at v5.2 42 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34}; 35 36#ifdef CONFIG_HAVE_HW_BREAKPOINT 37#include <asm/hw_breakpoint.h> 38#endif 39 40#include <linux/list.h> 41#include <linux/mutex.h> 42#include <linux/rculist.h> 43#include <linux/rcupdate.h> 44#include <linux/spinlock.h> 45#include <linux/hrtimer.h> 46#include <linux/fs.h> 47#include <linux/pid_namespace.h> 48#include <linux/workqueue.h> 49#include <linux/ftrace.h> 50#include <linux/cpu.h> 51#include <linux/irq_work.h> 52#include <linux/static_key.h> 53#include <linux/jump_label_ratelimit.h> 54#include <linux/atomic.h> 55#include <linux/sysfs.h> 56#include <linux/perf_regs.h> 57#include <linux/cgroup.h> 58#include <linux/refcount.h> 59#include <asm/local.h> 60 61struct perf_callchain_entry { 62 __u64 nr; 63 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 64}; 65 66struct perf_callchain_entry_ctx { 67 struct perf_callchain_entry *entry; 68 u32 max_stack; 69 u32 nr; 70 short contexts; 71 bool contexts_maxed; 72}; 73 74typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 75 unsigned long off, unsigned long len); 76 77struct perf_raw_frag { 78 union { 79 struct perf_raw_frag *next; 80 unsigned long pad; 81 }; 82 perf_copy_f copy; 83 void *data; 84 u32 size; 85} __packed; 86 87struct perf_raw_record { 88 struct perf_raw_frag frag; 89 u32 size; 90}; 91 92/* 93 * branch stack layout: 94 * nr: number of taken branches stored in entries[] 95 * 96 * Note that nr can vary from sample to sample 97 * branches (to, from) are stored from most recent 98 * to least recent, i.e., entries[0] contains the most 99 * recent branch. 100 */ 101struct perf_branch_stack { 102 __u64 nr; 103 struct perf_branch_entry entries[0]; 104}; 105 106struct task_struct; 107 108/* 109 * extra PMU register associated with an event 110 */ 111struct hw_perf_event_extra { 112 u64 config; /* register value */ 113 unsigned int reg; /* register address or index */ 114 int alloc; /* extra register already allocated */ 115 int idx; /* index in shared_regs->regs[] */ 116}; 117 118/** 119 * struct hw_perf_event - performance event hardware details: 120 */ 121struct hw_perf_event { 122#ifdef CONFIG_PERF_EVENTS 123 union { 124 struct { /* hardware */ 125 u64 config; 126 u64 last_tag; 127 unsigned long config_base; 128 unsigned long event_base; 129 int event_base_rdpmc; 130 int idx; 131 int last_cpu; 132 int flags; 133 134 struct hw_perf_event_extra extra_reg; 135 struct hw_perf_event_extra branch_reg; 136 }; 137 struct { /* software */ 138 struct hrtimer hrtimer; 139 }; 140 struct { /* tracepoint */ 141 /* for tp_event->class */ 142 struct list_head tp_list; 143 }; 144 struct { /* amd_power */ 145 u64 pwr_acc; 146 u64 ptsc; 147 }; 148#ifdef CONFIG_HAVE_HW_BREAKPOINT 149 struct { /* breakpoint */ 150 /* 151 * Crufty hack to avoid the chicken and egg 152 * problem hw_breakpoint has with context 153 * creation and event initalization. 154 */ 155 struct arch_hw_breakpoint info; 156 struct list_head bp_list; 157 }; 158#endif 159 struct { /* amd_iommu */ 160 u8 iommu_bank; 161 u8 iommu_cntr; 162 u16 padding; 163 u64 conf; 164 u64 conf1; 165 }; 166 }; 167 /* 168 * If the event is a per task event, this will point to the task in 169 * question. See the comment in perf_event_alloc(). 170 */ 171 struct task_struct *target; 172 173 /* 174 * PMU would store hardware filter configuration 175 * here. 176 */ 177 void *addr_filters; 178 179 /* Last sync'ed generation of filters */ 180 unsigned long addr_filters_gen; 181 182/* 183 * hw_perf_event::state flags; used to track the PERF_EF_* state. 184 */ 185#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 186#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 187#define PERF_HES_ARCH 0x04 188 189 int state; 190 191 /* 192 * The last observed hardware counter value, updated with a 193 * local64_cmpxchg() such that pmu::read() can be called nested. 194 */ 195 local64_t prev_count; 196 197 /* 198 * The period to start the next sample with. 199 */ 200 u64 sample_period; 201 202 /* 203 * The period we started this sample with. 204 */ 205 u64 last_period; 206 207 /* 208 * However much is left of the current period; note that this is 209 * a full 64bit value and allows for generation of periods longer 210 * than hardware might allow. 211 */ 212 local64_t period_left; 213 214 /* 215 * State for throttling the event, see __perf_event_overflow() and 216 * perf_adjust_freq_unthr_context(). 217 */ 218 u64 interrupts_seq; 219 u64 interrupts; 220 221 /* 222 * State for freq target events, see __perf_event_overflow() and 223 * perf_adjust_freq_unthr_context(). 