Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
5#include <linux/btrfs.h>
6#include <linux/types.h>
7
8/*
9 * This header contains the structure definitions and constants used
10 * by file system objects that can be retrieved using
11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
12 * is needed to describe a leaf node's key or item contents.
13 */
14
15/* holds pointers to all of the tree roots */
16#define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18/* stores information about which extents are in use, and reference counts */
19#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21/*
22 * chunk tree stores translations from logical -> physical block numbering
23 * the super block points to the chunk tree
24 */
25#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27/*
28 * stores information about which areas of a given device are in use.
29 * one per device. The tree of tree roots points to the device tree
30 */
31#define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33/* one per subvolume, storing files and directories */
34#define BTRFS_FS_TREE_OBJECTID 5ULL
35
36/* directory objectid inside the root tree */
37#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39/* holds checksums of all the data extents */
40#define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42/* holds quota configuration and tracking */
43#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45/* for storing items that use the BTRFS_UUID_KEY* types */
46#define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48/* tracks free space in block groups. */
49#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51/* device stats in the device tree */
52#define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54/* for storing balance parameters in the root tree */
55#define BTRFS_BALANCE_OBJECTID -4ULL
56
57/* orhpan objectid for tracking unlinked/truncated files */
58#define BTRFS_ORPHAN_OBJECTID -5ULL
59
60/* does write ahead logging to speed up fsyncs */
61#define BTRFS_TREE_LOG_OBJECTID -6ULL
62#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64/* for space balancing */
65#define BTRFS_TREE_RELOC_OBJECTID -8ULL
66#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68/*
69 * extent checksums all have this objectid
70 * this allows them to share the logging tree
71 * for fsyncs
72 */
73#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75/* For storing free space cache */
76#define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78/*
79 * The inode number assigned to the special inode for storing
80 * free ino cache
81 */
82#define BTRFS_FREE_INO_OBJECTID -12ULL
83
84/* dummy objectid represents multiple objectids */
85#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87/*
88 * All files have objectids in this range.
89 */
90#define BTRFS_FIRST_FREE_OBJECTID 256ULL
91#define BTRFS_LAST_FREE_OBJECTID -256ULL
92#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95/*
96 * the device items go into the chunk tree. The key is in the form
97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98 */
99#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101#define BTRFS_BTREE_INODE_OBJECTID 1
102
103#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105#define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107/*
108 * inode items have the data typically returned from stat and store other
109 * info about object characteristics. There is one for every file and dir in
110 * the FS
111 */
112#define BTRFS_INODE_ITEM_KEY 1
113#define BTRFS_INODE_REF_KEY 12
114#define BTRFS_INODE_EXTREF_KEY 13
115#define BTRFS_XATTR_ITEM_KEY 24
116#define BTRFS_ORPHAN_ITEM_KEY 48
117/* reserve 2-15 close to the inode for later flexibility */
118
119/*
120 * dir items are the name -> inode pointers in a directory. There is one
121 * for every name in a directory.
122 */
123#define BTRFS_DIR_LOG_ITEM_KEY 60
124#define BTRFS_DIR_LOG_INDEX_KEY 72
125#define BTRFS_DIR_ITEM_KEY 84
126#define BTRFS_DIR_INDEX_KEY 96
127/*
128 * extent data is for file data
129 */
130#define BTRFS_EXTENT_DATA_KEY 108
131
132/*
133 * extent csums are stored in a separate tree and hold csums for
134 * an entire extent on disk.
135 */
136#define BTRFS_EXTENT_CSUM_KEY 128
137
138/*
139 * root items point to tree roots. They are typically in the root
140 * tree used by the super block to find all the other trees
141 */
142#define BTRFS_ROOT_ITEM_KEY 132
143
144/*
145 * root backrefs tie subvols and snapshots to the directory entries that
146 * reference them
147 */
148#define BTRFS_ROOT_BACKREF_KEY 144
149
150/*
151 * root refs make a fast index for listing all of the snapshots and
152 * subvolumes referenced by a given root. They point directly to the
153 * directory item in the root that references the subvol
154 */
155#define BTRFS_ROOT_REF_KEY 156
156
157/*
158 * extent items are in the extent map tree. These record which blocks
159 * are used, and how many references there are to each block
160 */
161#define BTRFS_EXTENT_ITEM_KEY 168
162
163/*
164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165 * the length, so we save the level in key->offset instead of the length.
