Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/signal_types.h>
29#include <linux/mm_types_task.h>
30#include <linux/task_io_accounting.h>
31#include <linux/rseq.h>
32
33/* task_struct member predeclarations (sorted alphabetically): */
34struct audit_context;
35struct backing_dev_info;
36struct bio_list;
37struct blk_plug;
38struct cfs_rq;
39struct fs_struct;
40struct futex_pi_state;
41struct io_context;
42struct mempolicy;
43struct nameidata;
44struct nsproxy;
45struct perf_event_context;
46struct pid_namespace;
47struct pipe_inode_info;
48struct rcu_node;
49struct reclaim_state;
50struct capture_control;
51struct robust_list_head;
52struct sched_attr;
53struct sched_param;
54struct seq_file;
55struct sighand_struct;
56struct signal_struct;
57struct task_delay_info;
58struct task_group;
59
60/*
61 * Task state bitmask. NOTE! These bits are also
62 * encoded in fs/proc/array.c: get_task_state().
63 *
64 * We have two separate sets of flags: task->state
65 * is about runnability, while task->exit_state are
66 * about the task exiting. Confusing, but this way
67 * modifying one set can't modify the other one by
68 * mistake.
69 */
70
71/* Used in tsk->state: */
72#define TASK_RUNNING 0x0000
73#define TASK_INTERRUPTIBLE 0x0001
74#define TASK_UNINTERRUPTIBLE 0x0002
75#define __TASK_STOPPED 0x0004
76#define __TASK_TRACED 0x0008
77/* Used in tsk->exit_state: */
78#define EXIT_DEAD 0x0010
79#define EXIT_ZOMBIE 0x0020
80#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
81/* Used in tsk->state again: */
82#define TASK_PARKED 0x0040
83#define TASK_DEAD 0x0080
84#define TASK_WAKEKILL 0x0100
85#define TASK_WAKING 0x0200
86#define TASK_NOLOAD 0x0400
87#define TASK_NEW 0x0800
88#define TASK_STATE_MAX 0x1000
89
90/* Convenience macros for the sake of set_current_state: */
91#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
92#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
93#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
94
95#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
96
97/* Convenience macros for the sake of wake_up(): */
98#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
99
100/* get_task_state(): */
101#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
102 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
103 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
104 TASK_PARKED)
105
106#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
107
108#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
109
110#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
111
112#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
113 (task->flags & PF_FROZEN) == 0 && \
114 (task->state & TASK_NOLOAD) == 0)
115
116#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
117
118/*
119 * Special states are those that do not use the normal wait-loop pattern. See
120 * the comment with set_special_state().
121 */
122#define is_special_task_state(state) \
123 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
124
125#define __set_current_state(state_value) \
126 do { \
127 WARN_ON_ONCE(is_special_task_state(state_value));\
128 current->task_state_change = _THIS_IP_; \
129 current->state = (state_value); \
130 } while (0)
131
132#define set_current_state(state_value) \
133 do { \
134 WARN_ON_ONCE(is_special_task_state(state_value));\
135 current->task_state_change = _THIS_IP_; \
136 smp_store_mb(current->state, (state_value)); \
137 } while (0)
138
139#define set_special_state(state_value) \
140 do { \
141 unsigned long flags; /* may shadow */ \
142 WARN_ON_ONCE(!is_special_task_state(state_value)); \
143 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
144 current->task_state_change = _THIS_IP_; \
145 current->state = (state_value); \
146 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
147 } while (0)
148#else
149/*
150 * set_current_state() includes a barrier so that the write of current->state
151 * is correctly serialised wrt the caller's subsequent test of whether to
152 * actually sleep:
153 *
154 * for (;;) {
155 * set_current_state(TASK_UNINTERRUPTIBLE);
156 * if (!need_sleep)
157 * break;
158 *
159 * schedule();
160 * }
161 * __set_current_state(TASK_RUNNING);
162 *
163 * If the caller does not need such serialisation (because, for instance, the
164 * condition test and condition change and wakeup are under the same lock) then
165 * use __set_current_state().
166 *
167 * The above is typically ordered against the wakeup, which does:
168 *
169 * need_sleep = false;
170 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
171 *
172 * where wake_up_state() executes a full memory barrier before accessing the
173 * task state.
174 *
175 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
176 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
177 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
178 *
179 * However, with slightly different timing the wakeup TASK_RUNNING store can
180 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
181 * a problem either because that will result in one extra go around the loop
182 * and our @cond test will save the day.
183 *
184 * Also see the comments of try_to_wake_up().
185 */
186#define __set_current_state(state_value) \
187 current->state = (state_value)
188
189#define set_current_state(state_value) \
190 smp_store_mb(current->state, (state_value))
191
192/*
193 * set_special_state() should be used for those states when the blocking task
194 * can not use the regular condition based wait-loop. In that case we must
195 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
196 * will not collide with our state change.
197 */
198#define set_special_state(state_value) \
199 do { \
200 unsigned long flags; /* may shadow */ \
201 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
202 current->state = (state_value); \
203 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
204 } while (0)
205
206#endif
207
208/* Task command name length: */
209#define TASK_COMM_LEN 16
210
211extern void scheduler_tick(void);
212
213#define MAX_SCHEDULE_TIMEOUT LONG_MAX
214
215extern long schedule_timeout(long timeout);
216extern long schedule_timeout_interruptible(long timeout);
217extern long schedule_timeout_killable(long timeout);
218extern long schedule_timeout_uninterruptible(long timeout);
219extern long schedule_timeout_idle(long timeout);
220asmlinkage void schedule(void);
221extern void schedule_preempt_disabled(void);
222
223extern int __must_check io_schedule_prepare(void);
224extern void io_schedule_finish(int token);
225extern long io_schedule_timeout(long timeout);
226extern void io_schedule(void);
227
228/**
229 * struct prev_cputime - snapshot of system and user cputime
230 * @utime: time spent in user mode
231 * @stime: time spent in system mode
232 * @lock: protects the above two fields
233 *
234 * Stores previous user/system time values such that we can guarantee
235 * monotonicity.
236 */
237struct prev_cputime {
238#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
239 u64 utime;
240 u64 stime;
241 raw_spinlock_t lock;
242#endif
243};
244
245/**
246 * struct task_cputime - collected CPU time counts
247 * @utime: time spent in user mode, in nanoseconds
248 * @stime: time spent in kernel mode, in nanoseconds
249 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
250 *
251 * This structure groups together three kinds of CPU time that are tracked for
252 * threads and thread groups. Most things considering CPU time want to group
253 * these counts together and treat all three of them in parallel.