224 */ 225 u64 freq_time_stamp; 226 u64 freq_count_stamp; 227#endif 228}; 229 230struct perf_event; 231 232/* 233 * Common implementation detail of pmu::{start,commit,cancel}_txn 234 */ 235#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 236#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 237 238/** 239 * pmu::capabilities flags 240 */ 241#define PERF_PMU_CAP_NO_INTERRUPT 0x01 242#define PERF_PMU_CAP_NO_NMI 0x02 243#define PERF_PMU_CAP_AUX_NO_SG 0x04 244#define PERF_PMU_CAP_EXTENDED_REGS 0x08 245#define PERF_PMU_CAP_EXCLUSIVE 0x10 246#define PERF_PMU_CAP_ITRACE 0x20 247#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 248#define PERF_PMU_CAP_NO_EXCLUDE 0x80 249 250/** 251 * struct pmu - generic performance monitoring unit 252 */ 253struct pmu { 254 struct list_head entry; 255 256 struct module *module; 257 struct device *dev; 258 const struct attribute_group **attr_groups; 259 const char *name; 260 int type; 261 262 /* 263 * various common per-pmu feature flags 264 */ 265 int capabilities; 266 267 int __percpu *pmu_disable_count; 268 struct perf_cpu_context __percpu *pmu_cpu_context; 269 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 270 int task_ctx_nr; 271 int hrtimer_interval_ms; 272 273 /* number of address filters this PMU can do */ 274 unsigned int nr_addr_filters; 275 276 /* 277 * Fully disable/enable this PMU, can be used to protect from the PMI 278 * as well as for lazy/batch writing of the MSRs. 279 */ 280 void (*pmu_enable) (struct pmu *pmu); /* optional */ 281 void (*pmu_disable) (struct pmu *pmu); /* optional */ 282 283 /* 284 * Try and initialize the event for this PMU. 285 * 286 * Returns: 287 * -ENOENT -- @event is not for this PMU 288 * 289 * -ENODEV -- @event is for this PMU but PMU not present 290 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 291 * -EINVAL -- @event is for this PMU but @event is not valid 292 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 293 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 294 * 295 * 0 -- @event is for this PMU and valid 296 * 297 * Other error return values are allowed. 298 */ 299 int (*event_init) (struct perf_event *event); 300 301 /* 302 * Notification that the event was mapped or unmapped. Called 303 * in the context of the mapping task. 304 */ 305 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 306 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 307 308 /* 309 * Flags for ->add()/->del()/ ->start()/->stop(). There are 310 * matching hw_perf_event::state flags. 311 */ 312#define PERF_EF_START 0x01 /* start the counter when adding */ 313#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 314#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 315 316 /* 317 * Adds/Removes a counter to/from the PMU, can be done inside a 318 * transaction, see the ->*_txn() methods. 319 * 320 * The add/del callbacks will reserve all hardware resources required 321 * to service the event, this includes any counter constraint 322 * scheduling etc. 323 * 324 * Called with IRQs disabled and the PMU disabled on the CPU the event 325 * is on. 326 * 327 * ->add() called without PERF_EF_START should result in the same state 328 * as ->add() followed by ->stop(). 329 * 330 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 331 * ->stop() that must deal with already being stopped without 332 * PERF_EF_UPDATE. 333 */ 334 int (*add) (struct perf_event *event, int flags); 335 void (*del) (struct perf_event *event, int flags); 336 337 /* 338 * Starts/Stops a counter present on the PMU. 339 * 340 * The PMI handler should stop the counter when perf_event_overflow() 341 * returns !0. ->start() will be used to continue. 342 * 343 * Also used to change the sample period. 344 * 345 * Called with IRQs disabled and the PMU disabled on the CPU the event 346 * is on -- will be called from NMI context with the PMU generates 347 * NMIs. 348 * 349 * ->stop() with PERF_EF_UPDATE will read the counter and update 350 * period/count values like ->read() would. 351 * 352 * ->start() with PERF_EF_RELOAD will reprogram the the counter 353 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 354 */ 355 void (*start) (struct perf_event *event, int flags); 356 void (*stop) (struct perf_event *event, int flags); 357 358 /* 359 * Updates the counter value of the event. 360 * 361 * For sampling capable PMUs this will also update the software period 362 * hw_perf_event::period_left field. 363 */ 364 void (*read) (struct perf_event *event); 365 366 /* 367 * Group events scheduling is treated as a transaction, add 368 * group events as a whole and perform one schedulability test. 369 * If the test fails, roll back the whole group 370 * 371 * Start the transaction, after this ->add() doesn't need to 372 * do schedulability tests. 373 * 374 * Optional. 375 */ 376 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 377 /* 378 * If ->start_txn() disabled the ->add() schedulability test 379 * then ->commit_txn() is required to perform one. On success 380 * the transaction is closed. On error the transaction is kept 381 * open until ->cancel_txn() is called. 382 * 383 * Optional. 384 */ 385 int (*commit_txn) (struct pmu *pmu); 386 /* 387 * Will cancel the transaction, assumes ->del() is called 388 * for each successful ->add() during the transaction. 389 * 390 * Optional. 391 */ 392 void (*cancel_txn) (struct pmu *pmu); 393 394 /* 395 * Will return the value for perf_event_mmap_page::index for this event, 396 * if no implementation is provided it will default to: event->hw.idx + 1. 397 */ 398 int (*event_idx) (struct perf_event *event); /*optional */ 399 400 /* 401 * context-switches callback 402 */ 403 void (*sched_task) (struct perf_event_context *ctx, 404 bool sched_in); 405 /* 406 * PMU specific data size 407 */ 408 size_t task_ctx_size; 409 410 411 /* 412 * Set up pmu-private data structures for an AUX area 413 */ 414 void *(*setup_aux) (struct perf_event *event, void **pages, 415 int nr_pages, bool overwrite); 416 /* optional */ 417 418 /* 419 * Free pmu-private AUX data structures 420 */ 421 void (*free_aux) (void *aux); /* optional */ 422 423 /* 424 * Validate address range filters: make sure the HW supports the 425 * requested configuration and number of filters; return 0 if the 426 * supplied filters are valid, -errno otherwise. 