166 */
167#define BTRFS_METADATA_ITEM_KEY 169
168
169#define BTRFS_TREE_BLOCK_REF_KEY 176
170
171#define BTRFS_EXTENT_DATA_REF_KEY 178
172
173#define BTRFS_EXTENT_REF_V0_KEY 180
174
175#define BTRFS_SHARED_BLOCK_REF_KEY 182
176
177#define BTRFS_SHARED_DATA_REF_KEY 184
178
179/*
180 * block groups give us hints into the extent allocation trees. Which
181 * blocks are free etc etc
182 */
183#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185/*
186 * Every block group is represented in the free space tree by a free space info
187 * item, which stores some accounting information. It is keyed on
188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
189 */
190#define BTRFS_FREE_SPACE_INFO_KEY 198
191
192/*
193 * A free space extent tracks an extent of space that is free in a block group.
194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
195 */
196#define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198/*
199 * When a block group becomes very fragmented, we convert it to use bitmaps
200 * instead of extents. A free space bitmap is keyed on
201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202 * (length / sectorsize) bits.
203 */
204#define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206#define BTRFS_DEV_EXTENT_KEY 204
207#define BTRFS_DEV_ITEM_KEY 216
208#define BTRFS_CHUNK_ITEM_KEY 228
209
210/*
211 * Records the overall state of the qgroups.
212 * There's only one instance of this key present,
213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214 */
215#define BTRFS_QGROUP_STATUS_KEY 240
216/*
217 * Records the currently used space of the qgroup.
218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219 */
220#define BTRFS_QGROUP_INFO_KEY 242
221/*
222 * Contains the user configured limits for the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224 */
225#define BTRFS_QGROUP_LIMIT_KEY 244
226/*
227 * Records the child-parent relationship of qgroups. For
228 * each relation, 2 keys are present:
229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231 */
232#define BTRFS_QGROUP_RELATION_KEY 246
233
234/*
235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236 */
237#define BTRFS_BALANCE_ITEM_KEY 248
238
239/*
240 * The key type for tree items that are stored persistently, but do not need to
241 * exist for extended period of time. The items can exist in any tree.
242 *
243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244 *
245 * Existing items:
246 *
247 * - balance status item
248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249 */
250#define BTRFS_TEMPORARY_ITEM_KEY 248
251
252/*
253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254 */
255#define BTRFS_DEV_STATS_KEY 249
256
257/*
258 * The key type for tree items that are stored persistently and usually exist
259 * for a long period, eg. filesystem lifetime. The item kinds can be status
260 * information, stats or preference values. The item can exist in any tree.
261 *
262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263 *
264 * Existing items:
265 *
266 * - device statistics, store IO stats in the device tree, one key for all
267 * stats
268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269 */
270#define BTRFS_PERSISTENT_ITEM_KEY 249
271
272/*
273 * Persistantly stores the device replace state in the device tree.
274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275 */
276#define BTRFS_DEV_REPLACE_KEY 250
277
278/*
279 * Stores items that allow to quickly map UUIDs to something else.
280 * These items are part of the filesystem UUID tree.
281 * The key is built like this:
282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283 */
284#if BTRFS_UUID_SIZE != 16
285#error "UUID items require BTRFS_UUID_SIZE == 16!"
286#endif
287#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
289 * received subvols */
290
291/*
292 * string items are for debugging. They just store a short string of
293 * data in the FS
294 */
295#define BTRFS_STRING_ITEM_KEY 253
296
297
298
299/* 32 bytes in various csum fields */
300#define BTRFS_CSUM_SIZE 32
301
302/* csum types */
303#define BTRFS_CSUM_TYPE_CRC32 0
304
305/*
306 * flags definitions for directory entry item type
307 *
308 * Used by:
309 * struct btrfs_dir_item.type
310 *
311 * Values 0..7 must match common file type values in fs_types.h.
312 */
313#define BTRFS_FT_UNKNOWN 0
314#define BTRFS_FT_REG_FILE 1
315#define BTRFS_FT_DIR 2
316#define BTRFS_FT_CHRDEV 3
317#define BTRFS_FT_BLKDEV 4
318#define BTRFS_FT_FIFO 5
319#define BTRFS_FT_SOCK 6
320#define BTRFS_FT_SYMLINK 7
321#define BTRFS_FT_XATTR 8
322#define BTRFS_FT_MAX 9
323
324/*
325 * The key defines the order in the tree, and so it also defines (optimal)
326 * block layout.
327 *
328 * objectid corresponds to the inode number.
