makes during the free path will be small and short-lived.
3353 */
3354 if (alloc_flags & ALLOC_OOM)
3355 min -= min / 2;
3356 else
3357 min -= min / 4;
3358 }
3359
3360
3361#ifdef CONFIG_CMA
3362 /* If allocation can't use CMA areas don't use free CMA pages */
3363 if (!(alloc_flags & ALLOC_CMA))
3364 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3365#endif
3366
3367 /*
3368 * Check watermarks for an order-0 allocation request. If these
3369 * are not met, then a high-order request also cannot go ahead
3370 * even if a suitable page happened to be free.
3371 */
3372 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3373 return false;
3374
3375 /* If this is an order-0 request then the watermark is fine */
3376 if (!order)
3377 return true;
3378
3379 /* For a high-order request, check at least one suitable page is free */
3380 for (o = order; o < MAX_ORDER; o++) {
3381 struct free_area *area = &z->free_area[o];
3382 int mt;
3383
3384 if (!area->nr_free)
3385 continue;
3386
3387 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3388 if (!free_area_empty(area, mt))
3389 return true;
3390 }
3391
3392#ifdef CONFIG_CMA
3393 if ((alloc_flags & ALLOC_CMA) &&
3394 !free_area_empty(area, MIGRATE_CMA)) {
3395 return true;
3396 }
3397#endif
3398 if (alloc_harder &&
3399 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3400 return true;
3401 }
3402 return false;
3403}
3404
3405bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3406 int classzone_idx, unsigned int alloc_flags)
3407{
3408 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3409 zone_page_state(z, NR_FREE_PAGES));
3410}
3411
3412static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3413 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3414{
3415 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3416 long cma_pages = 0;
3417
3418#ifdef CONFIG_CMA
3419 /* If allocation can't use CMA areas don't use free CMA pages */
3420 if (!(alloc_flags & ALLOC_CMA))
3421 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3422#endif
3423
3424 /*
3425 * Fast check for order-0 only. If this fails then the reserves
3426 * need to be calculated. There is a corner case where the check
3427 * passes but only the high-order atomic reserve are free. If
3428 * the caller is !atomic then it'll uselessly search the free
3429 * list. That corner case is then slower but it is harmless.
3430 */
3431 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3432 return true;
3433
3434 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3435 free_pages);
3436}
3437
3438bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3439 unsigned long mark, int classzone_idx)
3440{
3441 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3442
3443 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3444 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3445
3446 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3447 free_pages);
3448}
3449
3450#ifdef CONFIG_NUMA
3451static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3452{
3453 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3454 RECLAIM_DISTANCE;
3455}
3456#else /* CONFIG_NUMA */
3457static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3458{
3459 return true;
3460}
3461#endif /* CONFIG_NUMA */
3462
3463/*
3464 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3465 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3466 * premature use of a lower zone may cause lowmem pressure problems that
3467 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3468 * probably too small. It only makes sense to spread allocations to avoid
3469 * fragmentation between the Normal and DMA32 zones.
3470 */
3471static inline unsigned int
3472alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3473{
3474 unsigned int alloc_flags = 0;
3475
3476 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3477 alloc_flags |= ALLOC_KSWAPD;
3478
3479#ifdef CONFIG_ZONE_DMA32
3480 if (!zone)
3481 return alloc_flags;
3482
3483 if (zone_idx(zone) != ZONE_NORMAL)
3484 return alloc_flags;
3485
3486 /*
3487 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3488 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3489 * on UMA that if Normal is populated then so is DMA32.
3490 */
3491 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3492 if (nr_online_nodes > 1 && !populated_zone(--zone))
3493 return alloc_flags;
3494
3495 alloc_flags |= ALLOC_NOFRAGMENT;
3496#endif /* CONFIG_ZONE_DMA32 */
3497 return alloc_flags;
3498}
3499
3500/*
3501 * get_page_from_freelist goes through the zonelist trying to allocate
3502 * a page.
3503 */
3504static struct page *
3505get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3506 const struct alloc_context *ac)
3507{
3508 struct zoneref *z;
3509 struct zone *zone;
3510 struct pglist_data *last_pgdat_dirty_limit = NULL;
3511 bool no_fallback;
3512
3513retry:
3514 /*
3515 * Scan zonelist, looking for a zone with enough free.
3516 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3517 */
3518 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3519 z = ac->preferred_zoneref;
3520 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3521 ac->nodemask) {
3522 struct page *page;
3523 unsigned long mark;
3524
3525 if (cpusets_enabled() &&
3526 (alloc_flags & ALLOC_CPUSET) &&
3527 !__cpuset_zone_allowed(zone, gfp_mask))
3528 continue;
3529 /*
3530 * When allocating a page cache page for writing, we
3531 * want to get it from a node that is within its dirty
3532 * limit, such that no single node holds more than its
3533 * proportional share of globally allowed dirty pages.
3534 * The dirty limits take into account the node's
3535 * lowmem reserves and high watermark so that kswapd
3536 * should be able to balance it without having to
3537 * write pages from its LRU list.
3538 *
3539 * XXX: For now, allow allocations to potentially
3540 * exceed the per-node dirty limit in the slowpath
3541 * (spread_dirty_pages unset) before going into reclaim,
3542 * which is important when on a NUMA setup the allowed
3543 * nodes are together not big enough to reach the
3544 * global limit. The proper fix for these situations
3545 * will require awareness of nodes in the
3546 * dirty-throttling and the flusher threads.
3547 */
3548 if (ac->spread_dirty_pages) {
3549 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3550 continue;
3551
3552 if (!node_dirty_ok(zone->zone_pgdat)) {
3553 last_pgdat_dirty_limit = zone->zone_pgdat;
3554 continue;
3555 }
3556 }
3557
3558 if (no_fallback && nr_online_nodes > 1 &&
3559 zone != ac->preferred_zoneref->zone) {
3560 int local_nid;
3561
3562 /*
3563 * If moving to a remote node, retry but allow
3564 * fragmenting fallbacks. Locality is more important
3565 * than fragmentation avoidance.
3566 */
3567 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3568 if (zone_to_nid(zone) != local_nid) {
3569 alloc_flags &= ~ALLOC_NOFRAGMENT;
3570 goto retry;
3571 }
3572 }
3573
3574 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3575 if (!zone_watermark_fast(zone, order, mark,
3576 ac_classzone_idx(ac), alloc_flags)) {
3577 int ret;
3578
3579#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3580 /*
3581 * Watermark failed for this zone, but see if we can
3582 * grow this zone if it contains deferred pages.
3583 */
3584 if (static_branch_unlikely(&deferred_pages)) {
3585 if (_deferred_grow_zone(zone, order))
3586 goto try_this_zone;
3587 }
3588#endif
3589 /* Checked here to keep the fast path fast */
3590 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3591 if (alloc_flags & ALLOC_NO_WATERMARKS)
3592 goto try_this_zone;
3593
3594 if (node_reclaim_mode == 0 ||
3595 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3596 continue;
3597
3598 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3599 switch (ret) {
3600 case NODE_RECLAIM_NOSCAN:
3601 /* did not scan */
3602 continue;
3603 case NODE_RECLAIM_FULL:
3604 /* scanned but unreclaimable */
3605 continue;
3606 default:
3607 /* did we reclaim enough */
3608 if (zone_watermark_ok(zone, order, mark,
3609 ac_classzone_idx(ac), alloc_flags))
3610 goto try_this_zone;
3611
3612 continue;
3613 }
3614 }
3615
3616try_this_zone:
3617 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3618 gfp_mask, alloc_flags, ac->migratetype);
3619 if (page) {
3620 prep_new_page(page, order, gfp_mask, alloc_flags);
3621
3622 /*
3623 * If this is a high-order atomic allocation then check
3624 * if the pageblock should be reserved for the future
3625 */
3626 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3627 reserve_highatomic_pageblock(page, zone, order);
3628
3629 return page;
3630 } else {
3631#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3632 /* Try again if zone has deferred pages */
3633 if (static_branch_unlikely(&deferred_pages)) {
3634 if (_deferred_grow_zone(zone, order))
3635 goto try_this_zone;
3636 }
3637#endif
3638 }
3639 }
3640
3641 /*
3642 * It's possible on a UMA machine to get through all zones that are
3643 * fragmented. If avoiding fragmentation, reset and try again.
3644 */
3645 if (no_fallback) {
3646 alloc_flags &= ~ALLOC_NOFRAGMENT;
3647 goto retry;
3648 }
3649
3650 return NULL;
3651}
3652
3653static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3654{
3655 unsigned int filter = SHOW_MEM_FILTER_NODES;
3656 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3657
3658 if (!__ratelimit(&show_mem_rs))
3659 return;
3660
3661 /*
3662 * This documents exceptions given to allocations in certain
3663 * contexts that are allowed to allocate outside current's set
3664 * of allowed nodes.
3665 */
3666 if (!(gfp_mask & __GFP_NOMEMALLOC))
3667 if (tsk_is_oom_victim(current) ||
3668 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3669 filter &= ~SHOW_MEM_FILTER_NODES;
3670 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3671 filter &= ~SHOW_MEM_FILTER_NODES;
3672
3673 show_mem(filter, nodemask);
3674}
3675
3676void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3677{
3678 struct va_format vaf;
3679 va_list args;
3680 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3681 DEFAULT_RATELIMIT_BURST);
3682
3683 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3684 return;
3685
3686 va_start(args, fmt);
3687 vaf.fmt = fmt;
3688 vaf.va = &args;
3689 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3690 current->comm, &vaf, gfp_mask, &gfp_mask,
3691 nodemask_pr_args(nodemask));
3692 va_end(args);
3693
3694 cpuset_print_current_mems_allowed();
3695 pr_cont("\n");
3696 dump_stack();
3697 warn_alloc_show_mem(gfp_mask, nodemask);
3698}
3699
3700static inline struct page *
3701__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3702 unsigned int alloc_flags,
3703 const struct alloc_context *ac)
3704{
3705 struct page *page;
3706
3707 page = get_page_from_freelist(gfp_mask, order,
3708 alloc_flags|ALLOC_CPUSET, ac);
3709 /*
3710 * fallback to ignore cpuset restriction if our nodes
3711 * are depleted
3712 */
3713 if (!page)
3714 page = get_page_from_freelist(gfp_mask, order,
3715 alloc_flags, ac);
3716
3717 return page;
3718}
3719
3720static inline struct page *
3721__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3722 const struct alloc_context *ac, unsigned long *did_some_progress)
3723{
3724 struct oom_control oc = {
3725 .zonelist = ac->zonelist,
3726 .nodemask = ac->nodemask,
3727 .memcg = NULL,
3728 .gfp_mask = gfp_mask,
3729 .order = order,
3730 };
3731 struct page *page;
3732
3733 *did_some_progress = 0;
3734
3735 /*
3736 * Acquire the oom lock. If that fails, somebody else is
3737 * making progress for us.
3738 */
3739 if (!mutex_trylock(&oom_lock)) {
3740 *did_some_progress = 1;
3741 schedule_timeout_uninterruptible(1);
3742 return NULL;
3743 }
3744
3745 /*
3746 * Go through the zonelist yet one more time, keep very high watermark
3747 * here, this is only to catch a parallel oom killing, we must fail if
3748 * we're still under heavy pressure. But make sure that this reclaim
3749 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3750 * allocation which will never fail due to oom_lock already held.
3751 */
3752 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3753 ~__GFP_DIRECT_RECLAIM, order,
3754 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3755 if (page)
3756 goto out;
3757
3758 /* Coredumps can quickly deplete all memory reserves */
3759 if (current->flags & PF_DUMPCORE)
3760 goto out;
3761 /* The OOM killer will not help higher order allocs */
3762 if (order > PAGE_ALLOC_COSTLY_ORDER)
3763 goto out;
3764 /*
3765 * We have already exhausted all our reclaim opportunities without any
3766 * success so it is time to admit defeat. We will skip the OOM killer
3767 * because it is very likely that the caller has a more reasonable
3768 * fallback than shooting a random task.
3769 */
3770 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3771 goto out;
3772 /* The OOM killer does not needlessly kill tasks for lowmem */
3773 if (ac->high_zoneidx < ZONE_NORMAL)
3774 goto out;
3775 if (pm_suspended_storage())
3776 goto out;
3777 /*
3778 * XXX: GFP_NOFS allocations should rather fail than rely on
3779 * other request to make a forward progress.
3780 * We are in an unfortunate situation where out_of_memory cannot
3781 * do much for this context but let's try it to at least get
3782 * access to memory reserved if the current task is killed (see
3783 * out_of_memory). Once filesystems are ready to handle allocation
3784 * failures more gracefully we should just bail out here.
3785 */
3786
3787 /* The OOM killer may not free memory on a specific node */
3788 if (gfp_mask & __GFP_THISNODE)
3789 goto out;
3790
3791 /* Exhausted what can be done so it's blame time */
3792 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3793 *did_some_progress = 1;
3794
3795 /*
3796 * Help non-failing allocations by giving them access to memory
3797 * reserves
3798 */
3799 if (gfp_mask & __GFP_NOFAIL)
3800 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3801 ALLOC_NO_WATERMARKS, ac);
3802 }
3803out:
3804 mutex_unlock(&oom_lock);
3805 return page;
3806}
3807
3808/*
3809 * Maximum number of compaction retries wit a progress before OOM
3810 * killer is consider as the only way to move forward.
3811 */
3812#define MAX_COMPACT_RETRIES 16
3813
3814#ifdef CONFIG_COMPACTION
3815/* Try memory compaction for high-order allocations before reclaim */
3816static struct page *
3817__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3818 unsigned int alloc_flags, const struct alloc_context *ac,
3819 enum compact_priority prio, enum compact_result *compact_result)
3820{
3821 struct page *page = NULL;
3822 unsigned long pflags;
3823 unsigned int noreclaim_flag;
3824
3825 if (!order)
3826 return NULL;
3827
3828 psi_memstall_enter(&pflags);
3829 noreclaim_flag = memalloc_noreclaim_save();
3830
3831 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3832 prio, &page);
3833
3834 memalloc_noreclaim_restore(noreclaim_flag);
3835 psi_memstall_leave(&pflags);
3836
3837 /*
3838 * At least in one zone compaction wasn't deferred or skipped, so let's
3839 * count a compaction stall
3840 */
3841 count_vm_event(COMPACTSTALL);
3842
3843 /* Prep a captured page if available */
3844 if (page)
3845 prep_new_page(page, order, gfp_mask, alloc_flags);
3846
3847 /* Try get a page from the freelist if available */
3848 if (!page)
3849 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3850
3851 if (page) {
3852 struct zone *zone = page_zone(page);
3853
3854 zone->compact_blockskip_flush = false;
3855 compaction_defer_reset(zone, order, true);
3856 count_vm_event(COMPACTSUCCESS);
3857 return page;
3858 }
3859
3860 /*
3861 * It's bad if compaction run occurs and fails. The most likely reason
3862 * is that pages exist, but not enough to satisfy watermarks.
3863 */
3864 count_vm_event(COMPACTFAIL);
3865
3866 cond_resched();
3867
3868 return NULL;
3869}
3870
3871static inline bool
3872should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3873 enum compact_result compact_result,
3874 enum compact_priority *compact_priority,
3875 int *compaction_retries)
3876{
3877 int max_retries = MAX_COMPACT_RETRIES;
3878 int min_priority;
3879 bool ret = false;
3880 int retries = *compaction_retries;
3881 enum compact_priority priority = *compact_priority;
3882
3883 if (!order)
3884 return false;
3885
3886 if (compaction_made_progress(compact_result))
3887 (*compaction_retries)++;
3888
3889 /*
3890 * compaction considers all the zone as desperately out of memory
3891 * so it doesn't really make much sense to retry except when the
3892 * failure could be caused by insufficient priority
3893 */
3894 if (compaction_failed(compact_result))
3895 goto check_priority;
3896
3897 /*
3898 * make sure the compaction wasn't deferred or didn't bail out early
3899 * due to locks contention before we declare that we should give up.
3900 * But do not retry if the given zonelist is not suitable for
3901 * compaction.
3902 */
3903 if (compaction_withdrawn(compact_result)) {
3904 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3905 goto out;
3906 }
3907
3908 /*
3909 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3910 * costly ones because they are de facto nofail and invoke OOM
3911 * killer to move on while costly can fail and users are ready
3912 * to cope with that. 1/4 retries is rather arbitrary but we
3913 * would need much more detailed feedback from compaction to
3914 * make a better decision.
3915 */
3916 if (order > PAGE_ALLOC_COSTLY_ORDER)
3917 max_retries /= 4;
3918 if (*compaction_retries <= max_retries) {
3919 ret = true;
3920 goto out;
3921 }
3922
3923 /*
3924 * Make sure there are attempts at the highest priority if we exhausted
3925 * all retries or failed at the lower priorities.
3926 */
3927check_priority:
3928 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3929 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3930
3931 if (*compact_priority > min_priority) {
3932 (*compact_priority)--;
3933 *compaction_retries = 0;
3934 ret = true;
3935 }
3936out:
3937 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3938 return ret;
3939}
3940#else
3941static inline struct page *
3942__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3943 unsigned int alloc_flags, const struct alloc_context *ac,
3944 enum compact_priority prio, enum compact_result *compact_result)
3945{
3946 *compact_result = COMPACT_SKIPPED;
3947 return NULL;
3948}
3949
3950static inline bool
3951should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3952 enum compact_result compact_result,
3953 enum compact_priority *compact_priority,
3954 int *compaction_retries)
3955{
3956 struct zone *zone;
3957 struct zoneref *z;
3958
3959 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3960 return false;
3961
3962 /*
3963 * There are setups with compaction disabled which would prefer to loop
3964 * inside the allocator rather than hit the oom killer prematurely.
3965 * Let's give them a good hope and keep retrying while the order-0
3966 * watermarks are OK.
3967 */
3968 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3969 ac->nodemask) {
3970 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3971 ac_classzone_idx(ac), alloc_flags))
3972 return true;
3973 }
3974 return false;
3975}
3976#endif /* CONFIG_COMPACTION */
3977
3978#ifdef CONFIG_LOCKDEP
3979static struct lockdep_map __fs_reclaim_map =
3980 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3981
3982static bool __need_fs_reclaim(gfp_t gfp_mask)
3983{
3984 gfp_mask = current_gfp_context(gfp_mask);
3985
3986 /* no reclaim without waiting on it */
3987 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3988 return false;
3989
3990 /* this guy won't enter reclaim */
3991 if (current->flags & PF_MEMALLOC)
3992 return false;
3993
3994 /* We're only interested __GFP_FS allocations for now */
3995 if (!(gfp_mask & __GFP_FS))
3996 return false;
3997
3998 if (gfp_mask & __GFP_NOLOCKDEP)
3999 return false;
4000
4001 return true;
4002}
4003
4004void __fs_reclaim_acquire(void)
4005{
4006 lock_map_acquire(&__fs_reclaim_map);
4007}
4008
4009void __fs_reclaim_release(void)
4010{
4011 lock_map_release(&__fs_reclaim_map);
4012}
4013
4014void fs_reclaim_acquire(gfp_t gfp_mask)
4015{
4016 if (__need_fs_reclaim(gfp_mask))
4017 __fs_reclaim_acquire();
4018}
4019EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4020
4021void fs_reclaim_release(gfp_t gfp_mask)
4022{
4023 if (__need_fs_reclaim(gfp_mask))
4024 __fs_reclaim_release();
4025}
4026EXPORT_SYMBOL_GPL(fs_reclaim_release);
4027#endif
4028
4029/* Perform direct synchronous page reclaim */
4030static int
4031__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4032 const struct alloc_context *ac)
4033{
4034 struct reclaim_state reclaim_state;
4035 int progress;
4036 unsigned int noreclaim_flag;
4037 unsigned long pflags;
4038
4039 cond_resched();
4040
4041 /* We now go into synchronous reclaim */
4042 cpuset_memory_pressure_bump();
4043 psi_memstall_enter(&pflags);
4044 fs_reclaim_acquire(gfp_mask);
4045 noreclaim_flag = memalloc_noreclaim_save();
4046 reclaim_state.reclaimed_slab = 0;
4047 current->reclaim_state = &reclaim_state;
4048
4049 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4050 ac->nodemask);
4051
4052 current->reclaim_state = NULL;
4053 memalloc_noreclaim_restore(noreclaim_flag);
4054 fs_reclaim_release(gfp_mask);
4055 psi_memstall_leave(&pflags);
4056
4057 cond_resched();
4058
4059 return progress;
4060}
4061
4062/* The really slow allocator path where we enter direct reclaim */
4063static inline struct page *
4064__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4065 unsigned int alloc_flags, const struct alloc_context *ac,
4066 unsigned long *did_some_progress)
4067{
4068 struct page *page = NULL;
4069 bool drained = false;
4070
4071 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4072 if (unlikely(!(*did_some_progress)))
4073 return NULL;
4074
4075retry:
4076 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4077
4078 /*
4079 * If an allocation failed after direct reclaim, it could be because
4080 * pages are pinned on the per-cpu lists or in high alloc reserves.