254 */
255struct task_cputime {
256 u64 utime;
257 u64 stime;
258 unsigned long long sum_exec_runtime;
259};
260
261/* Alternate field names when used on cache expirations: */
262#define virt_exp utime
263#define prof_exp stime
264#define sched_exp sum_exec_runtime
265
266enum vtime_state {
267 /* Task is sleeping or running in a CPU with VTIME inactive: */
268 VTIME_INACTIVE = 0,
269 /* Task runs in userspace in a CPU with VTIME active: */
270 VTIME_USER,
271 /* Task runs in kernelspace in a CPU with VTIME active: */
272 VTIME_SYS,
273};
274
275struct vtime {
276 seqcount_t seqcount;
277 unsigned long long starttime;
278 enum vtime_state state;
279 u64 utime;
280 u64 stime;
281 u64 gtime;
282};
283
284struct sched_info {
285#ifdef CONFIG_SCHED_INFO
286 /* Cumulative counters: */
287
288 /* # of times we have run on this CPU: */
289 unsigned long pcount;
290
291 /* Time spent waiting on a runqueue: */
292 unsigned long long run_delay;
293
294 /* Timestamps: */
295
296 /* When did we last run on a CPU? */
297 unsigned long long last_arrival;
298
299 /* When were we last queued to run? */
300 unsigned long long last_queued;
301
302#endif /* CONFIG_SCHED_INFO */
303};
304
305/*
306 * Integer metrics need fixed point arithmetic, e.g., sched/fair
307 * has a few: load, load_avg, util_avg, freq, and capacity.
308 *
309 * We define a basic fixed point arithmetic range, and then formalize
310 * all these metrics based on that basic range.
311 */
312# define SCHED_FIXEDPOINT_SHIFT 10
313# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
314
315struct load_weight {
316 unsigned long weight;
317 u32 inv_weight;
318};
319
320/**
321 * struct util_est - Estimation utilization of FAIR tasks
322 * @enqueued: instantaneous estimated utilization of a task/cpu
323 * @ewma: the Exponential Weighted Moving Average (EWMA)
324 * utilization of a task
325 *
326 * Support data structure to track an Exponential Weighted Moving Average
327 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
328 * average each time a task completes an activation. Sample's weight is chosen
329 * so that the EWMA will be relatively insensitive to transient changes to the
330 * task's workload.
331 *
332 * The enqueued attribute has a slightly different meaning for tasks and cpus:
333 * - task: the task's util_avg at last task dequeue time
334 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
335 * Thus, the util_est.enqueued of a task represents the contribution on the
336 * estimated utilization of the CPU where that task is currently enqueued.
337 *
338 * Only for tasks we track a moving average of the past instantaneous
339 * estimated utilization. This allows to absorb sporadic drops in utilization
340 * of an otherwise almost periodic task.
341 */
342struct util_est {
343 unsigned int enqueued;
344 unsigned int ewma;
345#define UTIL_EST_WEIGHT_SHIFT 2
346} __attribute__((__aligned__(sizeof(u64))));
347
348/*
349 * The load_avg/util_avg accumulates an infinite geometric series
350 * (see __update_load_avg() in kernel/sched/fair.c).
351 *
352 * [load_avg definition]
353 *
354 * load_avg = runnable% * scale_load_down(load)
355 *
356 * where runnable% is the time ratio that a sched_entity is runnable.
357 * For cfs_rq, it is the aggregated load_avg of all runnable and
358 * blocked sched_entities.
359 *
360 * [util_avg definition]
361 *
362 * util_avg = running% * SCHED_CAPACITY_SCALE
363 *
364 * where running% is the time ratio that a sched_entity is running on
365 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
366 * and blocked sched_entities.
367 *
368 * load_avg and util_avg don't direcly factor frequency scaling and CPU
369 * capacity scaling. The scaling is done through the rq_clock_pelt that
370 * is used for computing those signals (see update_rq_clock_pelt())
371 *
372 * N.B., the above ratios (runnable% and running%) themselves are in the
373 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
374 * to as large a range as necessary. This is for example reflected by
375 * util_avg's SCHED_CAPACITY_SCALE.
376 *
377 * [Overflow issue]
378 *
379 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
380 * with the highest load (=88761), always runnable on a single cfs_rq,
381 * and should not overflow as the number already hits PID_MAX_LIMIT.
382 *
383 * For all other cases (including 32-bit kernels), struct load_weight's
384 * weight will overflow first before we do, because:
385 *
386 * Max(load_avg) <= Max(load.weight)
387 *
388 * Then it is the load_weight's responsibility to consider overflow
389 * issues.
390 */
391struct sched_avg {
392 u64 last_update_time;
393 u64 load_sum;
394 u64 runnable_load_sum;
395 u32 util_sum;
396 u32 period_contrib;
397 unsigned long load_avg;
398 unsigned long runnable_load_avg;
399 unsigned long util_avg;
400 struct util_est util_est;
401} ____cacheline_aligned;
402
403struct sched_statistics {
404#ifdef CONFIG_SCHEDSTATS
405 u64 wait_start;
406 u64 wait_max;
407 u64 wait_count;
408 u64 wait_sum;
409 u64 iowait_count;
410 u64 iowait_sum;
411
412 u64 sleep_start;
413 u64 sleep_max;
414 s64 sum_sleep_runtime;
415
416 u64 block_start;
417 u64 block_max;
418 u64 exec_max;
419 u64 slice_max;
420
421 u64 nr_migrations_cold;
422 u64 nr_failed_migrations_affine;
423 u64 nr_failed_migrations_running;
424 u64 nr_failed_migrations_hot;
425 u64 nr_forced_migrations;
426
427 u64 nr_wakeups;
428 u64 nr_wakeups_sync;
429 u64 nr_wakeups_migrate;
430 u64 nr_wakeups_local;
431 u64 nr_wakeups_remote;
432 u64 nr_wakeups_affine;
433 u64 nr_wakeups_affine_attempts;
434 u64 nr_wakeups_passive;
435 u64 nr_wakeups_idle;
436#endif
437};
438
439struct sched_entity {
440 /* For load-balancing: */
441 struct load_weight load;
442 unsigned long runnable_weight;
443 struct rb_node run_node;
444 struct list_head group_node;
445 unsigned int on_rq;
446
447 u64 exec_start;
448 u64 sum_exec_runtime;
449 u64 vruntime;
450 u64 prev_sum_exec_runtime;
451
452 u64 nr_migrations;
453
454 struct sched_statistics statistics;
455
456#ifdef CONFIG_FAIR_GROUP_SCHED
457 int depth;
458 struct sched_entity *parent;
459 /* rq on which this entity is (to be) queued: */
460 struct cfs_rq *cfs_rq;
461 /* rq "owned" by this entity/group: */
462 struct cfs_rq *my_q;
463#endif
464
465#ifdef CONFIG_SMP
466 /*
467 * Per entity load average tracking.
468 *
469 * Put into separate cache line so it does not
470 * collide with read-mostly values above.