427 * 428 * Runs in the context of the ioctl()ing process and is not serialized 429 * with the rest of the PMU callbacks. 430 */ 431 int (*addr_filters_validate) (struct list_head *filters); 432 /* optional */ 433 434 /* 435 * Synchronize address range filter configuration: 436 * translate hw-agnostic filters into hardware configuration in 437 * event::hw::addr_filters. 438 * 439 * Runs as a part of filter sync sequence that is done in ->start() 440 * callback by calling perf_event_addr_filters_sync(). 441 * 442 * May (and should) traverse event::addr_filters::list, for which its 443 * caller provides necessary serialization. 444 */ 445 void (*addr_filters_sync) (struct perf_event *event); 446 /* optional */ 447 448 /* 449 * Filter events for PMU-specific reasons. 450 */ 451 int (*filter_match) (struct perf_event *event); /* optional */ 452 453 /* 454 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 455 */ 456 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 457}; 458 459enum perf_addr_filter_action_t { 460 PERF_ADDR_FILTER_ACTION_STOP = 0, 461 PERF_ADDR_FILTER_ACTION_START, 462 PERF_ADDR_FILTER_ACTION_FILTER, 463}; 464 465/** 466 * struct perf_addr_filter - address range filter definition 467 * @entry: event's filter list linkage 468 * @path: object file's path for file-based filters 469 * @offset: filter range offset 470 * @size: filter range size (size==0 means single address trigger) 471 * @action: filter/start/stop 472 * 473 * This is a hardware-agnostic filter configuration as specified by the user. 474 */ 475struct perf_addr_filter { 476 struct list_head entry; 477 struct path path; 478 unsigned long offset; 479 unsigned long size; 480 enum perf_addr_filter_action_t action; 481}; 482 483/** 484 * struct perf_addr_filters_head - container for address range filters 485 * @list: list of filters for this event 486 * @lock: spinlock that serializes accesses to the @list and event's 487 * (and its children's) filter generations. 488 * @nr_file_filters: number of file-based filters 489 * 490 * A child event will use parent's @list (and therefore @lock), so they are 491 * bundled together; see perf_event_addr_filters(). 492 */ 493struct perf_addr_filters_head { 494 struct list_head list; 495 raw_spinlock_t lock; 496 unsigned int nr_file_filters; 497}; 498 499struct perf_addr_filter_range { 500 unsigned long start; 501 unsigned long size; 502}; 503 504/** 505 * enum perf_event_state - the states of an event: 506 */ 507enum perf_event_state { 508 PERF_EVENT_STATE_DEAD = -4, 509 PERF_EVENT_STATE_EXIT = -3, 510 PERF_EVENT_STATE_ERROR = -2, 511 PERF_EVENT_STATE_OFF = -1, 512 PERF_EVENT_STATE_INACTIVE = 0, 513 PERF_EVENT_STATE_ACTIVE = 1, 514}; 515 516struct file; 517struct perf_sample_data; 518 519typedef void (*perf_overflow_handler_t)(struct perf_event *, 520 struct perf_sample_data *, 521 struct pt_regs *regs); 522 523/* 524 * Event capabilities. For event_caps and groups caps. 525 * 526 * PERF_EV_CAP_SOFTWARE: Is a software event. 527 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 528 * from any CPU in the package where it is active. 529 */ 530#define PERF_EV_CAP_SOFTWARE BIT(0) 531#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 532 533#define SWEVENT_HLIST_BITS 8 534#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 535 536struct swevent_hlist { 537 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 538 struct rcu_head rcu_head; 539}; 540 541#define PERF_ATTACH_CONTEXT 0x01 542#define PERF_ATTACH_GROUP 0x02 543#define PERF_ATTACH_TASK 0x04 544#define PERF_ATTACH_TASK_DATA 0x08 545#define PERF_ATTACH_ITRACE 0x10 546 547struct perf_cgroup; 548struct ring_buffer; 549 550struct pmu_event_list { 551 raw_spinlock_t lock; 552 struct list_head list; 553}; 554 555#define for_each_sibling_event(sibling, event) \ 556 if ((event)->group_leader == (event)) \ 557 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 558 559/** 560 * struct perf_event - performance event kernel representation: 561 */ 562struct perf_event { 563#ifdef CONFIG_PERF_EVENTS 564 /* 565 * entry onto perf_event_context::event_list; 566 * modifications require ctx->lock 567 * RCU safe iterations. 568 */ 569 struct list_head event_entry; 570 571 /* 572 * Locked for modification by both ctx->mutex and ctx->lock; holding 573 * either sufficies for read. 574 */ 575 struct list_head sibling_list; 576 struct list_head active_list; 577 /* 578 * Node on the pinned or flexible tree located at the event context; 579 */ 580 struct rb_node group_node; 581 u64 group_index; 582 /* 583 * We need storage to track the entries in perf_pmu_migrate_context; we 584 * cannot use the event_entry because of RCU and we want to keep the 585 * group in tact which avoids us using the other two entries. 586 */ 587 struct list_head migrate_entry; 588 589 struct hlist_node hlist_entry; 590 struct list_head active_entry; 591 int nr_siblings; 592 593 /* Not serialized. Only written during event initialization. */ 594 int event_caps; 595 /* The cumulative AND of all event_caps for events in this group. */ 596 int group_caps; 597 598 struct perf_event *group_leader; 599 struct pmu *pmu; 600 void *pmu_private; 601 602 enum perf_event_state state; 603 unsigned int attach_state; 604 local64_t count; 605 atomic64_t child_count; 606 607 /* 608 * These are the total time in nanoseconds that the event 609 * has been enabled (i.e. eligible to run, and the task has 610 * been scheduled in, if this is a per-task event) 611 * and running (scheduled onto the CPU), respectively. 