4081 * Shrink them them and try again
4082 */
4083 if (!page && !drained) {
4084 unreserve_highatomic_pageblock(ac, false);
4085 drain_all_pages(NULL);
4086 drained = true;
4087 goto retry;
4088 }
4089
4090 return page;
4091}
4092
4093static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4094 const struct alloc_context *ac)
4095{
4096 struct zoneref *z;
4097 struct zone *zone;
4098 pg_data_t *last_pgdat = NULL;
4099 enum zone_type high_zoneidx = ac->high_zoneidx;
4100
4101 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4102 ac->nodemask) {
4103 if (last_pgdat != zone->zone_pgdat)
4104 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4105 last_pgdat = zone->zone_pgdat;
4106 }
4107}
4108
4109static inline unsigned int
4110gfp_to_alloc_flags(gfp_t gfp_mask)
4111{
4112 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4113
4114 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4115 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4116
4117 /*
4118 * The caller may dip into page reserves a bit more if the caller
4119 * cannot run direct reclaim, or if the caller has realtime scheduling
4120 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4121 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4122 */
4123 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4124
4125 if (gfp_mask & __GFP_ATOMIC) {
4126 /*
4127 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4128 * if it can't schedule.
4129 */
4130 if (!(gfp_mask & __GFP_NOMEMALLOC))
4131 alloc_flags |= ALLOC_HARDER;
4132 /*
4133 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4134 * comment for __cpuset_node_allowed().
4135 */
4136 alloc_flags &= ~ALLOC_CPUSET;
4137 } else if (unlikely(rt_task(current)) && !in_interrupt())
4138 alloc_flags |= ALLOC_HARDER;
4139
4140 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4141 alloc_flags |= ALLOC_KSWAPD;
4142
4143#ifdef CONFIG_CMA
4144 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4145 alloc_flags |= ALLOC_CMA;
4146#endif
4147 return alloc_flags;
4148}
4149
4150static bool oom_reserves_allowed(struct task_struct *tsk)
4151{
4152 if (!tsk_is_oom_victim(tsk))
4153 return false;
4154
4155 /*
4156 * !MMU doesn't have oom reaper so give access to memory reserves
4157 * only to the thread with TIF_MEMDIE set
4158 */
4159 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4160 return false;
4161
4162 return true;
4163}
4164
4165/*
4166 * Distinguish requests which really need access to full memory
4167 * reserves from oom victims which can live with a portion of it
4168 */
4169static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4170{
4171 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4172 return 0;
4173 if (gfp_mask & __GFP_MEMALLOC)
4174 return ALLOC_NO_WATERMARKS;
4175 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4176 return ALLOC_NO_WATERMARKS;
4177 if (!in_interrupt()) {
4178 if (current->flags & PF_MEMALLOC)
4179 return ALLOC_NO_WATERMARKS;
4180 else if (oom_reserves_allowed(current))
4181 return ALLOC_OOM;
4182 }
4183
4184 return 0;
4185}
4186
4187bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4188{
4189 return !!__gfp_pfmemalloc_flags(gfp_mask);
4190}
4191
4192/*
4193 * Checks whether it makes sense to retry the reclaim to make a forward progress
4194 * for the given allocation request.
4195 *
4196 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4197 * without success, or when we couldn't even meet the watermark if we
4198 * reclaimed all remaining pages on the LRU lists.
4199 *
4200 * Returns true if a retry is viable or false to enter the oom path.
4201 */
4202static inline bool
4203should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4204 struct alloc_context *ac, int alloc_flags,
4205 bool did_some_progress, int *no_progress_loops)
4206{
4207 struct zone *zone;
4208 struct zoneref *z;
4209 bool ret = false;
4210
4211 /*
4212 * Costly allocations might have made a progress but this doesn't mean
4213 * their order will become available due to high fragmentation so
4214 * always increment the no progress counter for them
4215 */
4216 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4217 *no_progress_loops = 0;
4218 else
4219 (*no_progress_loops)++;
4220
4221 /*
4222 * Make sure we converge to OOM if we cannot make any progress
4223 * several times in the row.
4224 */
4225 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4226 /* Before OOM, exhaust highatomic_reserve */
4227 return unreserve_highatomic_pageblock(ac, true);
4228 }
4229
4230 /*
4231 * Keep reclaiming pages while there is a chance this will lead
4232 * somewhere. If none of the target zones can satisfy our allocation
4233 * request even if all reclaimable pages are considered then we are
4234 * screwed and have to go OOM.
4235 */
4236 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4237 ac->nodemask) {
4238 unsigned long available;
4239 unsigned long reclaimable;
4240 unsigned long min_wmark = min_wmark_pages(zone);
4241 bool wmark;
4242
4243 available = reclaimable = zone_reclaimable_pages(zone);
4244 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4245
4246 /*
4247 * Would the allocation succeed if we reclaimed all
4248 * reclaimable pages?
4249 */
4250 wmark = __zone_watermark_ok(zone, order, min_wmark,
4251 ac_classzone_idx(ac), alloc_flags, available);
4252 trace_reclaim_retry_zone(z, order, reclaimable,
4253 available, min_wmark, *no_progress_loops, wmark);
4254 if (wmark) {
4255 /*
4256 * If we didn't make any progress and have a lot of
4257 * dirty + writeback pages then we should wait for
4258 * an IO to complete to slow down the reclaim and
4259 * prevent from pre mature OOM
4260 */
4261 if (!did_some_progress) {
4262 unsigned long write_pending;
4263
4264 write_pending = zone_page_state_snapshot(zone,
4265 NR_ZONE_WRITE_PENDING);
4266
4267 if (2 * write_pending > reclaimable) {
4268 congestion_wait(BLK_RW_ASYNC, HZ/10);
4269 return true;
4270 }
4271 }
4272
4273 ret = true;
4274 goto out;
4275 }
4276 }
4277
4278out:
4279 /*
4280 * Memory allocation/reclaim might be called from a WQ context and the
4281 * current implementation of the WQ concurrency control doesn't
4282 * recognize that a particular WQ is congested if the worker thread is
4283 * looping without ever sleeping. Therefore we have to do a short sleep
4284 * here rather than calling cond_resched().
4285 */
4286 if (current->flags & PF_WQ_WORKER)
4287 schedule_timeout_uninterruptible(1);
4288 else
4289 cond_resched();
4290 return ret;
4291}
4292
4293static inline bool
4294check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4295{
4296 /*
4297 * It's possible that cpuset's mems_allowed and the nodemask from
4298 * mempolicy don't intersect. This should be normally dealt with by
4299 * policy_nodemask(), but it's possible to race with cpuset update in
4300 * such a way the check therein was true, and then it became false
4301 * before we got our cpuset_mems_cookie here.
4302 * This assumes that for all allocations, ac->nodemask can come only
4303 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4304 * when it does not intersect with the cpuset restrictions) or the
4305 * caller can deal with a violated nodemask.
4306 */
4307 if (cpusets_enabled() && ac->nodemask &&
4308 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4309 ac->nodemask = NULL;
4310 return true;
4311 }
4312
4313 /*
4314 * When updating a task's mems_allowed or mempolicy nodemask, it is
4315 * possible to race with parallel threads in such a way that our
4316 * allocation can fail while the mask is being updated. If we are about
4317 * to fail, check if the cpuset changed during allocation and if so,
4318 * retry.
4319 */
4320 if (read_mems_allowed_retry(cpuset_mems_cookie))
4321 return true;
4322
4323 return false;
4324}
4325
4326static inline struct page *
4327__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4328 struct alloc_context *ac)
4329{
4330 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4331 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4332 struct page *page = NULL;
4333 unsigned int alloc_flags;
4334 unsigned long did_some_progress;
4335 enum compact_priority compact_priority;
4336 enum compact_result compact_result;
4337 int compaction_retries;
4338 int no_progress_loops;
4339 unsigned int cpuset_mems_cookie;
4340 int reserve_flags;
4341
4342 /*
4343 * We also sanity check to catch abuse of atomic reserves being used by
4344 * callers that are not in atomic context.
4345 */
4346 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4347 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4348 gfp_mask &= ~__GFP_ATOMIC;
4349
4350retry_cpuset:
4351 compaction_retries = 0;
4352 no_progress_loops = 0;
4353 compact_priority = DEF_COMPACT_PRIORITY;
4354 cpuset_mems_cookie = read_mems_allowed_begin();
4355
4356 /*
4357 * The fast path uses conservative alloc_flags to succeed only until
4358 * kswapd needs to be woken up, and to avoid the cost of setting up
4359 * alloc_flags precisely. So we do that now.
4360 */
4361 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4362
4363 /*
4364 * We need to recalculate the starting point for the zonelist iterator
4365 * because we might have used different nodemask in the fast path, or
4366 * there was a cpuset modification and we are retrying - otherwise we
4367 * could end up iterating over non-eligible zones endlessly.
4368 */
4369 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4370 ac->high_zoneidx, ac->nodemask);
4371 if (!ac->preferred_zoneref->zone)
4372 goto nopage;
4373
4374 if (alloc_flags & ALLOC_KSWAPD)
4375 wake_all_kswapds(order, gfp_mask, ac);
4376
4377 /*
4378 * The adjusted alloc_flags might result in immediate success, so try
4379 * that first
4380 */
4381 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4382 if (page)
4383 goto got_pg;
4384
4385 /*
4386 * For costly allocations, try direct compaction first, as it's likely
4387 * that we have enough base pages and don't need to reclaim. For non-
4388 * movable high-order allocations, do that as well, as compaction will
4389 * try prevent permanent fragmentation by migrating from blocks of the
4390 * same migratetype.
4391 * Don't try this for allocations that are allowed to ignore
4392 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4393 */
4394 if (can_direct_reclaim &&
4395 (costly_order ||
4396 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4397 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4398 page = __alloc_pages_direct_compact(gfp_mask, order,
4399 alloc_flags, ac,
4400 INIT_COMPACT_PRIORITY,
4401 &compact_result);
4402 if (page)
4403 goto got_pg;
4404
4405 /*
4406 * Checks for costly allocations with __GFP_NORETRY, which
4407 * includes THP page fault allocations
4408 */
4409 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4410 /*
4411 * If compaction is deferred for high-order allocations,
4412 * it is because sync compaction recently failed. If
4413 * this is the case and the caller requested a THP
4414 * allocation, we do not want to heavily disrupt the
4415 * system, so we fail the allocation instead of entering
4416 * direct reclaim.
4417 */
4418 if (compact_result == COMPACT_DEFERRED)
4419 goto nopage;
4420
4421 /*
4422 * Looks like reclaim/compaction is worth trying, but
4423 * sync compaction could be very expensive, so keep
4424 * using async compaction.
4425 */
4426 compact_priority = INIT_COMPACT_PRIORITY;
4427 }
4428 }
4429
4430retry:
4431 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4432 if (alloc_flags & ALLOC_KSWAPD)
4433 wake_all_kswapds(order, gfp_mask, ac);
4434
4435 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4436 if (reserve_flags)
4437 alloc_flags = reserve_flags;
4438
4439 /*
4440 * Reset the nodemask and zonelist iterators if memory policies can be
4441 * ignored. These allocations are high priority and system rather than
4442 * user oriented.
4443 */
4444 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4445 ac->nodemask = NULL;
4446 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4447 ac->high_zoneidx, ac->nodemask);
4448 }
4449
4450 /* Attempt with potentially adjusted zonelist and alloc_flags */
4451 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4452 if (page)
4453 goto got_pg;
4454
4455 /* Caller is not willing to reclaim, we can't balance anything */
4456 if (!can_direct_reclaim)
4457 goto nopage;
4458
4459 /* Avoid recursion of direct reclaim */
4460 if (current->flags & PF_MEMALLOC)
4461 goto nopage;
4462
4463 /* Try direct reclaim and then allocating */
4464 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4465 &did_some_progress);
4466 if (page)
4467 goto got_pg;
4468
4469 /* Try direct compaction and then allocating */
4470 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4471 compact_priority, &compact_result);
4472 if (page)
4473 goto got_pg;
4474
4475 /* Do not loop if specifically requested */
4476 if (gfp_mask & __GFP_NORETRY)
4477 goto nopage;
4478
4479 /*
4480 * Do not retry costly high order allocations unless they are
4481 * __GFP_RETRY_MAYFAIL
4482 */
4483 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4484 goto nopage;
4485
4486 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4487 did_some_progress > 0, &no_progress_loops))
4488 goto retry;
4489
4490 /*
4491 * It doesn't make any sense to retry for the compaction if the order-0
4492 * reclaim is not able to make any progress because the current
4493 * implementation of the compaction depends on the sufficient amount
4494 * of free memory (see __compaction_suitable)
4495 */
4496 if (did_some_progress > 0 &&
4497 should_compact_retry(ac, order, alloc_flags,
4498 compact_result, &compact_priority,
4499 &compaction_retries))
4500 goto retry;
4501
4502
4503 /* Deal with possible cpuset update races before we start OOM killing */
4504 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4505 goto retry_cpuset;
4506
4507 /* Reclaim has failed us, start killing things */
4508 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4509 if (page)
4510 goto got_pg;
4511
4512 /* Avoid allocations with no watermarks from looping endlessly */
4513 if (tsk_is_oom_victim(current) &&
4514 (alloc_flags == ALLOC_OOM ||
4515 (gfp_mask & __GFP_NOMEMALLOC)))
4516 goto nopage;
4517
4518 /* Retry as long as the OOM killer is making progress */
4519 if (did_some_progress) {
4520 no_progress_loops = 0;
4521 goto retry;
4522 }
4523
4524nopage:
4525 /* Deal with possible cpuset update races before we fail */
4526 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4527 goto retry_cpuset;
4528
4529 /*
4530 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4531 * we always retry
4532 */
4533 if (gfp_mask & __GFP_NOFAIL) {
4534 /*
4535 * All existing users of the __GFP_NOFAIL are blockable, so warn
4536 * of any new users that actually require GFP_NOWAIT
4537 */
4538 if (WARN_ON_ONCE(!can_direct_reclaim))
4539 goto fail;
4540
4541 /*
4542 * PF_MEMALLOC request from this context is rather bizarre
4543 * because we cannot reclaim anything and only can loop waiting
4544 * for somebody to do a work for us
4545 */
4546 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4547
4548 /*
4549 * non failing costly orders are a hard requirement which we
4550 * are not prepared for much so let's warn about these users
4551 * so that we can identify them and convert them to something
4552 * else.
4553 */
4554 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4555
4556 /*
4557 * Help non-failing allocations by giving them access to memory
4558 * reserves but do not use ALLOC_NO_WATERMARKS because this
4559 * could deplete whole memory reserves which would just make
4560 * the situation worse
4561 */
4562 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4563 if (page)
4564 goto got_pg;
4565
4566 cond_resched();
4567 goto retry;
4568 }
4569fail:
4570 warn_alloc(gfp_mask, ac->nodemask,
4571 "page allocation failure: order:%u", order);
4572got_pg:
4573 return page;
4574}
4575
4576static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4577 int preferred_nid, nodemask_t *nodemask,
4578 struct alloc_context *ac, gfp_t *alloc_mask,
4579 unsigned int *alloc_flags)
4580{
4581 ac->high_zoneidx = gfp_zone(gfp_mask);
4582 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4583 ac->nodemask = nodemask;
4584 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4585
4586 if (cpusets_enabled()) {
4587 *alloc_mask |= __GFP_HARDWALL;
4588 if (!ac->nodemask)
4589 ac->nodemask = &cpuset_current_mems_allowed;
4590 else
4591 *alloc_flags |= ALLOC_CPUSET;
4592 }
4593
4594 fs_reclaim_acquire(gfp_mask);
4595 fs_reclaim_release(gfp_mask);
4596
4597 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4598
4599 if (should_fail_alloc_page(gfp_mask, order))
4600 return false;
4601
4602 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4603 *alloc_flags |= ALLOC_CMA;
4604
4605 return true;
4606}
4607
4608/* Determine whether to spread dirty pages and what the first usable zone */
4609static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4610{
4611 /* Dirty zone balancing only done in the fast path */
4612 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4613
4614 /*
4615 * The preferred zone is used for statistics but crucially it is
4616 * also used as the starting point for the zonelist iterator. It
4617 * may get reset for allocations that ignore memory policies.
4618 */
4619 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4620 ac->high_zoneidx, ac->nodemask);
4621}
4622
4623/*
4624 * This is the 'heart' of the zoned buddy allocator.
4625 */
4626struct page *
4627__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4628 nodemask_t *nodemask)
4629{
4630 struct page *page;
4631 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4632 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4633 struct alloc_context ac = { };
4634
4635 /*
4636 * There are several places where we assume that the order value is sane
4637 * so bail out early if the request is out of bound.
4638 */
4639 if (unlikely(order >= MAX_ORDER)) {
4640 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4641 return NULL;
4642 }
4643
4644 gfp_mask &= gfp_allowed_mask;
4645 alloc_mask = gfp_mask;
4646 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4647 return NULL;
4648
4649 finalise_ac(gfp_mask, &ac);
4650
4651 /*
4652 * Forbid the first pass from falling back to types that fragment
4653 * memory until all local zones are considered.
4654 */
4655 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4656
4657 /* First allocation attempt */
4658 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4659 if (likely(page))
4660 goto out;
4661
4662 /*
4663 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4664 * resp. GFP_NOIO which has to be inherited for all allocation requests
4665 * from a particular context which has been marked by
4666 * memalloc_no{fs,io}_{save,restore}.
4667 */
4668 alloc_mask = current_gfp_context(gfp_mask);
4669 ac.spread_dirty_pages = false;
4670
4671 /*
4672 * Restore the original nodemask if it was potentially replaced with
4673 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4674 */
4675 if (unlikely(ac.nodemask != nodemask))
4676 ac.nodemask = nodemask;
4677
4678 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4679
4680out:
4681 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4682 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4683 __free_pages(page, order);
4684 page = NULL;
4685 }
4686
4687 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4688
4689 return page;
4690}
4691EXPORT_SYMBOL(__alloc_pages_nodemask);
4692
4693/*
4694 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4695 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4696 * you need to access high mem.