329 *
330 * type tells us things about the object, and is a kind of stream selector.
331 * so for a given inode, keys with type of 1 might refer to the inode data,
332 * type of 2 may point to file data in the btree and type == 3 may point to
333 * extents.
334 *
335 * offset is the starting byte offset for this key in the stream.
336 *
337 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
338 * in cpu native order. Otherwise they are identical and their sizes
339 * should be the same (ie both packed)
340 */
341struct btrfs_disk_key {
342 __le64 objectid;
343 __u8 type;
344 __le64 offset;
345} __attribute__ ((__packed__));
346
347struct btrfs_key {
348 __u64 objectid;
349 __u8 type;
350 __u64 offset;
351} __attribute__ ((__packed__));
352
353struct btrfs_dev_item {
354 /* the internal btrfs device id */
355 __le64 devid;
356
357 /* size of the device */
358 __le64 total_bytes;
359
360 /* bytes used */
361 __le64 bytes_used;
362
363 /* optimal io alignment for this device */
364 __le32 io_align;
365
366 /* optimal io width for this device */
367 __le32 io_width;
368
369 /* minimal io size for this device */
370 __le32 sector_size;
371
372 /* type and info about this device */
373 __le64 type;
374
375 /* expected generation for this device */
376 __le64 generation;
377
378 /*
379 * starting byte of this partition on the device,
380 * to allow for stripe alignment in the future
381 */
382 __le64 start_offset;
383
384 /* grouping information for allocation decisions */
385 __le32 dev_group;
386
387 /* seek speed 0-100 where 100 is fastest */
388 __u8 seek_speed;
389
390 /* bandwidth 0-100 where 100 is fastest */
391 __u8 bandwidth;
392
393 /* btrfs generated uuid for this device */
394 __u8 uuid[BTRFS_UUID_SIZE];
395
396 /* uuid of FS who owns this device */
397 __u8 fsid[BTRFS_UUID_SIZE];
398} __attribute__ ((__packed__));
399
400struct btrfs_stripe {
401 __le64 devid;
402 __le64 offset;
403 __u8 dev_uuid[BTRFS_UUID_SIZE];
404} __attribute__ ((__packed__));
405
406struct btrfs_chunk {
407 /* size of this chunk in bytes */
408 __le64 length;
409
410 /* objectid of the root referencing this chunk */
411 __le64 owner;
412
413 __le64 stripe_len;
414 __le64 type;
415
416 /* optimal io alignment for this chunk */
417 __le32 io_align;
418
419 /* optimal io width for this chunk */
420 __le32 io_width;
421
422 /* minimal io size for this chunk */
423 __le32 sector_size;
424
425 /* 2^16 stripes is quite a lot, a second limit is the size of a single
426 * item in the btree
427 */
428 __le16 num_stripes;
429
430 /* sub stripes only matter for raid10 */
431 __le16 sub_stripes;
432 struct btrfs_stripe stripe;
433 /* additional stripes go here */
434} __attribute__ ((__packed__));
435
436#define BTRFS_FREE_SPACE_EXTENT 1
437#define BTRFS_FREE_SPACE_BITMAP 2
438
439struct btrfs_free_space_entry {
440 __le64 offset;
441 __le64 bytes;
442 __u8 type;
443} __attribute__ ((__packed__));
444
445struct btrfs_free_space_header {
446 struct btrfs_disk_key location;
447 __le64 generation;
448 __le64 num_entries;
449 __le64 num_bitmaps;
450} __attribute__ ((__packed__));
451
452#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
453#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
454
455/* Super block flags */
456/* Errors detected */
457#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
458
459#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
460#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
461#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
462#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
463#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
464
465
466/*
467 * items in the extent btree are used to record the objectid of the
468 * owner of the block and the number of references
469 */
470
471struct btrfs_extent_item {
472 __le64 refs;
473 __le64 generation;
474 __le64 flags;
475} __attribute__ ((__packed__));
476
477struct btrfs_extent_item_v0 {
478 __le32 refs;
479} __attribute__ ((__packed__));
480
481
482#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
483#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
