Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#ifndef _TLS_OFFLOAD_H
35#define _TLS_OFFLOAD_H
36
37#include <linux/types.h>
38#include <asm/byteorder.h>
39#include <linux/crypto.h>
40#include <linux/socket.h>
41#include <linux/tcp.h>
42#include <linux/skmsg.h>
43
44#include <net/tcp.h>
45#include <net/strparser.h>
46#include <crypto/aead.h>
47#include <uapi/linux/tls.h>
48
49
50/* Maximum data size carried in a TLS record */
51#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
52
53#define TLS_HEADER_SIZE 5
54#define TLS_NONCE_OFFSET TLS_HEADER_SIZE
55
56#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
57
58#define TLS_RECORD_TYPE_DATA 0x17
59
60#define TLS_AAD_SPACE_SIZE 13
61#define TLS_DEVICE_NAME_MAX 32
62
63#define MAX_IV_SIZE 16
64
65/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
66 *
67 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
68 *
69 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
70 * Hence b0 contains (3 - 1) = 2.
71 */
72#define TLS_AES_CCM_IV_B0_BYTE 2
73
74/*
75 * This structure defines the routines for Inline TLS driver.
76 * The following routines are optional and filled with a
77 * null pointer if not defined.
78 *
79 * @name: Its the name of registered Inline tls device
80 * @dev_list: Inline tls device list
81 * int (*feature)(struct tls_device *device);
82 * Called to return Inline TLS driver capability
83 *
84 * int (*hash)(struct tls_device *device, struct sock *sk);
85 * This function sets Inline driver for listen and program
86 * device specific functioanlity as required
87 *
88 * void (*unhash)(struct tls_device *device, struct sock *sk);
89 * This function cleans listen state set by Inline TLS driver
90 *
91 * void (*release)(struct kref *kref);
92 * Release the registered device and allocated resources
93 * @kref: Number of reference to tls_device
94 */
95struct tls_device {
96 char name[TLS_DEVICE_NAME_MAX];
97 struct list_head dev_list;
98 int (*feature)(struct tls_device *device);
99 int (*hash)(struct tls_device *device, struct sock *sk);
100 void (*unhash)(struct tls_device *device, struct sock *sk);
101 void (*release)(struct kref *kref);
102 struct kref kref;
103};
104
105enum {
106 TLS_BASE,
107 TLS_SW,
108#ifdef CONFIG_TLS_DEVICE
109 TLS_HW,
110#endif
111 TLS_HW_RECORD,
112 TLS_NUM_CONFIG,
113};
114
115/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
116 * allocated or mapped for each TLS record. After encryption, the records are
117 * stores in a linked list.
118 */
119struct tls_rec {
120 struct list_head list;
121 int tx_ready;
122 int tx_flags;
123 int inplace_crypto;
124
125 struct sk_msg msg_plaintext;
126 struct sk_msg msg_encrypted;
127
128 /* AAD | msg_plaintext.sg.data | sg_tag */
129 struct scatterlist sg_aead_in[2];
130 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
131 struct scatterlist sg_aead_out[2];
132
133 char content_type;
134 struct scatterlist sg_content_type;
135
136 char aad_space[TLS_AAD_SPACE_SIZE];
137 u8 iv_data[MAX_IV_SIZE];
138 struct aead_request aead_req;
139 u8 aead_req_ctx[];
140};
141
142struct tls_msg {
143 struct strp_msg rxm;
144 u8 control;
145};
146
147struct tx_work {
148 struct delayed_work work;
149 struct sock *sk;
150};
151
152struct tls_sw_context_tx {
153 struct crypto_aead *aead_send;
154 struct crypto_wait async_wait;
155 struct tx_work tx_work;
156 struct tls_rec *open_rec;
157 struct list_head tx_list;
158 atomic_t encrypt_pending;
159 int async_notify;
160 int async_capable;
161
162#define BIT_TX_SCHEDULED 0
163 unsigned long tx_bitmask;
164};
165
166struct tls_sw_context_rx {
167 struct crypto_aead *aead_recv;
168 struct crypto_wait async_wait;
169 struct strparser strp;
170 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
171 void (*saved_data_ready)(struct sock *sk);
172
173 struct sk_buff *recv_pkt;
174 u8 control;
175 int async_capable;
176 bool decrypted;
177 atomic_t decrypt_pending;
178 bool async_notify;
179};
180
181struct tls_record_info {
182 struct list_head list;
183 u32 end_seq;
184 int len;
185 int num_frags;