471 */
472 struct sched_avg avg;
473#endif
474};
475
476struct sched_rt_entity {
477 struct list_head run_list;
478 unsigned long timeout;
479 unsigned long watchdog_stamp;
480 unsigned int time_slice;
481 unsigned short on_rq;
482 unsigned short on_list;
483
484 struct sched_rt_entity *back;
485#ifdef CONFIG_RT_GROUP_SCHED
486 struct sched_rt_entity *parent;
487 /* rq on which this entity is (to be) queued: */
488 struct rt_rq *rt_rq;
489 /* rq "owned" by this entity/group: */
490 struct rt_rq *my_q;
491#endif
492} __randomize_layout;
493
494struct sched_dl_entity {
495 struct rb_node rb_node;
496
497 /*
498 * Original scheduling parameters. Copied here from sched_attr
499 * during sched_setattr(), they will remain the same until
500 * the next sched_setattr().
501 */
502 u64 dl_runtime; /* Maximum runtime for each instance */
503 u64 dl_deadline; /* Relative deadline of each instance */
504 u64 dl_period; /* Separation of two instances (period) */
505 u64 dl_bw; /* dl_runtime / dl_period */
506 u64 dl_density; /* dl_runtime / dl_deadline */
507
508 /*
509 * Actual scheduling parameters. Initialized with the values above,
510 * they are continuously updated during task execution. Note that
511 * the remaining runtime could be < 0 in case we are in overrun.
512 */
513 s64 runtime; /* Remaining runtime for this instance */
514 u64 deadline; /* Absolute deadline for this instance */
515 unsigned int flags; /* Specifying the scheduler behaviour */
516
517 /*
518 * Some bool flags:
519 *
520 * @dl_throttled tells if we exhausted the runtime. If so, the
521 * task has to wait for a replenishment to be performed at the
522 * next firing of dl_timer.
523 *
524 * @dl_boosted tells if we are boosted due to DI. If so we are
525 * outside bandwidth enforcement mechanism (but only until we
526 * exit the critical section);
527 *
528 * @dl_yielded tells if task gave up the CPU before consuming
529 * all its available runtime during the last job.
530 *
531 * @dl_non_contending tells if the task is inactive while still
532 * contributing to the active utilization. In other words, it
533 * indicates if the inactive timer has been armed and its handler
534 * has not been executed yet. This flag is useful to avoid race
535 * conditions between the inactive timer handler and the wakeup
536 * code.
537 *
538 * @dl_overrun tells if the task asked to be informed about runtime
539 * overruns.
540 */
541 unsigned int dl_throttled : 1;
542 unsigned int dl_boosted : 1;
543 unsigned int dl_yielded : 1;
544 unsigned int dl_non_contending : 1;
545 unsigned int dl_overrun : 1;
546
547 /*
548 * Bandwidth enforcement timer. Each -deadline task has its
549 * own bandwidth to be enforced, thus we need one timer per task.
550 */
551 struct hrtimer dl_timer;
552
553 /*
554 * Inactive timer, responsible for decreasing the active utilization
555 * at the "0-lag time". When a -deadline task blocks, it contributes
556 * to GRUB's active utilization until the "0-lag time", hence a
557 * timer is needed to decrease the active utilization at the correct
558 * time.
559 */
560 struct hrtimer inactive_timer;
561};
562
563union rcu_special {
564 struct {
565 u8 blocked;
566 u8 need_qs;
567 u8 exp_hint; /* Hint for performance. */
568 u8 pad; /* No garbage from compiler! */
569 } b; /* Bits. */
570 u32 s; /* Set of bits. */
571};
572
573enum perf_event_task_context {
574 perf_invalid_context = -1,
575 perf_hw_context = 0,
576 perf_sw_context,
577 perf_nr_task_contexts,
578};
579
580struct wake_q_node {
581 struct wake_q_node *next;
582};
583
584struct task_struct {
585#ifdef CONFIG_THREAD_INFO_IN_TASK
586 /*
587 * For reasons of header soup (see current_thread_info()), this
588 * must be the first element of task_struct.
589 */
590 struct thread_info thread_info;
591#endif
592 /* -1 unrunnable, 0 runnable, >0 stopped: */
593 volatile long state;
594
595 /*
596 * This begins the randomizable portion of task_struct. Only
597 * scheduling-critical items should be added above here.
598 */
599 randomized_struct_fields_start
600
601 void *stack;
602 refcount_t usage;
603 /* Per task flags (PF_*), defined further below: */
604 unsigned int flags;
605 unsigned int ptrace;
606
607#ifdef CONFIG_SMP
608 struct llist_node wake_entry;
609 int on_cpu;
610#ifdef CONFIG_THREAD_INFO_IN_TASK
611 /* Current CPU: */
612 unsigned int cpu;
613#endif
614 unsigned int wakee_flips;
615 unsigned long wakee_flip_decay_ts;
616 struct task_struct *last_wakee;
617
618 /*
619 * recent_used_cpu is initially set as the last CPU used by a task
620 * that wakes affine another task. Waker/wakee relationships can
621 * push tasks around a CPU where each wakeup moves to the next one.
622 * Tracking a recently used CPU allows a quick search for a recently
623 * used CPU that may be idle.