4697 */
4698unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4699{
4700 struct page *page;
4701
4702 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4703 if (!page)
4704 return 0;
4705 return (unsigned long) page_address(page);
4706}
4707EXPORT_SYMBOL(__get_free_pages);
4708
4709unsigned long get_zeroed_page(gfp_t gfp_mask)
4710{
4711 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4712}
4713EXPORT_SYMBOL(get_zeroed_page);
4714
4715static inline void free_the_page(struct page *page, unsigned int order)
4716{
4717 if (order == 0) /* Via pcp? */
4718 free_unref_page(page);
4719 else
4720 __free_pages_ok(page, order);
4721}
4722
4723void __free_pages(struct page *page, unsigned int order)
4724{
4725 if (put_page_testzero(page))
4726 free_the_page(page, order);
4727}
4728EXPORT_SYMBOL(__free_pages);
4729
4730void free_pages(unsigned long addr, unsigned int order)
4731{
4732 if (addr != 0) {
4733 VM_BUG_ON(!virt_addr_valid((void *)addr));
4734 __free_pages(virt_to_page((void *)addr), order);
4735 }
4736}
4737
4738EXPORT_SYMBOL(free_pages);
4739
4740/*
4741 * Page Fragment:
4742 * An arbitrary-length arbitrary-offset area of memory which resides
4743 * within a 0 or higher order page. Multiple fragments within that page
4744 * are individually refcounted, in the page's reference counter.
4745 *
4746 * The page_frag functions below provide a simple allocation framework for
4747 * page fragments. This is used by the network stack and network device
4748 * drivers to provide a backing region of memory for use as either an
4749 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4750 */
4751static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4752 gfp_t gfp_mask)
4753{
4754 struct page *page = NULL;
4755 gfp_t gfp = gfp_mask;
4756
4757#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4758 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4759 __GFP_NOMEMALLOC;
4760 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4761 PAGE_FRAG_CACHE_MAX_ORDER);
4762 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4763#endif
4764 if (unlikely(!page))
4765 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4766
4767 nc->va = page ? page_address(page) : NULL;
4768
4769 return page;
4770}
4771
4772void __page_frag_cache_drain(struct page *page, unsigned int count)
4773{
4774 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4775
4776 if (page_ref_sub_and_test(page, count))
4777 free_the_page(page, compound_order(page));
4778}
4779EXPORT_SYMBOL(__page_frag_cache_drain);
4780
4781void *page_frag_alloc(struct page_frag_cache *nc,
4782 unsigned int fragsz, gfp_t gfp_mask)
4783{
4784 unsigned int size = PAGE_SIZE;
4785 struct page *page;
4786 int offset;
4787
4788 if (unlikely(!nc->va)) {
4789refill:
4790 page = __page_frag_cache_refill(nc, gfp_mask);
4791 if (!page)
4792 return NULL;
4793
4794#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4795 /* if size can vary use size else just use PAGE_SIZE */
4796 size = nc->size;
4797#endif
4798 /* Even if we own the page, we do not use atomic_set().
4799 * This would break get_page_unless_zero() users.
4800 */
4801 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4802
4803 /* reset page count bias and offset to start of new frag */
4804 nc->pfmemalloc = page_is_pfmemalloc(page);
4805 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4806 nc->offset = size;
4807 }
4808
4809 offset = nc->offset - fragsz;
4810 if (unlikely(offset < 0)) {
4811 page = virt_to_page(nc->va);
4812
4813 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4814 goto refill;
4815
4816#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4817 /* if size can vary use size else just use PAGE_SIZE */
4818 size = nc->size;
4819#endif
4820 /* OK, page count is 0, we can safely set it */
4821 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4822
4823 /* reset page count bias and offset to start of new frag */
4824 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4825 offset = size - fragsz;
4826 }
4827
4828 nc->pagecnt_bias--;
4829 nc->offset = offset;
4830
4831 return nc->va + offset;
4832}
4833EXPORT_SYMBOL(page_frag_alloc);
4834
4835/*
4836 * Frees a page fragment allocated out of either a compound or order 0 page.
4837 */
4838void page_frag_free(void *addr)
4839{
4840 struct page *page = virt_to_head_page(addr);
4841
4842 if (unlikely(put_page_testzero(page)))
4843 free_the_page(page, compound_order(page));
4844}
4845EXPORT_SYMBOL(page_frag_free);
4846
4847static void *make_alloc_exact(unsigned long addr, unsigned int order,
4848 size_t size)
4849{
4850 if (addr) {
4851 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4852 unsigned long used = addr + PAGE_ALIGN(size);
4853
4854 split_page(virt_to_page((void *)addr), order);
4855 while (used < alloc_end) {
4856 free_page(used);
4857 used += PAGE_SIZE;
4858 }
4859 }
4860 return (void *)addr;
4861}
4862
4863/**
4864 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4865 * @size: the number of bytes to allocate
4866 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4867 *
4868 * This function is similar to alloc_pages(), except that it allocates the
4869 * minimum number of pages to satisfy the request. alloc_pages() can only
4870 * allocate memory in power-of-two pages.
4871 *
4872 * This function is also limited by MAX_ORDER.
4873 *
4874 * Memory allocated by this function must be released by free_pages_exact().
4875 *
4876 * Return: pointer to the allocated area or %NULL in case of error.
4877 */
4878void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4879{
4880 unsigned int order = get_order(size);
4881 unsigned long addr;
4882
4883 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4884 gfp_mask &= ~__GFP_COMP;
4885
4886 addr = __get_free_pages(gfp_mask, order);
4887 return make_alloc_exact(addr, order, size);
4888}
4889EXPORT_SYMBOL(alloc_pages_exact);
4890
4891/**
4892 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4893 * pages on a node.
4894 * @nid: the preferred node ID where memory should be allocated
4895 * @size: the number of bytes to allocate
4896 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4897 *
4898 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4899 * back.
4900 *
4901 * Return: pointer to the allocated area or %NULL in case of error.
4902 */
4903void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4904{
4905 unsigned int order = get_order(size);
4906 struct page *p;
4907
4908 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4909 gfp_mask &= ~__GFP_COMP;
4910
4911 p = alloc_pages_node(nid, gfp_mask, order);
4912 if (!p)
4913 return NULL;
4914 return make_alloc_exact((unsigned long)page_address(p), order, size);
4915}
4916
4917/**
4918 * free_pages_exact - release memory allocated via alloc_pages_exact()
4919 * @virt: the value returned by alloc_pages_exact.
4920 * @size: size of allocation, same value as passed to alloc_pages_exact().
4921 *
4922 * Release the memory allocated by a previous call to alloc_pages_exact.
4923 */
4924void free_pages_exact(void *virt, size_t size)
4925{
4926 unsigned long addr = (unsigned long)virt;
4927 unsigned long end = addr + PAGE_ALIGN(size);
4928
4929 while (addr < end) {
4930 free_page(addr);
4931 addr += PAGE_SIZE;
4932 }
4933}
4934EXPORT_SYMBOL(free_pages_exact);
4935
4936/**
4937 * nr_free_zone_pages - count number of pages beyond high watermark
4938 * @offset: The zone index of the highest zone
4939 *
4940 * nr_free_zone_pages() counts the number of pages which are beyond the
4941 * high watermark within all zones at or below a given zone index. For each
4942 * zone, the number of pages is calculated as:
4943 *
4944 * nr_free_zone_pages = managed_pages - high_pages
4945 *
4946 * Return: number of pages beyond high watermark.
4947 */
4948static unsigned long nr_free_zone_pages(int offset)
4949{
4950 struct zoneref *z;
4951 struct zone *zone;
4952
4953 /* Just pick one node, since fallback list is circular */
4954 unsigned long sum = 0;
4955
4956 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4957
4958 for_each_zone_zonelist(zone, z, zonelist, offset) {
4959 unsigned long size = zone_managed_pages(zone);
4960 unsigned long high = high_wmark_pages(zone);
4961 if (size > high)
4962 sum += size - high;
4963 }
4964
4965 return sum;
4966}
4967
4968/**
4969 * nr_free_buffer_pages - count number of pages beyond high watermark
4970 *
4971 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4972 * watermark within ZONE_DMA and ZONE_NORMAL.
4973 *
4974 * Return: number of pages beyond high watermark within ZONE_DMA and
4975 * ZONE_NORMAL.
4976 */
4977unsigned long nr_free_buffer_pages(void)
4978{
4979 return nr_free_zone_pages(gfp_zone(GFP_USER));
4980}
4981EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4982
4983/**
4984 * nr_free_pagecache_pages - count number of pages beyond high watermark
4985 *
4986 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4987 * high watermark within all zones.
4988 *
4989 * Return: number of pages beyond high watermark within all zones.
4990 */
4991unsigned long nr_free_pagecache_pages(void)
4992{
4993 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4994}
4995
4996static inline void show_node(struct zone *zone)
4997{
4998 if (IS_ENABLED(CONFIG_NUMA))
4999 printk("Node %d ", zone_to_nid(zone));
5000}
5001
5002long si_mem_available(void)
5003{
5004 long available;
5005 unsigned long pagecache;
5006 unsigned long wmark_low = 0;
5007 unsigned long pages[NR_LRU_LISTS];
5008 unsigned long reclaimable;
5009 struct zone *zone;
5010 int lru;
5011
5012 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5013 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5014
5015 for_each_zone(zone)
5016 wmark_low += low_wmark_pages(zone);
5017
5018 /*
5019 * Estimate the amount of memory available for userspace allocations,
5020 * without causing swapping.
5021 */
5022 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5023
5024 /*
5025 * Not all the page cache can be freed, otherwise the system will
5026 * start swapping. Assume at least half of the page cache, or the
5027 * low watermark worth of cache, needs to stay.
5028 */
5029 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5030 pagecache -= min(pagecache / 2, wmark_low);
5031 available += pagecache;
5032
5033 /*
5034 * Part of the reclaimable slab and other kernel memory consists of
5035 * items that are in use, and cannot be freed. Cap this estimate at the
5036 * low watermark.
5037 */
5038 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5039 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5040 available += reclaimable - min(reclaimable / 2, wmark_low);
5041
5042 if (available < 0)
5043 available = 0;
5044 return available;
5045}
5046EXPORT_SYMBOL_GPL(si_mem_available);
5047
5048void si_meminfo(struct sysinfo *val)
5049{
5050 val->totalram = totalram_pages();
5051 val->sharedram = global_node_page_state(NR_SHMEM);
5052 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5053 val->bufferram = nr_blockdev_pages();
5054 val->totalhigh = totalhigh_pages();
5055 val->freehigh = nr_free_highpages();
5056 val->mem_unit = PAGE_SIZE;
5057}
5058
5059EXPORT_SYMBOL(si_meminfo);
5060
5061#ifdef CONFIG_NUMA
5062void si_meminfo_node(struct sysinfo *val, int nid)
5063{
5064 int zone_type; /* needs to be signed */
5065 unsigned long managed_pages = 0;
5066 unsigned long managed_highpages = 0;
5067 unsigned long free_highpages = 0;
5068 pg_data_t *pgdat = NODE_DATA(nid);
5069
5070 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5071 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5072 val->totalram = managed_pages;
5073 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5074 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5075#ifdef CONFIG_HIGHMEM
5076 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5077 struct zone *zone = &pgdat->node_zones[zone_type];
5078
5079 if (is_highmem(zone)) {
5080 managed_highpages += zone_managed_pages(zone);
5081 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5082 }
5083 }
5084 val->totalhigh = managed_highpages;
5085 val->freehigh = free_highpages;
5086#else
5087 val->totalhigh = managed_highpages;
5088 val->freehigh = free_highpages;
5089#endif
5090 val->mem_unit = PAGE_SIZE;
5091}
5092#endif
5093
5094/*
5095 * Determine whether the node should be displayed or not, depending on whether
5096 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5097 */
5098static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5099{
5100 if (!(flags & SHOW_MEM_FILTER_NODES))
5101 return false;
5102
5103 /*
5104 * no node mask - aka implicit memory numa policy. Do not bother with
5105 * the synchronization - read_mems_allowed_begin - because we do not
5106 * have to be precise here.
5107 */
5108 if (!nodemask)
5109 nodemask = &cpuset_current_mems_allowed;
5110
5111 return !node_isset(nid, *nodemask);
5112}
5113
5114#define K(x) ((x) << (PAGE_SHIFT-10))
5115
5116static void show_migration_types(unsigned char type)
5117{
5118 static const char types[MIGRATE_TYPES] = {
5119 [MIGRATE_UNMOVABLE] = 'U',
5120 [MIGRATE_MOVABLE] = 'M',
5121 [MIGRATE_RECLAIMABLE] = 'E',
5122 [MIGRATE_HIGHATOMIC] = 'H',
5123#ifdef CONFIG_CMA
5124 [MIGRATE_CMA] = 'C',
5125#endif
5126#ifdef CONFIG_MEMORY_ISOLATION
5127 [MIGRATE_ISOLATE] = 'I',
5128#endif
5129 };
5130 char tmp[MIGRATE_TYPES + 1];
5131 char *p = tmp;
5132 int i;
5133
5134 for (i = 0; i < MIGRATE_TYPES; i++) {
5135 if (type & (1 << i))
5136 *p++ = types[i];
5137 }
5138
5139 *p = '\0';
5140 printk(KERN_CONT "(%s) ", tmp);
5141}
5142
5143/*
5144 * Show free area list (used inside shift_scroll-lock stuff)
5145 * We also calculate the percentage fragmentation. We do this by counting the
5146 * memory on each free list with the exception of the first item on the list.
5147 *
5148 * Bits in @filter:
5149 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5150 * cpuset.
5151 */
5152void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5153{
5154 unsigned long free_pcp = 0;
5155 int cpu;
5156 struct zone *zone;
5157 pg_data_t *pgdat;
5158
5159 for_each_populated_zone(zone) {
5160 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5161 continue;
5162
5163 for_each_online_cpu(cpu)
5164 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5165 }
5166
5167 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5168 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5169 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5170 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5171 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5172 " free:%lu free_pcp:%lu free_cma:%lu\n",
5173 global_node_page_state(NR_ACTIVE_ANON),
5174 global_node_page_state(NR_INACTIVE_ANON),
5175 global_node_page_state(NR_ISOLATED_ANON),
5176 global_node_page_state(NR_ACTIVE_FILE),
5177 global_node_page_state(NR_INACTIVE_FILE),
5178 global_node_page_state(NR_ISOLATED_FILE),
5179 global_node_page_state(NR_UNEVICTABLE),
5180 global_node_page_state(NR_FILE_DIRTY),
5181 global_node_page_state(NR_WRITEBACK),
5182 global_node_page_state(NR_UNSTABLE_NFS),
5183 global_node_page_state(NR_SLAB_RECLAIMABLE),
5184 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5185 global_node_page_state(NR_FILE_MAPPED),
5186 global_node_page_state(NR_SHMEM),
5187 global_zone_page_state(NR_PAGETABLE),
5188 global_zone_page_state(NR_BOUNCE),
5189 global_zone_page_state(NR_FREE_PAGES),
5190 free_pcp,
5191 global_zone_page_state(NR_FREE_CMA_PAGES));
5192
5193 for_each_online_pgdat(pgdat) {
5194 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5195 continue;
5196
5197 printk("Node %d"
5198 " active_anon:%lukB"
5199 " inactive_anon:%lukB"
5200 " active_file:%lukB"
5201 " inactive_file:%lukB"
5202 " unevictable:%lukB"
5203 " isolated(anon):%lukB"
5204 " isolated(file):%lukB"
5205 " mapped:%lukB"
5206 " dirty:%lukB"
5207 " writeback:%lukB"
5208 " shmem:%lukB"
5209#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5210 " shmem_thp: %lukB"
5211 " shmem_pmdmapped: %lukB"
5212 " anon_thp: %lukB"
5213#endif
5214 " writeback_tmp:%lukB"
5215 " unstable:%lukB"
5216 " all_unreclaimable? %s"
5217 "\n",
5218 pgdat->node_id,
5219 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5220 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5221 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5222 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5223 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5224 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5225 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5226 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5227 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5228 K(node_page_state(pgdat, NR_WRITEBACK)),
5229 K(node_page_state(pgdat, NR_SHMEM)),
5230#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5231 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5232 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5233 * HPAGE_PMD_NR),
5234 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5235#endif
5236 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5237 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5238 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5239 "yes" : "no");
5240 }
5241
5242 for_each_populated_zone(zone) {
5243 int i;
5244
5245 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5246 continue;
5247
5248 free_pcp = 0;
5249 for_each_online_cpu(cpu)
5250 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5251
5252 show_node(zone);
5253 printk(KERN_CONT
5254 "%s"
5255 " free:%lukB"
5256 " min:%lukB"
5257 " low:%lukB"
5258 " high:%lukB"
5259 " active_anon:%lukB"
5260 " inactive_anon:%lukB"
5261 " active_file:%lukB"
5262 " inactive_file:%lukB"
5263 " unevictable:%lukB"
5264 " writepending:%lukB"
5265 " present:%lukB"
5266 " managed:%lukB"
5267 " mlocked:%lukB"
5268 " kernel_stack:%lukB"
5269 " pagetables:%lukB"
5270 " bounce:%lukB"
5271 " free_pcp:%lukB"
5272 " local_pcp:%ukB"
5273 " free_cma:%lukB"
5274 "\n",
5275 zone->name,
5276 K(zone_page_state(zone, NR_FREE_PAGES)),
5277 K(min_wmark_pages(zone)),
5278 K(low_wmark_pages(zone)),
5279 K(high_wmark_pages(zone)),
5280 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5281 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5282 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5283 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5284 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5285 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5286 K(zone->present_pages),
5287 K(zone_managed_pages(zone)),
5288 K(zone_page_state(zone, NR_MLOCK)),
5289 zone_page_state(zone, NR_KERNEL_STACK_KB),
5290 K(zone_page_state(zone, NR_PAGETABLE)),
5291 K(zone_page_state(zone, NR_BOUNCE)),
5292 K(free_pcp),
5293 K(this_cpu_read(zone->pageset->pcp.count)),
5294 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5295 printk("lowmem_reserve[]:");
5296 for (i = 0; i < MAX_NR_ZONES; i++)
5297 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5298 printk(KERN_CONT "\n");
5299 }
5300
5301 for_each_populated_zone(zone) {
5302 unsigned int order;
5303 unsigned long nr[MAX_ORDER], flags, total = 0;
5304 unsigned char types[MAX_ORDER];
5305
5306 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5307 continue;
5308 show_node(zone);
5309 printk(KERN_CONT "%s: ", zone->name);
5310
5311 spin_lock_irqsave(&zone->lock, flags);
5312 for (order = 0; order < MAX_ORDER; order++) {
5313 struct free_area *area = &zone->free_area[order];
5314 int type;
5315
5316 nr[order] = area->nr_free;
5317 total += nr[order] << order;
5318
5319 types[order] = 0;
5320 for (type = 0; type < MIGRATE_TYPES; type++) {
5321 if (!free_area_empty(area, type))
5322 types[order] |= 1 << type;
5323 }
5324 }
5325 spin_unlock_irqrestore(&zone->lock, flags);
5326 for (order = 0; order < MAX_ORDER; order++) {
5327 printk(KERN_CONT "%lu*%lukB ",
5328 nr[order], K(1UL) << order);
5329 if (nr[order])
5330 show_migration_types(types[order]);
5331 }
5332 printk(KERN_CONT "= %lukB\n", K(total));
5333 }
5334
5335 hugetlb_show_meminfo();
5336
5337 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5338
5339 show_swap_cache_info();
5340}
5341
5342static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5343{
5344 zoneref->zone = zone;
5345 zoneref->zone_idx = zone_idx(zone);
5346}
5347
5348/*
5349 * Builds allocation fallback zone lists.
5350 *
5351 * Add all populated zones of a node to the zonelist.