612 */ 613 u64 total_time_enabled; 614 u64 total_time_running; 615 u64 tstamp; 616 617 /* 618 * timestamp shadows the actual context timing but it can 619 * be safely used in NMI interrupt context. It reflects the 620 * context time as it was when the event was last scheduled in. 621 * 622 * ctx_time already accounts for ctx->timestamp. Therefore to 623 * compute ctx_time for a sample, simply add perf_clock(). 624 */ 625 u64 shadow_ctx_time; 626 627 struct perf_event_attr attr; 628 u16 header_size; 629 u16 id_header_size; 630 u16 read_size; 631 struct hw_perf_event hw; 632 633 struct perf_event_context *ctx; 634 atomic_long_t refcount; 635 636 /* 637 * These accumulate total time (in nanoseconds) that children 638 * events have been enabled and running, respectively. 639 */ 640 atomic64_t child_total_time_enabled; 641 atomic64_t child_total_time_running; 642 643 /* 644 * Protect attach/detach and child_list: 645 */ 646 struct mutex child_mutex; 647 struct list_head child_list; 648 struct perf_event *parent; 649 650 int oncpu; 651 int cpu; 652 653 struct list_head owner_entry; 654 struct task_struct *owner; 655 656 /* mmap bits */ 657 struct mutex mmap_mutex; 658 atomic_t mmap_count; 659 660 struct ring_buffer *rb; 661 struct list_head rb_entry; 662 unsigned long rcu_batches; 663 int rcu_pending; 664 665 /* poll related */ 666 wait_queue_head_t waitq; 667 struct fasync_struct *fasync; 668 669 /* delayed work for NMIs and such */ 670 int pending_wakeup; 671 int pending_kill; 672 int pending_disable; 673 struct irq_work pending; 674 675 atomic_t event_limit; 676 677 /* address range filters */ 678 struct perf_addr_filters_head addr_filters; 679 /* vma address array for file-based filders */ 680 struct perf_addr_filter_range *addr_filter_ranges; 681 unsigned long addr_filters_gen; 682 683 void (*destroy)(struct perf_event *); 684 struct rcu_head rcu_head; 685 686 struct pid_namespace *ns; 687 u64 id; 688 689 u64 (*clock)(void); 690 perf_overflow_handler_t overflow_handler; 691 void *overflow_handler_context; 692#ifdef CONFIG_BPF_SYSCALL 693 perf_overflow_handler_t orig_overflow_handler; 694 struct bpf_prog *prog; 695#endif 696 697#ifdef CONFIG_EVENT_TRACING 698 struct trace_event_call *tp_event; 699 struct event_filter *filter; 700#ifdef CONFIG_FUNCTION_TRACER 701 struct ftrace_ops ftrace_ops; 702#endif 703#endif 704 705#ifdef CONFIG_CGROUP_PERF 706 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 707#endif 708 709 struct list_head sb_list; 710#endif /* CONFIG_PERF_EVENTS */ 711}; 712 713 714struct perf_event_groups { 715 struct rb_root tree; 716 u64 index; 717}; 718 719/** 720 * struct perf_event_context - event context structure 721 * 722 * Used as a container for task events and CPU events as well: 723 */ 724struct perf_event_context { 725 struct pmu *pmu; 726 /* 727 * Protect the states of the events in the list, 728 * nr_active, and the list: 729 */ 730 raw_spinlock_t lock; 731 /* 732 * Protect the list of events. Locking either mutex or lock 733 * is sufficient to ensure the list doesn't change; to change 734 * the list you need to lock both the mutex and the spinlock. 735 */ 736 struct mutex mutex; 737 738 struct list_head active_ctx_list; 739 struct perf_event_groups pinned_groups; 740 struct perf_event_groups flexible_groups; 741 struct list_head event_list; 742 743 struct list_head pinned_active; 744 struct list_head flexible_active; 745 746 int nr_events; 747 int nr_active; 748 int is_active; 749 int nr_stat; 750 int nr_freq; 751 int rotate_disable; 752 refcount_t refcount; 753 struct task_struct *task; 754 755 /* 756 * Context clock, runs when context enabled. 757 */ 758 u64 time; 759 u64 timestamp; 760 761 /* 762 * These fields let us detect when two contexts have both 763 * been cloned (inherited) from a common ancestor. 764 */ 765 struct perf_event_context *parent_ctx; 766 u64 parent_gen; 767 u64 generation; 768 int pin_count; 769#ifdef CONFIG_CGROUP_PERF 770 int nr_cgroups; /* cgroup evts */ 771#endif 772 void *task_ctx_data; /* pmu specific data */ 773 struct rcu_head rcu_head; 774}; 775 776/* 777 * Number of contexts where an event can trigger: 778 * task, softirq, hardirq, nmi. 779 */ 780#define PERF_NR_CONTEXTS 4 781 782/** 783 * struct perf_event_cpu_context - per cpu event context structure 784 */ 785struct perf_cpu_context { 786 struct perf_event_context ctx; 787 struct perf_event_context *task_ctx; 788 int active_oncpu; 789 int exclusive; 790 791 raw_spinlock_t hrtimer_lock; 792 struct hrtimer hrtimer; 793 ktime_t hrtimer_interval; 794 unsigned int hrtimer_active; 795 796#ifdef CONFIG_CGROUP_PERF 797 struct perf_cgroup *cgrp; 798 struct list_head cgrp_cpuctx_entry; 799#endif 800 801 struct list_head sched_cb_entry; 802 int sched_cb_usage; 803 804 int online; 805}; 806 807struct perf_output_handle { 808 struct perf_event *event; 809 struct ring_buffer *rb; 810 unsigned long wakeup; 811 unsigned long size; 812 u64 aux_flags; 813 union { 814 void *addr; 815 unsigned long head; 816 }; 817 int page; 818}; 819 820struct bpf_perf_event_data_kern { 821 bpf_user_pt_regs_t *regs; 822 struct perf_sample_data *data; 823 struct perf_event *event; 824}; 825 826#ifdef CONFIG_CGROUP_PERF 827 828/* 829 * perf_cgroup_info keeps track of time_enabled for a cgroup. 