624 */
625 int recent_used_cpu;
626 int wake_cpu;
627#endif
628 int on_rq;
629
630 int prio;
631 int static_prio;
632 int normal_prio;
633 unsigned int rt_priority;
634
635 const struct sched_class *sched_class;
636 struct sched_entity se;
637 struct sched_rt_entity rt;
638#ifdef CONFIG_CGROUP_SCHED
639 struct task_group *sched_task_group;
640#endif
641 struct sched_dl_entity dl;
642
643#ifdef CONFIG_PREEMPT_NOTIFIERS
644 /* List of struct preempt_notifier: */
645 struct hlist_head preempt_notifiers;
646#endif
647
648#ifdef CONFIG_BLK_DEV_IO_TRACE
649 unsigned int btrace_seq;
650#endif
651
652 unsigned int policy;
653 int nr_cpus_allowed;
654 cpumask_t cpus_allowed;
655
656#ifdef CONFIG_PREEMPT_RCU
657 int rcu_read_lock_nesting;
658 union rcu_special rcu_read_unlock_special;
659 struct list_head rcu_node_entry;
660 struct rcu_node *rcu_blocked_node;
661#endif /* #ifdef CONFIG_PREEMPT_RCU */
662
663#ifdef CONFIG_TASKS_RCU
664 unsigned long rcu_tasks_nvcsw;
665 u8 rcu_tasks_holdout;
666 u8 rcu_tasks_idx;
667 int rcu_tasks_idle_cpu;
668 struct list_head rcu_tasks_holdout_list;
669#endif /* #ifdef CONFIG_TASKS_RCU */
670
671 struct sched_info sched_info;
672
673 struct list_head tasks;
674#ifdef CONFIG_SMP
675 struct plist_node pushable_tasks;
676 struct rb_node pushable_dl_tasks;
677#endif
678
679 struct mm_struct *mm;
680 struct mm_struct *active_mm;
681
682 /* Per-thread vma caching: */
683 struct vmacache vmacache;
684
685#ifdef SPLIT_RSS_COUNTING
686 struct task_rss_stat rss_stat;
687#endif
688 int exit_state;
689 int exit_code;
690 int exit_signal;
691 /* The signal sent when the parent dies: */
692 int pdeath_signal;
693 /* JOBCTL_*, siglock protected: */
694 unsigned long jobctl;
695
696 /* Used for emulating ABI behavior of previous Linux versions: */
697 unsigned int personality;
698
699 /* Scheduler bits, serialized by scheduler locks: */
700 unsigned sched_reset_on_fork:1;
701 unsigned sched_contributes_to_load:1;
702 unsigned sched_migrated:1;
703 unsigned sched_remote_wakeup:1;
704#ifdef CONFIG_PSI
705 unsigned sched_psi_wake_requeue:1;
706#endif
707
708 /* Force alignment to the next boundary: */
709 unsigned :0;
710
711 /* Unserialized, strictly 'current' */
712
713 /* Bit to tell LSMs we're in execve(): */
714 unsigned in_execve:1;
715 unsigned in_iowait:1;
716#ifndef TIF_RESTORE_SIGMASK
717 unsigned restore_sigmask:1;
718#endif
719#ifdef CONFIG_MEMCG
720 unsigned in_user_fault:1;
721#endif
722#ifdef CONFIG_COMPAT_BRK
723 unsigned brk_randomized:1;
724#endif
725#ifdef CONFIG_CGROUPS
726 /* disallow userland-initiated cgroup migration */
727 unsigned no_cgroup_migration:1;
728 /* task is frozen/stopped (used by the cgroup freezer) */
729 unsigned frozen:1;
730#endif
731#ifdef CONFIG_BLK_CGROUP
732 /* to be used once the psi infrastructure lands upstream. */
733 unsigned use_memdelay:1;
734#endif
735
736 unsigned long atomic_flags; /* Flags requiring atomic access. */
737
738 struct restart_block restart_block;
739
740 pid_t pid;
741 pid_t tgid;
742
743#ifdef CONFIG_STACKPROTECTOR
744 /* Canary value for the -fstack-protector GCC feature: */
745 unsigned long stack_canary;
746#endif
747 /*
748 * Pointers to the (original) parent process, youngest child, younger sibling,
749 * older sibling, respectively. (p->father can be replaced with
750 * p->real_parent->pid)
751 */
752
753 /* Real parent process: */
754 struct task_struct __rcu *real_parent;
755
756 /* Recipient of SIGCHLD, wait4() reports: */
757 struct task_struct __rcu *parent;
758
759 /*
760 * Children/sibling form the list of natural children:
761 */
762 struct list_head children;
763 struct list_head sibling;
764 struct task_struct *group_leader;
765
766 /*
767 * 'ptraced' is the list of tasks this task is using ptrace() on.
768 *
769 * This includes both natural children and PTRACE_ATTACH targets.
770 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
771 */
772 struct list_head ptraced;
773 struct list_head ptrace_entry;
774
775 /* PID/PID hash table linkage. */
776 struct pid *thread_pid;
777 struct hlist_node pid_links[PIDTYPE_MAX];
778 struct list_head thread_group;
779 struct list_head thread_node;
780
781 struct completion *vfork_done;
782
783 /* CLONE_CHILD_SETTID: */
784 int __user *set_child_tid;
785
786 /* CLONE_CHILD_CLEARTID: */
787 int __user *clear_child_tid;
788
789 u64 utime;
790 u64 stime;
791#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
792 u64 utimescaled;
793 u64 stimescaled;
794#endif
795 u64 gtime;
796 struct prev_cputime prev_cputime;
797#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
798 struct vtime vtime;
799#endif
800
801#ifdef CONFIG_NO_HZ_FULL
802 atomic_t tick_dep_mask;
803#endif
804 /* Context switch counts: */
805 unsigned long nvcsw;
806 unsigned long nivcsw;
807
808 /* Monotonic time in nsecs: */
809 u64 start_time;
810
811 /* Boot based time in nsecs: */
812 u64 real_start_time;
813
814 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
815 unsigned long min_flt;
816 unsigned long maj_flt;
817
818#ifdef CONFIG_POSIX_TIMERS
819 struct task_cputime cputime_expires;
820 struct list_head cpu_timers[3];
821#endif
822
823 /* Process credentials: */
824
825 /* Tracer's credentials at attach: */
826 const struct cred __rcu *ptracer_cred;
827
828 /* Objective and real subjective task credentials (COW): */
829 const struct cred __rcu *real_cred;
830
831 /* Effective (overridable) subjective task credentials (COW): */
832 const struct cred __rcu *cred;
833
834 /*
835 * executable name, excluding path.
836 *
837 * - normally initialized setup_new_exec()
838 * - access it with [gs]et_task_comm()
839 * - lock it with task_lock()
840 */
841 char comm[TASK_COMM_LEN];
842
843 struct nameidata *nameidata;
844
845#ifdef CONFIG_SYSVIPC
846 struct sysv_sem sysvsem;
847 struct sysv_shm sysvshm;
848#endif
849#ifdef CONFIG_DETECT_HUNG_TASK
850 unsigned long last_switch_count;
851 unsigned long last_switch_time;
852#endif
853 /* Filesystem information: */
854 struct fs_struct *fs;
855
856 /* Open file information: */
857 struct files_struct *files;
858
859 /* Namespaces: */
860 struct nsproxy *nsproxy;
861
862 /* Signal handlers: */
863 struct signal_struct *signal;
864 struct sighand_struct *sighand;
865 sigset_t blocked;
866 sigset_t real_blocked;
867 /* Restored if set_restore_sigmask() was used: */
868 sigset_t saved_sigmask;
869 struct sigpending pending;
870 unsigned long sas_ss_sp;
871 size_t sas_ss_size;
872 unsigned int sas_ss_flags;
873
874 struct callback_head *task_works;
875
876#ifdef CONFIG_AUDIT
