at v5.2 23 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/overflow.h> 17#include <linux/types.h> 18#include <linux/workqueue.h> 19 20 21/* 22 * Flags to pass to kmem_cache_create(). 23 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 24 */ 25/* DEBUG: Perform (expensive) checks on alloc/free */ 26#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 27/* DEBUG: Red zone objs in a cache */ 28#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 29/* DEBUG: Poison objects */ 30#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 31/* Align objs on cache lines */ 32#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 33/* Use GFP_DMA memory */ 34#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 35/* Use GFP_DMA32 memory */ 36#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 37/* DEBUG: Store the last owner for bug hunting */ 38#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 39/* Panic if kmem_cache_create() fails */ 40#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 41/* 42 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 43 * 44 * This delays freeing the SLAB page by a grace period, it does _NOT_ 45 * delay object freeing. This means that if you do kmem_cache_free() 46 * that memory location is free to be reused at any time. Thus it may 47 * be possible to see another object there in the same RCU grace period. 48 * 49 * This feature only ensures the memory location backing the object 50 * stays valid, the trick to using this is relying on an independent 51 * object validation pass. Something like: 52 * 53 * rcu_read_lock() 54 * again: 55 * obj = lockless_lookup(key); 56 * if (obj) { 57 * if (!try_get_ref(obj)) // might fail for free objects 58 * goto again; 59 * 60 * if (obj->key != key) { // not the object we expected 61 * put_ref(obj); 62 * goto again; 63 * } 64 * } 65 * rcu_read_unlock(); 66 * 67 * This is useful if we need to approach a kernel structure obliquely, 68 * from its address obtained without the usual locking. We can lock 69 * the structure to stabilize it and check it's still at the given address, 70 * only if we can be sure that the memory has not been meanwhile reused 71 * for some other kind of object (which our subsystem's lock might corrupt). 72 * 73 * rcu_read_lock before reading the address, then rcu_read_unlock after 74 * taking the spinlock within the structure expected at that address. 75 * 76 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 77 */ 78/* Defer freeing slabs to RCU */ 79#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 80/* Spread some memory over cpuset */ 81#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 82/* Trace allocations and frees */ 83#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 84 85/* Flag to prevent checks on free */ 86#ifdef CONFIG_DEBUG_OBJECTS 87# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 88#else 89# define SLAB_DEBUG_OBJECTS 0 90#endif 91 92/* Avoid kmemleak tracing */ 93#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 94 95/* Fault injection mark */ 96#ifdef CONFIG_FAILSLAB 97# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 98#else 99# define SLAB_FAILSLAB 0 100#endif 101/* Account to memcg */ 102#ifdef CONFIG_MEMCG_KMEM 103# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 104#else 105# define SLAB_ACCOUNT 0 106#endif 107 108#ifdef CONFIG_KASAN 109#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 110#else 111#define SLAB_KASAN 0 112#endif 113 114/* The following flags affect the page allocator grouping pages by mobility */ 115/* Objects are reclaimable */ 116#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 117#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 118/* 119 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 120 * 121 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 122 * 123 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 124 * Both make kfree a no-op. 125 */ 126#define ZERO_SIZE_PTR ((void *)16) 127 128#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 129 (unsigned long)ZERO_SIZE_PTR) 130 131#include <linux/kasan.h> 132 133struct mem_cgroup; 134/* 135 * struct kmem_cache related prototypes 136 */ 137void __init kmem_cache_init(void); 138bool slab_is_available(void); 139 140extern bool usercopy_fallback; 141 142struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 143 unsigned int align, slab_flags_t flags, 144 void (*ctor)(void *)); 145struct kmem_cache *kmem_cache_create_usercopy(const char *name, 146 unsigned int size, unsigned int align, 147 slab_flags_t flags, 148 unsigned int useroffset, unsigned int usersize, 149 void (*ctor)(void *)); 150void kmem_cache_destroy(struct kmem_cache *); 151int kmem_cache_shrink(struct kmem_cache *); 152 153void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 154void memcg_deactivate_kmem_caches(struct mem_cgroup *); 155void memcg_destroy_kmem_caches(struct mem_cgroup *); 156 157/* 158 * Please use this macro to create slab caches. Simply specify the 159 * name of the structure and maybe some flags that are listed above. 