830 * This is a per-cpu dynamically allocated data structure. 831 */ 832struct perf_cgroup_info { 833 u64 time; 834 u64 timestamp; 835}; 836 837struct perf_cgroup { 838 struct cgroup_subsys_state css; 839 struct perf_cgroup_info __percpu *info; 840}; 841 842/* 843 * Must ensure cgroup is pinned (css_get) before calling 844 * this function. In other words, we cannot call this function 845 * if there is no cgroup event for the current CPU context. 846 */ 847static inline struct perf_cgroup * 848perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 849{ 850 return container_of(task_css_check(task, perf_event_cgrp_id, 851 ctx ? lockdep_is_held(&ctx->lock) 852 : true), 853 struct perf_cgroup, css); 854} 855#endif /* CONFIG_CGROUP_PERF */ 856 857#ifdef CONFIG_PERF_EVENTS 858 859extern void *perf_aux_output_begin(struct perf_output_handle *handle, 860 struct perf_event *event); 861extern void perf_aux_output_end(struct perf_output_handle *handle, 862 unsigned long size); 863extern int perf_aux_output_skip(struct perf_output_handle *handle, 864 unsigned long size); 865extern void *perf_get_aux(struct perf_output_handle *handle); 866extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 867extern void perf_event_itrace_started(struct perf_event *event); 868 869extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 870extern void perf_pmu_unregister(struct pmu *pmu); 871 872extern int perf_num_counters(void); 873extern const char *perf_pmu_name(void); 874extern void __perf_event_task_sched_in(struct task_struct *prev, 875 struct task_struct *task); 876extern void __perf_event_task_sched_out(struct task_struct *prev, 877 struct task_struct *next); 878extern int perf_event_init_task(struct task_struct *child); 879extern void perf_event_exit_task(struct task_struct *child); 880extern void perf_event_free_task(struct task_struct *task); 881extern void perf_event_delayed_put(struct task_struct *task); 882extern struct file *perf_event_get(unsigned int fd); 883extern const struct perf_event *perf_get_event(struct file *file); 884extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 885extern void perf_event_print_debug(void); 886extern void perf_pmu_disable(struct pmu *pmu); 887extern void perf_pmu_enable(struct pmu *pmu); 888extern void perf_sched_cb_dec(struct pmu *pmu); 889extern void perf_sched_cb_inc(struct pmu *pmu); 890extern int perf_event_task_disable(void); 891extern int perf_event_task_enable(void); 892 893extern void perf_pmu_resched(struct pmu *pmu); 894 895extern int perf_event_refresh(struct perf_event *event, int refresh); 896extern void perf_event_update_userpage(struct perf_event *event); 897extern int perf_event_release_kernel(struct perf_event *event); 898extern struct perf_event * 899perf_event_create_kernel_counter(struct perf_event_attr *attr, 900 int cpu, 901 struct task_struct *task, 902 perf_overflow_handler_t callback, 903 void *context); 904extern void perf_pmu_migrate_context(struct pmu *pmu, 905 int src_cpu, int dst_cpu); 906int perf_event_read_local(struct perf_event *event, u64 *value, 907 u64 *enabled, u64 *running); 908extern u64 perf_event_read_value(struct perf_event *event, 909 u64 *enabled, u64 *running); 910 911 912struct perf_sample_data { 913 /* 914 * Fields set by perf_sample_data_init(), group so as to 915 * minimize the cachelines touched. 916 */ 917 u64 addr; 918 struct perf_raw_record *raw; 919 struct perf_branch_stack *br_stack; 920 u64 period; 921 u64 weight; 922 u64 txn; 923 union perf_mem_data_src data_src; 924 925 /* 926 * The other fields, optionally {set,used} by 927 * perf_{prepare,output}_sample(). 928 */ 929 u64 type; 930 u64 ip; 931 struct { 932 u32 pid; 933 u32 tid; 934 } tid_entry; 935 u64 time; 936 u64 id; 937 u64 stream_id; 938 struct { 939 u32 cpu; 940 u32 reserved; 941 } cpu_entry; 942 struct perf_callchain_entry *callchain; 943 944 /* 945 * regs_user may point to task_pt_regs or to regs_user_copy, depending 946 * on arch details. 947 */ 948 struct perf_regs regs_user; 949 struct pt_regs regs_user_copy; 950 951 struct perf_regs regs_intr; 952 u64 stack_user_size; 953 954 u64 phys_addr; 955} ____cacheline_aligned; 956 957/* default value for data source */ 958#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 959 PERF_MEM_S(LVL, NA) |\ 960 PERF_MEM_S(SNOOP, NA) |\ 961 PERF_MEM_S(LOCK, NA) |\ 962 PERF_MEM_S(TLB, NA)) 963 964static inline void perf_sample_data_init(struct perf_sample_data *data, 965 u64 addr, u64 period) 966{ 967 /* remaining struct members initialized in perf_prepare_sample() */ 968 data->addr = addr; 969 data->raw = NULL; 970 data->br_stack = NULL; 971 data->period = period; 972 data->weight = 0; 973 data->data_src.val = PERF_MEM_NA; 974 data->txn = 0; 975} 976 977extern void perf_output_sample(struct perf_output_handle *handle, 978 struct perf_event_header *header, 979 struct perf_sample_data *data, 980 struct perf_event *event); 981extern void perf_prepare_sample(struct perf_event_header *header, 982 struct perf_sample_data *data, 983 struct perf_event *event, 984 struct pt_regs *regs); 985 986extern int perf_event_overflow(struct perf_event *event, 987 struct perf_sample_data *data, 988 struct pt_regs *regs); 989 