877#ifdef CONFIG_AUDITSYSCALL
878 struct audit_context *audit_context;
879#endif
880 kuid_t loginuid;
881 unsigned int sessionid;
882#endif
883 struct seccomp seccomp;
884
885 /* Thread group tracking: */
886 u32 parent_exec_id;
887 u32 self_exec_id;
888
889 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
890 spinlock_t alloc_lock;
891
892 /* Protection of the PI data structures: */
893 raw_spinlock_t pi_lock;
894
895 struct wake_q_node wake_q;
896
897#ifdef CONFIG_RT_MUTEXES
898 /* PI waiters blocked on a rt_mutex held by this task: */
899 struct rb_root_cached pi_waiters;
900 /* Updated under owner's pi_lock and rq lock */
901 struct task_struct *pi_top_task;
902 /* Deadlock detection and priority inheritance handling: */
903 struct rt_mutex_waiter *pi_blocked_on;
904#endif
905
906#ifdef CONFIG_DEBUG_MUTEXES
907 /* Mutex deadlock detection: */
908 struct mutex_waiter *blocked_on;
909#endif
910
911#ifdef CONFIG_TRACE_IRQFLAGS
912 unsigned int irq_events;
913 unsigned long hardirq_enable_ip;
914 unsigned long hardirq_disable_ip;
915 unsigned int hardirq_enable_event;
916 unsigned int hardirq_disable_event;
917 int hardirqs_enabled;
918 int hardirq_context;
919 unsigned long softirq_disable_ip;
920 unsigned long softirq_enable_ip;
921 unsigned int softirq_disable_event;
922 unsigned int softirq_enable_event;
923 int softirqs_enabled;
924 int softirq_context;
925#endif
926
927#ifdef CONFIG_LOCKDEP
928# define MAX_LOCK_DEPTH 48UL
929 u64 curr_chain_key;
930 int lockdep_depth;
931 unsigned int lockdep_recursion;
932 struct held_lock held_locks[MAX_LOCK_DEPTH];
933#endif
934
935#ifdef CONFIG_UBSAN
936 unsigned int in_ubsan;
937#endif
938
939 /* Journalling filesystem info: */
940 void *journal_info;
941
942 /* Stacked block device info: */
943 struct bio_list *bio_list;
944
945#ifdef CONFIG_BLOCK
946 /* Stack plugging: */
947 struct blk_plug *plug;
948#endif
949
950 /* VM state: */
951 struct reclaim_state *reclaim_state;
952
953 struct backing_dev_info *backing_dev_info;
954
955 struct io_context *io_context;
956
957#ifdef CONFIG_COMPACTION
958 struct capture_control *capture_control;
959#endif
960 /* Ptrace state: */
961 unsigned long ptrace_message;
962 kernel_siginfo_t *last_siginfo;
963
964 struct task_io_accounting ioac;
965#ifdef CONFIG_PSI
966 /* Pressure stall state */
967 unsigned int psi_flags;
968#endif
969#ifdef CONFIG_TASK_XACCT
970 /* Accumulated RSS usage: */
971 u64 acct_rss_mem1;
972 /* Accumulated virtual memory usage: */
973 u64 acct_vm_mem1;
974 /* stime + utime since last update: */
975 u64 acct_timexpd;
976#endif
977#ifdef CONFIG_CPUSETS
978 /* Protected by ->alloc_lock: */
979 nodemask_t mems_allowed;
980 /* Seqence number to catch updates: */
981 seqcount_t mems_allowed_seq;
982 int cpuset_mem_spread_rotor;
983 int cpuset_slab_spread_rotor;
984#endif
985#ifdef CONFIG_CGROUPS
986 /* Control Group info protected by css_set_lock: */
987 struct css_set __rcu *cgroups;
988 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
989 struct list_head cg_list;
990#endif
991#ifdef CONFIG_X86_CPU_RESCTRL
992 u32 closid;
993 u32 rmid;
994#endif
995#ifdef CONFIG_FUTEX
996 struct robust_list_head __user *robust_list;
997#ifdef CONFIG_COMPAT
998 struct compat_robust_list_head __user *compat_robust_list;
999#endif
1000 struct list_head pi_state_list;
1001 struct futex_pi_state *pi_state_cache;
1002#endif
1003#ifdef CONFIG_PERF_EVENTS
1004 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1005 struct mutex perf_event_mutex;
1006 struct list_head perf_event_list;
1007#endif
1008#ifdef CONFIG_DEBUG_PREEMPT
1009 unsigned long preempt_disable_ip;
1010#endif
1011#ifdef CONFIG_NUMA
1012 /* Protected by alloc_lock: */
1013 struct mempolicy *mempolicy;
1014 short il_prev;
1015 short pref_node_fork;
1016#endif
1017#ifdef CONFIG_NUMA_BALANCING
1018 int numa_scan_seq;
1019 unsigned int numa_scan_period;
1020 unsigned int numa_scan_period_max;
1021 int numa_preferred_nid;
1022 unsigned long numa_migrate_retry;
1023 /* Migration stamp: */
1024 u64 node_stamp;
1025 u64 last_task_numa_placement;
1026 u64 last_sum_exec_runtime;
1027 struct callback_head numa_work;
1028
1029 struct numa_group *numa_group;
1030
1031 /*
1032 * numa_faults is an array split into four regions:
1033 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1034 * in this precise order.
1035 *
1036 * faults_memory: Exponential decaying average of faults on a per-node
1037 * basis. Scheduling placement decisions are made based on these
1038 * counts. The values remain static for the duration of a PTE scan.
1039 * faults_cpu: Track the nodes the process was running on when a NUMA
1040 * hinting fault was incurred.
1041 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1042 * during the current scan window. When the scan completes, the counts
1043 * in faults_memory and faults_cpu decay and these values are copied.
1044 */
1045 unsigned long *numa_faults;
1046 unsigned long total_numa_faults;
1047
1048 /*
1049 * numa_faults_locality tracks if faults recorded during the last
1050 * scan window were remote/local or failed to migrate. The task scan
1051 * period is adapted based on the locality of the faults with different
1052 * weights depending on whether they were shared or private faults
1053 */
1054 unsigned long numa_faults_locality[3];
1055
1056 unsigned long numa_pages_migrated;
1057#endif /* CONFIG_NUMA_BALANCING */
1058
1059#ifdef CONFIG_RSEQ
1060 struct rseq __user *rseq;
1061 u32 rseq_sig;
1062 /*
1063 * RmW on rseq_event_mask must be performed atomically
1064 * with respect to preemption.
1065 */
1066 unsigned long rseq_event_mask;
1067#endif
1068
1069 struct tlbflush_unmap_batch tlb_ubc;
1070
1071 struct rcu_head rcu;
1072
1073 /* Cache last used pipe for splice(): */
1074 struct pipe_inode_info *splice_pipe;
1075
1076 struct page_frag task_frag;
1077
1078#ifdef CONFIG_TASK_DELAY_ACCT
1079 struct task_delay_info *delays;
1080#endif
1081
1082#ifdef CONFIG_FAULT_INJECTION
1083 int make_it_fail;
1084 unsigned int fail_nth;
1085#endif
1086 /*
1087 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1088 * balance_dirty_pages() for a dirty throttling pause:
1089 */
1090 int nr_dirtied;
1091 int nr_dirtied_pause;
1092 /* Start of a write-and-pause period: */
1093 unsigned long dirty_paused_when;
1094
1095#ifdef CONFIG_LATENCYTOP
1096 int latency_record_count;
1097 struct latency_record latency_record[LT_SAVECOUNT];
1098#endif
1099 /*
1100 * Time slack values; these are used to round up poll() and
1101 * select() etc timeout values. These are in nanoseconds.