186 skb_frag_t frags[MAX_SKB_FRAGS];
187};
188
189struct tls_offload_context_tx {
190 struct crypto_aead *aead_send;
191 spinlock_t lock; /* protects records list */
192 struct list_head records_list;
193 struct tls_record_info *open_record;
194 struct tls_record_info *retransmit_hint;
195 u64 hint_record_sn;
196 u64 unacked_record_sn;
197
198 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
199 void (*sk_destruct)(struct sock *sk);
200 u8 driver_state[];
201 /* The TLS layer reserves room for driver specific state
202 * Currently the belief is that there is not enough
203 * driver specific state to justify another layer of indirection
204 */
205#define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
206};
207
208#define TLS_OFFLOAD_CONTEXT_SIZE_TX \
209 (ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) + \
210 TLS_DRIVER_STATE_SIZE)
211
212enum tls_context_flags {
213 TLS_RX_SYNC_RUNNING = 0,
214};
215
216struct cipher_context {
217 char *iv;
218 char *rec_seq;
219};
220
221union tls_crypto_context {
222 struct tls_crypto_info info;
223 union {
224 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
225 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
226 };
227};
228
229struct tls_prot_info {
230 u16 version;
231 u16 cipher_type;
232 u16 prepend_size;
233 u16 tag_size;
234 u16 overhead_size;
235 u16 iv_size;
236 u16 salt_size;
237 u16 rec_seq_size;
238 u16 aad_size;
239 u16 tail_size;
240};
241
242struct tls_context {
243 struct tls_prot_info prot_info;
244
245 union tls_crypto_context crypto_send;
246 union tls_crypto_context crypto_recv;
247
248 struct list_head list;
249 struct net_device *netdev;
250 refcount_t refcount;
251
252 void *priv_ctx_tx;
253 void *priv_ctx_rx;
254
255 u8 tx_conf:3;
256 u8 rx_conf:3;
257
258 struct cipher_context tx;
259 struct cipher_context rx;
260
261 struct scatterlist *partially_sent_record;
262 u16 partially_sent_offset;
263
264 unsigned long flags;
265 bool in_tcp_sendpages;
266 bool pending_open_record_frags;
267
268 int (*push_pending_record)(struct sock *sk, int flags);
269
270 void (*sk_write_space)(struct sock *sk);
271 void (*sk_destruct)(struct sock *sk);
272 void (*sk_proto_close)(struct sock *sk, long timeout);
273
274 int (*setsockopt)(struct sock *sk, int level,
275 int optname, char __user *optval,
276 unsigned int optlen);
277 int (*getsockopt)(struct sock *sk, int level,
278 int optname, char __user *optval,
279 int __user *optlen);
280 int (*hash)(struct sock *sk);
281 void (*unhash)(struct sock *sk);
282};
283
284enum tls_offload_ctx_dir {
285 TLS_OFFLOAD_CTX_DIR_RX,
286 TLS_OFFLOAD_CTX_DIR_TX,
287};
288
289struct tlsdev_ops {
290 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
291 enum tls_offload_ctx_dir direction,
292 struct tls_crypto_info *crypto_info,
293 u32 start_offload_tcp_sn);
294 void (*tls_dev_del)(struct net_device *netdev,
295 struct tls_context *ctx,
296 enum tls_offload_ctx_dir direction);
297 void (*tls_dev_resync_rx)(struct net_device *netdev,
298 struct sock *sk, u32 seq, u64 rcd_sn);
299};
300
301struct tls_offload_context_rx {
302 /* sw must be the first member of tls_offload_context_rx */
303 struct tls_sw_context_rx sw;
304 atomic64_t resync_req;
305 u8 driver_state[];
306 /* The TLS layer reserves room for driver specific state
307 * Currently the belief is that there is not enough
308 * driver specific state to justify another layer of indirection
309 */
310};
311
312#define TLS_OFFLOAD_CONTEXT_SIZE_RX \
313 (ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
314 TLS_DRIVER_STATE_SIZE)
315
316int wait_on_pending_writer(struct sock *sk, long *timeo);
317int tls_sk_query(struct sock *sk, int optname, char __user *optval,
318 int __user *optlen);
319int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
320 unsigned int optlen);
321
322int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
323int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324int tls_sw_sendpage(struct sock *sk, struct page *page,
325 int offset, size_t size, int flags);