990extern void perf_event_output_forward(struct perf_event *event, 991 struct perf_sample_data *data, 992 struct pt_regs *regs); 993extern void perf_event_output_backward(struct perf_event *event, 994 struct perf_sample_data *data, 995 struct pt_regs *regs); 996extern int perf_event_output(struct perf_event *event, 997 struct perf_sample_data *data, 998 struct pt_regs *regs); 999 1000static inline bool 1001is_default_overflow_handler(struct perf_event *event) 1002{ 1003 if (likely(event->overflow_handler == perf_event_output_forward)) 1004 return true; 1005 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1006 return true; 1007 return false; 1008} 1009 1010extern void 1011perf_event_header__init_id(struct perf_event_header *header, 1012 struct perf_sample_data *data, 1013 struct perf_event *event); 1014extern void 1015perf_event__output_id_sample(struct perf_event *event, 1016 struct perf_output_handle *handle, 1017 struct perf_sample_data *sample); 1018 1019extern void 1020perf_log_lost_samples(struct perf_event *event, u64 lost); 1021 1022static inline bool event_has_any_exclude_flag(struct perf_event *event) 1023{ 1024 struct perf_event_attr *attr = &event->attr; 1025 1026 return attr->exclude_idle || attr->exclude_user || 1027 attr->exclude_kernel || attr->exclude_hv || 1028 attr->exclude_guest || attr->exclude_host; 1029} 1030 1031static inline bool is_sampling_event(struct perf_event *event) 1032{ 1033 return event->attr.sample_period != 0; 1034} 1035 1036/* 1037 * Return 1 for a software event, 0 for a hardware event 1038 */ 1039static inline int is_software_event(struct perf_event *event) 1040{ 1041 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1042} 1043 1044/* 1045 * Return 1 for event in sw context, 0 for event in hw context 1046 */ 1047static inline int in_software_context(struct perf_event *event) 1048{ 1049 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1050} 1051 1052extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1053 1054extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1055extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1056 1057#ifndef perf_arch_fetch_caller_regs 1058static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1059#endif 1060 1061/* 1062 * When generating a perf sample in-line, instead of from an interrupt / 1063 * exception, we lack a pt_regs. This is typically used from software events 1064 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1065 * 1066 * We typically don't need a full set, but (for x86) do require: 1067 * - ip for PERF_SAMPLE_IP 1068 * - cs for user_mode() tests 1069 * - sp for PERF_SAMPLE_CALLCHAIN 1070 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1071 * 1072 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1073 * things like PERF_SAMPLE_REGS_INTR. 1074 */ 1075static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1076{ 1077 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1078} 1079 1080static __always_inline void 1081perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1082{ 1083 if (static_key_false(&perf_swevent_enabled[event_id])) 1084 __perf_sw_event(event_id, nr, regs, addr); 1085} 1086 1087DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1088 1089/* 1090 * 'Special' version for the scheduler, it hard assumes no recursion, 1091 * which is guaranteed by us not actually scheduling inside other swevents 1092 * because those disable preemption. 1093 */ 1094static __always_inline void 1095perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1096{ 1097 if (static_key_false(&perf_swevent_enabled[event_id])) { 1098 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1099 1100 perf_fetch_caller_regs(regs); 1101 ___perf_sw_event(event_id, nr, regs, addr); 1102 } 1103} 1104 1105extern struct static_key_false perf_sched_events; 1106 1107static __always_inline bool 1108perf_sw_migrate_enabled(void) 1109{ 1110 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1111 return true; 1112 return false; 1113} 1114 1115static inline void perf_event_task_migrate(struct task_struct *task) 1116{ 1117 if (perf_sw_migrate_enabled()) 1118 task->sched_migrated = 1; 1119} 1120 1121static inline void perf_event_task_sched_in(struct task_struct *prev, 1122 struct task_struct *task) 1123{ 1124 if (static_branch_unlikely(&perf_sched_events)) 1125 __perf_event_task_sched_in(prev, task); 1126 1127 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1128 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1129 1130 perf_fetch_caller_regs(regs); 1131 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1132 task->sched_migrated = 0; 1133 } 1134} 1135 1136static inline void perf_event_task_sched_out(struct task_struct *prev, 1137 struct task_struct *next) 1138{ 1139 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1140 1141 if (static_branch_unlikely(&perf_sched_events)) 1142 __perf_event_task_sched_out(prev, next); 1143} 1144 1145extern void perf_event_mmap(struct vm_area_struct *vma); 1146 1147extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1148 bool unregister, const char *sym); 1149extern void perf_event_bpf_event(struct bpf_prog *prog, 1150 enum perf_bpf_event_type type, 1151 u16 flags); 1152 1153extern struct perf_guest_info_callbacks *perf_guest_cbs; 1154extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1155extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1156 