1102 */
1103 u64 timer_slack_ns;
1104 u64 default_timer_slack_ns;
1105
1106#ifdef CONFIG_KASAN
1107 unsigned int kasan_depth;
1108#endif
1109
1110#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1111 /* Index of current stored address in ret_stack: */
1112 int curr_ret_stack;
1113 int curr_ret_depth;
1114
1115 /* Stack of return addresses for return function tracing: */
1116 struct ftrace_ret_stack *ret_stack;
1117
1118 /* Timestamp for last schedule: */
1119 unsigned long long ftrace_timestamp;
1120
1121 /*
1122 * Number of functions that haven't been traced
1123 * because of depth overrun:
1124 */
1125 atomic_t trace_overrun;
1126
1127 /* Pause tracing: */
1128 atomic_t tracing_graph_pause;
1129#endif
1130
1131#ifdef CONFIG_TRACING
1132 /* State flags for use by tracers: */
1133 unsigned long trace;
1134
1135 /* Bitmask and counter of trace recursion: */
1136 unsigned long trace_recursion;
1137#endif /* CONFIG_TRACING */
1138
1139#ifdef CONFIG_KCOV
1140 /* Coverage collection mode enabled for this task (0 if disabled): */
1141 unsigned int kcov_mode;
1142
1143 /* Size of the kcov_area: */
1144 unsigned int kcov_size;
1145
1146 /* Buffer for coverage collection: */
1147 void *kcov_area;
1148
1149 /* KCOV descriptor wired with this task or NULL: */
1150 struct kcov *kcov;
1151#endif
1152
1153#ifdef CONFIG_MEMCG
1154 struct mem_cgroup *memcg_in_oom;
1155 gfp_t memcg_oom_gfp_mask;
1156 int memcg_oom_order;
1157
1158 /* Number of pages to reclaim on returning to userland: */
1159 unsigned int memcg_nr_pages_over_high;
1160
1161 /* Used by memcontrol for targeted memcg charge: */
1162 struct mem_cgroup *active_memcg;
1163#endif
1164
1165#ifdef CONFIG_BLK_CGROUP
1166 struct request_queue *throttle_queue;
1167#endif
1168
1169#ifdef CONFIG_UPROBES
1170 struct uprobe_task *utask;
1171#endif
1172#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1173 unsigned int sequential_io;
1174 unsigned int sequential_io_avg;
1175#endif
1176#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1177 unsigned long task_state_change;
1178#endif
1179 int pagefault_disabled;
1180#ifdef CONFIG_MMU
1181 struct task_struct *oom_reaper_list;
1182#endif
1183#ifdef CONFIG_VMAP_STACK
1184 struct vm_struct *stack_vm_area;
1185#endif
1186#ifdef CONFIG_THREAD_INFO_IN_TASK
1187 /* A live task holds one reference: */
1188 refcount_t stack_refcount;
1189#endif
1190#ifdef CONFIG_LIVEPATCH
1191 int patch_state;
1192#endif
1193#ifdef CONFIG_SECURITY
1194 /* Used by LSM modules for access restriction: */
1195 void *security;
1196#endif
1197
1198#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1199 unsigned long lowest_stack;
1200 unsigned long prev_lowest_stack;
1201#endif
1202
1203 /*
1204 * New fields for task_struct should be added above here, so that
1205 * they are included in the randomized portion of task_struct.
1206 */
1207 randomized_struct_fields_end
1208
1209 /* CPU-specific state of this task: */
1210 struct thread_struct thread;
1211
1212 /*
1213 * WARNING: on x86, 'thread_struct' contains a variable-sized
1214 * structure. It *MUST* be at the end of 'task_struct'.
1215 *
1216 * Do not put anything below here!
1217 */
1218};
1219
1220static inline struct pid *task_pid(struct task_struct *task)
1221{
1222 return task->thread_pid;
1223}
1224
1225/*
1226 * the helpers to get the task's different pids as they are seen
1227 * from various namespaces
1228 *
1229 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1230 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1231 * current.
1232 * task_xid_nr_ns() : id seen from the ns specified;
1233 *
1234 * see also pid_nr() etc in include/linux/pid.h
1235 */
1236pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1237
1238static inline pid_t task_pid_nr(struct task_struct *tsk)
1239{
1240 return tsk->pid;
1241}
1242
1243static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1244{
1245 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1246}
1247
1248static inline pid_t task_pid_vnr(struct task_struct *tsk)
1249{
1250 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1251}
1252
1253
1254static inline pid_t task_tgid_nr(struct task_struct *tsk)
1255{
1256 return tsk->tgid;
1257}
1258
1259/**
1260 * pid_alive - check that a task structure is not stale
1261 * @p: Task structure to be checked.
1262 *
1263 * Test if a process is not yet dead (at most zombie state)
1264 * If pid_alive fails, then pointers within the task structure
1265 * can be stale and must not be dereferenced.
1266 *
1267 * Return: 1 if the process is alive. 0 otherwise.
1268 */
1269static inline int pid_alive(const struct task_struct *p)
1270{
1271 return p->thread_pid != NULL;
1272}
1273
1274static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1275{
1276 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1277}
1278
1279static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1280{
1281 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1282}
1283
1284
1285static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1286{
1287 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1288}
1289
1290static inline pid_t task_session_vnr(struct task_struct *tsk)
1291{
1292 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1293}
1294
1295static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1296{
1297 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1298}
1299
1300static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1301{
1302 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1303}
1304
1305static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1306{
1307 pid_t pid = 0;
1308
1309 rcu_read_lock();
1310 if (pid_alive(tsk))
1311 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1312 rcu_read_unlock();
1313
1314 return pid;
1315}
1316
1317static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1318{
1319 return task_ppid_nr_ns(tsk, &init_pid_ns);
1320}
1321
1322/* Obsolete, do not use: */
1323static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1324{
1325 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1326}
1327
1328#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1329#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1330
1331static inline unsigned int task_state_index(struct task_struct *tsk)
1332{
1333 unsigned int tsk_state = READ_ONCE(tsk->state);
1334 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1335
1336 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1337
1338 if (tsk_state == TASK_IDLE)
1339 state = TASK_REPORT_IDLE;
1340
1341 return fls(state);
1342}
1343
1344static inline char task_index_to_char(unsigned int state)
1345{
1346 static const char state_char[] = "RSDTtXZPI";
1347
1348 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1349
1350 return state_char[state];
1351}
1352
1353static inline char task_state_to_char(struct task_struct *tsk)
1354{
1355 return task_index_to_char(task_state_index(tsk));
1356}
1357
1358/**
1359 * is_global_init - check if a task structure is init. Since init
1360 * is free to have sub-threads we need to check tgid.
1361 * @tsk: Task structure to be checked.
1362 *
1363 * Check if a task structure is the first user space task the kernel created.
1364 *
1365 * Return: 1 if the task structure is init. 0 otherwise.