5352 */
5353static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5354{
5355 struct zone *zone;
5356 enum zone_type zone_type = MAX_NR_ZONES;
5357 int nr_zones = 0;
5358
5359 do {
5360 zone_type--;
5361 zone = pgdat->node_zones + zone_type;
5362 if (managed_zone(zone)) {
5363 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5364 check_highest_zone(zone_type);
5365 }
5366 } while (zone_type);
5367
5368 return nr_zones;
5369}
5370
5371#ifdef CONFIG_NUMA
5372
5373static int __parse_numa_zonelist_order(char *s)
5374{
5375 /*
5376 * We used to support different zonlists modes but they turned
5377 * out to be just not useful. Let's keep the warning in place
5378 * if somebody still use the cmd line parameter so that we do
5379 * not fail it silently
5380 */
5381 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5382 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5383 return -EINVAL;
5384 }
5385 return 0;
5386}
5387
5388static __init int setup_numa_zonelist_order(char *s)
5389{
5390 if (!s)
5391 return 0;
5392
5393 return __parse_numa_zonelist_order(s);
5394}
5395early_param("numa_zonelist_order", setup_numa_zonelist_order);
5396
5397char numa_zonelist_order[] = "Node";
5398
5399/*
5400 * sysctl handler for numa_zonelist_order
5401 */
5402int numa_zonelist_order_handler(struct ctl_table *table, int write,
5403 void __user *buffer, size_t *length,
5404 loff_t *ppos)
5405{
5406 char *str;
5407 int ret;
5408
5409 if (!write)
5410 return proc_dostring(table, write, buffer, length, ppos);
5411 str = memdup_user_nul(buffer, 16);
5412 if (IS_ERR(str))
5413 return PTR_ERR(str);
5414
5415 ret = __parse_numa_zonelist_order(str);
5416 kfree(str);
5417 return ret;
5418}
5419
5420
5421#define MAX_NODE_LOAD (nr_online_nodes)
5422static int node_load[MAX_NUMNODES];
5423
5424/**
5425 * find_next_best_node - find the next node that should appear in a given node's fallback list
5426 * @node: node whose fallback list we're appending
5427 * @used_node_mask: nodemask_t of already used nodes
5428 *
5429 * We use a number of factors to determine which is the next node that should
5430 * appear on a given node's fallback list. The node should not have appeared
5431 * already in @node's fallback list, and it should be the next closest node
5432 * according to the distance array (which contains arbitrary distance values
5433 * from each node to each node in the system), and should also prefer nodes
5434 * with no CPUs, since presumably they'll have very little allocation pressure
5435 * on them otherwise.
5436 *
5437 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5438 */
5439static int find_next_best_node(int node, nodemask_t *used_node_mask)
5440{
5441 int n, val;
5442 int min_val = INT_MAX;
5443 int best_node = NUMA_NO_NODE;
5444 const struct cpumask *tmp = cpumask_of_node(0);
5445
5446 /* Use the local node if we haven't already */
5447 if (!node_isset(node, *used_node_mask)) {
5448 node_set(node, *used_node_mask);
5449 return node;
5450 }
5451
5452 for_each_node_state(n, N_MEMORY) {
5453
5454 /* Don't want a node to appear more than once */
5455 if (node_isset(n, *used_node_mask))
5456 continue;
5457
5458 /* Use the distance array to find the distance */
5459 val = node_distance(node, n);
5460
5461 /* Penalize nodes under us ("prefer the next node") */
5462 val += (n < node);
5463
5464 /* Give preference to headless and unused nodes */
5465 tmp = cpumask_of_node(n);
5466 if (!cpumask_empty(tmp))
5467 val += PENALTY_FOR_NODE_WITH_CPUS;
5468
5469 /* Slight preference for less loaded node */
5470 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5471 val += node_load[n];
5472
5473 if (val < min_val) {
5474 min_val = val;
5475 best_node = n;
5476 }
5477 }
5478
5479 if (best_node >= 0)
5480 node_set(best_node, *used_node_mask);
5481
5482 return best_node;
5483}
5484
5485
5486/*
5487 * Build zonelists ordered by node and zones within node.
5488 * This results in maximum locality--normal zone overflows into local
5489 * DMA zone, if any--but risks exhausting DMA zone.
5490 */
5491static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5492 unsigned nr_nodes)
5493{
5494 struct zoneref *zonerefs;
5495 int i;
5496
5497 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5498
5499 for (i = 0; i < nr_nodes; i++) {
5500 int nr_zones;
5501
5502 pg_data_t *node = NODE_DATA(node_order[i]);
5503
5504 nr_zones = build_zonerefs_node(node, zonerefs);
5505 zonerefs += nr_zones;
5506 }
5507 zonerefs->zone = NULL;
5508 zonerefs->zone_idx = 0;
5509}
5510
5511/*
5512 * Build gfp_thisnode zonelists
5513 */
5514static void build_thisnode_zonelists(pg_data_t *pgdat)
5515{
5516 struct zoneref *zonerefs;
5517 int nr_zones;
5518
5519 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5520 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5521 zonerefs += nr_zones;
5522 zonerefs->zone = NULL;
5523 zonerefs->zone_idx = 0;
5524}
5525
5526/*
5527 * Build zonelists ordered by zone and nodes within zones.
5528 * This results in conserving DMA zone[s] until all Normal memory is
5529 * exhausted, but results in overflowing to remote node while memory
5530 * may still exist in local DMA zone.
5531 */
5532
5533static void build_zonelists(pg_data_t *pgdat)
5534{
5535 static int node_order[MAX_NUMNODES];
5536 int node, load, nr_nodes = 0;
5537 nodemask_t used_mask;
5538 int local_node, prev_node;
5539
5540 /* NUMA-aware ordering of nodes */
5541 local_node = pgdat->node_id;
5542 load = nr_online_nodes;
5543 prev_node = local_node;
5544 nodes_clear(used_mask);
5545
5546 memset(node_order, 0, sizeof(node_order));
5547 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5548 /*
5549 * We don't want to pressure a particular node.
5550 * So adding penalty to the first node in same
5551 * distance group to make it round-robin.
5552 */
5553 if (node_distance(local_node, node) !=
5554 node_distance(local_node, prev_node))
5555 node_load[node] = load;
5556
5557 node_order[nr_nodes++] = node;
5558 prev_node = node;
5559 load--;
5560 }
5561
5562 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5563 build_thisnode_zonelists(pgdat);
5564}
5565
5566#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5567/*
5568 * Return node id of node used for "local" allocations.
5569 * I.e., first node id of first zone in arg node's generic zonelist.
5570 * Used for initializing percpu 'numa_mem', which is used primarily
5571 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5572 */
5573int local_memory_node(int node)
5574{
5575 struct zoneref *z;
5576
5577 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5578 gfp_zone(GFP_KERNEL),
5579 NULL);
5580 return zone_to_nid(z->zone);
5581}
5582#endif
5583
5584static void setup_min_unmapped_ratio(void);
5585static void setup_min_slab_ratio(void);
5586#else /* CONFIG_NUMA */
5587
5588static void build_zonelists(pg_data_t *pgdat)
5589{
5590 int node, local_node;
5591 struct zoneref *zonerefs;
5592 int nr_zones;
5593
5594 local_node = pgdat->node_id;
5595
5596 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5597 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5598 zonerefs += nr_zones;
5599
5600 /*
5601 * Now we build the zonelist so that it contains the zones
5602 * of all the other nodes.
5603 * We don't want to pressure a particular node, so when
5604 * building the zones for node N, we make sure that the
5605 * zones coming right after the local ones are those from
5606 * node N+1 (modulo N)
5607 */
5608 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5609 if (!node_online(node))
5610 continue;
5611 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5612 zonerefs += nr_zones;
5613 }
5614 for (node = 0; node < local_node; node++) {
5615 if (!node_online(node))
5616 continue;
5617 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5618 zonerefs += nr_zones;
5619 }
5620
5621 zonerefs->zone = NULL;
5622 zonerefs->zone_idx = 0;
5623}
5624
5625#endif /* CONFIG_NUMA */
5626
5627/*
5628 * Boot pageset table. One per cpu which is going to be used for all
5629 * zones and all nodes. The parameters will be set in such a way
5630 * that an item put on a list will immediately be handed over to
5631 * the buddy list. This is safe since pageset manipulation is done
5632 * with interrupts disabled.
5633 *
5634 * The boot_pagesets must be kept even after bootup is complete for
5635 * unused processors and/or zones. They do play a role for bootstrapping
5636 * hotplugged processors.
5637 *
5638 * zoneinfo_show() and maybe other functions do
5639 * not check if the processor is online before following the pageset pointer.
5640 * Other parts of the kernel may not check if the zone is available.
5641 */
5642static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5643static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5644static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5645
5646static void __build_all_zonelists(void *data)
5647{
5648 int nid;
5649 int __maybe_unused cpu;
5650 pg_data_t *self = data;
5651 static DEFINE_SPINLOCK(lock);
5652
5653 spin_lock(&lock);
5654
5655#ifdef CONFIG_NUMA
5656 memset(node_load, 0, sizeof(node_load));
5657#endif
5658
5659 /*
5660 * This node is hotadded and no memory is yet present. So just
5661 * building zonelists is fine - no need to touch other nodes.
5662 */
5663 if (self && !node_online(self->node_id)) {
5664 build_zonelists(self);
5665 } else {
5666 for_each_online_node(nid) {
5667 pg_data_t *pgdat = NODE_DATA(nid);
5668
5669 build_zonelists(pgdat);
5670 }
5671
5672#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5673 /*
5674 * We now know the "local memory node" for each node--
5675 * i.e., the node of the first zone in the generic zonelist.
5676 * Set up numa_mem percpu variable for on-line cpus. During
5677 * boot, only the boot cpu should be on-line; we'll init the
5678 * secondary cpus' numa_mem as they come on-line. During
5679 * node/memory hotplug, we'll fixup all on-line cpus.
5680 */
5681 for_each_online_cpu(cpu)
5682 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5683#endif
5684 }
5685
5686 spin_unlock(&lock);
5687}
5688
5689static noinline void __init
5690build_all_zonelists_init(void)
5691{
5692 int cpu;
5693
5694 __build_all_zonelists(NULL);
5695
5696 /*
5697 * Initialize the boot_pagesets that are going to be used
5698 * for bootstrapping processors. The real pagesets for
5699 * each zone will be allocated later when the per cpu
5700 * allocator is available.
5701 *
5702 * boot_pagesets are used also for bootstrapping offline
5703 * cpus if the system is already booted because the pagesets
5704 * are needed to initialize allocators on a specific cpu too.
5705 * F.e. the percpu allocator needs the page allocator which
5706 * needs the percpu allocator in order to allocate its pagesets
5707 * (a chicken-egg dilemma).
5708 */
5709 for_each_possible_cpu(cpu)
5710 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5711
5712 mminit_verify_zonelist();
5713 cpuset_init_current_mems_allowed();
5714}
5715
5716/*
5717 * unless system_state == SYSTEM_BOOTING.
5718 *
5719 * __ref due to call of __init annotated helper build_all_zonelists_init
5720 * [protected by SYSTEM_BOOTING].
5721 */
5722void __ref build_all_zonelists(pg_data_t *pgdat)
5723{
5724 if (system_state == SYSTEM_BOOTING) {
5725 build_all_zonelists_init();
5726 } else {
5727 __build_all_zonelists(pgdat);
5728 /* cpuset refresh routine should be here */
5729 }
5730 vm_total_pages = nr_free_pagecache_pages();
5731 /*
5732 * Disable grouping by mobility if the number of pages in the
5733 * system is too low to allow the mechanism to work. It would be
5734 * more accurate, but expensive to check per-zone. This check is
5735 * made on memory-hotadd so a system can start with mobility
5736 * disabled and enable it later
5737 */
5738 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5739 page_group_by_mobility_disabled = 1;
5740 else
5741 page_group_by_mobility_disabled = 0;
5742
5743 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5744 nr_online_nodes,
5745 page_group_by_mobility_disabled ? "off" : "on",
5746 vm_total_pages);
5747#ifdef CONFIG_NUMA
5748 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5749#endif
5750}
5751
5752/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5753static bool __meminit
5754overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5755{
5756#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5757 static struct memblock_region *r;
5758
5759 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5760 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5761 for_each_memblock(memory, r) {
5762 if (*pfn < memblock_region_memory_end_pfn(r))
5763 break;
5764 }
5765 }
5766 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5767 memblock_is_mirror(r)) {
5768 *pfn = memblock_region_memory_end_pfn(r);
5769 return true;
5770 }
5771 }
5772#endif
5773 return false;
5774}
5775
5776/*
5777 * Initially all pages are reserved - free ones are freed
5778 * up by memblock_free_all() once the early boot process is
5779 * done. Non-atomic initialization, single-pass.
5780 */
5781void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5782 unsigned long start_pfn, enum memmap_context context,
5783 struct vmem_altmap *altmap)
5784{
5785 unsigned long pfn, end_pfn = start_pfn + size;
5786 struct page *page;
5787
5788 if (highest_memmap_pfn < end_pfn - 1)
5789 highest_memmap_pfn = end_pfn - 1;
5790
5791#ifdef CONFIG_ZONE_DEVICE
5792 /*
5793 * Honor reservation requested by the driver for this ZONE_DEVICE
5794 * memory. We limit the total number of pages to initialize to just
5795 * those that might contain the memory mapping. We will defer the
5796 * ZONE_DEVICE page initialization until after we have released
5797 * the hotplug lock.
5798 */
5799 if (zone == ZONE_DEVICE) {
5800 if (!altmap)
5801 return;
5802
5803 if (start_pfn == altmap->base_pfn)
5804 start_pfn += altmap->reserve;
5805 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5806 }
5807#endif
5808
5809 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5810 /*
5811 * There can be holes in boot-time mem_map[]s handed to this
5812 * function. They do not exist on hotplugged memory.
5813 */
5814 if (context == MEMMAP_EARLY) {
5815 if (!early_pfn_valid(pfn))
5816 continue;
5817 if (!early_pfn_in_nid(pfn, nid))
5818 continue;
5819 if (overlap_memmap_init(zone, &pfn))
5820 continue;
5821 if (defer_init(nid, pfn, end_pfn))
5822 break;
5823 }
5824
5825 page = pfn_to_page(pfn);
5826 __init_single_page(page, pfn, zone, nid);
5827 if (context == MEMMAP_HOTPLUG)
5828 __SetPageReserved(page);
5829
5830 /*
5831 * Mark the block movable so that blocks are reserved for
5832 * movable at startup. This will force kernel allocations
5833 * to reserve their blocks rather than leaking throughout
5834 * the address space during boot when many long-lived
5835 * kernel allocations are made.
5836 *
5837 * bitmap is created for zone's valid pfn range. but memmap
5838 * can be created for invalid pages (for alignment)
5839 * check here not to call set_pageblock_migratetype() against
5840 * pfn out of zone.
5841 */
5842 if (!(pfn & (pageblock_nr_pages - 1))) {
5843 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5844 cond_resched();
5845 }
5846 }
5847}
5848
5849#ifdef CONFIG_ZONE_DEVICE
5850void __ref memmap_init_zone_device(struct zone *zone,
5851 unsigned long start_pfn,
5852 unsigned long size,
5853 struct dev_pagemap *pgmap)
5854{
5855 unsigned long pfn, end_pfn = start_pfn + size;
5856 struct pglist_data *pgdat = zone->zone_pgdat;
5857 unsigned long zone_idx = zone_idx(zone);
5858 unsigned long start = jiffies;
5859 int nid = pgdat->node_id;
5860
5861 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5862 return;
5863
5864 /*
5865 * The call to memmap_init_zone should have already taken care
5866 * of the pages reserved for the memmap, so we can just jump to
5867 * the end of that region and start processing the device pages.
5868 */
5869 if (pgmap->altmap_valid) {
5870 struct vmem_altmap *altmap = &pgmap->altmap;
5871
5872 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5873 size = end_pfn - start_pfn;
5874 }
5875
5876 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5877 struct page *page = pfn_to_page(pfn);
5878
5879 __init_single_page(page, pfn, zone_idx, nid);
5880
5881 /*
5882 * Mark page reserved as it will need to wait for onlining
5883 * phase for it to be fully associated with a zone.
5884 *
5885 * We can use the non-atomic __set_bit operation for setting
5886 * the flag as we are still initializing the pages.
5887 */
5888 __SetPageReserved(page);
5889
5890 /*
5891 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5892 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5893 * page is ever freed or placed on a driver-private list.
5894 */
5895 page->pgmap = pgmap;
5896 page->hmm_data = 0;
5897
5898 /*
5899 * Mark the block movable so that blocks are reserved for
5900 * movable at startup. This will force kernel allocations
5901 * to reserve their blocks rather than leaking throughout
5902 * the address space during boot when many long-lived
5903 * kernel allocations are made.
5904 *
5905 * bitmap is created for zone's valid pfn range. but memmap
5906 * can be created for invalid pages (for alignment)
5907 * check here not to call set_pageblock_migratetype() against
5908 * pfn out of zone.
5909 *
5910 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5911 * because this is done early in sparse_add_one_section
5912 */
5913 if (!(pfn & (pageblock_nr_pages - 1))) {
5914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5915 cond_resched();
5916 }
5917 }
5918
5919 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5920 size, jiffies_to_msecs(jiffies - start));
5921}
5922
5923#endif
5924static void __meminit zone_init_free_lists(struct zone *zone)
5925{
5926 unsigned int order, t;
5927 for_each_migratetype_order(order, t) {
5928 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5929 zone->free_area[order].nr_free = 0;
5930 }
5931}
5932
5933void __meminit __weak memmap_init(unsigned long size, int nid,
5934 unsigned long zone, unsigned long start_pfn)
5935{
5936 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5937}
5938
5939static int zone_batchsize(struct zone *zone)
5940{
5941#ifdef CONFIG_MMU
5942 int batch;
5943
5944 /*
5945 * The per-cpu-pages pools are set to around 1000th of the
5946 * size of the zone.
5947 */
5948 batch = zone_managed_pages(zone) / 1024;
5949 /* But no more than a meg. */
5950 if (batch * PAGE_SIZE > 1024 * 1024)
5951 batch = (1024 * 1024) / PAGE_SIZE;
5952 batch /= 4; /* We effectively *= 4 below */
5953 if (batch < 1)
5954 batch = 1;
5955
5956 /*
5957 * Clamp the batch to a 2^n - 1 value. Having a power
5958 * of 2 value was found to be more likely to have
5959 * suboptimal cache aliasing properties in some cases.
5960 *
5961 * For example if 2 tasks are alternately allocating
5962 * batches of pages, one task can end up with a lot
5963 * of pages of one half of the possible page colors
5964 * and the other with pages of the other colors.
5965 */
5966 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5967
5968 return batch;
5969
5970#else
5971 /* The deferral and batching of frees should be suppressed under NOMMU
5972 * conditions.
5973 *
5974 * The problem is that NOMMU needs to be able to allocate large chunks
5975 * of contiguous memory as there's no hardware page translation to
5976 * assemble apparent contiguous memory from discontiguous pages.
5977 *
5978 * Queueing large contiguous runs of pages for batching, however,
5979 * causes the pages to actually be freed in smaller chunks. As there
5980 * can be a significant delay between the individual batches being
5981 * recycled, this leads to the once large chunks of space being
5982 * fragmented and becoming unavailable for high-order allocations.
5983 */
5984 return 0;
5985#endif
5986}
5987
5988/*
5989 * pcp->high and pcp->batch values are related and dependent on one another:
5990 * ->batch must never be higher then ->high.
5991 * The following function updates them in a safe manner without read side
5992 * locking.