160 * 161 * The alignment of the struct determines object alignment. If you 162 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 163 * then the objects will be properly aligned in SMP configurations. 164 */ 165#define KMEM_CACHE(__struct, __flags) \ 166 kmem_cache_create(#__struct, sizeof(struct __struct), \ 167 __alignof__(struct __struct), (__flags), NULL) 168 169/* 170 * To whitelist a single field for copying to/from usercopy, use this 171 * macro instead for KMEM_CACHE() above. 172 */ 173#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 174 kmem_cache_create_usercopy(#__struct, \ 175 sizeof(struct __struct), \ 176 __alignof__(struct __struct), (__flags), \ 177 offsetof(struct __struct, __field), \ 178 sizeof_field(struct __struct, __field), NULL) 179 180/* 181 * Common kmalloc functions provided by all allocators 182 */ 183void * __must_check __krealloc(const void *, size_t, gfp_t); 184void * __must_check krealloc(const void *, size_t, gfp_t); 185void kfree(const void *); 186void kzfree(const void *); 187size_t ksize(const void *); 188 189#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 190void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 191 bool to_user); 192#else 193static inline void __check_heap_object(const void *ptr, unsigned long n, 194 struct page *page, bool to_user) { } 195#endif 196 197/* 198 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 199 * alignment larger than the alignment of a 64-bit integer. 200 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 201 */ 202#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 203#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 204#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 205#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 206#else 207#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 208#endif 209 210/* 211 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 212 * Intended for arches that get misalignment faults even for 64 bit integer 213 * aligned buffers. 214 */ 215#ifndef ARCH_SLAB_MINALIGN 216#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 217#endif 218 219/* 220 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 221 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 222 * aligned pointers. 223 */ 224#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 225#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 226#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 227 228/* 229 * Kmalloc array related definitions 230 */ 231 232#ifdef CONFIG_SLAB 233/* 234 * The largest kmalloc size supported by the SLAB allocators is 235 * 32 megabyte (2^25) or the maximum allocatable page order if that is 236 * less than 32 MB. 237 * 238 * WARNING: Its not easy to increase this value since the allocators have 239 * to do various tricks to work around compiler limitations in order to 240 * ensure proper constant folding. 241 */ 242#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 243 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 244#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 245#ifndef KMALLOC_SHIFT_LOW 246#define KMALLOC_SHIFT_LOW 5 247#endif 248#endif 249 250#ifdef CONFIG_SLUB 251/* 252 * SLUB directly allocates requests fitting in to an order-1 page 253 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 254 */ 255#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 256#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 257#ifndef KMALLOC_SHIFT_LOW 258#define KMALLOC_SHIFT_LOW 3 259#endif 260#endif 261 262#ifdef CONFIG_SLOB 263/* 264 * SLOB passes all requests larger than one page to the page allocator. 265 * No kmalloc array is necessary since objects of different sizes can 266 * be allocated from the same page. 267 */ 268#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 269#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 270#ifndef KMALLOC_SHIFT_LOW 271#define KMALLOC_SHIFT_LOW 3 272#endif 273#endif 274 275/* Maximum allocatable size */ 276#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 277/* Maximum size for which we actually use a slab cache */ 278#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 279/* Maximum order allocatable via the slab allocagtor */ 280#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 281 282/* 283 * Kmalloc subsystem. 284 */ 285#ifndef KMALLOC_MIN_SIZE 286#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 287#endif 288 289/* 290 * This restriction comes from byte sized index implementation. 