1366 */
1367static inline int is_global_init(struct task_struct *tsk)
1368{
1369 return task_tgid_nr(tsk) == 1;
1370}
1371
1372extern struct pid *cad_pid;
1373
1374/*
1375 * Per process flags
1376 */
1377#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1378#define PF_EXITING 0x00000004 /* Getting shut down */
1379#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1380#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1381#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1382#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1383#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1384#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1385#define PF_DUMPCORE 0x00000200 /* Dumped core */
1386#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1387#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1388#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1389#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1390#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1391#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1392#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1393#define PF_KSWAPD 0x00020000 /* I am kswapd */
1394#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1395#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1396#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1397#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1398#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1399#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1400#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1401#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1402#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1403#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1404#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1405#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1406#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1407
1408/*
1409 * Only the _current_ task can read/write to tsk->flags, but other
1410 * tasks can access tsk->flags in readonly mode for example
1411 * with tsk_used_math (like during threaded core dumping).
1412 * There is however an exception to this rule during ptrace
1413 * or during fork: the ptracer task is allowed to write to the
1414 * child->flags of its traced child (same goes for fork, the parent
1415 * can write to the child->flags), because we're guaranteed the
1416 * child is not running and in turn not changing child->flags
1417 * at the same time the parent does it.
1418 */
1419#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1420#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1421#define clear_used_math() clear_stopped_child_used_math(current)
1422#define set_used_math() set_stopped_child_used_math(current)
1423
1424#define conditional_stopped_child_used_math(condition, child) \
1425 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1426
1427#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1428
1429#define copy_to_stopped_child_used_math(child) \
1430 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1431
1432/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1433#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1434#define used_math() tsk_used_math(current)
1435
1436static inline bool is_percpu_thread(void)
1437{
1438#ifdef CONFIG_SMP
1439 return (current->flags & PF_NO_SETAFFINITY) &&
1440 (current->nr_cpus_allowed == 1);
1441#else
1442 return true;
1443#endif
1444}
1445
1446/* Per-process atomic flags. */
1447#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1448#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1449#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1450#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1451#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1452#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1453#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1454#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1455
1456#define TASK_PFA_TEST(name, func) \
1457 static inline bool task_##func(struct task_struct *p) \
1458 { return test_bit(PFA_##name, &p->atomic_flags); }
1459
1460#define TASK_PFA_SET(name, func) \
1461 static inline void task_set_##func(struct task_struct *p) \
1462 { set_bit(PFA_##name, &p->atomic_flags); }
1463
1464#define TASK_PFA_CLEAR(name, func) \
1465 static inline void task_clear_##func(struct task_struct *p) \
1466 { clear_bit(PFA_##name, &p->atomic_flags); }
1467
1468TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1469TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1470
1471TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1472TASK_PFA_SET(SPREAD_PAGE, spread_page)
1473TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1474
1475TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1476TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1477TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1478
1479TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1480TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1481TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1482
1483TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1484TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1485TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1486
1487TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1488TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1489
1490TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1491TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1492TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1493
1494TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1495TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1496
1497static inline void
1498current_restore_flags(unsigned long orig_flags, unsigned long flags)
1499{
1500 current->flags &= ~flags;
1501 current->flags |= orig_flags & flags;
1502}
1503
1504extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1505extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1506#ifdef CONFIG_SMP
1507extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1508extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1509#else
1510static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1511{
1512}
1513static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1514{
1515 if (!cpumask_test_cpu(0, new_mask))
1516 return -EINVAL;
1517 return 0;
1518}
1519#endif
1520
1521#ifndef cpu_relax_yield
1522#define cpu_relax_yield() cpu_relax()
1523#endif
1524
1525extern int yield_to(struct task_struct *p, bool preempt);
1526extern void set_user_nice(struct task_struct *p, long nice);
1527extern int task_prio(const struct task_struct *p);
1528
1529/**
1530 * task_nice - return the nice value of a given task.
1531 * @p: the task in question.
1532 *
1533 * Return: The nice value [ -20 ... 0 ... 19 ].
1534 */
1535static inline int task_nice(const struct task_struct *p)
1536{
1537 return PRIO_TO_NICE((p)->static_prio);
1538}
1539
1540extern int can_nice(const struct task_struct *p, const int nice);
1541extern int task_curr(const struct task_struct *p);
1542extern int idle_cpu(int cpu);
1543extern int available_idle_cpu(int cpu);
1544extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1545extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1546extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1547extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1548extern struct task_struct *idle_task(int cpu);
1549
1550/**
1551 * is_idle_task - is the specified task an idle task?
1552 * @p: the task in question.
1553 *
1554 * Return: 1 if @p is an idle task. 0 otherwise.
1555 */
1556static inline bool is_idle_task(const struct task_struct *p)
1557{
1558 return !!(p->flags & PF_IDLE);
1559}
1560
1561extern struct task_struct *curr_task(int cpu);
1562extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1563
1564void yield(void);
1565
1566union thread_union {
1567#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1568 struct task_struct task;
1569#endif
1570#ifndef CONFIG_THREAD_INFO_IN_TASK
1571 struct thread_info thread_info;
1572#endif
1573 unsigned long stack[THREAD_SIZE/sizeof(long)];
1574};
1575
1576#ifndef CONFIG_THREAD_INFO_IN_TASK
1577extern struct thread_info init_thread_info;
1578#endif
1579
1580extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1581
1582#ifdef CONFIG_THREAD_INFO_IN_TASK
1583static inline struct thread_info *task_thread_info(struct task_struct *task)
1584{
1585 return &task->thread_info;
1586}
1587#elif !defined(__HAVE_THREAD_FUNCTIONS)
1588# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1589#endif
1590
1591/*
1592 * find a task by one of its numerical ids
1593 *
1594 * find_task_by_pid_ns():
1595 * finds a task by its pid in the specified namespace
1596 * find_task_by_vpid():
1597 * finds a task by its virtual pid
1598 *
1599 * see also find_vpid() etc in include/linux/pid.h
1600 */
1601
1602extern struct task_struct *find_task_by_vpid(pid_t nr);
1603extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1604
1605/*
1606 * find a task by its virtual pid and get the task struct
1607 */
1608extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1609
1610extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1611extern int wake_up_process(struct task_struct *tsk);
1612extern void wake_up_new_task(struct task_struct *tsk);
1613
1614#ifdef CONFIG_SMP
1615extern void kick_process(struct task_struct *tsk);
1616#else
1617static inline void kick_process(struct task_struct *tsk) { }
1618#endif
1619
1620extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1621
1622static inline void set_task_comm(struct task_struct *tsk, const char *from)
1623{
1624 __set_task_comm(tsk, from, false);
1625}
1626
1627extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1628#define get_task_comm(buf, tsk) ({ \
1629 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1630 __get_task_comm(buf, sizeof(buf), tsk); \
1631})
1632
1633#ifdef CONFIG_SMP
1634void scheduler_ipi(void);
1635extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1636#else
1637static inline void scheduler_ipi(void) { }
1638static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1639{
1640 return 1;
1641}
1642#endif
1643
1644/*
1645 * Set thread flags in other task's structures.