5993 *
5994 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5995 * those fields changing asynchronously (acording the the above rule).
5996 *
5997 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5998 * outside of boot time (or some other assurance that no concurrent updaters
5999 * exist).
6000 */
6001static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6002 unsigned long batch)
6003{
6004 /* start with a fail safe value for batch */
6005 pcp->batch = 1;
6006 smp_wmb();
6007
6008 /* Update high, then batch, in order */
6009 pcp->high = high;
6010 smp_wmb();
6011
6012 pcp->batch = batch;
6013}
6014
6015/* a companion to pageset_set_high() */
6016static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6017{
6018 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6019}
6020
6021static void pageset_init(struct per_cpu_pageset *p)
6022{
6023 struct per_cpu_pages *pcp;
6024 int migratetype;
6025
6026 memset(p, 0, sizeof(*p));
6027
6028 pcp = &p->pcp;
6029 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6030 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6031}
6032
6033static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6034{
6035 pageset_init(p);
6036 pageset_set_batch(p, batch);
6037}
6038
6039/*
6040 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6041 * to the value high for the pageset p.
6042 */
6043static void pageset_set_high(struct per_cpu_pageset *p,
6044 unsigned long high)
6045{
6046 unsigned long batch = max(1UL, high / 4);
6047 if ((high / 4) > (PAGE_SHIFT * 8))
6048 batch = PAGE_SHIFT * 8;
6049
6050 pageset_update(&p->pcp, high, batch);
6051}
6052
6053static void pageset_set_high_and_batch(struct zone *zone,
6054 struct per_cpu_pageset *pcp)
6055{
6056 if (percpu_pagelist_fraction)
6057 pageset_set_high(pcp,
6058 (zone_managed_pages(zone) /
6059 percpu_pagelist_fraction));
6060 else
6061 pageset_set_batch(pcp, zone_batchsize(zone));
6062}
6063
6064static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6065{
6066 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6067
6068 pageset_init(pcp);
6069 pageset_set_high_and_batch(zone, pcp);
6070}
6071
6072void __meminit setup_zone_pageset(struct zone *zone)
6073{
6074 int cpu;
6075 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6076 for_each_possible_cpu(cpu)
6077 zone_pageset_init(zone, cpu);
6078}
6079
6080/*
6081 * Allocate per cpu pagesets and initialize them.
6082 * Before this call only boot pagesets were available.
6083 */
6084void __init setup_per_cpu_pageset(void)
6085{
6086 struct pglist_data *pgdat;
6087 struct zone *zone;
6088
6089 for_each_populated_zone(zone)
6090 setup_zone_pageset(zone);
6091
6092 for_each_online_pgdat(pgdat)
6093 pgdat->per_cpu_nodestats =
6094 alloc_percpu(struct per_cpu_nodestat);
6095}
6096
6097static __meminit void zone_pcp_init(struct zone *zone)
6098{
6099 /*
6100 * per cpu subsystem is not up at this point. The following code
6101 * relies on the ability of the linker to provide the
6102 * offset of a (static) per cpu variable into the per cpu area.
6103 */
6104 zone->pageset = &boot_pageset;
6105
6106 if (populated_zone(zone))
6107 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6108 zone->name, zone->present_pages,
6109 zone_batchsize(zone));
6110}
6111
6112void __meminit init_currently_empty_zone(struct zone *zone,
6113 unsigned long zone_start_pfn,
6114 unsigned long size)
6115{
6116 struct pglist_data *pgdat = zone->zone_pgdat;
6117 int zone_idx = zone_idx(zone) + 1;
6118
6119 if (zone_idx > pgdat->nr_zones)
6120 pgdat->nr_zones = zone_idx;
6121
6122 zone->zone_start_pfn = zone_start_pfn;
6123
6124 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6125 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6126 pgdat->node_id,
6127 (unsigned long)zone_idx(zone),
6128 zone_start_pfn, (zone_start_pfn + size));
6129
6130 zone_init_free_lists(zone);
6131 zone->initialized = 1;
6132}
6133
6134#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6135#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6136
6137/*
6138 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6139 */
6140int __meminit __early_pfn_to_nid(unsigned long pfn,
6141 struct mminit_pfnnid_cache *state)
6142{
6143 unsigned long start_pfn, end_pfn;
6144 int nid;
6145
6146 if (state->last_start <= pfn && pfn < state->last_end)
6147 return state->last_nid;
6148
6149 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6150 if (nid != NUMA_NO_NODE) {
6151 state->last_start = start_pfn;
6152 state->last_end = end_pfn;
6153 state->last_nid = nid;
6154 }
6155
6156 return nid;
6157}
6158#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6159
6160/**
6161 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6162 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6163 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6164 *
6165 * If an architecture guarantees that all ranges registered contain no holes
6166 * and may be freed, this this function may be used instead of calling
6167 * memblock_free_early_nid() manually.
6168 */
6169void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6170{
6171 unsigned long start_pfn, end_pfn;
6172 int i, this_nid;
6173
6174 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6175 start_pfn = min(start_pfn, max_low_pfn);
6176 end_pfn = min(end_pfn, max_low_pfn);
6177
6178 if (start_pfn < end_pfn)
6179 memblock_free_early_nid(PFN_PHYS(start_pfn),
6180 (end_pfn - start_pfn) << PAGE_SHIFT,
6181 this_nid);
6182 }
6183}
6184
6185/**
6186 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6187 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6188 *
6189 * If an architecture guarantees that all ranges registered contain no holes and may
6190 * be freed, this function may be used instead of calling memory_present() manually.
6191 */
6192void __init sparse_memory_present_with_active_regions(int nid)
6193{
6194 unsigned long start_pfn, end_pfn;
6195 int i, this_nid;
6196
6197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6198 memory_present(this_nid, start_pfn, end_pfn);
6199}
6200
6201/**
6202 * get_pfn_range_for_nid - Return the start and end page frames for a node
6203 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6204 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6205 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6206 *
6207 * It returns the start and end page frame of a node based on information
6208 * provided by memblock_set_node(). If called for a node
6209 * with no available memory, a warning is printed and the start and end
6210 * PFNs will be 0.
6211 */
6212void __init get_pfn_range_for_nid(unsigned int nid,
6213 unsigned long *start_pfn, unsigned long *end_pfn)
6214{
6215 unsigned long this_start_pfn, this_end_pfn;
6216 int i;
6217
6218 *start_pfn = -1UL;
6219 *end_pfn = 0;
6220
6221 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6222 *start_pfn = min(*start_pfn, this_start_pfn);
6223 *end_pfn = max(*end_pfn, this_end_pfn);
6224 }
6225
6226 if (*start_pfn == -1UL)
6227 *start_pfn = 0;
6228}
6229
6230/*
6231 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6232 * assumption is made that zones within a node are ordered in monotonic
6233 * increasing memory addresses so that the "highest" populated zone is used
6234 */
6235static void __init find_usable_zone_for_movable(void)
6236{
6237 int zone_index;
6238 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6239 if (zone_index == ZONE_MOVABLE)
6240 continue;
6241
6242 if (arch_zone_highest_possible_pfn[zone_index] >
6243 arch_zone_lowest_possible_pfn[zone_index])
6244 break;
6245 }
6246
6247 VM_BUG_ON(zone_index == -1);
6248 movable_zone = zone_index;
6249}
6250
6251/*
6252 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6253 * because it is sized independent of architecture. Unlike the other zones,
6254 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6255 * in each node depending on the size of each node and how evenly kernelcore
6256 * is distributed. This helper function adjusts the zone ranges
6257 * provided by the architecture for a given node by using the end of the
6258 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6259 * zones within a node are in order of monotonic increases memory addresses
6260 */
6261static void __init adjust_zone_range_for_zone_movable(int nid,
6262 unsigned long zone_type,
6263 unsigned long node_start_pfn,
6264 unsigned long node_end_pfn,
6265 unsigned long *zone_start_pfn,
6266 unsigned long *zone_end_pfn)
6267{
6268 /* Only adjust if ZONE_MOVABLE is on this node */
6269 if (zone_movable_pfn[nid]) {
6270 /* Size ZONE_MOVABLE */
6271 if (zone_type == ZONE_MOVABLE) {
6272 *zone_start_pfn = zone_movable_pfn[nid];
6273 *zone_end_pfn = min(node_end_pfn,
6274 arch_zone_highest_possible_pfn[movable_zone]);
6275
6276 /* Adjust for ZONE_MOVABLE starting within this range */
6277 } else if (!mirrored_kernelcore &&
6278 *zone_start_pfn < zone_movable_pfn[nid] &&
6279 *zone_end_pfn > zone_movable_pfn[nid]) {
6280 *zone_end_pfn = zone_movable_pfn[nid];
6281
6282 /* Check if this whole range is within ZONE_MOVABLE */
6283 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6284 *zone_start_pfn = *zone_end_pfn;
6285 }
6286}
6287
6288/*
6289 * Return the number of pages a zone spans in a node, including holes
6290 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6291 */
6292static unsigned long __init zone_spanned_pages_in_node(int nid,
6293 unsigned long zone_type,
6294 unsigned long node_start_pfn,
6295 unsigned long node_end_pfn,
6296 unsigned long *zone_start_pfn,
6297 unsigned long *zone_end_pfn,
6298 unsigned long *ignored)
6299{
6300 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6301 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6302 /* When hotadd a new node from cpu_up(), the node should be empty */
6303 if (!node_start_pfn && !node_end_pfn)
6304 return 0;
6305
6306 /* Get the start and end of the zone */
6307 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6308 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6309 adjust_zone_range_for_zone_movable(nid, zone_type,
6310 node_start_pfn, node_end_pfn,
6311 zone_start_pfn, zone_end_pfn);
6312
6313 /* Check that this node has pages within the zone's required range */
6314 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6315 return 0;
6316
6317 /* Move the zone boundaries inside the node if necessary */
6318 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6319 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6320
6321 /* Return the spanned pages */
6322 return *zone_end_pfn - *zone_start_pfn;
6323}
6324
6325/*
6326 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6327 * then all holes in the requested range will be accounted for.
6328 */
6329unsigned long __init __absent_pages_in_range(int nid,
6330 unsigned long range_start_pfn,
6331 unsigned long range_end_pfn)
6332{
6333 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6334 unsigned long start_pfn, end_pfn;
6335 int i;
6336
6337 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6338 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6339 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6340 nr_absent -= end_pfn - start_pfn;
6341 }
6342 return nr_absent;
6343}
6344
6345/**
6346 * absent_pages_in_range - Return number of page frames in holes within a range
6347 * @start_pfn: The start PFN to start searching for holes
6348 * @end_pfn: The end PFN to stop searching for holes
6349 *
6350 * Return: the number of pages frames in memory holes within a range.
6351 */
6352unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6353 unsigned long end_pfn)
6354{
6355 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6356}
6357
6358/* Return the number of page frames in holes in a zone on a node */
6359static unsigned long __init zone_absent_pages_in_node(int nid,
6360 unsigned long zone_type,
6361 unsigned long node_start_pfn,
6362 unsigned long node_end_pfn,
6363 unsigned long *ignored)
6364{
6365 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6366 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6367 unsigned long zone_start_pfn, zone_end_pfn;
6368 unsigned long nr_absent;
6369
6370 /* When hotadd a new node from cpu_up(), the node should be empty */
6371 if (!node_start_pfn && !node_end_pfn)
6372 return 0;
6373
6374 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6375 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6376
6377 adjust_zone_range_for_zone_movable(nid, zone_type,
6378 node_start_pfn, node_end_pfn,
6379 &zone_start_pfn, &zone_end_pfn);
6380 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6381
6382 /*
6383 * ZONE_MOVABLE handling.
6384 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6385 * and vice versa.
6386 */
6387 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6388 unsigned long start_pfn, end_pfn;
6389 struct memblock_region *r;
6390
6391 for_each_memblock(memory, r) {
6392 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6393 zone_start_pfn, zone_end_pfn);
6394 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6395 zone_start_pfn, zone_end_pfn);
6396
6397 if (zone_type == ZONE_MOVABLE &&
6398 memblock_is_mirror(r))
6399 nr_absent += end_pfn - start_pfn;
6400
6401 if (zone_type == ZONE_NORMAL &&
6402 !memblock_is_mirror(r))
6403 nr_absent += end_pfn - start_pfn;
6404 }
6405 }
6406
6407 return nr_absent;
6408}
6409
6410#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6411static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6412 unsigned long zone_type,
6413 unsigned long node_start_pfn,
6414 unsigned long node_end_pfn,
6415 unsigned long *zone_start_pfn,
6416 unsigned long *zone_end_pfn,
6417 unsigned long *zones_size)
6418{
6419 unsigned int zone;
6420
6421 *zone_start_pfn = node_start_pfn;
6422 for (zone = 0; zone < zone_type; zone++)
6423 *zone_start_pfn += zones_size[zone];
6424
6425 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6426
6427 return zones_size[zone_type];
6428}
6429
6430static inline unsigned long __init zone_absent_pages_in_node(int nid,
6431 unsigned long zone_type,
6432 unsigned long node_start_pfn,
6433 unsigned long node_end_pfn,
6434 unsigned long *zholes_size)
6435{
6436 if (!zholes_size)
6437 return 0;
6438
6439 return zholes_size[zone_type];
6440}
6441
6442#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6443
6444static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6445 unsigned long node_start_pfn,
6446 unsigned long node_end_pfn,
6447 unsigned long *zones_size,
6448 unsigned long *zholes_size)
6449{
6450 unsigned long realtotalpages = 0, totalpages = 0;
6451 enum zone_type i;
6452
6453 for (i = 0; i < MAX_NR_ZONES; i++) {
6454 struct zone *zone = pgdat->node_zones + i;
6455 unsigned long zone_start_pfn, zone_end_pfn;
6456 unsigned long size, real_size;
6457
6458 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6459 node_start_pfn,
6460 node_end_pfn,
6461 &zone_start_pfn,
6462 &zone_end_pfn,
6463 zones_size);
6464 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6465 node_start_pfn, node_end_pfn,
6466 zholes_size);
6467 if (size)
6468 zone->zone_start_pfn = zone_start_pfn;
6469 else
6470 zone->zone_start_pfn = 0;
6471 zone->spanned_pages = size;
6472 zone->present_pages = real_size;
6473
6474 totalpages += size;
6475 realtotalpages += real_size;
6476 }
6477
6478 pgdat->node_spanned_pages = totalpages;
6479 pgdat->node_present_pages = realtotalpages;
6480 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6481 realtotalpages);
6482}
6483
6484#ifndef CONFIG_SPARSEMEM
6485/*
6486 * Calculate the size of the zone->blockflags rounded to an unsigned long
6487 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6488 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6489 * round what is now in bits to nearest long in bits, then return it in
6490 * bytes.
6491 */
6492static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6493{
6494 unsigned long usemapsize;
6495
6496 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6497 usemapsize = roundup(zonesize, pageblock_nr_pages);
6498 usemapsize = usemapsize >> pageblock_order;
6499 usemapsize *= NR_PAGEBLOCK_BITS;
6500 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6501
6502 return usemapsize / 8;
6503}
6504
6505static void __ref setup_usemap(struct pglist_data *pgdat,
6506 struct zone *zone,
6507 unsigned long zone_start_pfn,
6508 unsigned long zonesize)
6509{
6510 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6511 zone->pageblock_flags = NULL;
6512 if (usemapsize) {
6513 zone->pageblock_flags =
6514 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6515 pgdat->node_id);
6516 if (!zone->pageblock_flags)
6517 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6518 usemapsize, zone->name, pgdat->node_id);
6519 }
6520}
6521#else
6522static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6523 unsigned long zone_start_pfn, unsigned long zonesize) {}
6524#endif /* CONFIG_SPARSEMEM */
6525
6526#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6527
6528/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6529void __init set_pageblock_order(void)
6530{
6531 unsigned int order;
6532
6533 /* Check that pageblock_nr_pages has not already been setup */
6534 if (pageblock_order)
6535 return;
6536
6537 if (HPAGE_SHIFT > PAGE_SHIFT)
6538 order = HUGETLB_PAGE_ORDER;
6539 else
6540 order = MAX_ORDER - 1;
6541
6542 /*
6543 * Assume the largest contiguous order of interest is a huge page.
6544 * This value may be variable depending on boot parameters on IA64 and
6545 * powerpc.
6546 */
6547 pageblock_order = order;
6548}
6549#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6550
6551/*
6552 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6553 * is unused as pageblock_order is set at compile-time. See
6554 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6555 * the kernel config
6556 */
6557void __init set_pageblock_order(void)
6558{
6559}
6560
6561#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6562
6563static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6564 unsigned long present_pages)
6565{
6566 unsigned long pages = spanned_pages;
6567
6568 /*
6569 * Provide a more accurate estimation if there are holes within
6570 * the zone and SPARSEMEM is in use. If there are holes within the
6571 * zone, each populated memory region may cost us one or two extra
6572 * memmap pages due to alignment because memmap pages for each
6573 * populated regions may not be naturally aligned on page boundary.
6574 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6575 */
6576 if (spanned_pages > present_pages + (present_pages >> 4) &&
6577 IS_ENABLED(CONFIG_SPARSEMEM))
6578 pages = present_pages;
6579
6580 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6581}
6582
6583#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6584static void pgdat_init_split_queue(struct pglist_data *pgdat)
6585{
6586 spin_lock_init(&pgdat->split_queue_lock);
6587 INIT_LIST_HEAD(&pgdat->split_queue);
6588 pgdat->split_queue_len = 0;
6589}
6590#else
6591static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6592#endif
6593
6594#ifdef CONFIG_COMPACTION
6595static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6596{
6597 init_waitqueue_head(&pgdat->kcompactd_wait);
6598}
6599#else
6600static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6601#endif
6602
6603static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6604{
6605 pgdat_resize_init(pgdat);
6606
6607 pgdat_init_split_queue(pgdat);
6608 pgdat_init_kcompactd(pgdat);
6609
6610 init_waitqueue_head(&pgdat->kswapd_wait);
6611 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6612
6613 pgdat_page_ext_init(pgdat);
6614 spin_lock_init(&pgdat->lru_lock);
6615 lruvec_init(node_lruvec(pgdat));
6616}
6617
6618static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6619 unsigned long remaining_pages)
6620{
6621 atomic_long_set(&zone->managed_pages, remaining_pages);
6622 zone_set_nid(zone, nid);
6623 zone->name = zone_names[idx];
6624 zone->zone_pgdat = NODE_DATA(nid);
6625 spin_lock_init(&zone->lock);
6626 zone_seqlock_init(zone);
6627 zone_pcp_init(zone);
6628}
6629
6630/*
6631 * Set up the zone data structures
6632 * - init pgdat internals
6633 * - init all zones belonging to this node
6634 *
6635 * NOTE: this function is only called during memory hotplug
6636 */
6637#ifdef CONFIG_MEMORY_HOTPLUG
6638void __ref free_area_init_core_hotplug(int nid)
6639{
6640 enum zone_type z;
6641 pg_data_t *pgdat = NODE_DATA(nid);
6642
6643 pgdat_init_internals(pgdat);
6644 for (z = 0; z < MAX_NR_ZONES; z++)
6645 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6646}
6647#endif
6648
6649/*
6650 * Set up the zone data structures:
6651 * - mark all pages reserved
6652 * - mark all memory queues empty
6653 * - clear the memory bitmaps
6654 *
6655 * NOTE: pgdat should get zeroed by caller.
6656 * NOTE: this function is only called during early init.