1157extern void perf_event_exec(void); 1158extern void perf_event_comm(struct task_struct *tsk, bool exec); 1159extern void perf_event_namespaces(struct task_struct *tsk); 1160extern void perf_event_fork(struct task_struct *tsk); 1161 1162/* Callchains */ 1163DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1164 1165extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1166extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1167extern struct perf_callchain_entry * 1168get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1169 u32 max_stack, bool crosstask, bool add_mark); 1170extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1171extern int get_callchain_buffers(int max_stack); 1172extern void put_callchain_buffers(void); 1173 1174extern int sysctl_perf_event_max_stack; 1175extern int sysctl_perf_event_max_contexts_per_stack; 1176 1177static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1178{ 1179 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1180 struct perf_callchain_entry *entry = ctx->entry; 1181 entry->ip[entry->nr++] = ip; 1182 ++ctx->contexts; 1183 return 0; 1184 } else { 1185 ctx->contexts_maxed = true; 1186 return -1; /* no more room, stop walking the stack */ 1187 } 1188} 1189 1190static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1191{ 1192 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1193 struct perf_callchain_entry *entry = ctx->entry; 1194 entry->ip[entry->nr++] = ip; 1195 ++ctx->nr; 1196 return 0; 1197 } else { 1198 return -1; /* no more room, stop walking the stack */ 1199 } 1200} 1201 1202extern int sysctl_perf_event_paranoid; 1203extern int sysctl_perf_event_mlock; 1204extern int sysctl_perf_event_sample_rate; 1205extern int sysctl_perf_cpu_time_max_percent; 1206 1207extern void perf_sample_event_took(u64 sample_len_ns); 1208 1209extern int perf_proc_update_handler(struct ctl_table *table, int write, 1210 void __user *buffer, size_t *lenp, 1211 loff_t *ppos); 1212extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1213 void __user *buffer, size_t *lenp, 1214 loff_t *ppos); 1215 1216int perf_event_max_stack_handler(struct ctl_table *table, int write, 1217 void __user *buffer, size_t *lenp, loff_t *ppos); 1218 1219static inline bool perf_paranoid_tracepoint_raw(void) 1220{ 1221 return sysctl_perf_event_paranoid > -1; 1222} 1223 1224static inline bool perf_paranoid_cpu(void) 1225{ 1226 return sysctl_perf_event_paranoid > 0; 1227} 1228 1229static inline bool perf_paranoid_kernel(void) 1230{ 1231 return sysctl_perf_event_paranoid > 1; 1232} 1233 1234extern void perf_event_init(void); 1235extern void perf_tp_event(u16 event_type, u64 count, void *record, 1236 int entry_size, struct pt_regs *regs, 1237 struct hlist_head *head, int rctx, 1238 struct task_struct *task); 1239extern void perf_bp_event(struct perf_event *event, void *data); 1240 1241#ifndef perf_misc_flags 1242# define perf_misc_flags(regs) \ 1243 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1244# define perf_instruction_pointer(regs) instruction_pointer(regs) 1245#endif 1246#ifndef perf_arch_bpf_user_pt_regs 1247# define perf_arch_bpf_user_pt_regs(regs) regs 1248#endif 1249 1250static inline bool has_branch_stack(struct perf_event *event) 1251{ 1252 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1253} 1254 1255static inline bool needs_branch_stack(struct perf_event *event) 1256{ 1257 return event->attr.branch_sample_type != 0; 1258} 1259 1260static inline bool has_aux(struct perf_event *event) 1261{ 1262 return event->pmu->setup_aux; 1263} 1264 1265static inline bool is_write_backward(struct perf_event *event) 1266{ 1267 return !!event->attr.write_backward; 1268} 1269 1270static inline bool has_addr_filter(struct perf_event *event) 1271{ 1272 return event->pmu->nr_addr_filters; 1273} 1274 1275/* 1276 * An inherited event uses parent's filters 1277 */ 1278static inline struct perf_addr_filters_head * 1279perf_event_addr_filters(struct perf_event *event) 1280{ 1281 struct perf_addr_filters_head *ifh = &event->addr_filters; 1282 1283 if (event->parent) 1284 ifh = &event->parent->addr_filters; 1285 1286 return ifh; 1287} 1288 1289extern void perf_event_addr_filters_sync(struct perf_event *event); 1290 1291extern int perf_output_begin(struct perf_output_handle *handle, 1292 struct perf_event *event, unsigned int size); 1293extern int perf_output_begin_forward(struct perf_output_handle *handle, 1294 struct perf_event *event, 1295 unsigned int size); 1296extern int perf_output_begin_backward(struct perf_output_handle *handle, 1297 struct perf_event *event, 1298 unsigned int size); 1299 1300extern void perf_output_end(struct perf_output_handle *handle); 1301extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1302 const void *buf, unsigned int len); 1303extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1304 unsigned int len); 1305extern int perf_swevent_get_recursion_context(void); 1306extern void perf_swevent_put_recursion_context(int rctx); 1307extern u64 perf_swevent_set_period(struct perf_event *event); 1308extern void perf_event_enable(struct perf_event *event); 1309extern void perf_event_disable(struct perf_event *event); 1310extern void perf_event_disable_local(struct perf_event *event); 1311extern void perf_event_disable_inatomic(struct perf_event *event); 1312extern void perf_event_task_tick(void); 1313extern int