1646 * See asm/thread_info.h for TIF_xxxx flags available:
1647 */
1648static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1649{
1650 set_ti_thread_flag(task_thread_info(tsk), flag);
1651}
1652
1653static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1654{
1655 clear_ti_thread_flag(task_thread_info(tsk), flag);
1656}
1657
1658static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1659 bool value)
1660{
1661 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1662}
1663
1664static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1665{
1666 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1667}
1668
1669static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1670{
1671 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1672}
1673
1674static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1675{
1676 return test_ti_thread_flag(task_thread_info(tsk), flag);
1677}
1678
1679static inline void set_tsk_need_resched(struct task_struct *tsk)
1680{
1681 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1682}
1683
1684static inline void clear_tsk_need_resched(struct task_struct *tsk)
1685{
1686 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1687}
1688
1689static inline int test_tsk_need_resched(struct task_struct *tsk)
1690{
1691 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1692}
1693
1694/*
1695 * cond_resched() and cond_resched_lock(): latency reduction via
1696 * explicit rescheduling in places that are safe. The return
1697 * value indicates whether a reschedule was done in fact.
1698 * cond_resched_lock() will drop the spinlock before scheduling,
1699 */
1700#ifndef CONFIG_PREEMPT
1701extern int _cond_resched(void);
1702#else
1703static inline int _cond_resched(void) { return 0; }
1704#endif
1705
1706#define cond_resched() ({ \
1707 ___might_sleep(__FILE__, __LINE__, 0); \
1708 _cond_resched(); \
1709})
1710
1711extern int __cond_resched_lock(spinlock_t *lock);
1712
1713#define cond_resched_lock(lock) ({ \
1714 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1715 __cond_resched_lock(lock); \
1716})
1717
1718static inline void cond_resched_rcu(void)
1719{
1720#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1721 rcu_read_unlock();
1722 cond_resched();
1723 rcu_read_lock();
1724#endif
1725}
1726
1727/*
1728 * Does a critical section need to be broken due to another
1729 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1730 * but a general need for low latency)
1731 */
1732static inline int spin_needbreak(spinlock_t *lock)
1733{
1734#ifdef CONFIG_PREEMPT
1735 return spin_is_contended(lock);
1736#else
1737 return 0;
1738#endif
1739}
1740
1741static __always_inline bool need_resched(void)
1742{
1743 return unlikely(tif_need_resched());
1744}
1745
1746/*
1747 * Wrappers for p->thread_info->cpu access. No-op on UP.
1748 */
1749#ifdef CONFIG_SMP
1750
1751static inline unsigned int task_cpu(const struct task_struct *p)
1752{
1753#ifdef CONFIG_THREAD_INFO_IN_TASK
1754 return READ_ONCE(p->cpu);
1755#else
1756 return READ_ONCE(task_thread_info(p)->cpu);
1757#endif
1758}
1759
1760extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1761
1762#else
1763
1764static inline unsigned int task_cpu(const struct task_struct *p)
1765{
1766 return 0;
1767}
1768
1769static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1770{
1771}
1772
1773#endif /* CONFIG_SMP */
1774
1775/*
1776 * In order to reduce various lock holder preemption latencies provide an
1777 * interface to see if a vCPU is currently running or not.
1778 *
1779 * This allows us to terminate optimistic spin loops and block, analogous to
1780 * the native optimistic spin heuristic of testing if the lock owner task is
1781 * running or not.
1782 */
1783#ifndef vcpu_is_preempted
1784# define vcpu_is_preempted(cpu) false
1785#endif
1786
1787extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1788extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1789
1790#ifndef TASK_SIZE_OF
1791#define TASK_SIZE_OF(tsk) TASK_SIZE
1792#endif
1793
1794#ifdef CONFIG_RSEQ
1795
1796/*
1797 * Map the event mask on the user-space ABI enum rseq_cs_flags
1798 * for direct mask checks.
1799 */
1800enum rseq_event_mask_bits {
1801 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1802 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1803 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1804};
1805
1806enum rseq_event_mask {
1807 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1808 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1809 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1810};
1811
1812static inline void rseq_set_notify_resume(struct task_struct *t)
1813{
1814 if (t->rseq)
1815 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1816}
1817
1818void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1819
1820static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1821 struct pt_regs *regs)
1822{
1823 if (current->rseq)
1824 __rseq_handle_notify_resume(ksig, regs);
1825}
1826
1827static inline void rseq_signal_deliver(struct ksignal *ksig,
1828 struct pt_regs *regs)
1829{
1830 preempt_disable();
1831 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1832 preempt_enable();
1833 rseq_handle_notify_resume(ksig, regs);
1834}
1835
1836/* rseq_preempt() requires preemption to be disabled. */
1837static inline void rseq_preempt(struct task_struct *t)
1838{
1839 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1840 rseq_set_notify_resume(t);
1841}
1842
1843/* rseq_migrate() requires preemption to be disabled. */
1844static inline void rseq_migrate(struct task_struct *t)
1845{
1846 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1847 rseq_set_notify_resume(t);
1848}
1849
1850/*
1851 * If parent process has a registered restartable sequences area, the
1852 * child inherits. Only applies when forking a process, not a thread.
1853 */
1854static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1855{
1856 if (clone_flags & CLONE_THREAD) {
1857 t->rseq = NULL;
1858 t->rseq_sig = 0;
1859 t->rseq_event_mask = 0;
1860 } else {
1861 t->rseq = current->rseq;
1862 t->rseq_sig = current->rseq_sig;
1863 t->rseq_event_mask = current->rseq_event_mask;
1864 }
1865}
1866
1867static inline void rseq_execve(struct task_struct *t)
1868{
1869 t->rseq = NULL;
1870 t->rseq_sig = 0;
1871 t->rseq_event_mask = 0;
1872}
1873
1874#else
1875
1876static inline void rseq_set_notify_resume(struct task_struct *t)
1877{
1878}
1879static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1880 struct pt_regs *regs)
1881{
1882}
1883static inline void rseq_signal_deliver(struct ksignal *ksig,
1884 struct pt_regs *regs)
1885{
1886}
1887static inline void rseq_preempt(struct task_struct *t)
1888{
1889}
1890static inline void rseq_migrate(struct task_struct *t)
1891{
1892}
1893static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1894{
1895}
1896static inline void rseq_execve(struct task_struct *t)
1897{
1898}
1899
1900#endif
1901
1902void __exit_umh(struct task_struct *tsk);
1903
1904static inline void exit_umh(struct task_struct *tsk)
1905{
1906 if (unlikely(tsk->flags & PF_UMH))
1907 __exit_umh(tsk);
1908}
1909
1910#ifdef CONFIG_DEBUG_RSEQ
1911
1912void rseq_syscall(struct pt_regs *regs);
1913
1914#else
1915
1916static inline void rseq_syscall(struct pt_regs *regs)
1917{
1918}
1919
1920#endif
1921
1922#endif