6657 */
6658static void __init free_area_init_core(struct pglist_data *pgdat)
6659{
6660 enum zone_type j;
6661 int nid = pgdat->node_id;
6662
6663 pgdat_init_internals(pgdat);
6664 pgdat->per_cpu_nodestats = &boot_nodestats;
6665
6666 for (j = 0; j < MAX_NR_ZONES; j++) {
6667 struct zone *zone = pgdat->node_zones + j;
6668 unsigned long size, freesize, memmap_pages;
6669 unsigned long zone_start_pfn = zone->zone_start_pfn;
6670
6671 size = zone->spanned_pages;
6672 freesize = zone->present_pages;
6673
6674 /*
6675 * Adjust freesize so that it accounts for how much memory
6676 * is used by this zone for memmap. This affects the watermark
6677 * and per-cpu initialisations
6678 */
6679 memmap_pages = calc_memmap_size(size, freesize);
6680 if (!is_highmem_idx(j)) {
6681 if (freesize >= memmap_pages) {
6682 freesize -= memmap_pages;
6683 if (memmap_pages)
6684 printk(KERN_DEBUG
6685 " %s zone: %lu pages used for memmap\n",
6686 zone_names[j], memmap_pages);
6687 } else
6688 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6689 zone_names[j], memmap_pages, freesize);
6690 }
6691
6692 /* Account for reserved pages */
6693 if (j == 0 && freesize > dma_reserve) {
6694 freesize -= dma_reserve;
6695 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6696 zone_names[0], dma_reserve);
6697 }
6698
6699 if (!is_highmem_idx(j))
6700 nr_kernel_pages += freesize;
6701 /* Charge for highmem memmap if there are enough kernel pages */
6702 else if (nr_kernel_pages > memmap_pages * 2)
6703 nr_kernel_pages -= memmap_pages;
6704 nr_all_pages += freesize;
6705
6706 /*
6707 * Set an approximate value for lowmem here, it will be adjusted
6708 * when the bootmem allocator frees pages into the buddy system.
6709 * And all highmem pages will be managed by the buddy system.
6710 */
6711 zone_init_internals(zone, j, nid, freesize);
6712
6713 if (!size)
6714 continue;
6715
6716 set_pageblock_order();
6717 setup_usemap(pgdat, zone, zone_start_pfn, size);
6718 init_currently_empty_zone(zone, zone_start_pfn, size);
6719 memmap_init(size, nid, j, zone_start_pfn);
6720 }
6721}
6722
6723#ifdef CONFIG_FLAT_NODE_MEM_MAP
6724static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6725{
6726 unsigned long __maybe_unused start = 0;
6727 unsigned long __maybe_unused offset = 0;
6728
6729 /* Skip empty nodes */
6730 if (!pgdat->node_spanned_pages)
6731 return;
6732
6733 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6734 offset = pgdat->node_start_pfn - start;
6735 /* ia64 gets its own node_mem_map, before this, without bootmem */
6736 if (!pgdat->node_mem_map) {
6737 unsigned long size, end;
6738 struct page *map;
6739
6740 /*
6741 * The zone's endpoints aren't required to be MAX_ORDER
6742 * aligned but the node_mem_map endpoints must be in order
6743 * for the buddy allocator to function correctly.
6744 */
6745 end = pgdat_end_pfn(pgdat);
6746 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6747 size = (end - start) * sizeof(struct page);
6748 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6749 pgdat->node_id);
6750 if (!map)
6751 panic("Failed to allocate %ld bytes for node %d memory map\n",
6752 size, pgdat->node_id);
6753 pgdat->node_mem_map = map + offset;
6754 }
6755 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6756 __func__, pgdat->node_id, (unsigned long)pgdat,
6757 (unsigned long)pgdat->node_mem_map);
6758#ifndef CONFIG_NEED_MULTIPLE_NODES
6759 /*
6760 * With no DISCONTIG, the global mem_map is just set as node 0's
6761 */
6762 if (pgdat == NODE_DATA(0)) {
6763 mem_map = NODE_DATA(0)->node_mem_map;
6764#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6765 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6766 mem_map -= offset;
6767#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6768 }
6769#endif
6770}
6771#else
6772static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6773#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6774
6775#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6776static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6777{
6778 pgdat->first_deferred_pfn = ULONG_MAX;
6779}
6780#else
6781static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6782#endif
6783
6784void __init free_area_init_node(int nid, unsigned long *zones_size,
6785 unsigned long node_start_pfn,
6786 unsigned long *zholes_size)
6787{
6788 pg_data_t *pgdat = NODE_DATA(nid);
6789 unsigned long start_pfn = 0;
6790 unsigned long end_pfn = 0;
6791
6792 /* pg_data_t should be reset to zero when it's allocated */
6793 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6794
6795 pgdat->node_id = nid;
6796 pgdat->node_start_pfn = node_start_pfn;
6797 pgdat->per_cpu_nodestats = NULL;
6798#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6799 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6800 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6801 (u64)start_pfn << PAGE_SHIFT,
6802 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6803#else
6804 start_pfn = node_start_pfn;
6805#endif
6806 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6807 zones_size, zholes_size);
6808
6809 alloc_node_mem_map(pgdat);
6810 pgdat_set_deferred_range(pgdat);
6811
6812 free_area_init_core(pgdat);
6813}
6814
6815#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6816/*
6817 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6818 * pages zeroed
6819 */
6820static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6821{
6822 unsigned long pfn;
6823 u64 pgcnt = 0;
6824
6825 for (pfn = spfn; pfn < epfn; pfn++) {
6826 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6827 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6828 + pageblock_nr_pages - 1;
6829 continue;
6830 }
6831 mm_zero_struct_page(pfn_to_page(pfn));
6832 pgcnt++;
6833 }
6834
6835 return pgcnt;
6836}
6837
6838/*
6839 * Only struct pages that are backed by physical memory are zeroed and
6840 * initialized by going through __init_single_page(). But, there are some
6841 * struct pages which are reserved in memblock allocator and their fields
6842 * may be accessed (for example page_to_pfn() on some configuration accesses
6843 * flags). We must explicitly zero those struct pages.
6844 *
6845 * This function also addresses a similar issue where struct pages are left
6846 * uninitialized because the physical address range is not covered by
6847 * memblock.memory or memblock.reserved. That could happen when memblock
6848 * layout is manually configured via memmap=.
6849 */
6850void __init zero_resv_unavail(void)
6851{
6852 phys_addr_t start, end;
6853 u64 i, pgcnt;
6854 phys_addr_t next = 0;
6855
6856 /*
6857 * Loop through unavailable ranges not covered by memblock.memory.
6858 */
6859 pgcnt = 0;
6860 for_each_mem_range(i, &memblock.memory, NULL,
6861 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6862 if (next < start)
6863 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6864 next = end;
6865 }
6866 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6867
6868 /*
6869 * Struct pages that do not have backing memory. This could be because
6870 * firmware is using some of this memory, or for some other reasons.
6871 */
6872 if (pgcnt)
6873 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6874}
6875#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6876
6877#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6878
6879#if MAX_NUMNODES > 1
6880/*
6881 * Figure out the number of possible node ids.
6882 */
6883void __init setup_nr_node_ids(void)
6884{
6885 unsigned int highest;
6886
6887 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6888 nr_node_ids = highest + 1;
6889}
6890#endif
6891
6892/**
6893 * node_map_pfn_alignment - determine the maximum internode alignment
6894 *
6895 * This function should be called after node map is populated and sorted.
6896 * It calculates the maximum power of two alignment which can distinguish
6897 * all the nodes.
6898 *
6899 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6900 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6901 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6902 * shifted, 1GiB is enough and this function will indicate so.
6903 *
6904 * This is used to test whether pfn -> nid mapping of the chosen memory
6905 * model has fine enough granularity to avoid incorrect mapping for the
6906 * populated node map.
6907 *
6908 * Return: the determined alignment in pfn's. 0 if there is no alignment
6909 * requirement (single node).
6910 */
6911unsigned long __init node_map_pfn_alignment(void)
6912{
6913 unsigned long accl_mask = 0, last_end = 0;
6914 unsigned long start, end, mask;
6915 int last_nid = NUMA_NO_NODE;
6916 int i, nid;
6917
6918 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6919 if (!start || last_nid < 0 || last_nid == nid) {
6920 last_nid = nid;
6921 last_end = end;
6922 continue;
6923 }
6924
6925 /*
6926 * Start with a mask granular enough to pin-point to the
6927 * start pfn and tick off bits one-by-one until it becomes
6928 * too coarse to separate the current node from the last.
6929 */
6930 mask = ~((1 << __ffs(start)) - 1);
6931 while (mask && last_end <= (start & (mask << 1)))
6932 mask <<= 1;
6933
6934 /* accumulate all internode masks */
6935 accl_mask |= mask;
6936 }
6937
6938 /* convert mask to number of pages */
6939 return ~accl_mask + 1;
6940}
6941
6942/* Find the lowest pfn for a node */
6943static unsigned long __init find_min_pfn_for_node(int nid)
6944{
6945 unsigned long min_pfn = ULONG_MAX;
6946 unsigned long start_pfn;
6947 int i;
6948
6949 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6950 min_pfn = min(min_pfn, start_pfn);
6951
6952 if (min_pfn == ULONG_MAX) {
6953 pr_warn("Could not find start_pfn for node %d\n", nid);
6954 return 0;
6955 }
6956
6957 return min_pfn;
6958}
6959
6960/**
6961 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6962 *
6963 * Return: the minimum PFN based on information provided via
6964 * memblock_set_node().
6965 */
6966unsigned long __init find_min_pfn_with_active_regions(void)
6967{
6968 return find_min_pfn_for_node(MAX_NUMNODES);
6969}
6970
6971/*
6972 * early_calculate_totalpages()
6973 * Sum pages in active regions for movable zone.
6974 * Populate N_MEMORY for calculating usable_nodes.
6975 */
6976static unsigned long __init early_calculate_totalpages(void)
6977{
6978 unsigned long totalpages = 0;
6979 unsigned long start_pfn, end_pfn;
6980 int i, nid;
6981
6982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6983 unsigned long pages = end_pfn - start_pfn;
6984
6985 totalpages += pages;
6986 if (pages)
6987 node_set_state(nid, N_MEMORY);
6988 }
6989 return totalpages;
6990}
6991
6992/*
6993 * Find the PFN the Movable zone begins in each node. Kernel memory
6994 * is spread evenly between nodes as long as the nodes have enough
6995 * memory. When they don't, some nodes will have more kernelcore than
6996 * others
6997 */
6998static void __init find_zone_movable_pfns_for_nodes(void)
6999{
7000 int i, nid;
7001 unsigned long usable_startpfn;
7002 unsigned long kernelcore_node, kernelcore_remaining;
7003 /* save the state before borrow the nodemask */
7004 nodemask_t saved_node_state = node_states[N_MEMORY];
7005 unsigned long totalpages = early_calculate_totalpages();
7006 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7007 struct memblock_region *r;
7008
7009 /* Need to find movable_zone earlier when movable_node is specified. */
7010 find_usable_zone_for_movable();
7011
7012 /*
7013 * If movable_node is specified, ignore kernelcore and movablecore
7014 * options.
7015 */
7016 if (movable_node_is_enabled()) {
7017 for_each_memblock(memory, r) {
7018 if (!memblock_is_hotpluggable(r))
7019 continue;
7020
7021 nid = r->nid;
7022
7023 usable_startpfn = PFN_DOWN(r->base);
7024 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7025 min(usable_startpfn, zone_movable_pfn[nid]) :
7026 usable_startpfn;
7027 }
7028
7029 goto out2;
7030 }
7031
7032 /*
7033 * If kernelcore=mirror is specified, ignore movablecore option
7034 */
7035 if (mirrored_kernelcore) {
7036 bool mem_below_4gb_not_mirrored = false;
7037
7038 for_each_memblock(memory, r) {
7039 if (memblock_is_mirror(r))
7040 continue;
7041
7042 nid = r->nid;
7043
7044 usable_startpfn = memblock_region_memory_base_pfn(r);
7045
7046 if (usable_startpfn < 0x100000) {
7047 mem_below_4gb_not_mirrored = true;
7048 continue;
7049 }
7050
7051 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7052 min(usable_startpfn, zone_movable_pfn[nid]) :
7053 usable_startpfn;
7054 }
7055
7056 if (mem_below_4gb_not_mirrored)
7057 pr_warn("This configuration results in unmirrored kernel memory.");
7058
7059 goto out2;
7060 }
7061
7062 /*
7063 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7064 * amount of necessary memory.
7065 */
7066 if (required_kernelcore_percent)
7067 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7068 10000UL;
7069 if (required_movablecore_percent)
7070 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7071 10000UL;
7072
7073 /*
7074 * If movablecore= was specified, calculate what size of
7075 * kernelcore that corresponds so that memory usable for
7076 * any allocation type is evenly spread. If both kernelcore
7077 * and movablecore are specified, then the value of kernelcore
7078 * will be used for required_kernelcore if it's greater than
7079 * what movablecore would have allowed.
7080 */
7081 if (required_movablecore) {
7082 unsigned long corepages;
7083
7084 /*
7085 * Round-up so that ZONE_MOVABLE is at least as large as what
7086 * was requested by the user
7087 */
7088 required_movablecore =
7089 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7090 required_movablecore = min(totalpages, required_movablecore);
7091 corepages = totalpages - required_movablecore;
7092
7093 required_kernelcore = max(required_kernelcore, corepages);
7094 }
7095
7096 /*
7097 * If kernelcore was not specified or kernelcore size is larger
7098 * than totalpages, there is no ZONE_MOVABLE.
7099 */
7100 if (!required_kernelcore || required_kernelcore >= totalpages)
7101 goto out;
7102
7103 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7104 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7105
7106restart:
7107 /* Spread kernelcore memory as evenly as possible throughout nodes */
7108 kernelcore_node = required_kernelcore / usable_nodes;
7109 for_each_node_state(nid, N_MEMORY) {
7110 unsigned long start_pfn, end_pfn;
7111
7112 /*
7113 * Recalculate kernelcore_node if the division per node
7114 * now exceeds what is necessary to satisfy the requested
7115 * amount of memory for the kernel
7116 */
7117 if (required_kernelcore < kernelcore_node)
7118 kernelcore_node = required_kernelcore / usable_nodes;
7119
7120 /*
7121 * As the map is walked, we track how much memory is usable
7122 * by the kernel using kernelcore_remaining. When it is
7123 * 0, the rest of the node is usable by ZONE_MOVABLE
7124 */
7125 kernelcore_remaining = kernelcore_node;
7126
7127 /* Go through each range of PFNs within this node */
7128 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7129 unsigned long size_pages;
7130
7131 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7132 if (start_pfn >= end_pfn)
7133 continue;
7134
7135 /* Account for what is only usable for kernelcore */
7136 if (start_pfn < usable_startpfn) {
7137 unsigned long kernel_pages;
7138 kernel_pages = min(end_pfn, usable_startpfn)
7139 - start_pfn;
7140
7141 kernelcore_remaining -= min(kernel_pages,
7142 kernelcore_remaining);
7143 required_kernelcore -= min(kernel_pages,
7144 required_kernelcore);
7145
7146 /* Continue if range is now fully accounted */
7147 if (end_pfn <= usable_startpfn) {
7148
7149 /*
7150 * Push zone_movable_pfn to the end so
7151 * that if we have to rebalance
7152 * kernelcore across nodes, we will
7153 * not double account here
7154 */
7155 zone_movable_pfn[nid] = end_pfn;
7156 continue;
7157 }
7158 start_pfn = usable_startpfn;
7159 }
7160
7161 /*
7162 * The usable PFN range for ZONE_MOVABLE is from
7163 * start_pfn->end_pfn. Calculate size_pages as the
7164 * number of pages used as kernelcore
7165 */
7166 size_pages = end_pfn - start_pfn;
7167 if (size_pages > kernelcore_remaining)
7168 size_pages = kernelcore_remaining;
7169 zone_movable_pfn[nid] = start_pfn + size_pages;
7170
7171 /*
7172 * Some kernelcore has been met, update counts and
7173 * break if the kernelcore for this node has been
7174 * satisfied
7175 */
7176 required_kernelcore -= min(required_kernelcore,
7177 size_pages);
7178 kernelcore_remaining -= size_pages;
7179 if (!kernelcore_remaining)
7180 break;
7181 }
7182 }
7183
7184 /*
7185 * If there is still required_kernelcore, we do another pass with one
7186 * less node in the count. This will push zone_movable_pfn[nid] further
7187 * along on the nodes that still have memory until kernelcore is
7188 * satisfied
7189 */
7190 usable_nodes--;
7191 if (usable_nodes && required_kernelcore > usable_nodes)
7192 goto restart;
7193
7194out2:
7195 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7196 for (nid = 0; nid < MAX_NUMNODES; nid++)
7197 zone_movable_pfn[nid] =
7198 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7199
7200out:
7201 /* restore the node_state */
7202 node_states[N_MEMORY] = saved_node_state;
7203}
7204
7205/* Any regular or high memory on that node ? */
7206static void check_for_memory(pg_data_t *pgdat, int nid)
7207{
7208 enum zone_type zone_type;
7209
7210 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7211 struct zone *zone = &pgdat->node_zones[zone_type];
7212 if (populated_zone(zone)) {
7213 if (IS_ENABLED(CONFIG_HIGHMEM))
7214 node_set_state(nid, N_HIGH_MEMORY);
7215 if (zone_type <= ZONE_NORMAL)
7216 node_set_state(nid, N_NORMAL_MEMORY);
7217 break;
7218 }
7219 }
7220}
7221
7222/**
7223 * free_area_init_nodes - Initialise all pg_data_t and zone data
7224 * @max_zone_pfn: an array of max PFNs for each zone
7225 *
7226 * This will call free_area_init_node() for each active node in the system.
7227 * Using the page ranges provided by memblock_set_node(), the size of each
7228 * zone in each node and their holes is calculated. If the maximum PFN
7229 * between two adjacent zones match, it is assumed that the zone is empty.
7230 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7231 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7232 * starts where the previous one ended. For example, ZONE_DMA32 starts
7233 * at arch_max_dma_pfn.