484
485/* following flags only apply to tree blocks */
486
487/* use full backrefs for extent pointers in the block */
488#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
489
490/*
491 * this flag is only used internally by scrub and may be changed at any time
492 * it is only declared here to avoid collisions
493 */
494#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
495
496struct btrfs_tree_block_info {
497 struct btrfs_disk_key key;
498 __u8 level;
499} __attribute__ ((__packed__));
500
501struct btrfs_extent_data_ref {
502 __le64 root;
503 __le64 objectid;
504 __le64 offset;
505 __le32 count;
506} __attribute__ ((__packed__));
507
508struct btrfs_shared_data_ref {
509 __le32 count;
510} __attribute__ ((__packed__));
511
512struct btrfs_extent_inline_ref {
513 __u8 type;
514 __le64 offset;
515} __attribute__ ((__packed__));
516
517/* old style backrefs item */
518struct btrfs_extent_ref_v0 {
519 __le64 root;
520 __le64 generation;
521 __le64 objectid;
522 __le32 count;
523} __attribute__ ((__packed__));
524
525
526/* dev extents record free space on individual devices. The owner
527 * field points back to the chunk allocation mapping tree that allocated
528 * the extent. The chunk tree uuid field is a way to double check the owner
529 */
530struct btrfs_dev_extent {
531 __le64 chunk_tree;
532 __le64 chunk_objectid;
533 __le64 chunk_offset;
534 __le64 length;
535 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
536} __attribute__ ((__packed__));
537
538struct btrfs_inode_ref {
539 __le64 index;
540 __le16 name_len;
541 /* name goes here */
542} __attribute__ ((__packed__));
543
544struct btrfs_inode_extref {
545 __le64 parent_objectid;
546 __le64 index;
547 __le16 name_len;
548 __u8 name[0];
549 /* name goes here */
550} __attribute__ ((__packed__));
551
552struct btrfs_timespec {
553 __le64 sec;
554 __le32 nsec;
555} __attribute__ ((__packed__));
556
557struct btrfs_inode_item {
558 /* nfs style generation number */
559 __le64 generation;
560 /* transid that last touched this inode */
561 __le64 transid;
562 __le64 size;
563 __le64 nbytes;
564 __le64 block_group;
565 __le32 nlink;
566 __le32 uid;
567 __le32 gid;
568 __le32 mode;
569 __le64 rdev;
570 __le64 flags;
571
572 /* modification sequence number for NFS */
573 __le64 sequence;
574
575 /*
576 * a little future expansion, for more than this we can
577 * just grow the inode item and version it
578 */
579 __le64 reserved[4];
580 struct btrfs_timespec atime;
581 struct btrfs_timespec ctime;
582 struct btrfs_timespec mtime;
583 struct btrfs_timespec otime;
584} __attribute__ ((__packed__));
585
586struct btrfs_dir_log_item {
587 __le64 end;
588} __attribute__ ((__packed__));
589
590struct btrfs_dir_item {
591 struct btrfs_disk_key location;
592 __le64 transid;
593 __le16 data_len;
594 __le16 name_len;
595 __u8 type;
596} __attribute__ ((__packed__));
597
598#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
599
600/*
601 * Internal in-memory flag that a subvolume has been marked for deletion but
602 * still visible as a directory
603 */
604#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
605
606struct btrfs_root_item {
607 struct btrfs_inode_item inode;
608 __le64 generation;
609 __le64 root_dirid;
610 __le64 bytenr;
611 __le64 byte_limit;
612 __le64 bytes_used;
613 __le64 last_snapshot;
614 __le64 flags;
615 __le32 refs;
616 struct btrfs_disk_key drop_progress;
617 __u8 drop_level;
618 __u8 level;
619
620 /*
621 * The following fields appear after subvol_uuids+subvol_times
622 * were introduced.
623 */
624
625 /*
626 * This generation number is used to test if the new fields are valid
627 * and up to date while reading the root item. Every time the root item
628 * is written out, the "generation" field is copied into this field. If
629 * anyone ever mounted the fs with an older kernel, we will have
630 * mismatching generation values here and thus must invalidate the
631 * new fields. See btrfs_update_root and btrfs_find_last_root for
632 * details.
633 * the offset of generation_v2 is also used as the start for the memset
634 * when invalidating the fields.