291 * Page size is normally 2^12 bytes and, in this case, if we want to use 292 * byte sized index which can represent 2^8 entries, the size of the object 293 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 294 * If minimum size of kmalloc is less than 16, we use it as minimum object 295 * size and give up to use byte sized index. 296 */ 297#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 298 (KMALLOC_MIN_SIZE) : 16) 299 300/* 301 * Whenever changing this, take care of that kmalloc_type() and 302 * create_kmalloc_caches() still work as intended. 303 */ 304enum kmalloc_cache_type { 305 KMALLOC_NORMAL = 0, 306 KMALLOC_RECLAIM, 307#ifdef CONFIG_ZONE_DMA 308 KMALLOC_DMA, 309#endif 310 NR_KMALLOC_TYPES 311}; 312 313#ifndef CONFIG_SLOB 314extern struct kmem_cache * 315kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 316 317static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 318{ 319#ifdef CONFIG_ZONE_DMA 320 /* 321 * The most common case is KMALLOC_NORMAL, so test for it 322 * with a single branch for both flags. 323 */ 324 if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0)) 325 return KMALLOC_NORMAL; 326 327 /* 328 * At least one of the flags has to be set. If both are, __GFP_DMA 329 * is more important. 330 */ 331 return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM; 332#else 333 return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL; 334#endif 335} 336 337/* 338 * Figure out which kmalloc slab an allocation of a certain size 339 * belongs to. 340 * 0 = zero alloc 341 * 1 = 65 .. 96 bytes 342 * 2 = 129 .. 192 bytes 343 * n = 2^(n-1)+1 .. 2^n 344 */ 345static __always_inline unsigned int kmalloc_index(size_t size) 346{ 347 if (!size) 348 return 0; 349 350 if (size <= KMALLOC_MIN_SIZE) 351 return KMALLOC_SHIFT_LOW; 352 353 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 354 return 1; 355 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 356 return 2; 357 if (size <= 8) return 3; 358 if (size <= 16) return 4; 359 if (size <= 32) return 5; 360 if (size <= 64) return 6; 361 if (size <= 128) return 7; 362 if (size <= 256) return 8; 363 if (size <= 512) return 9; 364 if (size <= 1024) return 10; 365 if (size <= 2 * 1024) return 11; 366 if (size <= 4 * 1024) return 12; 367 if (size <= 8 * 1024) return 13; 368 if (size <= 16 * 1024) return 14; 369 if (size <= 32 * 1024) return 15; 370 if (size <= 64 * 1024) return 16; 371 if (size <= 128 * 1024) return 17; 372 if (size <= 256 * 1024) return 18; 373 if (size <= 512 * 1024) return 19; 374 if (size <= 1024 * 1024) return 20; 375 if (size <= 2 * 1024 * 1024) return 21; 376 if (size <= 4 * 1024 * 1024) return 22; 377 if (size <= 8 * 1024 * 1024) return 23; 378 if (size <= 16 * 1024 * 1024) return 24; 379 if (size <= 32 * 1024 * 1024) return 25; 380 if (size <= 64 * 1024 * 1024) return 26; 381 BUG(); 382 383 /* Will never be reached. Needed because the compiler may complain */ 384 return -1; 385} 386#endif /* !CONFIG_SLOB */ 387 388void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 389void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 390void kmem_cache_free(struct kmem_cache *, void *); 391 392/* 393 * Bulk allocation and freeing operations. These are accelerated in an 394 * allocator specific way to avoid taking locks repeatedly or building 395 * metadata structures unnecessarily. 396 * 397 * Note that interrupts must be enabled when calling these functions. 398 */ 399void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 400int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 401 402/* 403 * Caller must not use kfree_bulk() on memory not originally allocated 404 * by kmalloc(), because the SLOB allocator cannot handle this. 405 */ 406static __always_inline void kfree_bulk(size_t size, void **p) 407{ 408 kmem_cache_free_bulk(NULL, size, p); 409} 410 411#ifdef CONFIG_NUMA 412void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 413void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 414#else 415static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 416{ 417 return __kmalloc(size, flags); 418} 419 420static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 421{ 422 return kmem_cache_alloc(s, flags); 423} 424#endif 425 426#ifdef CONFIG_TRACING 427extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 428 429#ifdef CONFIG_NUMA 430extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 431 gfp_t gfpflags, 432 int node, size_t size) __assume_slab_alignment __malloc; 433#else 434static __always_inline void * 435kmem_cache_alloc_node_trace(struct kmem_cache *s, 436 gfp_t gfpflags, 437 int node, size_t size) 438{ 439 return kmem_cache_alloc_trace(s, gfpflags, size); 440} 441#endif /* CONFIG_NUMA */ 442 443#else /* CONFIG_TRACING */ 444static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 445 gfp_t flags, size_t size) 446{ 447 void *ret = kmem_cache_alloc(s, flags); 448 449 ret = kasan_kmalloc(s, ret, size, flags); 450 return ret; 451} 452 453static __always_inline void * 454kmem_cache_alloc_node_trace(struct kmem_cache *s, 455 gfp_t gfpflags, 456 int node, size_t size) 457{ 458 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 459 460 ret = kasan_kmalloc(s, ret, size, gfpflags); 461 return ret; 462} 463#endif /* CONFIG_TRACING */ 464 465extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 466 467#ifdef CONFIG_TRACING 468extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 469#else 470static __always_inline void * 471kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 472{ 473 return kmalloc_order(size, flags, order); 474} 475#endif 476 477static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 478{ 479 unsigned int order = get_order(size); 480 return kmalloc_order_trace(size, flags, order); 481} 482 483/** 484 * kmalloc - allocate memory 485 * @size: how many bytes of memory are required. 486 * @flags: the type of memory to allocate. 487 * 488 * kmalloc is the normal method of allocating memory 489 * for objects smaller than page size in the kernel. 490 * 491 * The @flags argument may be one of the GFP flags defined at 492 * include/linux/gfp.h and described at 493 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 494 * 495 * The recommended usage of the @flags is described at 496 * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>` 497 * 498 * Below is a brief outline of the most useful GFP flags 499 * 500 * %GFP_KERNEL 501 * Allocate normal kernel ram. May sleep. 502 * 503 * %GFP_NOWAIT 504 * Allocation will not sleep. 505 * 506 * %GFP_ATOMIC 507 * Allocation will not sleep. May use emergency pools. 508 * 509 * %GFP_HIGHUSER 510 * Allocate memory from high memory on behalf of user. 511 * 512 * Also it is possible to set different flags by OR'ing 513 * in one or more of the following additional @flags: 514 * 515 * %__GFP_HIGH 516 * This allocation has high priority and may use emergency pools. 517 * 518 * %__GFP_NOFAIL 519 * Indicate that this allocation is in no way allowed to fail 520 * (think twice before using). 521 * 522 * %__GFP_NORETRY 523 * If memory is not immediately available, 524 * then give up at once. 525 * 526 * %__GFP_NOWARN 527 * If allocation fails, don't issue any warnings. 528 * 529 * %__GFP_RETRY_MAYFAIL 530 * Try really hard to succeed the allocation but fail 531 * eventually. 532 */ 533static __always_inline void *kmalloc(size_t size, gfp_t flags) 534{ 535 if (__builtin_constant_p(size)) { 536#ifndef CONFIG_SLOB 537 unsigned int index; 538#endif 539 if (size > KMALLOC_MAX_CACHE_SIZE) 540 return kmalloc_large(size, flags); 541#ifndef CONFIG_SLOB 542 index = kmalloc_index(size); 543 544 if (!index) 545 return ZERO_SIZE_PTR; 546 547 return kmem_cache_alloc_trace( 548 kmalloc_caches[kmalloc_type(flags)][index], 549 flags, size); 550#endif 551 } 552 return __kmalloc(size, flags); 553} 554 555/* 556 * Determine size used for the nth kmalloc cache. 557 * return size or 0 if a kmalloc cache for that 558 * size does not exist 559 */ 560static __always_inline unsigned int kmalloc_size(unsigned int n) 561{ 562#ifndef CONFIG_SLOB 563 if (n > 2) 564 return 1U << n; 565 566 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 567 return 96; 568 569 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 570 return 192; 571#endif 572 return 0; 573} 574 575static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 576{ 577#ifndef CONFIG_SLOB 578 if (__builtin_constant_p(size) && 579 size <= KMALLOC_MAX_CACHE_SIZE) { 580 unsigned int i = kmalloc_index(size); 581 582 if (!i) 583 return ZERO_SIZE_PTR; 584 585 return kmem_cache_alloc_node_trace( 586 kmalloc_caches[kmalloc_type(flags)][i], 587 flags, node, size); 588 } 589#endif 590 return __kmalloc_node(size, flags, node); 591} 592 593struct memcg_cache_array { 594 struct rcu_head rcu; 595 struct kmem_cache *entries[0]; 596}; 597 598/* 599 * This is the main placeholder for memcg-related information in kmem caches. 600 * Both the root cache and the child caches will have it. For the root cache, 601 * this will hold a dynamically allocated array large enough to hold 602 * information about the currently limited memcgs in the system. To allow the 603 * array to be accessed without taking any locks, on relocation we free the old 604 * version only after a grace period. 605 * 606 * Root and child caches hold different metadata. 607 * 608 * @root_cache: Common to root and child caches. NULL for root, pointer to 609 * the root cache for children. 