7234 */
7235void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7236{
7237 unsigned long start_pfn, end_pfn;
7238 int i, nid;
7239
7240 /* Record where the zone boundaries are */
7241 memset(arch_zone_lowest_possible_pfn, 0,
7242 sizeof(arch_zone_lowest_possible_pfn));
7243 memset(arch_zone_highest_possible_pfn, 0,
7244 sizeof(arch_zone_highest_possible_pfn));
7245
7246 start_pfn = find_min_pfn_with_active_regions();
7247
7248 for (i = 0; i < MAX_NR_ZONES; i++) {
7249 if (i == ZONE_MOVABLE)
7250 continue;
7251
7252 end_pfn = max(max_zone_pfn[i], start_pfn);
7253 arch_zone_lowest_possible_pfn[i] = start_pfn;
7254 arch_zone_highest_possible_pfn[i] = end_pfn;
7255
7256 start_pfn = end_pfn;
7257 }
7258
7259 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7260 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7261 find_zone_movable_pfns_for_nodes();
7262
7263 /* Print out the zone ranges */
7264 pr_info("Zone ranges:\n");
7265 for (i = 0; i < MAX_NR_ZONES; i++) {
7266 if (i == ZONE_MOVABLE)
7267 continue;
7268 pr_info(" %-8s ", zone_names[i]);
7269 if (arch_zone_lowest_possible_pfn[i] ==
7270 arch_zone_highest_possible_pfn[i])
7271 pr_cont("empty\n");
7272 else
7273 pr_cont("[mem %#018Lx-%#018Lx]\n",
7274 (u64)arch_zone_lowest_possible_pfn[i]
7275 << PAGE_SHIFT,
7276 ((u64)arch_zone_highest_possible_pfn[i]
7277 << PAGE_SHIFT) - 1);
7278 }
7279
7280 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7281 pr_info("Movable zone start for each node\n");
7282 for (i = 0; i < MAX_NUMNODES; i++) {
7283 if (zone_movable_pfn[i])
7284 pr_info(" Node %d: %#018Lx\n", i,
7285 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7286 }
7287
7288 /* Print out the early node map */
7289 pr_info("Early memory node ranges\n");
7290 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7291 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7292 (u64)start_pfn << PAGE_SHIFT,
7293 ((u64)end_pfn << PAGE_SHIFT) - 1);
7294
7295 /* Initialise every node */
7296 mminit_verify_pageflags_layout();
7297 setup_nr_node_ids();
7298 zero_resv_unavail();
7299 for_each_online_node(nid) {
7300 pg_data_t *pgdat = NODE_DATA(nid);
7301 free_area_init_node(nid, NULL,
7302 find_min_pfn_for_node(nid), NULL);
7303
7304 /* Any memory on that node */
7305 if (pgdat->node_present_pages)
7306 node_set_state(nid, N_MEMORY);
7307 check_for_memory(pgdat, nid);
7308 }
7309}
7310
7311static int __init cmdline_parse_core(char *p, unsigned long *core,
7312 unsigned long *percent)
7313{
7314 unsigned long long coremem;
7315 char *endptr;
7316
7317 if (!p)
7318 return -EINVAL;
7319
7320 /* Value may be a percentage of total memory, otherwise bytes */
7321 coremem = simple_strtoull(p, &endptr, 0);
7322 if (*endptr == '%') {
7323 /* Paranoid check for percent values greater than 100 */
7324 WARN_ON(coremem > 100);
7325
7326 *percent = coremem;
7327 } else {
7328 coremem = memparse(p, &p);
7329 /* Paranoid check that UL is enough for the coremem value */
7330 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7331
7332 *core = coremem >> PAGE_SHIFT;
7333 *percent = 0UL;
7334 }
7335 return 0;
7336}
7337
7338/*
7339 * kernelcore=size sets the amount of memory for use for allocations that
7340 * cannot be reclaimed or migrated.
7341 */
7342static int __init cmdline_parse_kernelcore(char *p)
7343{
7344 /* parse kernelcore=mirror */
7345 if (parse_option_str(p, "mirror")) {
7346 mirrored_kernelcore = true;
7347 return 0;
7348 }
7349
7350 return cmdline_parse_core(p, &required_kernelcore,
7351 &required_kernelcore_percent);
7352}
7353
7354/*
7355 * movablecore=size sets the amount of memory for use for allocations that
7356 * can be reclaimed or migrated.
7357 */
7358static int __init cmdline_parse_movablecore(char *p)
7359{
7360 return cmdline_parse_core(p, &required_movablecore,
7361 &required_movablecore_percent);
7362}
7363
7364early_param("kernelcore", cmdline_parse_kernelcore);
7365early_param("movablecore", cmdline_parse_movablecore);
7366
7367#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7368
7369void adjust_managed_page_count(struct page *page, long count)
7370{
7371 atomic_long_add(count, &page_zone(page)->managed_pages);
7372 totalram_pages_add(count);
7373#ifdef CONFIG_HIGHMEM
7374 if (PageHighMem(page))
7375 totalhigh_pages_add(count);
7376#endif
7377}
7378EXPORT_SYMBOL(adjust_managed_page_count);
7379
7380unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7381{
7382 void *pos;
7383 unsigned long pages = 0;
7384
7385 start = (void *)PAGE_ALIGN((unsigned long)start);
7386 end = (void *)((unsigned long)end & PAGE_MASK);
7387 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7388 struct page *page = virt_to_page(pos);
7389 void *direct_map_addr;
7390
7391 /*
7392 * 'direct_map_addr' might be different from 'pos'
7393 * because some architectures' virt_to_page()
7394 * work with aliases. Getting the direct map
7395 * address ensures that we get a _writeable_
7396 * alias for the memset().
7397 */
7398 direct_map_addr = page_address(page);
7399 if ((unsigned int)poison <= 0xFF)
7400 memset(direct_map_addr, poison, PAGE_SIZE);
7401
7402 free_reserved_page(page);
7403 }
7404
7405 if (pages && s)
7406 pr_info("Freeing %s memory: %ldK\n",
7407 s, pages << (PAGE_SHIFT - 10));
7408
7409 return pages;
7410}
7411
7412#ifdef CONFIG_HIGHMEM
7413void free_highmem_page(struct page *page)
7414{
7415 __free_reserved_page(page);
7416 totalram_pages_inc();
7417 atomic_long_inc(&page_zone(page)->managed_pages);
7418 totalhigh_pages_inc();
7419}
7420#endif
7421
7422
7423void __init mem_init_print_info(const char *str)
7424{
7425 unsigned long physpages, codesize, datasize, rosize, bss_size;
7426 unsigned long init_code_size, init_data_size;
7427
7428 physpages = get_num_physpages();
7429 codesize = _etext - _stext;
7430 datasize = _edata - _sdata;
7431 rosize = __end_rodata - __start_rodata;
7432 bss_size = __bss_stop - __bss_start;
7433 init_data_size = __init_end - __init_begin;
7434 init_code_size = _einittext - _sinittext;
7435
7436 /*
7437 * Detect special cases and adjust section sizes accordingly:
7438 * 1) .init.* may be embedded into .data sections
7439 * 2) .init.text.* may be out of [__init_begin, __init_end],
7440 * please refer to arch/tile/kernel/vmlinux.lds.S.
7441 * 3) .rodata.* may be embedded into .text or .data sections.
7442 */
7443#define adj_init_size(start, end, size, pos, adj) \
7444 do { \
7445 if (start <= pos && pos < end && size > adj) \
7446 size -= adj; \
7447 } while (0)
7448
7449 adj_init_size(__init_begin, __init_end, init_data_size,
7450 _sinittext, init_code_size);
7451 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7452 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7453 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7454 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7455
7456#undef adj_init_size
7457
7458 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7459#ifdef CONFIG_HIGHMEM
7460 ", %luK highmem"
7461#endif
7462 "%s%s)\n",
7463 nr_free_pages() << (PAGE_SHIFT - 10),
7464 physpages << (PAGE_SHIFT - 10),
7465 codesize >> 10, datasize >> 10, rosize >> 10,
7466 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7467 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7468 totalcma_pages << (PAGE_SHIFT - 10),
7469#ifdef CONFIG_HIGHMEM
7470 totalhigh_pages() << (PAGE_SHIFT - 10),
7471#endif
7472 str ? ", " : "", str ? str : "");
7473}
7474
7475/**
7476 * set_dma_reserve - set the specified number of pages reserved in the first zone
7477 * @new_dma_reserve: The number of pages to mark reserved
7478 *
7479 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7480 * In the DMA zone, a significant percentage may be consumed by kernel image
7481 * and other unfreeable allocations which can skew the watermarks badly. This
7482 * function may optionally be used to account for unfreeable pages in the
7483 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7484 * smaller per-cpu batchsize.
7485 */
7486void __init set_dma_reserve(unsigned long new_dma_reserve)
7487{
7488 dma_reserve = new_dma_reserve;
7489}
7490
7491void __init free_area_init(unsigned long *zones_size)
7492{
7493 zero_resv_unavail();
7494 free_area_init_node(0, zones_size,
7495 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7496}
7497
7498static int page_alloc_cpu_dead(unsigned int cpu)
7499{
7500
7501 lru_add_drain_cpu(cpu);
7502 drain_pages(cpu);
7503
7504 /*
7505 * Spill the event counters of the dead processor
7506 * into the current processors event counters.
7507 * This artificially elevates the count of the current
7508 * processor.
7509 */
7510 vm_events_fold_cpu(cpu);
7511
7512 /*
7513 * Zero the differential counters of the dead processor
7514 * so that the vm statistics are consistent.
7515 *
7516 * This is only okay since the processor is dead and cannot
7517 * race with what we are doing.
7518 */
7519 cpu_vm_stats_fold(cpu);
7520 return 0;
7521}
7522
7523void __init page_alloc_init(void)
7524{
7525 int ret;
7526
7527 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7528 "mm/page_alloc:dead", NULL,
7529 page_alloc_cpu_dead);
7530 WARN_ON(ret < 0);
7531}
7532
7533/*
7534 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7535 * or min_free_kbytes changes.
7536 */
7537static void calculate_totalreserve_pages(void)
7538{
7539 struct pglist_data *pgdat;
7540 unsigned long reserve_pages = 0;
7541 enum zone_type i, j;
7542
7543 for_each_online_pgdat(pgdat) {
7544
7545 pgdat->totalreserve_pages = 0;
7546
7547 for (i = 0; i < MAX_NR_ZONES; i++) {
7548 struct zone *zone = pgdat->node_zones + i;
7549 long max = 0;
7550 unsigned long managed_pages = zone_managed_pages(zone);
7551
7552 /* Find valid and maximum lowmem_reserve in the zone */
7553 for (j = i; j < MAX_NR_ZONES; j++) {
7554 if (zone->lowmem_reserve[j] > max)
7555 max = zone->lowmem_reserve[j];
7556 }
7557
7558 /* we treat the high watermark as reserved pages. */
7559 max += high_wmark_pages(zone);
7560
7561 if (max > managed_pages)
7562 max = managed_pages;
7563
7564 pgdat->totalreserve_pages += max;
7565
7566 reserve_pages += max;
7567 }
7568 }
7569 totalreserve_pages = reserve_pages;
7570}
7571
7572/*
7573 * setup_per_zone_lowmem_reserve - called whenever
7574 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7575 * has a correct pages reserved value, so an adequate number of
7576 * pages are left in the zone after a successful __alloc_pages().
7577 */
7578static void setup_per_zone_lowmem_reserve(void)
7579{
7580 struct pglist_data *pgdat;
7581 enum zone_type j, idx;
7582
7583 for_each_online_pgdat(pgdat) {
7584 for (j = 0; j < MAX_NR_ZONES; j++) {
7585 struct zone *zone = pgdat->node_zones + j;
7586 unsigned long managed_pages = zone_managed_pages(zone);
7587
7588 zone->lowmem_reserve[j] = 0;
7589
7590 idx = j;
7591 while (idx) {
7592 struct zone *lower_zone;
7593
7594 idx--;
7595 lower_zone = pgdat->node_zones + idx;
7596
7597 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7598 sysctl_lowmem_reserve_ratio[idx] = 0;
7599 lower_zone->lowmem_reserve[j] = 0;
7600 } else {
7601 lower_zone->lowmem_reserve[j] =
7602 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7603 }
7604 managed_pages += zone_managed_pages(lower_zone);
7605 }
7606 }
7607 }
7608
7609 /* update totalreserve_pages */
7610 calculate_totalreserve_pages();
7611}
7612
7613static void __setup_per_zone_wmarks(void)
7614{
7615 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7616 unsigned long lowmem_pages = 0;
7617 struct zone *zone;
7618 unsigned long flags;
7619
7620 /* Calculate total number of !ZONE_HIGHMEM pages */
7621 for_each_zone(zone) {
7622 if (!is_highmem(zone))
7623 lowmem_pages += zone_managed_pages(zone);
7624 }
7625
7626 for_each_zone(zone) {
7627 u64 tmp;
7628
7629 spin_lock_irqsave(&zone->lock, flags);
7630 tmp = (u64)pages_min * zone_managed_pages(zone);
7631 do_div(tmp, lowmem_pages);
7632 if (is_highmem(zone)) {
7633 /*
7634 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7635 * need highmem pages, so cap pages_min to a small
7636 * value here.
7637 *
7638 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7639 * deltas control async page reclaim, and so should
7640 * not be capped for highmem.
7641 */
7642 unsigned long min_pages;
7643
7644 min_pages = zone_managed_pages(zone) / 1024;
7645 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7646 zone->_watermark[WMARK_MIN] = min_pages;
7647 } else {
7648 /*
7649 * If it's a lowmem zone, reserve a number of pages
7650 * proportionate to the zone's size.
7651 */
7652 zone->_watermark[WMARK_MIN] = tmp;
7653 }
7654
7655 /*
7656 * Set the kswapd watermarks distance according to the
7657 * scale factor in proportion to available memory, but
7658 * ensure a minimum size on small systems.
7659 */
7660 tmp = max_t(u64, tmp >> 2,
7661 mult_frac(zone_managed_pages(zone),
7662 watermark_scale_factor, 10000));
7663
7664 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7665 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7666 zone->watermark_boost = 0;
7667
7668 spin_unlock_irqrestore(&zone->lock, flags);
7669 }
7670
7671 /* update totalreserve_pages */
7672 calculate_totalreserve_pages();
7673}
7674
7675/**
7676 * setup_per_zone_wmarks - called when min_free_kbytes changes
7677 * or when memory is hot-{added|removed}
7678 *
7679 * Ensures that the watermark[min,low,high] values for each zone are set
7680 * correctly with respect to min_free_kbytes.
7681 */
7682void setup_per_zone_wmarks(void)
7683{
7684 static DEFINE_SPINLOCK(lock);
7685
7686 spin_lock(&lock);
7687 __setup_per_zone_wmarks();
7688 spin_unlock(&lock);
7689}
7690
7691/*
7692 * Initialise min_free_kbytes.
7693 *
7694 * For small machines we want it small (128k min). For large machines
7695 * we want it large (64MB max). But it is not linear, because network
7696 * bandwidth does not increase linearly with machine size. We use
7697 *
7698 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7699 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7700 *
7701 * which yields
7702 *
7703 * 16MB: 512k
7704 * 32MB: 724k
7705 * 64MB: 1024k
7706 * 128MB: 1448k
7707 * 256MB: 2048k
7708 * 512MB: 2896k
7709 * 1024MB: 4096k
7710 * 2048MB: 5792k
7711 * 4096MB: 8192k
7712 * 8192MB: 11584k
7713 * 16384MB: 16384k
7714 */
7715int __meminit init_per_zone_wmark_min(void)
7716{
7717 unsigned long lowmem_kbytes;
7718 int new_min_free_kbytes;
7719
7720 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7721 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7722
7723 if (new_min_free_kbytes > user_min_free_kbytes) {
7724 min_free_kbytes = new_min_free_kbytes;
7725 if (min_free_kbytes < 128)
7726 min_free_kbytes = 128;
7727 if (min_free_kbytes > 65536)
7728 min_free_kbytes = 65536;
7729 } else {
7730 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7731 new_min_free_kbytes, user_min_free_kbytes);
7732 }
7733 setup_per_zone_wmarks();
7734 refresh_zone_stat_thresholds();
7735 setup_per_zone_lowmem_reserve();
7736
7737#ifdef CONFIG_NUMA
7738 setup_min_unmapped_ratio();
7739 setup_min_slab_ratio();
7740#endif
7741
7742 return 0;
7743}
7744core_initcall(init_per_zone_wmark_min)
7745
7746/*
7747 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7748 * that we can call two helper functions whenever min_free_kbytes
7749 * changes.
7750 */
7751int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7752 void __user *buffer, size_t *length, loff_t *ppos)
7753{
7754 int rc;
7755
7756 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7757 if (rc)
7758 return rc;
7759
7760 if (write) {
7761 user_min_free_kbytes = min_free_kbytes;
7762 setup_per_zone_wmarks();
7763 }
7764 return 0;
7765}
7766
7767int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7768 void __user *buffer, size_t *length, loff_t *ppos)
7769{
7770 int rc;
7771
7772 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7773 if (rc)
7774 return rc;
7775
7776 return 0;
7777}
7778
7779int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7780 void __user *buffer, size_t *length, loff_t *ppos)
7781{
7782 int rc;
7783
7784 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7785 if (rc)
7786 return rc;
7787
7788 if (write)
7789 setup_per_zone_wmarks();
7790
7791 return 0;
7792}
7793
7794#ifdef CONFIG_NUMA
7795static void setup_min_unmapped_ratio(void)
7796{
7797 pg_data_t *pgdat;
7798 struct zone *zone;
7799
7800 for_each_online_pgdat(pgdat)
7801 pgdat->min_unmapped_pages = 0;
7802
7803 for_each_zone(zone)
7804 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7805 sysctl_min_unmapped_ratio) / 100;
7806}
7807
7808
7809int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7810 void __user *buffer, size_t *length, loff_t *ppos)
7811{
7812 int rc;
7813
7814 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7815 if (rc)
7816 return rc;
7817
7818 setup_min_unmapped_ratio();
7819
7820 return 0;
7821}
7822
7823static void setup_min_slab_ratio(void)
7824{
7825 pg_data_t *pgdat;
7826 struct zone *zone;
7827
7828 for_each_online_pgdat(pgdat)
7829 pgdat->min_slab_pages = 0;
7830
7831 for_each_zone(zone)
7832 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7833 sysctl_min_slab_ratio) / 100;
7834}
7835
7836int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7837 void __user *buffer, size_t *length, loff_t *ppos)
7838{
7839 int rc;
7840
7841 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7842 if (rc)
7843 return rc;
7844
7845 setup_min_slab_ratio();
7846
7847 return 0;
7848}
7849#endif
7850
7851/*
7852 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7853 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7854 * whenever sysctl_lowmem_reserve_ratio changes.
7855 *
7856 * The reserve ratio obviously has absolutely no relation with the
7857 * minimum watermarks. The lowmem reserve ratio can only make sense
7858 * if in function of the boot time zone sizes.
7859 */
7860int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7861 void __user *buffer, size_t *length, loff_t *ppos)
7862{
7863 proc_dointvec_minmax(table, write, buffer, length, ppos);
7864 setup_per_zone_lowmem_reserve();
7865 return 0;
7866}
7867
7868/*
7869 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7870 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7871 * pagelist can have before it gets flushed back to buddy allocator.
7872 */
7873int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7874 void __user *buffer, size_t *length, loff_t *ppos)
7875{
7876 struct zone *zone;
7877 int old_percpu_pagelist_fraction;
7878 int ret;
7879
7880 mutex_lock(&pcp_batch_high_lock);
7881 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7882
7883 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7884 if (!write || ret < 0)
7885 goto out;
7886
7887 /* Sanity checking to avoid pcp imbalance */
7888 if (percpu_pagelist_fraction &&
7889 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7890 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7891 ret = -EINVAL;
7892 goto out;
7893 }
7894
7895 /* No change? */
7896 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7897 goto out;
7898
7899 for_each_populated_zone(zone) {
7900 unsigned int cpu;
7901
7902 for_each_possible_cpu(cpu)
7903 pageset_set_high_and_batch(zone,
7904 per_cpu_ptr(zone->pageset, cpu));
7905 }
7906out:
7907 mutex_unlock(&pcp_batch_high_lock);
7908 return ret;
7909}
7910
7911#ifdef CONFIG_NUMA
7912int hashdist = HASHDIST_DEFAULT;
7913
7914static int __init set_hashdist(char *str)
7915{
7916 if (!str)
7917 return 0;
7918 hashdist = simple_strtoul(str, &str, 0);
7919 return 1;
7920}
7921__setup("hashdist=", set_hashdist);
7922#endif
7923
7924#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7925/*
7926 * Returns the number of pages that arch has reserved but
7927 * is not known to alloc_large_system_hash().
7928 */
7929static unsigned long __init arch_reserved_kernel_pages(void)
7930{
7931 return 0;
7932}
7933#endif
7934
7935/*
7936 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7937 * machines. As memory size is increased the scale is also increased but at
7938 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7939 * quadruples the scale is increased by one, which means the size of hash table
7940 * only doubles, instead of quadrupling as well.
7941 * Because 32-bit systems cannot have large physical memory, where this scaling
7942 * makes sense, it is disabled on such platforms.