635 */
636 __le64 generation_v2;
637 __u8 uuid[BTRFS_UUID_SIZE];
638 __u8 parent_uuid[BTRFS_UUID_SIZE];
639 __u8 received_uuid[BTRFS_UUID_SIZE];
640 __le64 ctransid; /* updated when an inode changes */
641 __le64 otransid; /* trans when created */
642 __le64 stransid; /* trans when sent. non-zero for received subvol */
643 __le64 rtransid; /* trans when received. non-zero for received subvol */
644 struct btrfs_timespec ctime;
645 struct btrfs_timespec otime;
646 struct btrfs_timespec stime;
647 struct btrfs_timespec rtime;
648 __le64 reserved[8]; /* for future */
649} __attribute__ ((__packed__));
650
651/*
652 * this is used for both forward and backward root refs
653 */
654struct btrfs_root_ref {
655 __le64 dirid;
656 __le64 sequence;
657 __le16 name_len;
658} __attribute__ ((__packed__));
659
660struct btrfs_disk_balance_args {
661 /*
662 * profiles to operate on, single is denoted by
663 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
664 */
665 __le64 profiles;
666
667 /*
668 * usage filter
669 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
670 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
671 */
672 union {
673 __le64 usage;
674 struct {
675 __le32 usage_min;
676 __le32 usage_max;
677 };
678 };
679
680 /* devid filter */
681 __le64 devid;
682
683 /* devid subset filter [pstart..pend) */
684 __le64 pstart;
685 __le64 pend;
686
687 /* btrfs virtual address space subset filter [vstart..vend) */
688 __le64 vstart;
689 __le64 vend;
690
691 /*
692 * profile to convert to, single is denoted by
693 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
694 */
695 __le64 target;
696
697 /* BTRFS_BALANCE_ARGS_* */
698 __le64 flags;
699
700 /*
701 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
702 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
703 * and maximum
704 */
705 union {
706 __le64 limit;
707 struct {
708 __le32 limit_min;
709 __le32 limit_max;
710 };
711 };
712
713 /*
714 * Process chunks that cross stripes_min..stripes_max devices,
715 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
716 */
717 __le32 stripes_min;
718 __le32 stripes_max;
719
720 __le64 unused[6];
721} __attribute__ ((__packed__));
722
723/*
724 * store balance parameters to disk so that balance can be properly
725 * resumed after crash or unmount
726 */
727struct btrfs_balance_item {
728 /* BTRFS_BALANCE_* */
729 __le64 flags;
730
731 struct btrfs_disk_balance_args data;
732 struct btrfs_disk_balance_args meta;
733 struct btrfs_disk_balance_args sys;
734
735 __le64 unused[4];
736} __attribute__ ((__packed__));
737
738#define BTRFS_FILE_EXTENT_INLINE 0
739#define BTRFS_FILE_EXTENT_REG 1
740#define BTRFS_FILE_EXTENT_PREALLOC 2
741#define BTRFS_FILE_EXTENT_TYPES 2
742
743struct btrfs_file_extent_item {
744 /*
745 * transaction id that created this extent
746 */
747 __le64 generation;
748 /*
749 * max number of bytes to hold this extent in ram
750 * when we split a compressed extent we can't know how big
751 * each of the resulting pieces will be. So, this is
752 * an upper limit on the size of the extent in ram instead of
753 * an exact limit.
754 */
755 __le64 ram_bytes;
756
757 /*
758 * 32 bits for the various ways we might encode the data,
759 * including compression and encryption. If any of these
760 * are set to something a given disk format doesn't understand
761 * it is treated like an incompat flag for reading and writing,
762 * but not for stat.
763 */
764 __u8 compression;
765 __u8 encryption;
766 __le16 other_encoding; /* spare for later use */
767
768 /* are we inline data or a real extent? */
769 __u8 type;
770
771 /*
772 * disk space consumed by the extent, checksum blocks are included
773 * in these numbers
774 *
775 * At this offset in the structure, the inline extent data start.
776 */
777 __le64 disk_bytenr;
778 __le64 disk_num_bytes;
779 /*
780 * the logical offset in file blocks (no csums)
781 * this extent record is for. This allows a file extent to point
782 * into the middle of an existing extent on disk, sharing it
783 * between two snapshots (useful if some bytes in the middle of the
784 * extent have changed
785 */
786 __le64 offset;
787 /*
788 * the logical number of file blocks (no csums included). This
789 * always reflects the size uncompressed and without encoding.