perf_event_account_interrupt(struct perf_event *event); 1314#else /* !CONFIG_PERF_EVENTS: */ 1315static inline void * 1316perf_aux_output_begin(struct perf_output_handle *handle, 1317 struct perf_event *event) { return NULL; } 1318static inline void 1319perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1320 { } 1321static inline int 1322perf_aux_output_skip(struct perf_output_handle *handle, 1323 unsigned long size) { return -EINVAL; } 1324static inline void * 1325perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1326static inline void 1327perf_event_task_migrate(struct task_struct *task) { } 1328static inline void 1329perf_event_task_sched_in(struct task_struct *prev, 1330 struct task_struct *task) { } 1331static inline void 1332perf_event_task_sched_out(struct task_struct *prev, 1333 struct task_struct *next) { } 1334static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1335static inline void perf_event_exit_task(struct task_struct *child) { } 1336static inline void perf_event_free_task(struct task_struct *task) { } 1337static inline void perf_event_delayed_put(struct task_struct *task) { } 1338static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1339static inline const struct perf_event *perf_get_event(struct file *file) 1340{ 1341 return ERR_PTR(-EINVAL); 1342} 1343static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1344{ 1345 return ERR_PTR(-EINVAL); 1346} 1347static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1348 u64 *enabled, u64 *running) 1349{ 1350 return -EINVAL; 1351} 1352static inline void perf_event_print_debug(void) { } 1353static inline int perf_event_task_disable(void) { return -EINVAL; } 1354static inline int perf_event_task_enable(void) { return -EINVAL; } 1355static inline int perf_event_refresh(struct perf_event *event, int refresh) 1356{ 1357 return -EINVAL; 1358} 1359 1360static inline void 1361perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1362static inline void 1363perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1364static inline void 1365perf_bp_event(struct perf_event *event, void *data) { } 1366 1367static inline int perf_register_guest_info_callbacks 1368(struct perf_guest_info_callbacks *callbacks) { return 0; } 1369static inline int perf_unregister_guest_info_callbacks 1370(struct perf_guest_info_callbacks *callbacks) { return 0; } 1371 1372static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1373 1374typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1375static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1376 bool unregister, const char *sym) { } 1377static inline void perf_event_bpf_event(struct bpf_prog *prog, 1378 enum perf_bpf_event_type type, 1379 u16 flags) { } 1380static inline void perf_event_exec(void) { } 1381static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1382static inline void perf_event_namespaces(struct task_struct *tsk) { } 1383static inline void perf_event_fork(struct task_struct *tsk) { } 1384static inline void perf_event_init(void) { } 1385static inline int perf_swevent_get_recursion_context(void) { return -1; } 1386static inline void perf_swevent_put_recursion_context(int rctx) { } 1387static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1388static inline void perf_event_enable(struct perf_event *event) { } 1389static inline void perf_event_disable(struct perf_event *event) { } 1390static inline int __perf_event_disable(void *info) { return -1; } 1391static inline void perf_event_task_tick(void) { } 1392static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1393#endif 1394 1395#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1396extern void perf_restore_debug_store(void); 1397#else 1398static inline void perf_restore_debug_store(void) { } 1399#endif 1400 1401static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1402{ 1403 return frag->pad < sizeof(u64); 1404} 1405 1406#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1407 1408struct perf_pmu_events_attr { 1409 struct device_attribute attr; 1410 u64 id; 1411 const char *event_str; 1412}; 1413 1414struct perf_pmu_events_ht_attr { 1415 struct device_attribute attr; 1416 u64 id; 1417 const char *event_str_ht; 1418 const char *event_str_noht; 1419}; 1420 1421ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1422 char *page); 1423 1424#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1425static struct perf_pmu_events_attr _var = { \ 1426 .attr = __ATTR(_name, 0444, _show, NULL), \ 1427 .id = _id, \ 1428}; 1429 1430#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1431static struct perf_pmu_events_attr _var = { \ 1432 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1433 .id = 0, \ 1434 .event_str = _str, \ 1435}; 1436 1437#define PMU_FORMAT_ATTR(_name, _format) \ 1438static ssize_t \ 1439_name##_show(struct device *dev, \ 1440 struct device_attribute *attr, \ 1441 char *page) \ 1442{ \ 1443 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1444 return sprintf(page, _format "\n"); \ 1445} \ 1446 \ 1447static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1448 1449/* Performance counter hotplug functions */ 1450#ifdef CONFIG_PERF_EVENTS 1451int perf_event_init_cpu(unsigned int cpu); 1452int perf_event_exit_cpu(unsigned int cpu); 1453#else 1454#define perf_event_init_cpu NULL 1455#define perf_event_exit_cpu NULL 1456#endif 1457 1458#endif /* _LINUX_PERF_EVENT_H */