326void tls_sw_close(struct sock *sk, long timeout);
327void tls_sw_free_resources_tx(struct sock *sk);
328void tls_sw_free_resources_rx(struct sock *sk);
329void tls_sw_release_resources_rx(struct sock *sk);
330int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
331 int nonblock, int flags, int *addr_len);
332bool tls_sw_stream_read(const struct sock *sk);
333ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
334 struct pipe_inode_info *pipe,
335 size_t len, unsigned int flags);
336
337int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
338int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
339int tls_device_sendpage(struct sock *sk, struct page *page,
340 int offset, size_t size, int flags);
341void tls_device_free_resources_tx(struct sock *sk);
342void tls_device_init(void);
343void tls_device_cleanup(void);
344int tls_tx_records(struct sock *sk, int flags);
345
346struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
347 u32 seq, u64 *p_record_sn);
348
349static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
350{
351 return rec->len == 0;
352}
353
354static inline u32 tls_record_start_seq(struct tls_record_info *rec)
355{
356 return rec->end_seq - rec->len;
357}
358
359int tls_push_sg(struct sock *sk, struct tls_context *ctx,
360 struct scatterlist *sg, u16 first_offset,
361 int flags);
362int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
363 int flags);
364bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
365
366static inline struct tls_msg *tls_msg(struct sk_buff *skb)
367{
368 return (struct tls_msg *)strp_msg(skb);
369}
370
371static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
372{
373 return !!ctx->partially_sent_record;
374}
375
376static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
377{
378 return tls_ctx->pending_open_record_frags;
379}
380
381static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
382{
383 struct tls_rec *rec;
384
385 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
386 if (!rec)
387 return false;
388
389 return READ_ONCE(rec->tx_ready);
390}
391
392struct sk_buff *
393tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
394 struct sk_buff *skb);
395
396static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
397{
398#ifdef CONFIG_SOCK_VALIDATE_XMIT
399 return sk_fullsock(sk) &&
400 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
401 &tls_validate_xmit_skb);
402#else
403 return false;
404#endif
405}
406
407static inline void tls_err_abort(struct sock *sk, int err)
408{
409 sk->sk_err = err;
410 sk->sk_error_report(sk);
411}
412
413static inline bool tls_bigint_increment(unsigned char *seq, int len)
414{
415 int i;
416
417 for (i = len - 1; i >= 0; i--) {
418 ++seq[i];
419 if (seq[i] != 0)
420 break;
421 }
422
423 return (i == -1);
424}
425
426static inline struct tls_context *tls_get_ctx(const struct sock *sk)
427{
428 struct inet_connection_sock *icsk = inet_csk(sk);
429
430 return icsk->icsk_ulp_data;
431}
432
433static inline void tls_advance_record_sn(struct sock *sk,
434 struct cipher_context *ctx,
435 int version)
436{
437 struct tls_context *tls_ctx = tls_get_ctx(sk);
438 struct tls_prot_info *prot = &tls_ctx->prot_info;
439
440 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
441 tls_err_abort(sk, EBADMSG);
442
443 if (version != TLS_1_3_VERSION) {
444 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
445 prot->iv_size);
446 }
447}
448
449static inline void tls_fill_prepend(struct tls_context *ctx,
450 char *buf,
451 size_t plaintext_len,
452 unsigned char record_type,
453 int version)
454{
455 struct tls_prot_info *prot = &ctx->prot_info;
456 size_t pkt_len, iv_size = prot->iv_size;
457
458 pkt_len = plaintext_len + prot->tag_size;
459 if (version != TLS_1_3_VERSION) {
460 pkt_len += iv_size;
461
462 memcpy(buf + TLS_NONCE_OFFSET,
463 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
464 }
465
466 /* we cover nonce explicit here as well, so buf should be of
467 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
468 */
469 buf[0] = version == TLS_1_3_VERSION ?