790 */
791 __le64 num_bytes;
792
793} __attribute__ ((__packed__));
794
795struct btrfs_csum_item {
796 __u8 csum;
797} __attribute__ ((__packed__));
798
799struct btrfs_dev_stats_item {
800 /*
801 * grow this item struct at the end for future enhancements and keep
802 * the existing values unchanged
803 */
804 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
805} __attribute__ ((__packed__));
806
807#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
808#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
809#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
810#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
811#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
812#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
813#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
814
815struct btrfs_dev_replace_item {
816 /*
817 * grow this item struct at the end for future enhancements and keep
818 * the existing values unchanged
819 */
820 __le64 src_devid;
821 __le64 cursor_left;
822 __le64 cursor_right;
823 __le64 cont_reading_from_srcdev_mode;
824
825 __le64 replace_state;
826 __le64 time_started;
827 __le64 time_stopped;
828 __le64 num_write_errors;
829 __le64 num_uncorrectable_read_errors;
830} __attribute__ ((__packed__));
831
832/* different types of block groups (and chunks) */
833#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
834#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
835#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
836#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
837#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
838#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
839#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
840#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
841#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
842#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
843 BTRFS_SPACE_INFO_GLOBAL_RSV)
844
845enum btrfs_raid_types {
846 BTRFS_RAID_RAID10,
847 BTRFS_RAID_RAID1,
848 BTRFS_RAID_DUP,
849 BTRFS_RAID_RAID0,
850 BTRFS_RAID_SINGLE,
851 BTRFS_RAID_RAID5,
852 BTRFS_RAID_RAID6,
853 BTRFS_NR_RAID_TYPES
854};
855
856#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
857 BTRFS_BLOCK_GROUP_SYSTEM | \
858 BTRFS_BLOCK_GROUP_METADATA)
859
860#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
861 BTRFS_BLOCK_GROUP_RAID1 | \
862 BTRFS_BLOCK_GROUP_RAID5 | \
863 BTRFS_BLOCK_GROUP_RAID6 | \
864 BTRFS_BLOCK_GROUP_DUP | \
865 BTRFS_BLOCK_GROUP_RAID10)
866#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
867 BTRFS_BLOCK_GROUP_RAID6)
868
869/*
870 * We need a bit for restriper to be able to tell when chunks of type
871 * SINGLE are available. This "extended" profile format is used in
872 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
873 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
874 * to avoid remappings between two formats in future.
875 */
876#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
877
878/*
879 * A fake block group type that is used to communicate global block reserve
880 * size to userspace via the SPACE_INFO ioctl.
881 */
882#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
883
884#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
885 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
886
887static inline __u64 chunk_to_extended(__u64 flags)
888{
889 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
890 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
891
892 return flags;
893}
894static inline __u64 extended_to_chunk(__u64 flags)
895{
896 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
897}
898
899struct btrfs_block_group_item {
900 __le64 used;
901 __le64 chunk_objectid;
902 __le64 flags;
903} __attribute__ ((__packed__));
904
905struct btrfs_free_space_info {
906 __le32 extent_count;
907 __le32 flags;
908} __attribute__ ((__packed__));
909
910#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
911
912#define BTRFS_QGROUP_LEVEL_SHIFT 48
913static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
914{
915 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
916}
917
918/*
919 * is subvolume quota turned on?
920 */
921#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
922/*
923 * RESCAN is set during the initialization phase
924 */
925#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
926/*
927 * Some qgroup entries are known to be out of date,
928 * either because the configuration has changed in a way that
929 * makes a rescan necessary, or because the fs has been mounted
930 * with a non-qgroup-aware version.
931 * Turning qouta off and on again makes it inconsistent, too.
932 */
933#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
934
935#define BTRFS_QGROUP_STATUS_VERSION 1
936
937struct btrfs_qgroup_status_item {
938 __le64 version;
939 /*
940 * the generation is updated during every commit. As older
941 * versions of btrfs are not aware of qgroups, it will be
942 * possible to detect inconsistencies by checking the
943 * generation on mount time
944 */
945 __le64 generation;
946
947 /* flag definitions see above */
948 __le64 flags;
949
950 /*
951 * only used during scanning to record the progress
952 * of the scan. It contains a logical address
953 */
954 __le64 rescan;
955} __attribute__ ((__packed__));
956
957struct btrfs_qgroup_info_item {
958 __le64 generation;
959 __le64 rfer;
960 __le64 rfer_cmpr;
961 __le64 excl;
962 __le64 excl_cmpr;
963} __attribute__ ((__packed__));
964
965struct btrfs_qgroup_limit_item {
966 /*
967 * only updated when any of the other values change
968 */
969 __le64 flags;
970 __le64 max_rfer;
971 __le64 max_excl;
972 __le64 rsv_rfer;
973 __le64 rsv_excl;
974} __attribute__ ((__packed__));
975
976#endif /* _BTRFS_CTREE_H_ */