610 * 611 * The following fields are specific to root caches. 612 * 613 * @memcg_caches: kmemcg ID indexed table of child caches. This table is 614 * used to index child cachces during allocation and cleared 615 * early during shutdown. 616 * 617 * @root_caches_node: List node for slab_root_caches list. 618 * 619 * @children: List of all child caches. While the child caches are also 620 * reachable through @memcg_caches, a child cache remains on 621 * this list until it is actually destroyed. 622 * 623 * The following fields are specific to child caches. 624 * 625 * @memcg: Pointer to the memcg this cache belongs to. 626 * 627 * @children_node: List node for @root_cache->children list. 628 * 629 * @kmem_caches_node: List node for @memcg->kmem_caches list. 630 */ 631struct memcg_cache_params { 632 struct kmem_cache *root_cache; 633 union { 634 struct { 635 struct memcg_cache_array __rcu *memcg_caches; 636 struct list_head __root_caches_node; 637 struct list_head children; 638 bool dying; 639 }; 640 struct { 641 struct mem_cgroup *memcg; 642 struct list_head children_node; 643 struct list_head kmem_caches_node; 644 645 void (*deact_fn)(struct kmem_cache *); 646 union { 647 struct rcu_head deact_rcu_head; 648 struct work_struct deact_work; 649 }; 650 }; 651 }; 652}; 653 654int memcg_update_all_caches(int num_memcgs); 655 656/** 657 * kmalloc_array - allocate memory for an array. 658 * @n: number of elements. 659 * @size: element size. 660 * @flags: the type of memory to allocate (see kmalloc). 661 */ 662static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 663{ 664 size_t bytes; 665 666 if (unlikely(check_mul_overflow(n, size, &bytes))) 667 return NULL; 668 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 669 return kmalloc(bytes, flags); 670 return __kmalloc(bytes, flags); 671} 672 673/** 674 * kcalloc - allocate memory for an array. The memory is set to zero. 675 * @n: number of elements. 676 * @size: element size. 677 * @flags: the type of memory to allocate (see kmalloc). 678 */ 679static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 680{ 681 return kmalloc_array(n, size, flags | __GFP_ZERO); 682} 683 684/* 685 * kmalloc_track_caller is a special version of kmalloc that records the 686 * calling function of the routine calling it for slab leak tracking instead 687 * of just the calling function (confusing, eh?). 688 * It's useful when the call to kmalloc comes from a widely-used standard 689 * allocator where we care about the real place the memory allocation 690 * request comes from. 691 */ 692extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 693#define kmalloc_track_caller(size, flags) \ 694 __kmalloc_track_caller(size, flags, _RET_IP_) 695 696static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 697 int node) 698{ 699 size_t bytes; 700 701 if (unlikely(check_mul_overflow(n, size, &bytes))) 702 return NULL; 703 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 704 return kmalloc_node(bytes, flags, node); 705 return __kmalloc_node(bytes, flags, node); 706} 707 708static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 709{ 710 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 711} 712 713 714#ifdef CONFIG_NUMA 715extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 716#define kmalloc_node_track_caller(size, flags, node) \ 717 __kmalloc_node_track_caller(size, flags, node, \ 718 _RET_IP_) 719 720#else /* CONFIG_NUMA */ 721 722#define kmalloc_node_track_caller(size, flags, node) \ 723 kmalloc_track_caller(size, flags) 724 725#endif /* CONFIG_NUMA */ 726 727/* 728 * Shortcuts 729 */ 730static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 731{ 732 return kmem_cache_alloc(k, flags | __GFP_ZERO); 733} 734 735/** 736 * kzalloc - allocate memory. The memory is set to zero. 737 * @size: how many bytes of memory are required. 738 * @flags: the type of memory to allocate (see kmalloc). 739 */ 740static inline void *kzalloc(size_t size, gfp_t flags) 741{ 742 return kmalloc(size, flags | __GFP_ZERO); 743} 744 745/** 746 * kzalloc_node - allocate zeroed memory from a particular memory node. 747 * @size: how many bytes of memory are required. 748 * @flags: the type of memory to allocate (see kmalloc). 749 * @node: memory node from which to allocate 750 */ 751static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 752{ 753 return kmalloc_node(size, flags | __GFP_ZERO, node); 754} 755 756unsigned int kmem_cache_size(struct kmem_cache *s); 757void __init kmem_cache_init_late(void); 758 759#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 760int slab_prepare_cpu(unsigned int cpu); 761int slab_dead_cpu(unsigned int cpu); 762#else 763#define slab_prepare_cpu NULL 764#define slab_dead_cpu NULL 765#endif 766 767#endif /* _LINUX_SLAB_H */