470 TLS_RECORD_TYPE_DATA : record_type;
471 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
472 buf[1] = TLS_1_2_VERSION_MINOR;
473 buf[2] = TLS_1_2_VERSION_MAJOR;
474 /* we can use IV for nonce explicit according to spec */
475 buf[3] = pkt_len >> 8;
476 buf[4] = pkt_len & 0xFF;
477}
478
479static inline void tls_make_aad(char *buf,
480 size_t size,
481 char *record_sequence,
482 int record_sequence_size,
483 unsigned char record_type,
484 int version)
485{
486 if (version != TLS_1_3_VERSION) {
487 memcpy(buf, record_sequence, record_sequence_size);
488 buf += 8;
489 } else {
490 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
491 }
492
493 buf[0] = version == TLS_1_3_VERSION ?
494 TLS_RECORD_TYPE_DATA : record_type;
495 buf[1] = TLS_1_2_VERSION_MAJOR;
496 buf[2] = TLS_1_2_VERSION_MINOR;
497 buf[3] = size >> 8;
498 buf[4] = size & 0xFF;
499}
500
501static inline void xor_iv_with_seq(int version, char *iv, char *seq)
502{
503 int i;
504
505 if (version == TLS_1_3_VERSION) {
506 for (i = 0; i < 8; i++)
507 iv[i + 4] ^= seq[i];
508 }
509}
510
511
512static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
513 const struct tls_context *tls_ctx)
514{
515 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
516}
517
518static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
519 const struct tls_context *tls_ctx)
520{
521 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
522}
523
524static inline struct tls_offload_context_tx *
525tls_offload_ctx_tx(const struct tls_context *tls_ctx)
526{
527 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
528}
529
530static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
531{
532 struct tls_context *ctx = tls_get_ctx(sk);
533
534 if (!ctx)
535 return false;
536 return !!tls_sw_ctx_tx(ctx);
537}
538
539void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
540void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
541
542static inline struct tls_offload_context_rx *
543tls_offload_ctx_rx(const struct tls_context *tls_ctx)
544{
545 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
546}
547
548/* The TLS context is valid until sk_destruct is called */
549static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
550{
551 struct tls_context *tls_ctx = tls_get_ctx(sk);
552 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
553
554 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
555}
556
557
558int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
559 unsigned char *record_type);
560void tls_register_device(struct tls_device *device);
561void tls_unregister_device(struct tls_device *device);
562int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
563int decrypt_skb(struct sock *sk, struct sk_buff *skb,
564 struct scatterlist *sgout);
565
566struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
567 struct net_device *dev,
568 struct sk_buff *skb);
569
570int tls_sw_fallback_init(struct sock *sk,
571 struct tls_offload_context_tx *offload_ctx,
572 struct tls_crypto_info *crypto_info);
573
574int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
575
576void tls_device_offload_cleanup_rx(struct sock *sk);
577void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
578
579#endif /* _TLS_OFFLOAD_H */