7943 */
7944#if __BITS_PER_LONG > 32
7945#define ADAPT_SCALE_BASE (64ul << 30)
7946#define ADAPT_SCALE_SHIFT 2
7947#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7948#endif
7949
7950/*
7951 * allocate a large system hash table from bootmem
7952 * - it is assumed that the hash table must contain an exact power-of-2
7953 * quantity of entries
7954 * - limit is the number of hash buckets, not the total allocation size
7955 */
7956void *__init alloc_large_system_hash(const char *tablename,
7957 unsigned long bucketsize,
7958 unsigned long numentries,
7959 int scale,
7960 int flags,
7961 unsigned int *_hash_shift,
7962 unsigned int *_hash_mask,
7963 unsigned long low_limit,
7964 unsigned long high_limit)
7965{
7966 unsigned long long max = high_limit;
7967 unsigned long log2qty, size;
7968 void *table = NULL;
7969 gfp_t gfp_flags;
7970
7971 /* allow the kernel cmdline to have a say */
7972 if (!numentries) {
7973 /* round applicable memory size up to nearest megabyte */
7974 numentries = nr_kernel_pages;
7975 numentries -= arch_reserved_kernel_pages();
7976
7977 /* It isn't necessary when PAGE_SIZE >= 1MB */
7978 if (PAGE_SHIFT < 20)
7979 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7980
7981#if __BITS_PER_LONG > 32
7982 if (!high_limit) {
7983 unsigned long adapt;
7984
7985 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7986 adapt <<= ADAPT_SCALE_SHIFT)
7987 scale++;
7988 }
7989#endif
7990
7991 /* limit to 1 bucket per 2^scale bytes of low memory */
7992 if (scale > PAGE_SHIFT)
7993 numentries >>= (scale - PAGE_SHIFT);
7994 else
7995 numentries <<= (PAGE_SHIFT - scale);
7996
7997 /* Make sure we've got at least a 0-order allocation.. */
7998 if (unlikely(flags & HASH_SMALL)) {
7999 /* Makes no sense without HASH_EARLY */
8000 WARN_ON(!(flags & HASH_EARLY));
8001 if (!(numentries >> *_hash_shift)) {
8002 numentries = 1UL << *_hash_shift;
8003 BUG_ON(!numentries);
8004 }
8005 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8006 numentries = PAGE_SIZE / bucketsize;
8007 }
8008 numentries = roundup_pow_of_two(numentries);
8009
8010 /* limit allocation size to 1/16 total memory by default */
8011 if (max == 0) {
8012 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8013 do_div(max, bucketsize);
8014 }
8015 max = min(max, 0x80000000ULL);
8016
8017 if (numentries < low_limit)
8018 numentries = low_limit;
8019 if (numentries > max)
8020 numentries = max;
8021
8022 log2qty = ilog2(numentries);
8023
8024 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8025 do {
8026 size = bucketsize << log2qty;
8027 if (flags & HASH_EARLY) {
8028 if (flags & HASH_ZERO)
8029 table = memblock_alloc(size, SMP_CACHE_BYTES);
8030 else
8031 table = memblock_alloc_raw(size,
8032 SMP_CACHE_BYTES);
8033 } else if (hashdist) {
8034 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8035 } else {
8036 /*
8037 * If bucketsize is not a power-of-two, we may free
8038 * some pages at the end of hash table which
8039 * alloc_pages_exact() automatically does
8040 */
8041 if (get_order(size) < MAX_ORDER) {
8042 table = alloc_pages_exact(size, gfp_flags);
8043 kmemleak_alloc(table, size, 1, gfp_flags);
8044 }
8045 }
8046 } while (!table && size > PAGE_SIZE && --log2qty);
8047
8048 if (!table)
8049 panic("Failed to allocate %s hash table\n", tablename);
8050
8051 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8052 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8053
8054 if (_hash_shift)
8055 *_hash_shift = log2qty;
8056 if (_hash_mask)
8057 *_hash_mask = (1 << log2qty) - 1;
8058
8059 return table;
8060}
8061
8062/*
8063 * This function checks whether pageblock includes unmovable pages or not.
8064 * If @count is not zero, it is okay to include less @count unmovable pages
8065 *
8066 * PageLRU check without isolation or lru_lock could race so that
8067 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8068 * check without lock_page also may miss some movable non-lru pages at
8069 * race condition. So you can't expect this function should be exact.
8070 */
8071bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8072 int migratetype, int flags)
8073{
8074 unsigned long found;
8075 unsigned long iter = 0;
8076 unsigned long pfn = page_to_pfn(page);
8077 const char *reason = "unmovable page";
8078
8079 /*
8080 * TODO we could make this much more efficient by not checking every
8081 * page in the range if we know all of them are in MOVABLE_ZONE and
8082 * that the movable zone guarantees that pages are migratable but
8083 * the later is not the case right now unfortunatelly. E.g. movablecore
8084 * can still lead to having bootmem allocations in zone_movable.
8085 */
8086
8087 if (is_migrate_cma_page(page)) {
8088 /*
8089 * CMA allocations (alloc_contig_range) really need to mark
8090 * isolate CMA pageblocks even when they are not movable in fact
8091 * so consider them movable here.
8092 */
8093 if (is_migrate_cma(migratetype))
8094 return false;
8095
8096 reason = "CMA page";
8097 goto unmovable;
8098 }
8099
8100 for (found = 0; iter < pageblock_nr_pages; iter++) {
8101 unsigned long check = pfn + iter;
8102
8103 if (!pfn_valid_within(check))
8104 continue;
8105
8106 page = pfn_to_page(check);
8107
8108 if (PageReserved(page))
8109 goto unmovable;
8110
8111 /*
8112 * If the zone is movable and we have ruled out all reserved
8113 * pages then it should be reasonably safe to assume the rest
8114 * is movable.
8115 */
8116 if (zone_idx(zone) == ZONE_MOVABLE)
8117 continue;
8118
8119 /*
8120 * Hugepages are not in LRU lists, but they're movable.
8121 * We need not scan over tail pages because we don't
8122 * handle each tail page individually in migration.
8123 */
8124 if (PageHuge(page)) {
8125 struct page *head = compound_head(page);
8126 unsigned int skip_pages;
8127
8128 if (!hugepage_migration_supported(page_hstate(head)))
8129 goto unmovable;
8130
8131 skip_pages = (1 << compound_order(head)) - (page - head);
8132 iter += skip_pages - 1;
8133 continue;
8134 }
8135
8136 /*
8137 * We can't use page_count without pin a page
8138 * because another CPU can free compound page.
8139 * This check already skips compound tails of THP
8140 * because their page->_refcount is zero at all time.
8141 */
8142 if (!page_ref_count(page)) {
8143 if (PageBuddy(page))
8144 iter += (1 << page_order(page)) - 1;
8145 continue;
8146 }
8147
8148 /*
8149 * The HWPoisoned page may be not in buddy system, and
8150 * page_count() is not 0.
8151 */
8152 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8153 continue;
8154
8155 if (__PageMovable(page))
8156 continue;
8157
8158 if (!PageLRU(page))
8159 found++;
8160 /*
8161 * If there are RECLAIMABLE pages, we need to check
8162 * it. But now, memory offline itself doesn't call
8163 * shrink_node_slabs() and it still to be fixed.
8164 */
8165 /*
8166 * If the page is not RAM, page_count()should be 0.
8167 * we don't need more check. This is an _used_ not-movable page.
8168 *
8169 * The problematic thing here is PG_reserved pages. PG_reserved
8170 * is set to both of a memory hole page and a _used_ kernel
8171 * page at boot.
8172 */
8173 if (found > count)
8174 goto unmovable;
8175 }
8176 return false;
8177unmovable:
8178 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8179 if (flags & REPORT_FAILURE)
8180 dump_page(pfn_to_page(pfn + iter), reason);
8181 return true;
8182}
8183
8184#ifdef CONFIG_CONTIG_ALLOC
8185static unsigned long pfn_max_align_down(unsigned long pfn)
8186{
8187 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8188 pageblock_nr_pages) - 1);
8189}
8190
8191static unsigned long pfn_max_align_up(unsigned long pfn)
8192{
8193 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8194 pageblock_nr_pages));
8195}
8196
8197/* [start, end) must belong to a single zone. */
8198static int __alloc_contig_migrate_range(struct compact_control *cc,
8199 unsigned long start, unsigned long end)
8200{
8201 /* This function is based on compact_zone() from compaction.c. */
8202 unsigned long nr_reclaimed;
8203 unsigned long pfn = start;
8204 unsigned int tries = 0;
8205 int ret = 0;
8206
8207 migrate_prep();
8208
8209 while (pfn < end || !list_empty(&cc->migratepages)) {
8210 if (fatal_signal_pending(current)) {
8211 ret = -EINTR;
8212 break;
8213 }
8214
8215 if (list_empty(&cc->migratepages)) {
8216 cc->nr_migratepages = 0;
8217 pfn = isolate_migratepages_range(cc, pfn, end);
8218 if (!pfn) {
8219 ret = -EINTR;
8220 break;
8221 }
8222 tries = 0;
8223 } else if (++tries == 5) {
8224 ret = ret < 0 ? ret : -EBUSY;
8225 break;
8226 }
8227
8228 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8229 &cc->migratepages);
8230 cc->nr_migratepages -= nr_reclaimed;
8231
8232 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8233 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8234 }
8235 if (ret < 0) {
8236 putback_movable_pages(&cc->migratepages);
8237 return ret;
8238 }
8239 return 0;
8240}
8241
8242/**
8243 * alloc_contig_range() -- tries to allocate given range of pages
8244 * @start: start PFN to allocate
8245 * @end: one-past-the-last PFN to allocate
8246 * @migratetype: migratetype of the underlaying pageblocks (either
8247 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8248 * in range must have the same migratetype and it must
8249 * be either of the two.
8250 * @gfp_mask: GFP mask to use during compaction
8251 *
8252 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8253 * aligned. The PFN range must belong to a single zone.
8254 *
8255 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8256 * pageblocks in the range. Once isolated, the pageblocks should not
8257 * be modified by others.
8258 *
8259 * Return: zero on success or negative error code. On success all
8260 * pages which PFN is in [start, end) are allocated for the caller and
8261 * need to be freed with free_contig_range().
8262 */
8263int alloc_contig_range(unsigned long start, unsigned long end,
8264 unsigned migratetype, gfp_t gfp_mask)
8265{
8266 unsigned long outer_start, outer_end;
8267 unsigned int order;
8268 int ret = 0;
8269
8270 struct compact_control cc = {
8271 .nr_migratepages = 0,
8272 .order = -1,
8273 .zone = page_zone(pfn_to_page(start)),
8274 .mode = MIGRATE_SYNC,
8275 .ignore_skip_hint = true,
8276 .no_set_skip_hint = true,
8277 .gfp_mask = current_gfp_context(gfp_mask),
8278 };
8279 INIT_LIST_HEAD(&cc.migratepages);
8280
8281 /*
8282 * What we do here is we mark all pageblocks in range as
8283 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8284 * have different sizes, and due to the way page allocator
8285 * work, we align the range to biggest of the two pages so
8286 * that page allocator won't try to merge buddies from
8287 * different pageblocks and change MIGRATE_ISOLATE to some
8288 * other migration type.
8289 *
8290 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8291 * migrate the pages from an unaligned range (ie. pages that
8292 * we are interested in). This will put all the pages in
8293 * range back to page allocator as MIGRATE_ISOLATE.
8294 *
8295 * When this is done, we take the pages in range from page
8296 * allocator removing them from the buddy system. This way
8297 * page allocator will never consider using them.
8298 *
8299 * This lets us mark the pageblocks back as
8300 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8301 * aligned range but not in the unaligned, original range are
8302 * put back to page allocator so that buddy can use them.
8303 */
8304
8305 ret = start_isolate_page_range(pfn_max_align_down(start),
8306 pfn_max_align_up(end), migratetype, 0);
8307 if (ret < 0)
8308 return ret;
8309
8310 /*
8311 * In case of -EBUSY, we'd like to know which page causes problem.
8312 * So, just fall through. test_pages_isolated() has a tracepoint
8313 * which will report the busy page.
8314 *
8315 * It is possible that busy pages could become available before
8316 * the call to test_pages_isolated, and the range will actually be
8317 * allocated. So, if we fall through be sure to clear ret so that
8318 * -EBUSY is not accidentally used or returned to caller.
8319 */
8320 ret = __alloc_contig_migrate_range(&cc, start, end);
8321 if (ret && ret != -EBUSY)
8322 goto done;
8323 ret =0;
8324
8325 /*
8326 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8327 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8328 * more, all pages in [start, end) are free in page allocator.
8329 * What we are going to do is to allocate all pages from
8330 * [start, end) (that is remove them from page allocator).
8331 *
8332 * The only problem is that pages at the beginning and at the
8333 * end of interesting range may be not aligned with pages that
8334 * page allocator holds, ie. they can be part of higher order
8335 * pages. Because of this, we reserve the bigger range and
8336 * once this is done free the pages we are not interested in.
8337 *
8338 * We don't have to hold zone->lock here because the pages are
8339 * isolated thus they won't get removed from buddy.
8340 */
8341
8342 lru_add_drain_all();
8343
8344 order = 0;
8345 outer_start = start;
8346 while (!PageBuddy(pfn_to_page(outer_start))) {
8347 if (++order >= MAX_ORDER) {
8348 outer_start = start;
8349 break;
8350 }
8351 outer_start &= ~0UL << order;
8352 }
8353
8354 if (outer_start != start) {
8355 order = page_order(pfn_to_page(outer_start));
8356
8357 /*
8358 * outer_start page could be small order buddy page and
8359 * it doesn't include start page. Adjust outer_start
8360 * in this case to report failed page properly
8361 * on tracepoint in test_pages_isolated()
8362 */
8363 if (outer_start + (1UL << order) <= start)
8364 outer_start = start;
8365 }
8366
8367 /* Make sure the range is really isolated. */
8368 if (test_pages_isolated(outer_start, end, false)) {
8369 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8370 __func__, outer_start, end);
8371 ret = -EBUSY;
8372 goto done;
8373 }
8374
8375 /* Grab isolated pages from freelists. */
8376 outer_end = isolate_freepages_range(&cc, outer_start, end);
8377 if (!outer_end) {
8378 ret = -EBUSY;
8379 goto done;
8380 }
8381
8382 /* Free head and tail (if any) */
8383 if (start != outer_start)
8384 free_contig_range(outer_start, start - outer_start);
8385 if (end != outer_end)
8386 free_contig_range(end, outer_end - end);
8387
8388done:
8389 undo_isolate_page_range(pfn_max_align_down(start),
8390 pfn_max_align_up(end), migratetype);
8391 return ret;
8392}
8393#endif /* CONFIG_CONTIG_ALLOC */
8394
8395void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8396{
8397 unsigned int count = 0;
8398
8399 for (; nr_pages--; pfn++) {
8400 struct page *page = pfn_to_page(pfn);
8401
8402 count += page_count(page) != 1;
8403 __free_page(page);
8404 }
8405 WARN(count != 0, "%d pages are still in use!\n", count);
8406}
8407
8408#ifdef CONFIG_MEMORY_HOTPLUG
8409/*
8410 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8411 * page high values need to be recalulated.
8412 */
8413void __meminit zone_pcp_update(struct zone *zone)
8414{
8415 unsigned cpu;
8416 mutex_lock(&pcp_batch_high_lock);
8417 for_each_possible_cpu(cpu)
8418 pageset_set_high_and_batch(zone,
8419 per_cpu_ptr(zone->pageset, cpu));
8420 mutex_unlock(&pcp_batch_high_lock);
8421}
8422#endif
8423
8424void zone_pcp_reset(struct zone *zone)
8425{
8426 unsigned long flags;
8427 int cpu;
8428 struct per_cpu_pageset *pset;
8429
8430 /* avoid races with drain_pages() */
8431 local_irq_save(flags);
8432 if (zone->pageset != &boot_pageset) {
8433 for_each_online_cpu(cpu) {
8434 pset = per_cpu_ptr(zone->pageset, cpu);
8435 drain_zonestat(zone, pset);
8436 }
8437 free_percpu(zone->pageset);
8438 zone->pageset = &boot_pageset;
8439 }
8440 local_irq_restore(flags);
8441}
8442
8443#ifdef CONFIG_MEMORY_HOTREMOVE
8444/*
8445 * All pages in the range must be in a single zone and isolated
8446 * before calling this.
8447 */
8448unsigned long
8449__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8450{
8451 struct page *page;
8452 struct zone *zone;
8453 unsigned int order, i;
8454 unsigned long pfn;
8455 unsigned long flags;
8456 unsigned long offlined_pages = 0;
8457
8458 /* find the first valid pfn */
8459 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8460 if (pfn_valid(pfn))
8461 break;
8462 if (pfn == end_pfn)
8463 return offlined_pages;
8464
8465 offline_mem_sections(pfn, end_pfn);
8466 zone = page_zone(pfn_to_page(pfn));
8467 spin_lock_irqsave(&zone->lock, flags);
8468 pfn = start_pfn;
8469 while (pfn < end_pfn) {
8470 if (!pfn_valid(pfn)) {
8471 pfn++;
8472 continue;
8473 }
8474 page = pfn_to_page(pfn);
8475 /*
8476 * The HWPoisoned page may be not in buddy system, and
8477 * page_count() is not 0.
8478 */
8479 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8480 pfn++;
8481 SetPageReserved(page);
8482 offlined_pages++;
8483 continue;
8484 }
8485
8486 BUG_ON(page_count(page));
8487 BUG_ON(!PageBuddy(page));
8488 order = page_order(page);
8489 offlined_pages += 1 << order;
8490#ifdef CONFIG_DEBUG_VM
8491 pr_info("remove from free list %lx %d %lx\n",
8492 pfn, 1 << order, end_pfn);
8493#endif
8494 del_page_from_free_area(page, &zone->free_area[order]);
8495 for (i = 0; i < (1 << order); i++)
8496 SetPageReserved((page+i));
8497 pfn += (1 << order);
8498 }
8499 spin_unlock_irqrestore(&zone->lock, flags);
8500
8501 return offlined_pages;
8502}
8503#endif
8504
8505bool is_free_buddy_page(struct page *page)
8506{
8507 struct zone *zone = page_zone(page);
8508 unsigned long pfn = page_to_pfn(page);
8509 unsigned long flags;
8510 unsigned int order;
8511
8512 spin_lock_irqsave(&zone->lock, flags);
8513 for (order = 0; order < MAX_ORDER; order++) {
8514 struct page *page_head = page - (pfn & ((1 << order) - 1));
8515
8516 if (PageBuddy(page_head) && page_order(page_head) >= order)
8517 break;
8518 }
8519 spin_unlock_irqrestore(&zone->lock, flags);
8520
8521 return order < MAX_ORDER;
8522}
8523
8524#ifdef CONFIG_MEMORY_FAILURE
8525/*
8526 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8527 * test is performed under the zone lock to prevent a race against page
8528 * allocation.
8529 */
8530bool set_hwpoison_free_buddy_page(struct page *page)
8531{
8532 struct zone *zone = page_zone(page);
8533 unsigned long pfn = page_to_pfn(page);
8534 unsigned long flags;
8535 unsigned int order;
8536 bool hwpoisoned = false;
8537
8538 spin_lock_irqsave(&zone->lock, flags);
8539 for (order = 0; order < MAX_ORDER; order++) {
8540 struct page *page_head = page - (pfn & ((1 << order) - 1));
8541
8542 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8543 if (!TestSetPageHWPoison(page))
8544 hwpoisoned = true;
8545 break;
8546 }
8547 }
8548 spin_unlock_irqrestore(&zone->lock, flags);
8549
8550 return hwpoisoned;
8551}
8552#endif